Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory
[Display omitted] ► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced...
Saved in:
Published in | Journal of colloid and interface science Vol. 386; no. 1; pp. 158 - 166 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.11.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced magneto-optical properties. ► Improved performance requires control of magnetic domains in magnetite nanorods.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)2 with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm−3 NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ∼500nm and typical diameter ∼20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field–LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod–liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. |
---|---|
AbstractList | [Display omitted]
► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced magneto-optical properties. ► Improved performance requires control of magnetic domains in magnetite nanorods.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)2 with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm−3 NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ∼500nm and typical diameter ∼20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field–LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod–liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)₂ with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm⁻³ NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ∼500nm and typical diameter ∼20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field–LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod–liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)2 with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm-3 NaOH at 100 degree C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length similar to 500 nm and typical diameter similar to 20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500 nm and typical diameter ~20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500 nm and typical diameter ~20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500 nm and typical diameter ~20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. |
Author | Bavykin, Dmitry V. Buchnev, Oleksandr Kulak, Alexander N. Sluckin, Timothy J. Kaczmarek, Malgosia Podoliak, Nina |
Author_xml | – sequence: 1 givenname: Nina surname: Podoliak fullname: Podoliak, Nina organization: Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 2 givenname: Oleksandr surname: Buchnev fullname: Buchnev, Oleksandr organization: Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 3 givenname: Dmitry V. surname: Bavykin fullname: Bavykin, Dmitry V. organization: Materials Engineering and Energy Technology Research Groups, Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 4 givenname: Alexander N. surname: Kulak fullname: Kulak, Alexander N. organization: Materials Engineering and Energy Technology Research Groups, Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 5 givenname: Malgosia surname: Kaczmarek fullname: Kaczmarek, Malgosia organization: Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom – sequence: 6 givenname: Timothy J. surname: Sluckin fullname: Sluckin, Timothy J. email: t.j.sluckin@soton.ac.uk organization: Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26388929$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22935749$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btuFDEUBmALBZFN4AUoYBqkFMxyfBlfIhoUcZOCKJLUlsfjCV7N2hvbi7RvH092IySKpHLh7z9H9n-CjkIMDqG3GJYYMP-0Wq6sz0sCmCxBLEGSF2iBQXWtwECP0AKA4FYJJY7RSc4rAIy7Tr1Cx4Qo2gmmFuj6l7kNrvjimmBCTHFoyh-X1rGkuPG2mfzd1g-NTbtczNTYOE3RD_m8udqFCrPPH5u4Kd7mxoSHbEy71-jlaKbs3hzOU3Tz7ev1xY_28vf3nxdfLlvLBC-tYwxoP3TMYEkHydjYy14w4D0hnApjlTGOim6knFLG6ejGYVRUMmAwCNbRU3S2n7tJ8W7rctFrn62bJhNc3GaNJVDMpCTkeYop7zoAKp-nQBU86ErfHei2X7tBb5Jfm7TTj_9bwYcDMNmaaUwm1Mr-OU6lVGR2cu9sijknN2rriyk-hpKMn-pOPVeuV3quXM-VaxC6Vl6j5L_o4_QnQ-_3odFEbW5Tvb65qoADgBCKz0_7vBeuFvjXu6Sz9S5YN_jkbNFD9E8tuAc9_sxY |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1039_C7SM01029J crossref_primary_10_1016_j_molliq_2017_11_157 crossref_primary_10_1039_D1CP03005A crossref_primary_10_1016_j_jmmm_2015_06_021 crossref_primary_10_1016_j_molliq_2017_05_002 crossref_primary_10_1103_PhysRevE_88_052503 crossref_primary_10_1134_S1063776118090236 crossref_primary_10_1016_j_jmmm_2023_171616 crossref_primary_10_1515_psr_2019_0108 crossref_primary_10_1103_PhysRevE_97_012701 crossref_primary_10_1080_02678292_2014_988763 crossref_primary_10_1038_nature12863 crossref_primary_10_1134_S1063784214090114 crossref_primary_10_1016_j_molliq_2015_01_019 crossref_primary_10_1080_02678292_2019_1593529 crossref_primary_10_1039_C6TC02697D crossref_primary_10_1080_02678292_2015_1082651 crossref_primary_10_1039_C6RA16986D crossref_primary_10_1039_C8NR09259A crossref_primary_10_1080_01411594_2012_752085 crossref_primary_10_1080_02678292_2022_2046880 crossref_primary_10_1103_PhysRevLett_119_097802 crossref_primary_10_1134_S1063776115090046 crossref_primary_10_1088_1402_4896_ac437d crossref_primary_10_1134_S106377611808023X crossref_primary_10_1364_OE_27_008900 crossref_primary_10_1039_C7TC01106G crossref_primary_10_1016_j_molliq_2014_06_028 crossref_primary_10_1134_S1063783416090341 crossref_primary_10_3390_ma14113096 crossref_primary_10_1039_C6SM00906A crossref_primary_10_3390_nano8070453 crossref_primary_10_1140_epje_i2016_16101_y crossref_primary_10_1080_02678292_2014_950615 crossref_primary_10_1080_21680396_2017_1304835 crossref_primary_10_1080_02678292_2024_2314617 crossref_primary_10_1134_S1063783418070247 crossref_primary_10_1109_TMAG_2014_2329875 crossref_primary_10_1002_ejoc_201901450 crossref_primary_10_1039_C7CP01438D crossref_primary_10_1016_j_jmmm_2015_10_025 crossref_primary_10_1016_j_isci_2021_103493 crossref_primary_10_1016_j_molliq_2020_114299 crossref_primary_10_1016_j_molliq_2019_111125 crossref_primary_10_1002_cphc_201301052 crossref_primary_10_1080_02678292_2020_1852620 crossref_primary_10_1088_1361_6528_ab3ca2 crossref_primary_10_1039_D0SM00880J crossref_primary_10_1039_C8SM01377B crossref_primary_10_1016_j_jcis_2023_02_087 crossref_primary_10_3390_nano12234321 crossref_primary_10_1016_j_jmmm_2014_07_061 crossref_primary_10_1039_C9CP06245A crossref_primary_10_1063_1_5126398 crossref_primary_10_1134_S1063776116090168 crossref_primary_10_1134_S1063776116100101 crossref_primary_10_1121_10_0019684 crossref_primary_10_1515_psr_2019_0090 crossref_primary_10_1080_02678292_2019_1641755 crossref_primary_10_1016_j_molliq_2013_09_032 crossref_primary_10_2139_ssrn_3908783 |
Cites_doi | 10.1021/ja0445239 10.1039/jm9950502297 10.1080/10587259508034552 10.1016/S0038-1098(03)00580-5 10.1246/cl.2007.840 10.1039/C0SM00131G 10.1039/B614046G 10.1039/c1nj20017h 10.1103/PhysRevE.78.011702 10.1016/j.jcrysgro.2004.11.423 10.1039/c0sm01398f 10.1016/j.ssc.2003.11.043 10.1103/PhysRevE.79.011702 10.1021/jp907923v 10.1016/j.matlet.2011.03.101 10.1080/15421406.2011.632295 10.1366/0003702021954791 10.1051/jphys:01970003107069100 10.3390/ijms10093971 10.1016/j.carbon.2006.11.030 10.1088/0022-3727/40/2/006 10.1246/cl.2005.636 10.1103/PhysRevE.82.030701 10.1016/j.jcis.2007.05.047 10.1103/PhysRevE.50.358 10.1002/adma.200600674 10.1063/1.323928 10.1088/0957-4484/19/6/065602 10.1016/j.jcrysgro.2007.07.020 10.1103/PhysRevE.59.763 10.1021/jp073837q 10.1103/PhysRevLett.102.197802 10.1016/j.jcrysgro.2003.11.102 10.1103/PhysRevLett.51.2298 10.1021/nn9002715 10.1103/PhysRevLett.97.147801 10.1088/1757-899X/18/3/032020 10.1080/15421406.2012.663195 10.1021/cm100289d 10.1016/j.jmmm.2010.07.028 10.1039/c1sm05051f 10.1021/jp711990f |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. 2015 INIST-CNRS Copyright © 2012 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier Inc. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW NPM 7X8 7U5 8FD L7M 7S9 L.6 |
DOI | 10.1016/j.jcis.2012.07.082 |
DatabaseName | AGRIS CrossRef Pascal-Francis PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 166 |
ExternalDocumentID | 22935749 26388929 10_1016_j_jcis_2012_07_082 US201600077960 S0021979712008673 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAQXK ABPIF ABPTK ADFGL AFFNX AI. ASPBG AVWKF AZFZN BBWZM CAG COF D-I EJD FBQ FEDTE FGOYB G-2 G8K HLY HVGLF H~9 NDZJH NEJ R2- SCB SCE SEW VH1 WUQ XFK ZGI ZXP AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW NPM 7X8 7U5 8FD L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c476t-e4403bd54a183d844fb8b7406b22637ac9aae375f3633463fefdf9384040d7453 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 15:15:36 EDT 2025 Fri Jul 11 15:08:03 EDT 2025 Tue Aug 05 10:38:21 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 Mon Jul 21 09:14:33 EDT 2025 Tue Jul 01 01:18:09 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Wed Dec 27 19:19:22 EST 2023 Fri Feb 23 02:28:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fe3O4 Nanostructures Liquid crystals Ferronematics Nanorods Binary compound Iron oxide Nanoparticle Theory Composite material O Magnetite Synthesis Hydrothermal treatment Carboxylic acid Oleic acid Polydispersed particle Magnetic field Nanorod Diameter Fe Device Transition element compounds Nanostructure Air Colloid Colloid particle Magnetic suspension |
Language | English |
License | CC BY 4.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-e4403bd54a183d844fb8b7406b22637ac9aae375f3633463fefdf9384040d7453 |
Notes | http://dx.doi.org/10.1016/j.jcis.2012.07.082 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 22935749 |
PQID | 1039036550 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1803148822 proquest_miscellaneous_1136550038 proquest_miscellaneous_1039036550 pubmed_primary_22935749 pascalfrancis_primary_26388929 crossref_citationtrail_10_1016_j_jcis_2012_07_082 crossref_primary_10_1016_j_jcis_2012_07_082 fao_agris_US201600077960 elsevier_sciencedirect_doi_10_1016_j_jcis_2012_07_082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-15 |
PublicationDateYYYYMMDD | 2012-11-15 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Kopčanský, Tomašovičová, Koneracká, Timko, Závišová, Éber, Fodor-Csorba, Tóth-Katona, Vajda, Jadzyni (b0025) 2010; 322 Jia, Sun, Yan, Pang, You, Yan (b0120) 2007; 111 Iida, Takayanagi, Nakanishi, Osaka (b0210) 2007; 314 H.M. Lu, W.T. Zheng, Q. Jiang, J. Phys. D: Appl. Phys. 40 (2007) 320. Jeong, Teng, Wang, Yang, Xia (b0055) 2007; 19 Gorkunov, Osipov (b0190) 2011; 7 Li, Yang, Ding, Xue (b0220) 2010; 22 Khatua, Manna, Chang, Tcherniak, Friedlander, Zubarev, Link (b0160) 2010; 114 Cseh, Mehl (b0155) 2007; 17 Brochard, de Gennes (b0010) 1970; 31 Cordoyiannis, Kurihara, Martinez-Miranda, Glorieux, Thoen (b0040) 2009; 79 Cornell, Schwertmann (b0150) 2003 Buluy, Burseva, Hakobyan, Goodby, Kolosov, Reznikov, Hakobyan, Slyusarenko, Prodanov, Vashchenko (b0225) 2012; 560 Lian, Kang, Wang, Jiang, Hu, Xu (b0065) 2003; 127 Popa-Nita, Gerlich, Kralj (b0175) 2009; 10 N. Mahmed, O. Heczko, O. Soderberg, S.P. Hannula, IOP Conf. Ser.: Mater. Sci. Eng. 18 (2011) 032020. Yuan, Gao, Schacher, Xu, Richter, Tremel, Muller (b0060) 2009; 3 Han, Liu, Xu, Zhang (b0095) 2007; 307 Khoo, Wu (b0145) 1993 Lian, Wang, Kang, Bai, Gao, Jiang, Hu, Xu (b0085) 2004; 129 Zhou, Tang, Zeng, Qi (b0100) 2008; 19 Podoliak, Buchnev, D’Alessandro, Kaczmarek, Sluckin (b0140) 2010; 82 V.G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech–House, Boston–London, 1999. Zhang, Jia, Wu, Ran, Wu, Liu (b0110) 2011; 65 Burylov, Raikher (b0035) 1994; 50 Rafferty, Koenig, Magyar, West (b0170) 2002; 56 Tang, Chen (b0075) 2007; 36 Podoliak, Buchnev, Buluy, D’Alessandro, Kaczmarek, Reznikov, Sluckin (b0125) 2011; 7 Burylov, Raikher (b0015) 1995; 258 Kopčanský, Tomašovičová, Koneracká, Timko, Závišová, Džarová, Šprincová, Éber, Fodor-Csorba, Tóth-Katona (b0030) 2008; 78 Vereda, Vicente, Morales, Rull, Hidalgo-Alvarez (b0130) 2008; 112 Cao, Chen, Wang, Chen (b0105) 2007; 45 Scheffer, Nehring (b0135) 1977; 48 Wan, Chen, Wang, Yang, Qian (b0080) 2005; 276 Chen, Amer (b0020) 1983; 51 Wang, Peng, Huang, Chen (b0070) 2004; 263 Peng, Wu, Xiong, Wang, Chen (b0090) 2005; 34 Liu, Zhang, Han, Li, Lei, Lu, Fang, Zhou (b0115) 2005; 127 Mitróová, Tomašovičová, Timko, Koneracká, Kováč, Jadzyn, Vávra, Éber, Tóth-Katona, Beaugnon (b0050) 2011; 35 Petrov, Zakhlevnykh (b0215) 2012; 557 Matsuyama, Kato (b0180) 1999; 59 L.M. Lopatina, J.V. Selinger, Phys. Rev. Lett. 102 (2009) 197802. Buluy, Nepijko, Reshetnyak, Ouskova, Zadorozhnii, Leonhardt, Ritschel, Schonhense, Reznikov (b0045) 2011; 7 Li, Buchnev, Cheon, Glushchenko, Reshetnyak, Reznikov, Sluckin, West (b0195) 2006; 97 Ouchi, Yoshioka, Ishii, Seki, Kitamura, Noyori, Takanishi, Nishiyama (b0165) 1995; 5 Khatua (10.1016/j.jcis.2012.07.082_b0160) 2010; 114 Podoliak (10.1016/j.jcis.2012.07.082_b0125) 2011; 7 Wang (10.1016/j.jcis.2012.07.082_b0070) 2004; 263 Matsuyama (10.1016/j.jcis.2012.07.082_b0180) 1999; 59 Zhou (10.1016/j.jcis.2012.07.082_b0100) 2008; 19 Burylov (10.1016/j.jcis.2012.07.082_b0015) 1995; 258 Mitróová (10.1016/j.jcis.2012.07.082_b0050) 2011; 35 Scheffer (10.1016/j.jcis.2012.07.082_b0135) 1977; 48 Popa-Nita (10.1016/j.jcis.2012.07.082_b0175) 2009; 10 Zhang (10.1016/j.jcis.2012.07.082_b0110) 2011; 65 Vereda (10.1016/j.jcis.2012.07.082_b0130) 2008; 112 Brochard (10.1016/j.jcis.2012.07.082_b0010) 1970; 31 Rafferty (10.1016/j.jcis.2012.07.082_b0170) 2002; 56 Han (10.1016/j.jcis.2012.07.082_b0095) 2007; 307 Chen (10.1016/j.jcis.2012.07.082_b0020) 1983; 51 Cordoyiannis (10.1016/j.jcis.2012.07.082_b0040) 2009; 79 Kopčanský (10.1016/j.jcis.2012.07.082_b0025) 2010; 322 Wan (10.1016/j.jcis.2012.07.082_b0080) 2005; 276 Petrov (10.1016/j.jcis.2012.07.082_b0215) 2012; 557 Lian (10.1016/j.jcis.2012.07.082_b0085) 2004; 129 Yuan (10.1016/j.jcis.2012.07.082_b0060) 2009; 3 Cseh (10.1016/j.jcis.2012.07.082_b0155) 2007; 17 Kopčanský (10.1016/j.jcis.2012.07.082_b0030) 2008; 78 Jeong (10.1016/j.jcis.2012.07.082_b0055) 2007; 19 Gorkunov (10.1016/j.jcis.2012.07.082_b0190) 2011; 7 Cornell (10.1016/j.jcis.2012.07.082_b0150) 2003 Peng (10.1016/j.jcis.2012.07.082_b0090) 2005; 34 Liu (10.1016/j.jcis.2012.07.082_b0115) 2005; 127 10.1016/j.jcis.2012.07.082_b0185 Podoliak (10.1016/j.jcis.2012.07.082_b0140) 2010; 82 10.1016/j.jcis.2012.07.082_b0200 Iida (10.1016/j.jcis.2012.07.082_b0210) 2007; 314 10.1016/j.jcis.2012.07.082_b0005 Li (10.1016/j.jcis.2012.07.082_b0220) 2010; 22 Khoo (10.1016/j.jcis.2012.07.082_b0145) 1993 10.1016/j.jcis.2012.07.082_b0205 Jia (10.1016/j.jcis.2012.07.082_b0120) 2007; 111 Buluy (10.1016/j.jcis.2012.07.082_b0225) 2012; 560 Burylov (10.1016/j.jcis.2012.07.082_b0035) 1994; 50 Cao (10.1016/j.jcis.2012.07.082_b0105) 2007; 45 Li (10.1016/j.jcis.2012.07.082_b0195) 2006; 97 Tang (10.1016/j.jcis.2012.07.082_b0075) 2007; 36 Ouchi (10.1016/j.jcis.2012.07.082_b0165) 1995; 5 Buluy (10.1016/j.jcis.2012.07.082_b0045) 2011; 7 Lian (10.1016/j.jcis.2012.07.082_b0065) 2003; 127 |
References_xml | – volume: 34 start-page: 636 year: 2005 ident: b0090 publication-title: Chem. Lett. – volume: 19 start-page: 065602 year: 2008 ident: b0100 publication-title: Nanotechnol. – volume: 7 start-page: 644 year: 2011 ident: b0045 publication-title: Soft Matter. – volume: 5 start-page: 2297 year: 1995 ident: b0165 publication-title: J. Matter. Chem. – volume: 322 start-page: 3696 year: 2010 ident: b0025 publication-title: J. Magn. Magn. Mater. – volume: 78 start-page: 011702 year: 2008 ident: b0030 publication-title: Phys. Rev. E. – volume: 82 start-page: 030701R year: 2010 ident: b0140 publication-title: Phys. Rev. E – volume: 307 start-page: 483 year: 2007 ident: b0095 publication-title: J. Cryst. Growth. – volume: 19 start-page: 33 year: 2007 ident: b0055 publication-title: Adv. Mater. – volume: 560 start-page: 149 year: 2012 end-page: 158 ident: b0225 publication-title: Mol. Cryst. Liq. Cryst. – volume: 59 start-page: 763 year: 1999 ident: b0180 publication-title: Phys. Rev. E – volume: 10 start-page: 3971 year: 2009 ident: b0175 publication-title: Int. J. Mol. Sci. – reference: V.G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech–House, Boston–London, 1999. – volume: 7 start-page: 4742 year: 2011 ident: b0125 publication-title: Soft Matter. – volume: 114 start-page: 7251 year: 2010 ident: b0160 publication-title: J. Phys. Chem. C. – volume: 51 start-page: 2298 year: 1983 ident: b0020 publication-title: Phys. Rev. Lett. – year: 1993 ident: b0145 article-title: Optics and Nonlinear Optics of Liquid Crystals – volume: 56 start-page: 284 year: 2002 ident: b0170 publication-title: Appl. Spectrosc. – volume: 45 start-page: 727 year: 2007 ident: b0105 publication-title: Carbon – volume: 31 start-page: 691 year: 1970 ident: b0010 publication-title: J. Phys. – volume: 17 start-page: 311 year: 2007 ident: b0155 publication-title: J. Mater. Chem. – volume: 276 start-page: 571 year: 2005 ident: b0080 publication-title: J. Cryst. Growth. – reference: H.M. Lu, W.T. Zheng, Q. Jiang, J. Phys. D: Appl. Phys. 40 (2007) 320. – volume: 48 start-page: 1783 year: 1977 ident: b0135 publication-title: J. Appl. Phys. – volume: 557 start-page: 60 year: 2012 end-page: 72 ident: b0215 publication-title: Mol. Cryst. Liq. Cryst. – volume: 65 start-page: 1973 year: 2011 ident: b0110 publication-title: Mater. Lett. – volume: 7 start-page: 4348 year: 2011 ident: b0190 publication-title: Soft Matter. – volume: 97 start-page: 147801 year: 2006 ident: b0195 publication-title: Phys. Rev. Lett. – volume: 50 start-page: 358 year: 1994 ident: b0035 publication-title: Phys. Rev. E. – volume: 314 start-page: 274 year: 2007 ident: b0210 publication-title: J. Colloid Interface Sci. – volume: 258 start-page: 107 year: 1995 ident: b0015 publication-title: Mol. Cryst. Liq. Cryst. – reference: L.M. Lopatina, J.V. Selinger, Phys. Rev. Lett. 102 (2009) 197802. – volume: 3 start-page: 1441 year: 2009 ident: b0060 publication-title: ACS Nano. – volume: 79 start-page: 011702 year: 2009 ident: b0040 publication-title: Phys. Rev. E. – volume: 35 start-page: 1260 year: 2011 ident: b0050 publication-title: New J. Chem. – volume: 22 start-page: 3183 year: 2010 ident: b0220 publication-title: Chem. Mater. – volume: 263 start-page: 616 year: 2004 ident: b0070 publication-title: J. Cryst. Growth. – volume: 127 start-page: 6 year: 2005 ident: b0115 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 13022 year: 2007 ident: b0120 publication-title: J. Phys. Chem. C – volume: 112 start-page: 5843 year: 2008 ident: b0130 publication-title: J. Phys. Chem. C – reference: N. Mahmed, O. Heczko, O. Soderberg, S.P. Hannula, IOP Conf. Ser.: Mater. Sci. Eng. 18 (2011) 032020. – volume: 127 start-page: 605 year: 2003 ident: b0065 publication-title: Solid State Commun. – volume: 36 start-page: 840 year: 2007 ident: b0075 publication-title: Chem. Lett. – volume: 129 start-page: 485 year: 2004 ident: b0085 publication-title: Solid State Commun. – year: 2003 ident: b0150 article-title: The Iron Oxides: Structure, Properties, Reaction, Occurrence and Uses – volume: 127 start-page: 6 year: 2005 ident: 10.1016/j.jcis.2012.07.082_b0115 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0445239 – volume: 5 start-page: 2297 year: 1995 ident: 10.1016/j.jcis.2012.07.082_b0165 publication-title: J. Matter. Chem. doi: 10.1039/jm9950502297 – volume: 258 start-page: 107 year: 1995 ident: 10.1016/j.jcis.2012.07.082_b0015 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/10587259508034552 – volume: 127 start-page: 605 year: 2003 ident: 10.1016/j.jcis.2012.07.082_b0065 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(03)00580-5 – volume: 36 start-page: 840 year: 2007 ident: 10.1016/j.jcis.2012.07.082_b0075 publication-title: Chem. Lett. doi: 10.1246/cl.2007.840 – volume: 7 start-page: 644 year: 2011 ident: 10.1016/j.jcis.2012.07.082_b0045 publication-title: Soft Matter. doi: 10.1039/C0SM00131G – volume: 17 start-page: 311 year: 2007 ident: 10.1016/j.jcis.2012.07.082_b0155 publication-title: J. Mater. Chem. doi: 10.1039/B614046G – volume: 35 start-page: 1260 year: 2011 ident: 10.1016/j.jcis.2012.07.082_b0050 publication-title: New J. Chem. doi: 10.1039/c1nj20017h – volume: 78 start-page: 011702 year: 2008 ident: 10.1016/j.jcis.2012.07.082_b0030 publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.78.011702 – volume: 276 start-page: 571 year: 2005 ident: 10.1016/j.jcis.2012.07.082_b0080 publication-title: J. Cryst. Growth. doi: 10.1016/j.jcrysgro.2004.11.423 – volume: 7 start-page: 4348 year: 2011 ident: 10.1016/j.jcis.2012.07.082_b0190 publication-title: Soft Matter. doi: 10.1039/c0sm01398f – volume: 129 start-page: 485 year: 2004 ident: 10.1016/j.jcis.2012.07.082_b0085 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2003.11.043 – ident: 10.1016/j.jcis.2012.07.082_b0005 – volume: 79 start-page: 011702 year: 2009 ident: 10.1016/j.jcis.2012.07.082_b0040 publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.79.011702 – volume: 114 start-page: 7251 year: 2010 ident: 10.1016/j.jcis.2012.07.082_b0160 publication-title: J. Phys. Chem. C. doi: 10.1021/jp907923v – volume: 65 start-page: 1973 year: 2011 ident: 10.1016/j.jcis.2012.07.082_b0110 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.03.101 – year: 2003 ident: 10.1016/j.jcis.2012.07.082_b0150 – volume: 557 start-page: 60 year: 2012 ident: 10.1016/j.jcis.2012.07.082_b0215 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2011.632295 – volume: 56 start-page: 284 year: 2002 ident: 10.1016/j.jcis.2012.07.082_b0170 publication-title: Appl. Spectrosc. doi: 10.1366/0003702021954791 – volume: 31 start-page: 691 year: 1970 ident: 10.1016/j.jcis.2012.07.082_b0010 publication-title: J. Phys. doi: 10.1051/jphys:01970003107069100 – volume: 10 start-page: 3971 year: 2009 ident: 10.1016/j.jcis.2012.07.082_b0175 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10093971 – volume: 45 start-page: 727 year: 2007 ident: 10.1016/j.jcis.2012.07.082_b0105 publication-title: Carbon doi: 10.1016/j.carbon.2006.11.030 – ident: 10.1016/j.jcis.2012.07.082_b0200 doi: 10.1088/0022-3727/40/2/006 – volume: 34 start-page: 636 year: 2005 ident: 10.1016/j.jcis.2012.07.082_b0090 publication-title: Chem. Lett. doi: 10.1246/cl.2005.636 – volume: 82 start-page: 030701R year: 2010 ident: 10.1016/j.jcis.2012.07.082_b0140 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.030701 – volume: 314 start-page: 274 year: 2007 ident: 10.1016/j.jcis.2012.07.082_b0210 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.05.047 – volume: 50 start-page: 358 year: 1994 ident: 10.1016/j.jcis.2012.07.082_b0035 publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.50.358 – volume: 19 start-page: 33 year: 2007 ident: 10.1016/j.jcis.2012.07.082_b0055 publication-title: Adv. Mater. doi: 10.1002/adma.200600674 – volume: 48 start-page: 1783 year: 1977 ident: 10.1016/j.jcis.2012.07.082_b0135 publication-title: J. Appl. Phys. doi: 10.1063/1.323928 – volume: 19 start-page: 065602 year: 2008 ident: 10.1016/j.jcis.2012.07.082_b0100 publication-title: Nanotechnol. doi: 10.1088/0957-4484/19/6/065602 – year: 1993 ident: 10.1016/j.jcis.2012.07.082_b0145 – volume: 307 start-page: 483 year: 2007 ident: 10.1016/j.jcis.2012.07.082_b0095 publication-title: J. Cryst. Growth. doi: 10.1016/j.jcrysgro.2007.07.020 – volume: 59 start-page: 763 year: 1999 ident: 10.1016/j.jcis.2012.07.082_b0180 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.59.763 – volume: 111 start-page: 13022 year: 2007 ident: 10.1016/j.jcis.2012.07.082_b0120 publication-title: J. Phys. Chem. C doi: 10.1021/jp073837q – ident: 10.1016/j.jcis.2012.07.082_b0185 doi: 10.1103/PhysRevLett.102.197802 – volume: 263 start-page: 616 year: 2004 ident: 10.1016/j.jcis.2012.07.082_b0070 publication-title: J. Cryst. Growth. doi: 10.1016/j.jcrysgro.2003.11.102 – volume: 51 start-page: 2298 year: 1983 ident: 10.1016/j.jcis.2012.07.082_b0020 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.2298 – volume: 3 start-page: 1441 year: 2009 ident: 10.1016/j.jcis.2012.07.082_b0060 publication-title: ACS Nano. doi: 10.1021/nn9002715 – volume: 97 start-page: 147801 year: 2006 ident: 10.1016/j.jcis.2012.07.082_b0195 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.147801 – ident: 10.1016/j.jcis.2012.07.082_b0205 doi: 10.1088/1757-899X/18/3/032020 – volume: 560 start-page: 149 year: 2012 ident: 10.1016/j.jcis.2012.07.082_b0225 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2012.663195 – volume: 22 start-page: 3183 year: 2010 ident: 10.1016/j.jcis.2012.07.082_b0220 publication-title: Chem. Mater. doi: 10.1021/cm100289d – volume: 322 start-page: 3696 year: 2010 ident: 10.1016/j.jcis.2012.07.082_b0025 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2010.07.028 – volume: 7 start-page: 4742 year: 2011 ident: 10.1016/j.jcis.2012.07.082_b0125 publication-title: Soft Matter. doi: 10.1039/c1sm05051f – volume: 112 start-page: 5843 year: 2008 ident: 10.1016/j.jcis.2012.07.082_b0130 publication-title: J. Phys. Chem. C doi: 10.1021/jp711990f |
SSID | ssj0011559 |
Score | 2.3264356 |
Snippet | [Display omitted]
► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC... We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 158 |
SubjectTerms | air Chemistry Coating coatings Colloidal state and disperse state Colloids Devices Exact sciences and technology Fe3O4 Ferronematics General and physical chemistry hot water treatment Liquid crystals Magnetite Nanocomposites Nanomaterials nanoparticles Nanorods Nanostructure Nanostructures oleic acid optics Physical and chemical studies. Granulometry. Electrokinetic phenomena sodium hydroxide |
Title | Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory |
URI | https://dx.doi.org/10.1016/j.jcis.2012.07.082 https://www.ncbi.nlm.nih.gov/pubmed/22935749 https://www.proquest.com/docview/1039036550 https://www.proquest.com/docview/1136550038 https://www.proquest.com/docview/1803148822 |
Volume | 386 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHBOXR5bEyEjdIG6_t2OFWragWEL20K_VmObFdpVo5y2b3sBd-OzN5LPTQPXBMNJac-Tzjz_E8CPnogFVoZG62mPhEuJIl1gcARLMsgIEBg22jLS6y2Vx8v5bXB2Q65MJgWGXv-zuf3nrr_s1pr83TZVVhji9Ym8oVwyv8TGHFTyEUrvKT37swD4bXbl2YB0tQuk-c6WK8bssKS3bj_0B1kurJfZvTg2BrjJq0DSgudB0v7qek7dZ0_ow87TklPeum_Zwc-HhEHk2HVm5H5Mk_VQdfkKuf9iZicpmn0cYaPChFFgiYreplVdJF9WtTOVqutsAcFxRXSl255gu93EYQbKrmM62XWN6Z2tiOrVfbl2R-_vVqOkv65gpJCUpaJ16IlBdOCgtG7bQQodCFgu29AELGlS1zaz1XMvCMc5Hx4IMLOYfzoEidEpK_Ioexjv6Y0CJIVygFXIg5IfPMAocIcBTRLrWZLf2IsEGrpuwrj2MDjIUZQsxuDSJhEAmTKgNIjMin3ZhlV3djr7QcwDJ3Vo-BjWHvuGNA1tgbcKhmfjnBcntY4AiOdSMyvgP3bhagHa2BVI7IhwF_A3DiPYuNvt40Bm_XgRjA2W-PDGsFUq73yGjsLQCGBPN83S2wv7MAmiaVyN_855e_JY_xCbMqmXxHDterjX8P9GpdjFv7GZOHZ99-zC7-AEHKILg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED4kzpB2KNq0TdxHqgLdWjWSSYp0t8Bo4DSJl9hANoISyUCBIbmWPfjf904Ptxnioat0BCh-vONH3Qvgi0VWoYi5mXTgQm6zODTOIyAqTjwqGDLYOtpikoxn_NeduNuDUZcLQ2GVre1vbHptrdsnZ-1qni3ynHJ8UdvkUMbkwk8k24cDqk4lenBwfnk1nmydCeR5ayI94pAGtLkzTZjXQ5ZT1W76JSi_R2rw1Pm0701JgZOmwrXzTdOLp1lpfTpdvIQXLa0MzpuZv4I9VxzB4ajr5nYEz_8pPPgapjfmvqD8MhcUpijRiAZEBBG2ZbnIs2Ce_17nNsiWGySP84A2S5nb6kdwuylQsMqrb0G5oArPgSnqseVy8wZmFz-no3HY9lcIMy6TVeg4j1hqBTeo11Zx7lOVSjzhU-RkTJpsaIxjUniWMMYT5p23fsjwSsgjK7lgb6FXlIU7gSD1wqZSIh2KLRfDxCCN8HgbUTYyiclcH-JuVXXWFh-nHhhz3UWZPWhCQhMSOpIakejD1-2YRVN6Y6e06MDSjzaQxrNh57gTRFabe7SpenY7oIp7VOMIb3Z9OH0E93YWuDpKIa_sw-cOf41wkqvFFK5cV5oc7MgN8Pq3QyauBSKmdsgoai-AuoTzPG422N9ZIFMTkg_f_eeXf4LD8fTmWl9fTq7ewzN6Q0mWsfgAvdVy7T4i21qlp602_QEZ0SNp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetite+nanorod+thermotropic+liquid+crystal+colloids%3A+Synthesis%2C+optics+and+theory&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Podoliak%2C+Nina&rft.au=Buchnev%2C+Oleksandr&rft.au=Bavykin%2C+Dmitry+V.&rft.au=Kulak%2C+Alexander+N.&rft.date=2012-11-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=386&rft.issue=1&rft.spage=158&rft.epage=166&rft_id=info:doi/10.1016%2Fj.jcis.2012.07.082&rft.externalDocID=S0021979712008673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |