Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory

[Display omitted] ► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 386; no. 1; pp. 158 - 166
Main Authors Podoliak, Nina, Buchnev, Oleksandr, Bavykin, Dmitry V., Kulak, Alexander N., Kaczmarek, Malgosia, Sluckin, Timothy J.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.11.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced magneto-optical properties. ► Improved performance requires control of magnetic domains in magnetite nanorods. We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)2 with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm−3 NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ∼500nm and typical diameter ∼20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field–LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod–liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.
AbstractList [Display omitted] ► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC suspension stability. ► Strong nanorod–LC coupling leads to 20% reduction in LC Frederiks threshold. ► Theoretical model highlights routes to enhanced magneto-optical properties. ► Improved performance requires control of magnetic domains in magnetite nanorods. We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)2 with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm−3 NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ∼500nm and typical diameter ∼20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field–LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod–liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)₂ with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm⁻³ NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ∼500nm and typical diameter ∼20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field–LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod–liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)2 with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm-3 NaOH at 100 degree C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length similar to 500 nm and typical diameter similar to 20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500 nm and typical diameter ~20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500 nm and typical diameter ~20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500 nm and typical diameter ~20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.
Author Bavykin, Dmitry V.
Buchnev, Oleksandr
Kulak, Alexander N.
Sluckin, Timothy J.
Kaczmarek, Malgosia
Podoliak, Nina
Author_xml – sequence: 1
  givenname: Nina
  surname: Podoliak
  fullname: Podoliak, Nina
  organization: Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 2
  givenname: Oleksandr
  surname: Buchnev
  fullname: Buchnev, Oleksandr
  organization: Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 3
  givenname: Dmitry V.
  surname: Bavykin
  fullname: Bavykin, Dmitry V.
  organization: Materials Engineering and Energy Technology Research Groups, Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 4
  givenname: Alexander N.
  surname: Kulak
  fullname: Kulak, Alexander N.
  organization: Materials Engineering and Energy Technology Research Groups, Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 5
  givenname: Malgosia
  surname: Kaczmarek
  fullname: Kaczmarek, Malgosia
  organization: Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
– sequence: 6
  givenname: Timothy J.
  surname: Sluckin
  fullname: Sluckin, Timothy J.
  email: t.j.sluckin@soton.ac.uk
  organization: Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26388929$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22935749$$D View this record in MEDLINE/PubMed
BookMark eNqF0btuFDEUBmALBZFN4AUoYBqkFMxyfBlfIhoUcZOCKJLUlsfjCV7N2hvbi7RvH092IySKpHLh7z9H9n-CjkIMDqG3GJYYMP-0Wq6sz0sCmCxBLEGSF2iBQXWtwECP0AKA4FYJJY7RSc4rAIy7Tr1Cx4Qo2gmmFuj6l7kNrvjimmBCTHFoyh-X1rGkuPG2mfzd1g-NTbtczNTYOE3RD_m8udqFCrPPH5u4Kd7mxoSHbEy71-jlaKbs3hzOU3Tz7ev1xY_28vf3nxdfLlvLBC-tYwxoP3TMYEkHydjYy14w4D0hnApjlTGOim6knFLG6ejGYVRUMmAwCNbRU3S2n7tJ8W7rctFrn62bJhNc3GaNJVDMpCTkeYop7zoAKp-nQBU86ErfHei2X7tBb5Jfm7TTj_9bwYcDMNmaaUwm1Mr-OU6lVGR2cu9sijknN2rriyk-hpKMn-pOPVeuV3quXM-VaxC6Vl6j5L_o4_QnQ-_3odFEbW5Tvb65qoADgBCKz0_7vBeuFvjXu6Sz9S5YN_jkbNFD9E8tuAc9_sxY
