Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory
[Display omitted] ► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced...
Saved in:
Published in | Journal of colloid and interface science Vol. 386; no. 1; pp. 158 - 166 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.11.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced magneto-optical properties. ► Improved performance requires control of magnetic domains in magnetite nanorods.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)2 with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm−3 NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ∼500nm and typical diameter ∼20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field–LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod–liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.jcis.2012.07.082 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2012.07.082 |