CODEN JCISA5
CitedBy_id crossref_primary_10_1039_C7SM01029J
crossref_primary_10_1016_j_molliq_2017_11_157
crossref_primary_10_1039_D1CP03005A
crossref_primary_10_1016_j_jmmm_2015_06_021
crossref_primary_10_1016_j_molliq_2017_05_002
crossref_primary_10_1103_PhysRevE_88_052503
crossref_primary_10_1134_S1063776118090236
crossref_primary_10_1016_j_jmmm_2023_171616
crossref_primary_10_1515_psr_2019_0108
crossref_primary_10_1103_PhysRevE_97_012701
crossref_primary_10_1080_02678292_2014_988763
crossref_primary_10_1038_nature12863
crossref_primary_10_1134_S1063784214090114
crossref_primary_10_1016_j_molliq_2015_01_019
crossref_primary_10_1080_02678292_2019_1593529
crossref_primary_10_1039_C6TC02697D
crossref_primary_10_1080_02678292_2015_1082651
crossref_primary_10_1039_C6RA16986D
crossref_primary_10_1039_C8NR09259A
crossref_primary_10_1080_01411594_2012_752085
crossref_primary_10_1080_02678292_2022_2046880
crossref_primary_10_1103_PhysRevLett_119_097802
crossref_primary_10_1134_S1063776115090046
crossref_primary_10_1088_1402_4896_ac437d
crossref_primary_10_1134_S106377611808023X
crossref_primary_10_1364_OE_27_008900
crossref_primary_10_1039_C7TC01106G
crossref_primary_10_1016_j_molliq_2014_06_028
crossref_primary_10_1134_S1063783416090341
crossref_primary_10_3390_ma14113096
crossref_primary_10_1039_C6SM00906A
crossref_primary_10_3390_nano8070453
crossref_primary_10_1140_epje_i2016_16101_y
crossref_primary_10_1080_02678292_2014_950615
crossref_primary_10_1080_21680396_2017_1304835
crossref_primary_10_1080_02678292_2024_2314617
crossref_primary_10_1134_S1063783418070247
crossref_primary_10_1109_TMAG_2014_2329875
crossref_primary_10_1002_ejoc_201901450
crossref_primary_10_1039_C7CP01438D
crossref_primary_10_1016_j_jmmm_2015_10_025
crossref_primary_10_1016_j_isci_2021_103493
crossref_primary_10_1016_j_molliq_2020_114299
crossref_primary_10_1016_j_molliq_2019_111125
crossref_primary_10_1002_cphc_201301052
crossref_primary_10_1080_02678292_2020_1852620
crossref_primary_10_1088_1361_6528_ab3ca2
crossref_primary_10_1039_D0SM00880J
crossref_primary_10_1039_C8SM01377B
crossref_primary_10_1016_j_jcis_2023_02_087
crossref_primary_10_3390_nano12234321
crossref_primary_10_1016_j_jmmm_2014_07_061
crossref_primary_10_1039_C9CP06245A
crossref_primary_10_1063_1_5126398
crossref_primary_10_1134_S1063776116090168
crossref_primary_10_1134_S1063776116100101
crossref_primary_10_1121_10_0019684
crossref_primary_10_1515_psr_2019_0090
crossref_primary_10_1080_02678292_2019_1641755
crossref_primary_10_1016_j_molliq_2013_09_032
crossref_primary_10_2139_ssrn_3908783
Cites_doi 10.1021/ja0445239
10.1039/jm9950502297
10.1080/10587259508034552
10.1016/S0038-1098(03)00580-5
10.1246/cl.2007.840
10.1039/C0SM00131G
10.1039/B614046G
10.1039/c1nj20017h
10.1103/PhysRevE.78.011702
10.1016/j.jcrysgro.2004.11.423
10.1039/c0sm01398f
10.1016/j.ssc.2003.11.043
10.1103/PhysRevE.79.011702
10.1021/jp907923v
10.1016/j.matlet.2011.03.101
10.1080/15421406.2011.632295
10.1366/0003702021954791
10.1051/jphys:01970003107069100
10.3390/ijms10093971
10.1016/j.carbon.2006.11.030
10.1088/0022-3727/40/2/006
10.1246/cl.2005.636
10.1103/PhysRevE.82.030701
10.1016/j.jcis.2007.05.047
10.1103/PhysRevE.50.358
10.1002/adma.200600674
10.1063/1.323928
10.1088/0957-4484/19/6/065602
10.1016/j.jcrysgro.2007.07.020
10.1103/PhysRevE.59.763
10.1021/jp073837q
10.1103/PhysRevLett.102.197802
10.1016/j.jcrysgro.2003.11.102
10.1103/PhysRevLett.51.2298
10.1021/nn9002715
10.1103/PhysRevLett.97.147801
10.1088/1757-899X/18/3/032020
10.1080/15421406.2012.663195
10.1021/cm100289d
10.1016/j.jmmm.2010.07.028
10.1039/c1sm05051f
10.1021/jp711990f
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
NPM
7X8
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.jcis.2012.07.082
DatabaseName AGRIS
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Technology Research Database
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 166
ExternalDocumentID 22935749
26388929
10_1016_j_jcis_2012_07_082
US201600077960
S0021979712008673
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAQXK
ABPIF
ABPTK
ADFGL
AFFNX
AI.
ASPBG
AVWKF
AZFZN
BBWZM
CAG
COF
D-I
EJD
FBQ
FEDTE
FGOYB
G-2
G8K
HLY
HVGLF
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
VH1
WUQ
XFK
ZGI
ZXP
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
NPM
7X8
7U5
8FD
L7M
7S9
L.6
ID FETCH-LOGICAL-c476t-e4403bd54a183d844fb8b7406b22637ac9aae375f3633463fefdf9384040d7453
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 15:15:36 EDT 2025
Fri Jul 11 15:08:03 EDT 2025
Tue Aug 05 10:38:21 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Mon Jul 21 09:14:33 EDT 2025
Tue Jul 01 01:18:09 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Wed Dec 27 19:19:22 EST 2023
Fri Feb 23 02:28:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fe3O4
Nanostructures
Liquid crystals
Ferronematics
Nanorods
Binary compound
Iron oxide
Nanoparticle
Theory
Composite material
O
Magnetite
Synthesis
Hydrothermal treatment
Carboxylic acid
Oleic acid
Polydispersed particle
Magnetic field
Nanorod
Diameter
Fe
Device
Transition element compounds
Nanostructure
Air
Colloid
Colloid particle
Magnetic suspension
Language English
License CC BY 4.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-e4403bd54a183d844fb8b7406b22637ac9aae375f3633463fefdf9384040d7453
Notes http://dx.doi.org/10.1016/j.jcis.2012.07.082
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22935749
PQID 1039036550
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1803148822
proquest_miscellaneous_1136550038
proquest_miscellaneous_1039036550
pubmed_primary_22935749
pascalfrancis_primary_26388929
crossref_citationtrail_10_1016_j_jcis_2012_07_082
crossref_primary_10_1016_j_jcis_2012_07_082
fao_agris_US201600077960
elsevier_sciencedirect_doi_10_1016_j_jcis_2012_07_082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-15
PublicationDateYYYYMMDD 2012-11-15
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kopčanský, Tomašovičová, Koneracká, Timko, Závišová, Éber, Fodor-Csorba, Tóth-Katona, Vajda, Jadzyni (b0025) 2010; 322
Jia, Sun, Yan, Pang, You, Yan (b0120) 2007; 111
Iida, Takayanagi, Nakanishi, Osaka (b0210) 2007; 314
H.M. Lu, W.T. Zheng, Q. Jiang, J. Phys. D: Appl. Phys. 40 (2007) 320.
Jeong, Teng, Wang, Yang, Xia (b0055) 2007; 19
Gorkunov, Osipov (b0190) 2011; 7
Li, Yang, Ding, Xue (b0220) 2010; 22
Khatua, Manna, Chang, Tcherniak, Friedlander, Zubarev, Link (b0160) 2010; 114
Cseh, Mehl (b0155) 2007; 17
Brochard, de Gennes (b0010) 1970; 31
Cordoyiannis, Kurihara, Martinez-Miranda, Glorieux, Thoen (b0040) 2009; 79
Cornell, Schwertmann (b0150) 2003
Buluy, Burseva, Hakobyan, Goodby, Kolosov, Reznikov, Hakobyan, Slyusarenko, Prodanov, Vashchenko (b0225) 2012; 560
Lian, Kang, Wang, Jiang, Hu, Xu (b0065) 2003; 127
Popa-Nita, Gerlich, Kralj (b0175) 2009; 10
N. Mahmed, O. Heczko, O. Soderberg, S.P. Hannula, IOP Conf. Ser.: Mater. Sci. Eng. 18 (2011) 032020.
Yuan, Gao, Schacher, Xu, Richter, Tremel, Muller (b0060) 2009; 3
Han, Liu, Xu, Zhang (b0095) 2007; 307
Khoo, Wu (b0145) 1993
Lian, Wang, Kang, Bai, Gao, Jiang, Hu, Xu (b0085) 2004; 129
Zhou, Tang, Zeng, Qi (b0100) 2008; 19
Podoliak, Buchnev, D’Alessandro, Kaczmarek, Sluckin (b0140) 2010; 82
V.G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech–House, Boston–London, 1999.
Zhang, Jia, Wu, Ran, Wu, Liu (b0110) 2011; 65
Burylov, Raikher (b0035) 1994; 50
Rafferty, Koenig, Magyar, West (b0170) 2002; 56
Tang, Chen (b0075) 2007; 36
Podoliak, Buchnev, Buluy, D’Alessandro, Kaczmarek, Reznikov, Sluckin (b0125) 2011; 7
Burylov, Raikher (b0015) 1995; 258
Kopčanský, Tomašovičová, Koneracká, Timko, Závišová, Džarová, Šprincová, Éber, Fodor-Csorba, Tóth-Katona (b0030) 2008; 78
Vereda, Vicente, Morales, Rull, Hidalgo-Alvarez (b0130) 2008; 112
Cao, Chen, Wang, Chen (b0105) 2007; 45
Scheffer, Nehring (b0135) 1977; 48
Wan, Chen, Wang, Yang, Qian (b0080) 2005; 276
Chen, Amer (b0020) 1983; 51
Wang, Peng, Huang, Chen (b0070) 2004; 263
Peng, Wu, Xiong, Wang, Chen (b0090) 2005; 34
Liu, Zhang, Han, Li, Lei, Lu, Fang, Zhou (b0115) 2005; 127
Mitróová, Tomašovičová, Timko, Koneracká, Kováč, Jadzyn, Vávra, Éber, Tóth-Katona, Beaugnon (b0050) 2011; 35
Petrov, Zakhlevnykh (b0215) 2012; 557
Matsuyama, Kato (b0180) 1999; 59
L.M. Lopatina, J.V. Selinger, Phys. Rev. Lett. 102 (2009) 197802.
Buluy, Nepijko, Reshetnyak, Ouskova, Zadorozhnii, Leonhardt, Ritschel, Schonhense, Reznikov (b0045) 2011; 7
Li, Buchnev, Cheon, Glushchenko, Reshetnyak, Reznikov, Sluckin, West (b0195) 2006; 97
Ouchi, Yoshioka, Ishii, Seki, Kitamura, Noyori, Takanishi, Nishiyama (b0165) 1995; 5
Khatua (10.1016/j.jcis.2012.07.082_b0160) 2010; 114
Podoliak (10.1016/j.jcis.2012.07.082_b0125) 2011; 7
Wang (10.1016/j.jcis.2012.07.082_b0070) 2004; 263
Matsuyama (10.1016/j.jcis.2012.07.082_b0180) 1999; 59
Zhou (10.1016/j.jcis.2012.07.082_b0100) 2008; 19
Burylov (10.1016/j.jcis.2012.07.082_b0015) 1995; 258
Mitróová (10.1016/j.jcis.2012.07.082_b0050) 2011; 35
Scheffer (10.1016/j.jcis.2012.07.082_b0135) 1977; 48
Popa-Nita (10.1016/j.jcis.2012.07.082_b0175) 2009; 10
Zhang (10.1016/j.jcis.2012.07.082_b0110) 2011; 65
Vereda (10.1016/j.jcis.2012.07.082_b0130) 2008; 112
Brochard (10.1016/j.jcis.2012.07.082_b0010) 1970; 31
Rafferty (10.1016/j.jcis.2012.07.082_b0170) 2002; 56
Han (10.1016/j.jcis.2012.07.082_b0095) 2007; 307
Chen (10.1016/j.jcis.2012.07.082_b0020) 1983; 51
Cordoyiannis (10.1016/j.jcis.2012.07.082_b0040) 2009; 79
Kopčanský (10.1016/j.jcis.2012.07.082_b0025) 2010; 322
Wan (10.1016/j.jcis.2012.07.082_b0080) 2005; 276
Petrov (10.1016/j.jcis.2012.07.082_b0215) 2012; 557
Lian (10.1016/j.jcis.2012.07.082_b0085) 2004; 129
Yuan (10.1016/j.jcis.2012.07.082_b0060) 2009; 3
Cseh (10.1016/j.jcis.2012.07.082_b0155) 2007; 17
Kopčanský (10.1016/j.jcis.2012.07.082_b0030) 2008; 78
Jeong (10.1016/j.jcis.2012.07.082_b0055) 2007; 19
Gorkunov (10.1016/j.jcis.2012.07.082_b0190) 2011; 7
Cornell (10.1016/j.jcis.2012.07.082_b0150) 2003
Peng (10.1016/j.jcis.2012.07.082_b0090) 2005; 34
Liu (10.1016/j.jcis.2012.07.082_b0115) 2005; 127
10.1016/j.jcis.2012.07.082_b0185
Podoliak (10.1016/j.jcis.2012.07.082_b0140) 2010; 82
10.1016/j.jcis.2012.07.082_b0200
Iida (10.1016/j.jcis.2012.07.082_b0210) 2007; 314
10.1016/j.jcis.2012.07.082_b0005
Li (10.1016/j.jcis.2012.07.082_b0220) 2010; 22
Khoo (10.1016/j.jcis.2012.07.082_b0145) 1993
10.1016/j.jcis.2012.07.082_b0205
Jia (10.1016/j.jcis.2012.07.082_b0120) 2007; 111
Buluy (10.1016/j.jcis.2012.07.082_b0225) 2012; 560
Burylov (10.1016/j.jcis.2012.07.082_b0035) 1994; 50
Cao (10.1016/j.jcis.2012.07.082_b0105) 2007; 45
Li (10.1016/j.jcis.2012.07.082_b0195) 2006; 97
Tang (10.1016/j.jcis.2012.07.082_b0075) 2007; 36
Ouchi (10.1016/j.jcis.2012.07.082_b0165) 1995; 5
Buluy (10.1016/j.jcis.2012.07.082_b0045) 2011; 7
Lian (10.1016/j.jcis.2012.07.082_b0065) 2003; 127
References_xml – volume: 34
  start-page: 636
  year: 2005
  ident: b0090
  publication-title: Chem. Lett.
– volume: 19
  start-page: 065602
  year: 2008
  ident: b0100
  publication-title: Nanotechnol.
– volume: 7
  start-page: 644
  year: 2011
  ident: b0045
  publication-title: Soft Matter.
– volume: 5
  start-page: 2297
  year: 1995
  ident: b0165
  publication-title: J. Matter. Chem.
– volume: 322
  start-page: 3696
  year: 2010
  ident: b0025
  publication-title: J. Magn. Magn. Mater.
– volume: 78
  start-page: 011702
  year: 2008
  ident: b0030
  publication-title: Phys. Rev. E.
– volume: 82
  start-page: 030701R
  year: 2010
  ident: b0140
  publication-title: Phys. Rev. E
– volume: 307
  start-page: 483
  year: 2007
  ident: b0095
  publication-title: J. Cryst. Growth.
– volume: 19
  start-page: 33
  year: 2007
  ident: b0055
  publication-title: Adv. Mater.
– volume: 560
  start-page: 149
  year: 2012
  end-page: 158
  ident: b0225
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 59
  start-page: 763
  year: 1999
  ident: b0180
  publication-title: Phys. Rev. E
– volume: 10
  start-page: 3971
  year: 2009
  ident: b0175
  publication-title: Int. J. Mol. Sci.
– reference: V.G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech–House, Boston–London, 1999.
– volume: 7
  start-page: 4742
  year: 2011
  ident: b0125
  publication-title: Soft Matter.
– volume: 114
  start-page: 7251
  year: 2010
  ident: b0160
  publication-title: J. Phys. Chem. C.
– volume: 51
  start-page: 2298
  year: 1983
  ident: b0020
  publication-title: Phys. Rev. Lett.
– year: 1993
  ident: b0145
  article-title: Optics and Nonlinear Optics of Liquid Crystals
– volume: 56
  start-page: 284
  year: 2002
  ident: b0170
  publication-title: Appl. Spectrosc.
– volume: 45
  start-page: 727
  year: 2007
  ident: b0105
  publication-title: Carbon
– volume: 31
  start-page: 691
  year: 1970
  ident: b0010
  publication-title: J. Phys.
– volume: 17
  start-page: 311
  year: 2007
  ident: b0155
  publication-title: J. Mater. Chem.
– volume: 276
  start-page: 571
  year: 2005
  ident: b0080
  publication-title: J. Cryst. Growth.
– reference: H.M. Lu, W.T. Zheng, Q. Jiang, J. Phys. D: Appl. Phys. 40 (2007) 320.
– volume: 48
  start-page: 1783
  year: 1977
  ident: b0135
  publication-title: J. Appl. Phys.
– volume: 557
  start-page: 60
  year: 2012
  end-page: 72
  ident: b0215
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 65
  start-page: 1973
  year: 2011
  ident: b0110
  publication-title: Mater. Lett.
– volume: 7
  start-page: 4348
  year: 2011
  ident: b0190
  publication-title: Soft Matter.
– volume: 97
  start-page: 147801
  year: 2006
  ident: b0195
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 358
  year: 1994
  ident: b0035
  publication-title: Phys. Rev. E.
– volume: 314
  start-page: 274
  year: 2007
  ident: b0210
  publication-title: J. Colloid Interface Sci.
– volume: 258
  start-page: 107
  year: 1995
  ident: b0015
  publication-title: Mol. Cryst. Liq. Cryst.
– reference: L.M. Lopatina, J.V. Selinger, Phys. Rev. Lett. 102 (2009) 197802.
– volume: 3
  start-page: 1441
  year: 2009
  ident: b0060
  publication-title: ACS Nano.
– volume: 79
  start-page: 011702
  year: 2009
  ident: b0040
  publication-title: Phys. Rev. E.
– volume: 35
  start-page: 1260
  year: 2011
  ident: b0050
  publication-title: New J. Chem.
– volume: 22
  start-page: 3183
  year: 2010
  ident: b0220
  publication-title: Chem. Mater.
– volume: 263
  start-page: 616
  year: 2004
  ident: b0070
  publication-title: J. Cryst. Growth.
– volume: 127
  start-page: 6
  year: 2005
  ident: b0115
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 13022
  year: 2007
  ident: b0120
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 5843
  year: 2008
  ident: b0130
  publication-title: J. Phys. Chem. C
– reference: N. Mahmed, O. Heczko, O. Soderberg, S.P. Hannula, IOP Conf. Ser.: Mater. Sci. Eng. 18 (2011) 032020.
– volume: 127
  start-page: 605
  year: 2003
  ident: b0065
  publication-title: Solid State Commun.
– volume: 36
  start-page: 840
  year: 2007
  ident: b0075
  publication-title: Chem. Lett.
– volume: 129
  start-page: 485
  year: 2004
  ident: b0085
  publication-title: Solid State Commun.
– year: 2003
  ident: b0150
  article-title: The Iron Oxides: Structure, Properties, Reaction, Occurrence and Uses
– volume: 127
  start-page: 6
  year: 2005
  ident: 10.1016/j.jcis.2012.07.082_b0115
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0445239
– volume: 5
  start-page: 2297
  year: 1995
  ident: 10.1016/j.jcis.2012.07.082_b0165
  publication-title: J. Matter. Chem.
  doi: 10.1039/jm9950502297
– volume: 258
  start-page: 107
  year: 1995
  ident: 10.1016/j.jcis.2012.07.082_b0015
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/10587259508034552
– volume: 127
  start-page: 605
  year: 2003
  ident: 10.1016/j.jcis.2012.07.082_b0065
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(03)00580-5
– volume: 36
  start-page: 840
  year: 2007
  ident: 10.1016/j.jcis.2012.07.082_b0075
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2007.840
– volume: 7
  start-page: 644
  year: 2011
  ident: 10.1016/j.jcis.2012.07.082_b0045
  publication-title: Soft Matter.
  doi: 10.1039/C0SM00131G
– volume: 17
  start-page: 311
  year: 2007
  ident: 10.1016/j.jcis.2012.07.082_b0155
  publication-title: J. Mater. Chem.
  doi: 10.1039/B614046G
– volume: 35
  start-page: 1260
  year: 2011
  ident: 10.1016/j.jcis.2012.07.082_b0050
  publication-title: New J. Chem.
  doi: 10.1039/c1nj20017h
– volume: 78
  start-page: 011702
  year: 2008
  ident: 10.1016/j.jcis.2012.07.082_b0030
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.78.011702
– volume: 276
  start-page: 571
  year: 2005
  ident: 10.1016/j.jcis.2012.07.082_b0080
  publication-title: J. Cryst. Growth.
  doi: 10.1016/j.jcrysgro.2004.11.423
– volume: 7
  start-page: 4348
  year: 2011
  ident: 10.1016/j.jcis.2012.07.082_b0190
  publication-title: Soft Matter.
  doi: 10.1039/c0sm01398f
– volume: 129
  start-page: 485
  year: 2004
  ident: 10.1016/j.jcis.2012.07.082_b0085
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2003.11.043
– ident: 10.1016/j.jcis.2012.07.082_b0005
– volume: 79
  start-page: 011702
  year: 2009
  ident: 10.1016/j.jcis.2012.07.082_b0040
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.79.011702
– volume: 114
  start-page: 7251
  year: 2010
  ident: 10.1016/j.jcis.2012.07.082_b0160
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp907923v
– volume: 65
  start-page: 1973
  year: 2011
  ident: 10.1016/j.jcis.2012.07.082_b0110
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.03.101
– year: 2003
  ident: 10.1016/j.jcis.2012.07.082_b0150
– volume: 557
  start-page: 60
  year: 2012
  ident: 10.1016/j.jcis.2012.07.082_b0215
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2011.632295
– volume: 56
  start-page: 284
  year: 2002
  ident: 10.1016/j.jcis.2012.07.082_b0170
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702021954791
– volume: 31
  start-page: 691
  year: 1970
  ident: 10.1016/j.jcis.2012.07.082_b0010
  publication-title: J. Phys.
  doi: 10.1051/jphys:01970003107069100
– volume: 10
  start-page: 3971
  year: 2009
  ident: 10.1016/j.jcis.2012.07.082_b0175
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10093971
– volume: 45
  start-page: 727
  year: 2007
  ident: 10.1016/j.jcis.2012.07.082_b0105
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.11.030
– ident: 10.1016/j.jcis.2012.07.082_b0200
  doi: 10.1088/0022-3727/40/2/006
– volume: 34
  start-page: 636
  year: 2005
  ident: 10.1016/j.jcis.2012.07.082_b0090
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2005.636
– volume: 82
  start-page: 030701R
  year: 2010
  ident: 10.1016/j.jcis.2012.07.082_b0140
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.030701
– volume: 314
  start-page: 274
  year: 2007
  ident: 10.1016/j.jcis.2012.07.082_b0210
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.05.047
– volume: 50
  start-page: 358
  year: 1994
  ident: 10.1016/j.jcis.2012.07.082_b0035
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.50.358
– volume: 19
  start-page: 33
  year: 2007
  ident: 10.1016/j.jcis.2012.07.082_b0055
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600674
– volume: 48
  start-page: 1783
  year: 1977
  ident: 10.1016/j.jcis.2012.07.082_b0135
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323928
– volume: 19
  start-page: 065602
  year: 2008
  ident: 10.1016/j.jcis.2012.07.082_b0100
  publication-title: Nanotechnol.
  doi: 10.1088/0957-4484/19/6/065602
– year: 1993
  ident: 10.1016/j.jcis.2012.07.082_b0145
– volume: 307
  start-page: 483
  year: 2007
  ident: 10.1016/j.jcis.2012.07.082_b0095
  publication-title: J. Cryst. Growth.
  doi: 10.1016/j.jcrysgro.2007.07.020
– volume: 59
  start-page: 763
  year: 1999
  ident: 10.1016/j.jcis.2012.07.082_b0180
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.59.763
– volume: 111
  start-page: 13022
  year: 2007
  ident: 10.1016/j.jcis.2012.07.082_b0120
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp073837q
– ident: 10.1016/j.jcis.2012.07.082_b0185
  doi: 10.1103/PhysRevLett.102.197802
– volume: 263
  start-page: 616
  year: 2004
  ident: 10.1016/j.jcis.2012.07.082_b0070
  publication-title: J. Cryst. Growth.
  doi: 10.1016/j.jcrysgro.2003.11.102
– volume: 51
  start-page: 2298
  year: 1983
  ident: 10.1016/j.jcis.2012.07.082_b0020
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.2298
– volume: 3
  start-page: 1441
  year: 2009
  ident: 10.1016/j.jcis.2012.07.082_b0060
  publication-title: ACS Nano.
  doi: 10.1021/nn9002715
– volume: 97
  start-page: 147801
  year: 2006
  ident: 10.1016/j.jcis.2012.07.082_b0195
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.147801
– ident: 10.1016/j.jcis.2012.07.082_b0205
  doi: 10.1088/1757-899X/18/3/032020
– volume: 560
  start-page: 149
  year: 2012
  ident: 10.1016/j.jcis.2012.07.082_b0225
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2012.663195
– volume: 22
  start-page: 3183
  year: 2010
  ident: 10.1016/j.jcis.2012.07.082_b0220
  publication-title: Chem. Mater.
  doi: 10.1021/cm100289d
– volume: 322
  start-page: 3696
  year: 2010
  ident: 10.1016/j.jcis.2012.07.082_b0025
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.07.028
– volume: 7
  start-page: 4742
  year: 2011
  ident: 10.1016/j.jcis.2012.07.082_b0125
  publication-title: Soft Matter.
  doi: 10.1039/c1sm05051f
– volume: 112
  start-page: 5843
  year: 2008
  ident: 10.1016/j.jcis.2012.07.082_b0130
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711990f
SSID ssj0011559
Score 2.3264356
Snippet [Display omitted] ► Templateless preparation of magnetite nanorods by alkaline hydrothermal treatment. ► New surfactant improves magnetite nanorod–LC...
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms air
Chemistry
Coating
coatings
Colloidal state and disperse state
Colloids
Devices
Exact sciences and technology
Fe3O4
Ferronematics
General and physical chemistry
hot water treatment
Liquid crystals
Magnetite
Nanocomposites
Nanomaterials
nanoparticles
Nanorods
Nanostructure
Nanostructures
oleic acid
optics
Physical and chemical studies. Granulometry. Electrokinetic phenomena
sodium hydroxide
Title Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory
URI https://dx.doi.org/10.1016/j.jcis.2012.07.082
https://www.ncbi.nlm.nih.gov/pubmed/22935749
https://www.proquest.com/docview/1039036550
https://www.proquest.com/docview/1136550038
https://www.proquest.com/docview/1803148822
Volume 386
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHBOXR5bEyEjdIG6_t2OFWragWEL20K_VmObFdpVo5y2b3sBd-OzN5LPTQPXBMNJac-Tzjz_E8CPnogFVoZG62mPhEuJIl1gcARLMsgIEBg22jLS6y2Vx8v5bXB2Q65MJgWGXv-zuf3nrr_s1pr83TZVVhji9Ym8oVwyv8TGHFTyEUrvKT37swD4bXbl2YB0tQuk-c6WK8bssKS3bj_0B1kurJfZvTg2BrjJq0DSgudB0v7qek7dZ0_ow87TklPeum_Zwc-HhEHk2HVm5H5Mk_VQdfkKuf9iZicpmn0cYaPChFFgiYreplVdJF9WtTOVqutsAcFxRXSl255gu93EYQbKrmM62XWN6Z2tiOrVfbl2R-_vVqOkv65gpJCUpaJ16IlBdOCgtG7bQQodCFgu29AELGlS1zaz1XMvCMc5Hx4IMLOYfzoEidEpK_Ioexjv6Y0CJIVygFXIg5IfPMAocIcBTRLrWZLf2IsEGrpuwrj2MDjIUZQsxuDSJhEAmTKgNIjMin3ZhlV3djr7QcwDJ3Vo-BjWHvuGNA1tgbcKhmfjnBcntY4AiOdSMyvgP3bhagHa2BVI7IhwF_A3DiPYuNvt40Bm_XgRjA2W-PDGsFUq73yGjsLQCGBPN83S2wv7MAmiaVyN_855e_JY_xCbMqmXxHDterjX8P9GpdjFv7GZOHZ99-zC7-AEHKILg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED4kzpB2KNq0TdxHqgLdWjWSSYp0t8Bo4DSJl9hANoISyUCBIbmWPfjf904Ptxnioat0BCh-vONH3Qvgi0VWoYi5mXTgQm6zODTOIyAqTjwqGDLYOtpikoxn_NeduNuDUZcLQ2GVre1vbHptrdsnZ-1qni3ynHJ8UdvkUMbkwk8k24cDqk4lenBwfnk1nmydCeR5ayI94pAGtLkzTZjXQ5ZT1W76JSi_R2rw1Pm0701JgZOmwrXzTdOLp1lpfTpdvIQXLa0MzpuZv4I9VxzB4ajr5nYEz_8pPPgapjfmvqD8MhcUpijRiAZEBBG2ZbnIs2Ce_17nNsiWGySP84A2S5nb6kdwuylQsMqrb0G5oArPgSnqseVy8wZmFz-no3HY9lcIMy6TVeg4j1hqBTeo11Zx7lOVSjzhU-RkTJpsaIxjUniWMMYT5p23fsjwSsgjK7lgb6FXlIU7gSD1wqZSIh2KLRfDxCCN8HgbUTYyiclcH-JuVXXWFh-nHhhz3UWZPWhCQhMSOpIakejD1-2YRVN6Y6e06MDSjzaQxrNh57gTRFabe7SpenY7oIp7VOMIb3Z9OH0E93YWuDpKIa_sw-cOf41wkqvFFK5cV5oc7MgN8Pq3QyauBSKmdsgoai-AuoTzPG422N9ZIFMTkg_f_eeXf4LD8fTmWl9fTq7ewzN6Q0mWsfgAvdVy7T4i21qlp602_QEZ0SNp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetite+nanorod+thermotropic+liquid+crystal+colloids%3A+Synthesis%2C+optics+and+theory&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Podoliak%2C+Nina&rft.au=Buchnev%2C+Oleksandr&rft.au=Bavykin%2C+Dmitry+V.&rft.au=Kulak%2C+Alexander+N.&rft.date=2012-11-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=386&rft.issue=1&rft.spage=158&rft.epage=166&rft_id=info:doi/10.1016%2Fj.jcis.2012.07.082&rft.externalDocID=S0021979712008673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon