Biochar technology in wastewater treatment: A critical review

Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 252; p. 126539
Main Authors Xiang, Wei, Zhang, Xueyang, Chen, Jianjun, Zou, Weixin, He, Feng, Hu, Xin, Tsang, Daniel C.W., Ok, Yong Sik, Gao, Bin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater. [Display omitted] •Biochar technologies in various wastewater treatment are elucidated.•Feedstock pre-treatment and post-treatment effect on biochar production is reviewed.•Biochar as an innovative adsorbent to remove aqueous contaminants is discussed.•Future perspectives of biochar technology in wastewater treatment are summarized.
AbstractList Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater.
Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater.Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater.
Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater. [Display omitted] •Biochar technologies in various wastewater treatment are elucidated.•Feedstock pre-treatment and post-treatment effect on biochar production is reviewed.•Biochar as an innovative adsorbent to remove aqueous contaminants is discussed.•Future perspectives of biochar technology in wastewater treatment are summarized.
ArticleNumber 126539
Author Xiang, Wei
Zou, Weixin
Ok, Yong Sik
Zhang, Xueyang
Chen, Jianjun
He, Feng
Gao, Bin
Tsang, Daniel C.W.
Hu, Xin
Author_xml – sequence: 1
  givenname: Wei
  surname: Xiang
  fullname: Xiang, Wei
  organization: School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
– sequence: 2
  givenname: Xueyang
  surname: Zhang
  fullname: Zhang, Xueyang
  email: zhaxuy@163.com
  organization: School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
– sequence: 3
  givenname: Jianjun
  surname: Chen
  fullname: Chen, Jianjun
  organization: Mid-Florida Research & Education Center, University of Florida, Apopka, FL, 32703, USA
– sequence: 4
  givenname: Weixin
  surname: Zou
  fullname: Zou, Weixin
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing, 210093, China
– sequence: 5
  givenname: Feng
  surname: He
  fullname: He, Feng
  organization: College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
– sequence: 6
  givenname: Xin
  surname: Hu
  fullname: Hu, Xin
  organization: Center of Material Analysis, Nanjing University, Nanjing, 210093, China
– sequence: 7
  givenname: Daniel C.W.
  surname: Tsang
  fullname: Tsang, Daniel C.W.
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 8
  givenname: Yong Sik
  surname: Ok
  fullname: Ok, Yong Sik
  organization: Korea Biochar Research Centre & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
– sequence: 9
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  email: bg55@ufl.edu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32220719$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1L9DAUhYMoOn78Bak7Nx2TNE0bQcR38AsEN7oO6e2tk6FtxiTzDv57I6MgbnQVcvOcc8k5-2R7dCMScsLolFEmzxZTmOPgwnKOHqec8jTnsizUFpmwulI546reJhNKRZmneblH9kNYUJrEpdolewXnnFZMTcjFP-tgbnwWEeaj693LW2bHbG1CxLWJmB48mjjgGM-zqwy8jRZMn3n8b3F9SHY60wc8-jwPyPPN9dPsLn94vL2fXT3kICoZ85Y2qpEUq1JWshEgoSokbTswJaBoAGpZoRSSN0Z2Il15R1UL0CVNyUVdHJDTje_Su9cVhqgHGwD73ozoVkFzkb6qpGLid7SoBWdlTYuEHn-iq2bAVi-9HYx_01_pJOByA4B3IXjsNNhoonVj9Mb2mlH90Yde6G996I8-9KaP5KB-OHwt-Yt2ttFiSjal7XUAiyNgaz1C1K2zf3B5B8qtrD4
CitedBy_id crossref_primary_10_3390_molecules28166137
crossref_primary_10_1016_j_colsurfa_2023_131479
crossref_primary_10_1002_slct_202300511
crossref_primary_10_1016_j_jenvman_2023_118489
crossref_primary_10_1016_j_jece_2024_113548
crossref_primary_10_1016_j_jwpe_2024_104834
crossref_primary_10_3390_fermentation7040228
crossref_primary_10_1016_j_heliyon_2022_e10908
crossref_primary_10_1016_j_envres_2021_111966
crossref_primary_10_1007_s12649_023_02287_1
crossref_primary_10_3390_app12115334
crossref_primary_10_1016_j_fuproc_2022_107485
crossref_primary_10_1016_j_apsadv_2023_100547
crossref_primary_10_1016_j_jece_2020_104831
crossref_primary_10_1016_j_jenvman_2023_119329
crossref_primary_10_3390_microorganisms9010004
crossref_primary_10_5004_dwt_2023_30197
crossref_primary_10_1016_j_envres_2023_115534
crossref_primary_10_1016_j_watres_2025_123169
crossref_primary_10_1016_j_totert_2023_100044
crossref_primary_10_15243_jdmlm_2024_114_6329
crossref_primary_10_1016_j_scitotenv_2023_168426
crossref_primary_10_3390_min14010061
crossref_primary_10_1016_j_jwpe_2023_104545
crossref_primary_10_1016_j_jece_2021_107039
crossref_primary_10_1002_kin_21677
crossref_primary_10_1016_j_fuel_2023_128948
crossref_primary_10_1016_j_algal_2025_103977
crossref_primary_10_1016_j_jenvman_2022_114840
crossref_primary_10_1016_j_biombioe_2022_106581
crossref_primary_10_1016_j_bcab_2022_102560
crossref_primary_10_1002_bte2_20240055
crossref_primary_10_1016_j_eti_2021_101614
crossref_primary_10_1039_D4VA00109E
crossref_primary_10_1080_09593330_2024_2402096
crossref_primary_10_1016_j_chemosphere_2021_129999
crossref_primary_10_1002_slct_202403538
crossref_primary_10_1016_j_eti_2024_103835
crossref_primary_10_1016_j_chemosphere_2020_127057
crossref_primary_10_1007_s10311_020_01167_7
crossref_primary_10_29233_sdufeffd_800157
crossref_primary_10_1016_j_wen_2024_11_001
crossref_primary_10_1016_j_jhazmat_2022_130168
crossref_primary_10_1007_s11356_024_32700_8
crossref_primary_10_1016_j_heliyon_2024_e36966
crossref_primary_10_1016_j_chemosphere_2022_135244
crossref_primary_10_1016_j_jaap_2023_106237
crossref_primary_10_1016_j_chemosphere_2024_143477
crossref_primary_10_1016_j_scitotenv_2021_151588
crossref_primary_10_1016_j_chemosphere_2021_129766
crossref_primary_10_1016_j_enzmictec_2023_110281
crossref_primary_10_1016_j_jhazmat_2021_125511
crossref_primary_10_1016_j_jwpe_2025_107154
crossref_primary_10_1016_j_chemosphere_2024_142382
crossref_primary_10_1016_j_scitotenv_2021_145901
crossref_primary_10_1021_acs_iecr_3c00445
crossref_primary_10_1016_j_chemosphere_2023_137979
crossref_primary_10_1016_j_scitotenv_2020_143664
crossref_primary_10_1038_s41598_022_24283_6
crossref_primary_10_1007_s13399_021_02155_9
crossref_primary_10_1016_j_cherd_2022_09_024
crossref_primary_10_4028_p_309506
crossref_primary_10_3389_fenvs_2024_1340565
crossref_primary_10_1007_s10904_022_02390_1
crossref_primary_10_1007_s10098_024_03117_1
crossref_primary_10_1080_21655979_2023_2252207
crossref_primary_10_1016_j_jwpe_2022_103146
crossref_primary_10_1016_j_cej_2022_135785
crossref_primary_10_1039_D4EW00702F
crossref_primary_10_1016_j_scitotenv_2022_156493
crossref_primary_10_1016_j_emcon_2024_100336
crossref_primary_10_1016_j_scitotenv_2022_159762
crossref_primary_10_1016_j_joei_2024_101559
crossref_primary_10_1016_j_molliq_2022_120726
crossref_primary_10_21597_jist_1170769
crossref_primary_10_1016_j_scitotenv_2022_156014
crossref_primary_10_3390_soilsystems8030093
crossref_primary_10_1016_j_biortech_2024_130332
crossref_primary_10_1002_gch2_202400240
crossref_primary_10_1016_j_chemosphere_2022_137244
crossref_primary_10_1371_journal_pwat_0000092
crossref_primary_10_1007_s13738_020_02145_0
crossref_primary_10_1016_j_jwpe_2022_103391
crossref_primary_10_1016_j_jenvman_2024_123900
crossref_primary_10_1155_2023_5447693
crossref_primary_10_1007_s10532_025_10116_6
crossref_primary_10_1016_j_cej_2022_135434
crossref_primary_10_1016_j_chemosphere_2020_129283
crossref_primary_10_3390_c10010010
crossref_primary_10_3390_agronomy15010181
crossref_primary_10_1016_j_scitotenv_2023_167258
crossref_primary_10_32604_jrm_2022_021102
crossref_primary_10_1111_sum_12731
crossref_primary_10_51249_jid_v4i03_1471
crossref_primary_10_1016_j_cej_2023_147079
crossref_primary_10_1016_j_scitotenv_2021_152604
crossref_primary_10_5004_dwt_2022_28445
crossref_primary_10_1007_s10967_021_07782_0
crossref_primary_10_1016_j_cej_2020_128225
crossref_primary_10_1016_j_scitotenv_2021_150444
crossref_primary_10_1016_j_ecoenv_2023_115643
crossref_primary_10_1080_01932691_2022_2144878
crossref_primary_10_1002_jeq2_20331
crossref_primary_10_1016_j_jenvman_2021_113128
crossref_primary_10_1016_j_ijbiomac_2024_137555
crossref_primary_10_1016_j_envdev_2023_100819
crossref_primary_10_1016_j_fuel_2023_128811
crossref_primary_10_1007_s10311_022_01519_5
crossref_primary_10_1016_j_chemosphere_2022_135284
crossref_primary_10_1016_j_jaap_2020_104893
crossref_primary_10_3389_fenvs_2024_1388606
crossref_primary_10_1016_j_biortech_2024_131562
crossref_primary_10_1016_j_envres_2022_114339
crossref_primary_10_3390_nano15050321
crossref_primary_10_3390_su151813914
crossref_primary_10_1016_j_jaap_2023_106272
crossref_primary_10_3389_fenvs_2022_1035865
crossref_primary_10_3390_ma14216710
crossref_primary_10_1007_s42250_022_00467_5
crossref_primary_10_3390_ijerph182111506
crossref_primary_10_1016_j_sjbs_2022_103453
crossref_primary_10_1007_s10098_023_02621_0
crossref_primary_10_1016_j_hazadv_2022_100226
crossref_primary_10_1016_j_renene_2024_120508
crossref_primary_10_1515_rams_2023_0145
crossref_primary_10_3390_catal15030243
crossref_primary_10_1016_j_gee_2022_12_002
crossref_primary_10_1016_j_scitotenv_2021_146240
crossref_primary_10_3389_fenvs_2023_1238810
crossref_primary_10_1016_j_jenvman_2022_117159
crossref_primary_10_1016_j_scitotenv_2022_153054
crossref_primary_10_3390_su15097698
crossref_primary_10_1016_j_chemosphere_2022_136628
crossref_primary_10_3390_catal15030240
crossref_primary_10_1515_psr_2023_0043
crossref_primary_10_1016_j_cej_2022_141228
crossref_primary_10_3390_su162310162
crossref_primary_10_1002_slct_202200504
crossref_primary_10_22144_ctu_jsi_2021_039
crossref_primary_10_1016_j_jclepro_2023_136612
crossref_primary_10_1007_s13399_024_06198_6
crossref_primary_10_1016_j_jwpe_2022_102929
crossref_primary_10_1016_j_arabjc_2022_103904
crossref_primary_10_1016_j_isci_2024_110812
crossref_primary_10_5772_geet_05
crossref_primary_10_1007_s13399_022_02691_y
crossref_primary_10_1016_j_matpr_2022_05_367
crossref_primary_10_1007_s13399_024_05677_0
crossref_primary_10_1016_j_envpol_2024_123452
crossref_primary_10_1039_D3NJ00403A
crossref_primary_10_1016_j_biteb_2021_100937
crossref_primary_10_1016_j_chemosphere_2022_134586
crossref_primary_10_1016_j_jclepro_2021_130069
crossref_primary_10_1088_2053_1591_abd0a5
crossref_primary_10_1016_j_colsurfa_2025_136635
crossref_primary_10_3390_ijms21113752
crossref_primary_10_1016_j_hazadv_2023_100305
crossref_primary_10_1016_j_susmat_2024_e00903
crossref_primary_10_1007_s11356_022_24126_x
crossref_primary_10_1016_j_hazadv_2022_100134
crossref_primary_10_1016_j_jclepro_2024_142566
crossref_primary_10_1016_j_jwpe_2024_106713
crossref_primary_10_1016_j_wmb_2023_07_007
crossref_primary_10_1093_toxres_tfaf014
crossref_primary_10_1016_j_biortech_2021_126402
crossref_primary_10_1016_j_colsurfa_2024_134291
crossref_primary_10_1016_j_chemosphere_2020_127694
crossref_primary_10_1016_j_jclepro_2024_143772
crossref_primary_10_1016_j_jenvman_2024_123180
crossref_primary_10_1016_j_chemosphere_2022_136610
crossref_primary_10_1007_s11356_022_20987_4
crossref_primary_10_2166_wrd_2023_129
crossref_primary_10_1016_j_heliyon_2023_e14930
crossref_primary_10_3390_w14223751
crossref_primary_10_1016_j_jece_2021_106238
crossref_primary_10_1016_j_scitotenv_2021_147240
crossref_primary_10_3390_w13162296
crossref_primary_10_1016_j_chemosphere_2024_141337
crossref_primary_10_1002_slct_202404918
crossref_primary_10_1016_j_indic_2021_100155
crossref_primary_10_1007_s10924_021_02333_w
crossref_primary_10_1007_s42452_020_03501_8
crossref_primary_10_1016_j_jece_2023_110939
crossref_primary_10_1021_acsomega_1c01642
crossref_primary_10_1016_j_seppur_2022_121925
crossref_primary_10_1016_j_envres_2021_111916
crossref_primary_10_1016_j_susmat_2021_e00268
crossref_primary_10_1007_s10450_024_00529_9
crossref_primary_10_1016_j_jhazmat_2022_129693
crossref_primary_10_1016_j_jphotochem_2023_114883
crossref_primary_10_1016_j_envres_2025_121150
crossref_primary_10_1016_j_colsurfa_2021_127175
crossref_primary_10_1039_D3RA01444D
crossref_primary_10_1016_j_jece_2024_114553
crossref_primary_10_1186_s12302_021_00558_z
crossref_primary_10_1016_j_apsusc_2023_157446
crossref_primary_10_1007_s10973_025_14065_3
crossref_primary_10_1016_j_jwpe_2024_105208
crossref_primary_10_3390_app12199487
crossref_primary_10_1007_s11356_023_29264_4
crossref_primary_10_1016_j_chemosphere_2020_129213
crossref_primary_10_1016_j_ijbiomac_2024_131078
crossref_primary_10_3390_molecules29010173
crossref_primary_10_1039_D2VA00244B
crossref_primary_10_1016_j_jwpe_2021_101994
crossref_primary_10_1016_j_ecoenv_2021_112750
crossref_primary_10_1007_s11274_024_04055_2
crossref_primary_10_1080_15567036_2022_2062490
crossref_primary_10_1016_j_biortech_2020_124281
crossref_primary_10_3390_nano11092288
crossref_primary_10_1002_ppsc_202300035
crossref_primary_10_1016_j_biortech_2023_129587
crossref_primary_10_1016_j_cej_2023_144523
crossref_primary_10_1016_j_resconrec_2023_107127
crossref_primary_10_1016_j_cscee_2021_100117
crossref_primary_10_1016_j_chemosphere_2021_129863
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_1016_j_ijhydene_2023_11_335
crossref_primary_10_1016_j_envpol_2022_120897
crossref_primary_10_3390_ijerph18062938
crossref_primary_10_3390_plants11212864
crossref_primary_10_1016_j_jclepro_2022_133676
crossref_primary_10_1002_bbb_2596
crossref_primary_10_51847_eQNvKNjL3k
crossref_primary_10_47836_mjmhs_19_s9_40
crossref_primary_10_1007_s42773_025_00452_4
crossref_primary_10_1007_s44169_025_00081_9
crossref_primary_10_2166_wst_2022_288
crossref_primary_10_1002_app_53219
crossref_primary_10_1016_j_chemosphere_2021_130946
crossref_primary_10_3390_c8040058
crossref_primary_10_1016_j_envpol_2020_115910
crossref_primary_10_1016_j_envres_2025_121225
crossref_primary_10_1016_j_hazadv_2022_100171
crossref_primary_10_1038_s43586_024_00297_4
crossref_primary_10_1039_D2EW00985D
crossref_primary_10_1080_17480272_2023_2242827
crossref_primary_10_1016_j_chemosphere_2022_134597
crossref_primary_10_1016_j_jcis_2021_09_161
crossref_primary_10_1186_s12302_024_00859_z
crossref_primary_10_1016_j_chemosphere_2023_138912
crossref_primary_10_5004_dwt_2022_28134
crossref_primary_10_1016_j_jhazmat_2021_127066
crossref_primary_10_1016_j_bej_2021_108087
crossref_primary_10_1016_j_seppur_2022_121857
crossref_primary_10_1016_j_biotechadv_2023_108181
crossref_primary_10_5004_dwt_2022_28136
crossref_primary_10_1016_j_apsusc_2023_158869
crossref_primary_10_1007_s11356_020_11470_z
crossref_primary_10_1016_j_heliyon_2024_e24722
crossref_primary_10_1088_2053_1591_ac9819
crossref_primary_10_3390_jox14010026
crossref_primary_10_1016_j_envpol_2024_124365
crossref_primary_10_1016_j_heliyon_2020_e05388
crossref_primary_10_1016_j_scitotenv_2020_141713
crossref_primary_10_3390_w14060894
crossref_primary_10_1016_j_biortech_2021_126604
crossref_primary_10_1016_j_chemosphere_2022_134126
crossref_primary_10_3390_w14152446
crossref_primary_10_1007_s10163_023_01687_8
crossref_primary_10_1039_D4RA02864C
crossref_primary_10_1016_j_enconman_2022_115691
crossref_primary_10_3390_app12189216
crossref_primary_10_1016_j_clwas_2022_100051
crossref_primary_10_1016_j_apsadv_2023_100518
crossref_primary_10_1016_j_desal_2022_116227
crossref_primary_10_1016_j_jenvman_2021_112309
crossref_primary_10_1016_j_eti_2022_102647
crossref_primary_10_1016_j_ces_2024_120132
crossref_primary_10_1016_j_cherd_2022_04_009
crossref_primary_10_1080_23570008_2025_2467358
crossref_primary_10_1016_j_fuel_2022_126930
crossref_primary_10_1016_j_jece_2023_111638
crossref_primary_10_1016_j_scitotenv_2023_162210
crossref_primary_10_1016_j_jece_2021_105403
crossref_primary_10_1016_j_scitotenv_2020_139718
crossref_primary_10_3724_EE_1672_9250_2024_52_029
crossref_primary_10_1016_j_seppur_2023_124625
crossref_primary_10_1016_j_cej_2023_144167
crossref_primary_10_13005_ojc_380234
crossref_primary_10_1016_j_biortech_2023_129786
crossref_primary_10_1080_01919512_2024_2309958
crossref_primary_10_1016_j_cplett_2025_141967
crossref_primary_10_1016_j_matchemphys_2024_128994
crossref_primary_10_1016_j_biortech_2023_129782
crossref_primary_10_1016_j_jhazmat_2020_124987
crossref_primary_10_1016_j_jwpe_2024_106461
crossref_primary_10_1007_s10661_022_10559_x
crossref_primary_10_1007_s13762_023_05030_4
crossref_primary_10_3390_resources12070084
crossref_primary_10_1016_j_chemosphere_2021_132382
crossref_primary_10_1007_s00128_021_03374_6
crossref_primary_10_1016_j_ceja_2022_100329
crossref_primary_10_1007_s13399_024_06336_0
crossref_primary_10_1016_j_chemosphere_2024_141702
crossref_primary_10_1016_j_colsurfa_2021_127095
crossref_primary_10_3389_fchem_2023_1266556
crossref_primary_10_1016_j_indcrop_2021_114378
crossref_primary_10_1016_j_scitotenv_2022_154648
crossref_primary_10_1016_j_dwt_2024_100542
crossref_primary_10_1016_j_jhazmat_2020_123540
crossref_primary_10_1016_j_chemosphere_2020_127610
crossref_primary_10_3389_fmicb_2021_647766
crossref_primary_10_1080_10934529_2022_2046987
crossref_primary_10_3390_w12123561
crossref_primary_10_3390_su162411234
crossref_primary_10_1016_j_chemosphere_2022_133981
crossref_primary_10_1021_acsearthspacechem_4c00133
crossref_primary_10_1016_j_ecoleng_2021_106477
crossref_primary_10_32362_2410_6593_2022_17_4_335_345
crossref_primary_10_1016_j_seppur_2024_127398
crossref_primary_10_1007_s10653_024_02142_9
crossref_primary_10_1016_j_clet_2022_100443
crossref_primary_10_3390_su15031778
crossref_primary_10_1016_j_seppur_2023_124525
crossref_primary_10_1007_s42773_024_00423_1
crossref_primary_10_1016_j_eti_2021_102019
crossref_primary_10_1016_j_ijbiomac_2023_128973
crossref_primary_10_1016_j_sciaf_2024_e02359
crossref_primary_10_1002_jobm_202100554
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_1016_j_egyr_2023_03_111
crossref_primary_10_1016_j_eti_2021_102010
crossref_primary_10_3390_w14111691
crossref_primary_10_1093_tse_tdab026
crossref_primary_10_1016_j_biortech_2023_129447
crossref_primary_10_1016_j_jiec_2024_12_001
crossref_primary_10_1016_j_chemosphere_2021_131390
crossref_primary_10_1016_j_jece_2024_111925
crossref_primary_10_1016_j_fuel_2022_124984
crossref_primary_10_1021_acs_langmuir_4c03727
crossref_primary_10_1016_j_seppur_2025_131818
crossref_primary_10_1007_s10973_023_12461_1
crossref_primary_10_1016_j_hazadv_2024_100583
crossref_primary_10_1002_est2_668
crossref_primary_10_1016_j_jece_2024_115291
crossref_primary_10_3390_separations10100533
crossref_primary_10_1016_j_biortech_2022_128361
crossref_primary_10_1016_j_jtice_2023_105216
crossref_primary_10_1016_j_biortech_2022_127274
crossref_primary_10_1016_j_chemosphere_2020_128526
crossref_primary_10_20517_wecn_2024_78
crossref_primary_10_17352_2455_3492_000068
crossref_primary_10_1016_j_chemosphere_2022_135738
crossref_primary_10_1016_j_jece_2025_115889
crossref_primary_10_1016_j_crbiot_2024_100218
crossref_primary_10_2139_ssrn_4140135
crossref_primary_10_3389_fenvs_2023_1114752
crossref_primary_10_1007_s11270_023_06338_0
crossref_primary_10_1007_s13399_021_02181_7
crossref_primary_10_3390_batteries10050144
crossref_primary_10_1016_j_watres_2024_121296
crossref_primary_10_1088_1361_6528_ac705e
crossref_primary_10_3390_w12102847
crossref_primary_10_1016_j_jaap_2023_105963
crossref_primary_10_3390_app10217810
crossref_primary_10_1080_15320383_2023_2170976
crossref_primary_10_1002_wer_10962
crossref_primary_10_1016_j_scitotenv_2022_155421
crossref_primary_10_1371_journal_pone_0290714
crossref_primary_10_1007_s10661_024_13334_2
crossref_primary_10_1016_j_ecoleng_2023_106927
crossref_primary_10_2166_wst_2023_356
crossref_primary_10_3389_fenvs_2023_1095920
crossref_primary_10_36659_dae_2022_063
crossref_primary_10_1016_j_chemosphere_2022_135753
crossref_primary_10_1016_j_jece_2023_111725
crossref_primary_10_1016_j_cej_2022_138027
crossref_primary_10_1016_j_ijbiomac_2025_141447
crossref_primary_10_1016_j_seppur_2024_128457
crossref_primary_10_1016_j_eti_2022_102340
crossref_primary_10_3389_fbioe_2021_778239
crossref_primary_10_3390_toxics12050356
crossref_primary_10_1016_j_jenvman_2024_122383
crossref_primary_10_5004_dwt_2023_29991
crossref_primary_10_1093_ijlct_ctad042
crossref_primary_10_1016_j_chemosphere_2024_142731
crossref_primary_10_1016_j_jenvman_2024_123017
crossref_primary_10_1016_j_matpr_2022_08_391
crossref_primary_10_1007_s42452_025_06479_3
crossref_primary_10_1016_j_cej_2021_131233
crossref_primary_10_1016_j_jece_2023_111702
crossref_primary_10_1016_j_jhazmat_2023_131176
crossref_primary_10_1016_j_matpr_2023_11_134
crossref_primary_10_3390_agriculture13030512
crossref_primary_10_1016_j_jhazmat_2021_126131
crossref_primary_10_1016_j_jaap_2021_105263
crossref_primary_10_1016_j_chemosphere_2020_127643
crossref_primary_10_1016_j_jclepro_2023_138495
crossref_primary_10_1016_j_watres_2022_118775
crossref_primary_10_3389_fenrg_2021_673758
crossref_primary_10_3390_f13122080
crossref_primary_10_1016_j_biortech_2022_128018
crossref_primary_10_3389_fenrg_2024_1448730
crossref_primary_10_1016_j_jwpe_2024_106360
crossref_primary_10_1016_j_memsci_2024_123427
crossref_primary_10_3390_agronomy12122987
crossref_primary_10_1016_j_jece_2023_110986
crossref_primary_10_1007_s13399_023_05092_x
crossref_primary_10_3390_en17061310
crossref_primary_10_20964_2022_09_22
crossref_primary_10_1016_j_crgsc_2021_100084
crossref_primary_10_1016_j_watres_2023_120909
crossref_primary_10_1016_j_seppur_2023_125543
crossref_primary_10_1007_s13762_023_05390_x
crossref_primary_10_1016_j_jenvman_2024_122044
crossref_primary_10_1016_j_jscs_2021_101213
crossref_primary_10_1016_j_jece_2021_106207
crossref_primary_10_1016_j_jhazmat_2021_127691
crossref_primary_10_1016_j_scitotenv_2023_167061
crossref_primary_10_1016_j_nbsj_2025_100220
crossref_primary_10_1680_jenge_21_00119
crossref_primary_10_5004_dwt_2023_29810
crossref_primary_10_1016_j_jhazmat_2021_125148
crossref_primary_10_1016_j_biombioe_2024_107149
crossref_primary_10_1007_s40097_021_00443_4
crossref_primary_10_1007_s12155_022_10560_9
crossref_primary_10_1155_2023_3848456
crossref_primary_10_1016_j_seppur_2025_131448
crossref_primary_10_1016_j_clay_2021_106297
crossref_primary_10_1007_s11356_023_28078_8
crossref_primary_10_3389_fmats_2022_870184
crossref_primary_10_1016_j_snr_2022_100107
crossref_primary_10_3390_en16145541
crossref_primary_10_4028_p_0Z9cWM
crossref_primary_10_1007_s10924_021_02327_8
crossref_primary_10_1080_09593330_2023_2283082
crossref_primary_10_1007_s10311_022_01424_x
crossref_primary_10_3390_ma17174350
crossref_primary_10_1016_j_biortech_2022_128310
crossref_primary_10_1155_2022_7218759
crossref_primary_10_3390_molecules28114526
crossref_primary_10_3390_nano14231933
crossref_primary_10_3390_toxics12040245
crossref_primary_10_1016_j_biortech_2022_127588
crossref_primary_10_1016_j_scitotenv_2021_152130
crossref_primary_10_1016_j_ijbiomac_2020_08_017
crossref_primary_10_1002_wer_10926
crossref_primary_10_1016_j_jece_2023_111019
crossref_primary_10_1016_j_mset_2022_11_008
crossref_primary_10_1016_j_agee_2023_108792
crossref_primary_10_1016_j_jclepro_2021_129994
crossref_primary_10_1016_j_energy_2023_127549
crossref_primary_10_1007_s42773_024_00372_9
crossref_primary_10_1016_j_desal_2024_118509
crossref_primary_10_1016_j_jwpe_2020_101845
crossref_primary_10_3390_ijerph20053876
crossref_primary_10_1016_j_jhazmat_2021_125252
crossref_primary_10_1016_j_jclepro_2023_137252
crossref_primary_10_1016_j_cej_2024_148634
crossref_primary_10_34172_jaehr_1361
crossref_primary_10_1016_j_scp_2023_101205
crossref_primary_10_1016_j_fuel_2021_120243
crossref_primary_10_1016_j_biortech_2020_124616
crossref_primary_10_1016_j_cej_2024_158322
crossref_primary_10_3390_w14040563
crossref_primary_10_1007_s11270_022_05885_2
crossref_primary_10_3390_resources13010008
crossref_primary_10_1002_jctb_7767
crossref_primary_10_1111_gcbb_13175
crossref_primary_10_3390_catal12101103
crossref_primary_10_1038_s41598_023_48373_1
crossref_primary_10_1016_j_envres_2024_119579
crossref_primary_10_1007_s10853_022_08126_3
crossref_primary_10_1007_s13399_021_02083_8
crossref_primary_10_1016_j_fuel_2023_129656
crossref_primary_10_1016_j_jaap_2024_106370
crossref_primary_10_1007_s42773_022_00169_8
crossref_primary_10_1016_j_eti_2023_103271
crossref_primary_10_1021_acssuschemeng_2c06292
crossref_primary_10_3390_en15113999
crossref_primary_10_1016_j_clema_2022_100045
crossref_primary_10_1016_j_chemosphere_2023_138665
crossref_primary_10_1016_j_crmicr_2024_100264
crossref_primary_10_3390_microorganisms10081593
crossref_primary_10_3390_foods12051042
crossref_primary_10_1016_j_envres_2024_119408
crossref_primary_10_3390_en16114311
crossref_primary_10_1016_j_est_2022_106598
crossref_primary_10_1016_j_chemosphere_2022_137084
crossref_primary_10_1016_j_scitotenv_2022_153892
crossref_primary_10_1016_j_biteb_2023_101704
crossref_primary_10_1016_j_jclepro_2021_129328
crossref_primary_10_1016_j_jenvman_2022_115213
crossref_primary_10_1039_D3RA00723E
crossref_primary_10_1007_s13399_023_04325_3
crossref_primary_10_1007_s10450_024_00523_1
crossref_primary_10_1016_j_scitotenv_2022_157062
crossref_primary_10_1016_j_eti_2023_103261
crossref_primary_10_1007_s40726_024_00327_5
crossref_primary_10_1080_10934529_2021_1980309
crossref_primary_10_1016_j_scitotenv_2020_141037
crossref_primary_10_1016_j_cej_2024_156007
crossref_primary_10_23939_chcht18_02_211
crossref_primary_10_1016_j_clay_2022_106491
crossref_primary_10_1016_j_jece_2021_105602
crossref_primary_10_1016_j_jenvman_2024_122670
crossref_primary_10_1016_j_chemosphere_2021_131267
crossref_primary_10_1016_j_chemosphere_2021_132113
crossref_primary_10_1016_j_cscee_2023_100495
crossref_primary_10_1016_j_cej_2021_131749
crossref_primary_10_1016_j_jece_2021_105603
crossref_primary_10_1016_j_jhazmat_2021_127876
crossref_primary_10_1016_j_jwpe_2025_107459
crossref_primary_10_3390_pr12051006
crossref_primary_10_1007_s11356_024_35846_7
crossref_primary_10_1016_j_scitotenv_2021_150158
crossref_primary_10_1016_j_biombioe_2024_107199
crossref_primary_10_3390_horticulturae11010073
crossref_primary_10_1016_j_chemosphere_2021_131009
crossref_primary_10_1016_j_scitotenv_2021_151120
crossref_primary_10_1016_j_chemosphere_2021_132458
crossref_primary_10_3390_min11070674
crossref_primary_10_1007_s10811_023_03104_x
crossref_primary_10_1016_j_jece_2022_109074
crossref_primary_10_1016_j_scitotenv_2021_145800
crossref_primary_10_1080_09593330_2022_2128891
crossref_primary_10_3390_pr11072099
crossref_primary_10_1002_ep_14558
crossref_primary_10_3390_w14233821
crossref_primary_10_3390_w14203272
crossref_primary_10_1016_j_chemosphere_2023_140515
crossref_primary_10_3390_en16020791
crossref_primary_10_1016_j_cclet_2021_09_099
crossref_primary_10_1002_tqem_22170
crossref_primary_10_1016_j_dwt_2024_100958
crossref_primary_10_1007_s40891_021_00277_8
crossref_primary_10_3390_en17092099
crossref_primary_10_1016_j_seppur_2023_124952
crossref_primary_10_1007_s12649_023_02112_9
crossref_primary_10_1016_j_inoche_2023_110900
crossref_primary_10_1016_j_biortech_2021_125190
crossref_primary_10_1016_j_ccr_2024_215766
crossref_primary_10_3390_en15103629
crossref_primary_10_1016_j_envres_2023_117169
crossref_primary_10_1016_j_scitotenv_2022_153996
crossref_primary_10_1080_10643389_2022_2128194
crossref_primary_10_3390_su142416483
crossref_primary_10_1007_s11270_022_06057_y
crossref_primary_10_1016_j_biortech_2022_128303
crossref_primary_10_1016_j_fuel_2021_122501
crossref_primary_10_1016_j_scitotenv_2024_176199
crossref_primary_10_3390_su132313480
crossref_primary_10_1016_j_biortech_2022_128547
crossref_primary_10_1016_j_efmat_2024_12_005
crossref_primary_10_1007_s11356_021_16047_y
crossref_primary_10_1007_s12649_024_02617_x
crossref_primary_10_1007_s10311_021_01348_y
crossref_primary_10_1007_s42452_024_06125_4
crossref_primary_10_1016_j_envres_2022_114732
crossref_primary_10_1016_j_chemosphere_2021_132577
crossref_primary_10_1016_j_chemosphere_2021_133302
crossref_primary_10_1016_j_jaap_2021_105423
crossref_primary_10_1016_j_seppur_2023_123511
crossref_primary_10_1016_j_chemosphere_2021_130273
crossref_primary_10_1016_j_seppur_2020_117662
crossref_primary_10_3390_jcs7120499
crossref_primary_10_1016_j_renene_2021_05_146
crossref_primary_10_1038_s41598_022_05652_7
crossref_primary_10_1016_j_eti_2023_103349
crossref_primary_10_1016_j_cej_2022_137359
crossref_primary_10_1016_j_ecoenv_2022_114408
crossref_primary_10_1055_a_2334_6930
crossref_primary_10_1021_acsagscitech_3c00459
crossref_primary_10_1016_j_jwpe_2023_104713
crossref_primary_10_1016_j_jece_2021_106846
crossref_primary_10_1016_j_watres_2024_122551
crossref_primary_10_1016_j_nanoso_2024_101307
Cites_doi 10.1016/j.jhazmat.2011.03.083
10.1016/j.chemosphere.2018.10.007
10.1016/j.cej.2019.01.036
10.1016/j.scitotenv.2012.07.038
10.1016/j.pce.2018.07.002
10.1016/j.chemosphere.2017.12.193
10.1016/j.biortech.2017.06.177
10.1016/j.jhazmat.2018.08.009
10.1016/j.scitotenv.2018.05.298
10.1016/j.jaap.2018.11.018
10.1007/s10653-015-9736-6
10.1016/j.cej.2019.122705
10.1016/j.biortech.2016.11.017
10.1016/j.biortech.2013.03.057
10.1007/s42773-019-00007-4
10.1016/j.energy.2019.01.035
10.1016/j.cej.2013.12.062
10.1016/j.envpol.2017.10.037
10.1016/j.enconman.2017.04.095
10.1016/j.jiec.2017.08.026
10.1016/j.jhazmat.2012.01.046
10.1016/j.biortech.2015.08.132
10.1016/j.chemosphere.2012.06.002
10.1016/j.renene.2018.09.041
10.1021/acs.est.8b00306
10.1016/j.chemosphere.2017.07.154
10.1016/j.biortech.2016.03.077
10.1080/10643389.2017.1418580
10.3390/ma11020299
10.1016/j.jclepro.2017.06.131
10.1016/j.chemosphere.2016.01.043
10.1016/j.cej.2019.121983
10.1016/j.watres.2018.10.030
10.1016/j.chemosphere.2019.125664
10.1016/j.jaap.2013.02.010
10.1016/j.jiec.2016.11.039
10.1016/j.ijheh.2017.02.010
10.1016/j.biombioe.2018.09.035
10.1016/j.biortech.2017.07.150
10.1016/j.biortech.2011.03.006
10.1016/j.biortech.2010.06.088
10.1016/j.scitotenv.2016.02.129
10.1016/j.rser.2016.06.003
10.1016/j.biortech.2012.12.165
10.1007/s13201-017-0604-7
10.1016/j.cej.2017.11.048
10.1021/acssuschemeng.7b02170
10.1016/j.cej.2012.06.116
10.1016/j.biombioe.2011.12.017
10.1039/C5RA17490B
10.1016/j.biortech.2014.07.062
10.1016/j.fuel.2011.08.044
10.1039/C7EW00070G
10.1016/j.jclepro.2018.01.133
10.1177/0734242X16654977
10.1007/s11356-014-2740-z
10.1039/C6RA06419A
10.1039/c4ra02332c
10.1016/j.cej.2017.10.130
10.1016/j.envpol.2018.09.097
10.1016/j.biortech.2012.11.132
10.1016/j.biortech.2010.11.018
10.1016/j.scitotenv.2018.03.189
10.1021/acs.est.6b00627
10.1007/s11356-016-8188-6
10.1016/j.chemosphere.2016.11.048
10.1016/j.jhazmat.2017.05.013
10.1016/j.jclepro.2017.01.069
10.1016/j.biortech.2014.01.120
10.1016/j.biortech.2017.01.046
10.1021/acsami.5b03131
10.1016/j.jiec.2016.06.002
10.1016/j.jaap.2018.09.007
10.1016/j.chemosphere.2017.02.121
10.1016/j.scitotenv.2017.09.171
10.1016/j.watres.2019.01.040
10.1016/j.jhazmat.2015.02.046
10.1016/j.watres.2014.05.026
10.1016/j.scitotenv.2018.01.037
10.1016/j.cej.2019.02.165
10.1016/j.cej.2013.04.077
10.1007/s13201-018-0765-z
10.1021/es4012977
10.1080/10643389.2015.1096880
10.1016/j.scitotenv.2018.05.251
10.1016/j.scitotenv.2018.10.131
10.1016/j.jclepro.2018.10.268
10.1007/s13762-014-0507-1
10.1016/j.biortech.2013.08.042
10.2175/193864716819715329
10.1016/j.watres.2018.09.051
10.1016/j.jaap.2017.02.013
10.1016/j.cej.2019.02.119
10.1016/j.jclepro.2018.03.206
10.1016/j.chemosphere.2017.08.014
10.1016/j.jtice.2018.03.049
10.1016/j.enconman.2017.01.063
10.1016/j.biortech.2015.10.096
10.1016/j.watres.2017.09.047
10.1016/j.jclepro.2016.07.205
10.1016/j.biortech.2016.04.093
10.1016/j.rser.2015.01.050
10.1007/s11356-018-1368-9
10.1016/j.biortech.2017.06.163
10.1061/(ASCE)EE.1943-7870.0001503
10.5194/se-5-953-2014
10.1016/j.jtice.2016.03.021
10.1016/j.scitotenv.2018.02.137
10.1016/j.biortech.2017.08.178
10.1016/j.rser.2019.01.030
10.1016/j.biortech.2015.08.129
10.1016/j.cej.2019.123842
10.1016/j.cej.2012.08.052
10.1016/j.biortech.2017.01.074
10.1016/j.biombioe.2019.01.014
10.1016/j.biortech.2017.10.004
10.1016/j.biortech.2014.10.104
10.1016/j.biortech.2018.11.013
10.1016/j.biortech.2016.05.057
10.1016/j.jaap.2016.03.018
10.1007/s11356-017-8849-0
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2020.126539
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 32220719
10_1016_j_chemosphere_2020_126539
S0045653520307323
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSH
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c476t-d0b9b60e75676b4c6c7360dfca5ce4bcc867e6462ba6f4cc82f09dccf60e52483
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Mon Jul 21 11:38:00 EDT 2025
Thu Jul 10 22:30:46 EDT 2025
Thu Apr 03 06:58:17 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 02:34:05 EDT 2025
Sun Apr 06 06:54:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Engineered biochar
Carbonaceous adsorbents
Wastewater treatment
Modification methods
Production technologies
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-d0b9b60e75676b4c6c7360dfca5ce4bcc867e6462ba6f4cc82f09dccf60e52483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 32220719
PQID 2384215803
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2400496914
proquest_miscellaneous_2384215803
pubmed_primary_32220719
crossref_citationtrail_10_1016_j_chemosphere_2020_126539
crossref_primary_10_1016_j_chemosphere_2020_126539
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2020_126539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
2020-Aug
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Al-Wabel, Al-Omran, El-Naggar, Nadeem, Usman (bib4) 2013; 131
Essandoh, Wolgemuth, Pittman, Mohan, Mlsna (bib22) 2017; 24
Zhang, Zhu, Shen, Liu (bib130) 2019; 171
Xu, Zheng, Gao, Cao (bib99) 2019; 368
Zhang, Gao, Varnoosfaderani, Hebard, Yao, Inyang (bib123) 2013; 130
Devi, Saroha (bib19) 2014; 169
Zhao, Lang (bib131) 2018; 88
Roberts, de Nys (bib65) 2016; 169
Ashoori, Teixido, Spahr, LeFevre, Sedlak, Luthy (bib6) 2019; 154
Dugdug, Chang, Ok, Rajapaksha, Anyia (bib20) 2018; 25
Sun, Li, Meng, Zhang, Song, Ren (bib70) 2018; 147
Wan, Wu, Zhou, Wang, Gao, He (bib82) 2018
Durán-Jiménez, Hernández-Montoya, Montes-Morán, Kingman, Monti, Binner (bib21) 2018; 135
Cho, Kwon, Yoon, Tsang, Ok, Kwon, Song (bib13) 2017; 145
Ghezzehei, Sarkhot, Berhe (bib24) 2014; 5
Wang, Liu (bib91) 2018; 628–629
Yu, Zou, Chen, Chen, Yu, Huang, Tang, Wei, Gao (bib118) 2019; 232
Inyang, Gao, Zimmerman, Zhou, Cao (bib32) 2015; 22
Yao, Gao, Chen, Zhang, Inyang, Li, Alva, Yang (bib108) 2013; 138
Manyuchi, Mbohwaa, Muzenda (bib51) 2018; 107
Wang, Gao, Wang, Fang, Xue, Yang (bib85) 2015; 197
Hossain, Strezov, Chan, Ziolkowski, Nelson (bib28) 2011; 92
You, Ok, Chen, Tsang, Kwon, Lee, Wang (bib117) 2017; 246
Sun, Qi, Zheng, Huang, Pan, Jiang, Hou, Xiao (bib71) 2017; 249
Zhang, Gao, Yao, Xue, Inyang (bib125) 2012; 435
Colantoni, Evic, Lord, Retschitzegger, Proto, Gallucci, Monarca (bib14) 2016; 64
Zheng, Wang, Wester, Chen, He, Chen, Gao (bib134) 2019; 362
Poonam, Bharti, Kumar (bib61) 2018; 8
Wang, Wang, Lee, Lehmann, Gao (bib86) 2018; 634
Yao, Gao, Zhang, Inyang, Zimmerman (bib113) 2012; 89
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (bib111) 2011; 190
Zhang, Yang, Liu, Ju, Zheng (bib126) 2018; 11
Zhang, Chen, Liu, Peng, Min, Cheng, Anderson, Zhou, Fan, Liu, Chen, Liu, Lei, Li, Ruan (bib129) 2017; 230
Hussain, Maitra, Khan (bib30) 2017
Mohan, Sarswat, Ok, Pittman (bib54) 2014; 160
Palansooriya, Yang, Tsang, Sarkar, Hou, Cao, Meers, Rinklebe, Kim, Ok (bib59) 2019
Lefèvre, Bossa, Gardner, Gehrke, Cooper, Stapleton, Hsu-Kim, Gunsch (bib40) 2018; 128
Inyang, Gao, Pullammanappallil, Ding, Zimmerman (bib31) 2010; 101
Xiang, Zhang, Chen, Fang, He, Hu, Tsang, Ok, Gao (bib94) 2020; 385
Tian, Miller, Chiu, Maresca, Guo, Imhoff (bib76) 2016; 553
Yao, Gao, Wu, Zhang, Yang (bib112) 2015; 7
Jimenez, Monti, Titman, Hernandez-Montoya, Kingman, Binner (bib35) 2017; 124
Yao, Zhang, Gao, Chen, Wu (bib115) 2018; 25
Mohamed, Kim, Ellis, Bi (bib53) 2016; 201
Agrafioti, Bouras, Kalderis, Diamadopoulos (bib1) 2013; 101
Zhang, Xiang, Wang, Fang, Zou, He, Li, Tsang, Ok, Gao (bib128) 2019; 245
Lyu, Gao, He, Zimmerman, Ding, Huang, Tang (bib49) 2018; 233
Bian, Ma, Zhu, Wang, Li, Joseph, Liu, Pan (bib7) 2016; 119
Zhou, Liu, Xiang, Wang, Zhang, Zhang, Wei, Luo, Lei, Tang (bib137) 2017; 245
Mašek, Brownsort, Cross, Sohi (bib52) 2013; 103
Zhang, Gao (bib121) 2013; 226
Yang, Lou, Rajapaksha, Ok, Anyia, Chang (bib103) 2017
Higashikawa, Conz, Colzato, Cerri, Alleoni (bib27) 2016; 137
Cha, Park, Jung, Ryu, Jeon, Shin, Park (bib11) 2016; 40
Liu, Charrua, Weng, Yuan, Ding (bib43) 2015; 198
Fang, Zhan, Ok, Gao (bib23) 2018; 57
Mohanty, Valenca, Berger, Yu, Xiong, Saunders, Tsang (bib56) 2018; 625
Shengsen Wang, Min, Yuncong C, Jun, Bin, Shinjiro, Ke, Weiqin, Avanthi Deshani, Patryk, Xiaozhi, Yong Sik (bib68) 2019; 373
Braghiroli, Bouafif, Neculita, Koubaa (bib9) 2018
Tian, Jin, Chiu, Cha, Guo, Imhoff (bib75) 2019; 148
Wang, Gao, Li, Zimmerman, Cao (bib87) 2016; 6
Wang, Gao, Li, Ok, Shen, Xue (bib89) 2017; 178
Chen, Yan, Xu, Yoza, Wang, Kou, Ye, Wang, Li (bib12) 2019; 651
Xiong, Yu, Cao, Tsang, Zhang, Ok (bib95) 2017; 246
Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib62) 2016; 148
Wang, Gao, Zimmerman, Li, Ma, Harris, Migliaccio (bib90) 2015; 175
Zhang, Gao, Creamer, Cao, Li (bib127) 2017; 338
Tang, Alam, Konhauser, Alessi, Xu, Tian, Liu (bib74) 2019; 209
Yue, Li, Johnston (bib120) 2018; 226
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (bib110) 2011; 102
Yao, Gao, Fang, Zhang, Chen, Zhou, Creamer, Sun, Yang (bib109) 2014; 242
Wang, Lehmann, Hanley, Hestrin, Enders (bib84) 2016; 6
Blum, Gallampois, Andersson, Renman, Renman, Haglund (bib8) 2018; 361
Li, Wang, Zhou, Zhang, Liu, Lei, Xiao (bib41) 2017; 147
Ahmed, Zhou, Ngo, Guo, Chen (bib3) 2016; 214
Deal, Brewer, Brown, Okure, Amoding (bib18) 2012; 37
Ulrich, Loehnert, Higgins (bib77) 2017; 3
Rajapaksha, Vithanage, Ahmad, Seo, Cho, Lee, Sang, Yong (bib63) 2015; 290
Ahmad, Gao, Mosa, Yu, Yin, Bashir, Ghoveisi, Wang (bib2) 2018; 180
Dai, Fan, Liu, Ruan, Wang, Zhou, Zhao, Yu (bib17) 2017; 225
Lam, Liew, Wong, Yek, Ma, Lee, Chase (bib38) 2017; 162
Yao, Gao, Chen, Jiang, Inyang, Zimmerman, Cao, Yang, Xue, Li (bib106) 2012; 209–210
Gray (bib26) 2016; 6
Cao, Yu, Cho, Wang, Tsang, Zhang, Ding, Wang, Ok (bib10) 2019; 273
Yoo, Beiyuan, Wang, Dcw, Baek, Bolan, Ok, Li (bib116) 2018; 616
Liu, Sohi, Liu, Guan, Zhou, Chen (bib45) 2019; 235
Mandal, Singh (bib50) 2017; 220
Xiong, Yu, Tsang, Bolan, Sik Ok, Igalavithana, Kirkham, Kim, Vikrant (bib96) 2019; 375
Wang, Zhou, Gao, Wang, Yin, Feng, Wang (bib88) 2017; 186
Wathukarage, Herath, Iqbal, Vithanage (bib92) 2017
Irfan, Chen, Yue, Pang, Lin, Zhao, Chen (bib34) 2016; 211
Nhuchhen, Afzal, Dreise, Salema (bib58) 2018; 119
Lu, Chen (bib46) 2018; 243
Zhao, Yao, Li, Wu, Zhang, Gao (bib132) 2018; 640–641
Lyu, Gao, He, Zimmerman, Ding, Tang, Crittenden (bib47) 2018; 335
Zhang, Gao, Fang, Creamer, Ullman (bib122) 2014; 4
Kadlimatti, Raj Mohan, Saidutta (bib36) 2019; 123
Kambo, Dutta (bib37) 2015; 45
An, Jiang, Nan, Yu, Jiang (bib5) 2019; 214
Vikrant, Kim, Ok, Dcw, Tsang, Giri, Singh (bib80) 2017; 616–617
Cole, Paul, De, Roberts (bib15) 2017; 200
González, Cea, Reyes, Romero-Hermoso, Hidalgo, Meier, Benito, Navia (bib25) 2017; 137
Saha, Saba, Reza (bib66) 2019; 137
Xue, Gao, Wan, Fang, Wang, Li, Munoz-Carpena, Yang (bib100) 2016; 63
Liu, Wu, Gorring, Deng (bib44) 2019; 145
Van Vinh, Zafar, Behera, Park (bib79) 2015; 12
Yao, Zhang, Gao, Chen, Wu (bib114) 2017
Creamer, Gao (bib16) 2016; 50
Xu, Zhou, Pan, Dai (bib98) 2020; 382
Yuan, Xu, Zhang (bib119) 2011; 102
Lyu, Gao, He, Ding, Tang, Crittenden (bib48) 2017; 5
Wan, Wang, Li, Gao (bib81) 2017; 47
Tang, Yu, Pang, Zeng, Deng, Wang, Ren, Ye, Peng, Feng (bib73) 2018; 336
Yang, Igalavithana, Oh, Nam, Zhang, Wang, Kwon, Tsang, Ok (bib104) 2018; 640–641
Zhao, Ouyang, Hao, Lin, Wang, Han, Geng (bib133) 2013; 147
Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (bib101) 2012; 200–202
Yang, Xu, Yu, Gao, Xu, Zhao, Cao (bib102) 2018; 52
Shao, Long, Wang, Liu, Shen, Chen (bib67) 2019; 135
Mohanty, Cantrell, Nelson, Boehm (bib55) 2014; 61
Yao, Gao, Chen, Yang (bib107) 2013; 47
Peiris, Gunatilake, Mlsna, Mohan, Vithanage (bib60) 2017; 246
Randolph, Bansode, Hassan, Rehrah, Ravella, Reddy, Watts, Novak, Ahmedna (bib64) 2017; 192
Zhou, Chen, Xi, Yao, Zhou, Tian, Lu (bib136) 2017; 232
Wei, Li, Huang, Luo, Zhang, Yang, Guo, Tang, Zeng, Zhou (bib93) 2018; 197
Usman, Ahmad, El-Mahrouky, Al-Omran, Ok, Sallam, El-Naggar, Al-Wabel (bib78) 2016; 38
Zhang, Gao, Yao, Xue, Inyang (bib124) 2012; 210
Son, Poo, Chang, Chae (bib69) 2018; 615
Xu, Lin, Dou, Zheng, Tan, Wang (bib97) 2018; 187
Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bib33) 2016; 46
Lau, Tsang, Graham, Ok, Yang, Li (bib39) 2016; 169
Tan, Liu, Gu, Xu, Zeng, Hu, Liu, Wang, Liu, Li (bib72) 2016; 212
Zheng, Yang, Zhang, Zou, Luo, Dong, Gao (bib135) 2019; 1
Mutsengerere, Chihobo, Musademba, Nhapi (bib57) 2019; 104
Yang, Wan, Zheng, He, Yu, Huang, Wang, Ok, Jiang, Gao (bib105) 2019; 366
Huang, Wang, Zhang, Zeng, Peng, Zhou, Cheng, Wang, Hu, Qin (bib29) 2017; 186
Lin, Yan, Sheng (bib42) 2016; 34
Wang, Gao, Fang (bib83) 2017; 47
Zhou (10.1016/j.chemosphere.2020.126539_bib137) 2017; 245
Yao (10.1016/j.chemosphere.2020.126539_bib113) 2012; 89
Creamer (10.1016/j.chemosphere.2020.126539_bib16) 2016; 50
Jimenez (10.1016/j.chemosphere.2020.126539_bib35) 2017; 124
Sun (10.1016/j.chemosphere.2020.126539_bib70) 2018; 147
Yao (10.1016/j.chemosphere.2020.126539_bib108) 2013; 138
Wang (10.1016/j.chemosphere.2020.126539_bib85) 2015; 197
Zhang (10.1016/j.chemosphere.2020.126539_bib129) 2017; 230
Shengsen Wang (10.1016/j.chemosphere.2020.126539_bib68) 2019; 373
Gray (10.1016/j.chemosphere.2020.126539_bib26) 2016; 6
Wang (10.1016/j.chemosphere.2020.126539_bib91) 2018; 628–629
Palansooriya (10.1016/j.chemosphere.2020.126539_bib59) 2019
Lu (10.1016/j.chemosphere.2020.126539_bib46) 2018; 243
Cho (10.1016/j.chemosphere.2020.126539_bib13) 2017; 145
Zheng (10.1016/j.chemosphere.2020.126539_bib135) 2019; 1
Wang (10.1016/j.chemosphere.2020.126539_bib84) 2016; 6
Kadlimatti (10.1016/j.chemosphere.2020.126539_bib36) 2019; 123
Nhuchhen (10.1016/j.chemosphere.2020.126539_bib58) 2018; 119
Xue (10.1016/j.chemosphere.2020.126539_bib100) 2016; 63
Yao (10.1016/j.chemosphere.2020.126539_bib111) 2011; 190
Randolph (10.1016/j.chemosphere.2020.126539_bib64) 2017; 192
Inyang (10.1016/j.chemosphere.2020.126539_bib31) 2010; 101
Huang (10.1016/j.chemosphere.2020.126539_bib29) 2017; 186
Xu (10.1016/j.chemosphere.2020.126539_bib99) 2019; 368
Bian (10.1016/j.chemosphere.2020.126539_bib7) 2016; 119
Zhang (10.1016/j.chemosphere.2020.126539_bib124) 2012; 210
Mohanty (10.1016/j.chemosphere.2020.126539_bib55) 2014; 61
Liu (10.1016/j.chemosphere.2020.126539_bib44) 2019; 145
Zhou (10.1016/j.chemosphere.2020.126539_bib136) 2017; 232
Yue (10.1016/j.chemosphere.2020.126539_bib120) 2018; 226
Inyang (10.1016/j.chemosphere.2020.126539_bib33) 2016; 46
Usman (10.1016/j.chemosphere.2020.126539_bib78) 2016; 38
Zheng (10.1016/j.chemosphere.2020.126539_bib134) 2019; 362
Ahmad (10.1016/j.chemosphere.2020.126539_bib2) 2018; 180
Zhao (10.1016/j.chemosphere.2020.126539_bib132) 2018; 640–641
You (10.1016/j.chemosphere.2020.126539_bib117) 2017; 246
Lau (10.1016/j.chemosphere.2020.126539_bib39) 2016; 169
Mohamed (10.1016/j.chemosphere.2020.126539_bib53) 2016; 201
Yuan (10.1016/j.chemosphere.2020.126539_bib119) 2011; 102
Yang (10.1016/j.chemosphere.2020.126539_bib102) 2018; 52
Zhang (10.1016/j.chemosphere.2020.126539_bib126) 2018; 11
Saha (10.1016/j.chemosphere.2020.126539_bib66) 2019; 137
Liu (10.1016/j.chemosphere.2020.126539_bib45) 2019; 235
Irfan (10.1016/j.chemosphere.2020.126539_bib34) 2016; 211
Xu (10.1016/j.chemosphere.2020.126539_bib98) 2020; 382
Tang (10.1016/j.chemosphere.2020.126539_bib73) 2018; 336
Wang (10.1016/j.chemosphere.2020.126539_bib83) 2017; 47
Van Vinh (10.1016/j.chemosphere.2020.126539_bib79) 2015; 12
Xiang (10.1016/j.chemosphere.2020.126539_bib94) 2020; 385
Yang (10.1016/j.chemosphere.2020.126539_bib103) 2017
Roberts (10.1016/j.chemosphere.2020.126539_bib65) 2016; 169
Xiong (10.1016/j.chemosphere.2020.126539_bib96) 2019; 375
Yang (10.1016/j.chemosphere.2020.126539_bib104) 2018; 640–641
Zhao (10.1016/j.chemosphere.2020.126539_bib133) 2013; 147
Wang (10.1016/j.chemosphere.2020.126539_bib90) 2015; 175
Dai (10.1016/j.chemosphere.2020.126539_bib17) 2017; 225
Agrafioti (10.1016/j.chemosphere.2020.126539_bib1) 2013; 101
Devi (10.1016/j.chemosphere.2020.126539_bib19) 2014; 169
Yao (10.1016/j.chemosphere.2020.126539_bib112) 2015; 7
Mašek (10.1016/j.chemosphere.2020.126539_bib52) 2013; 103
Hossain (10.1016/j.chemosphere.2020.126539_bib28) 2011; 92
Son (10.1016/j.chemosphere.2020.126539_bib69) 2018; 615
Ahmed (10.1016/j.chemosphere.2020.126539_bib3) 2016; 214
Yao (10.1016/j.chemosphere.2020.126539_bib110) 2011; 102
Zhang (10.1016/j.chemosphere.2020.126539_bib122) 2014; 4
Kambo (10.1016/j.chemosphere.2020.126539_bib37) 2015; 45
Yao (10.1016/j.chemosphere.2020.126539_bib115) 2018; 25
Mohanty (10.1016/j.chemosphere.2020.126539_bib56) 2018; 625
Xu (10.1016/j.chemosphere.2020.126539_bib97) 2018; 187
Zhang (10.1016/j.chemosphere.2020.126539_bib121) 2013; 226
Wathukarage (10.1016/j.chemosphere.2020.126539_bib92) 2017
Peiris (10.1016/j.chemosphere.2020.126539_bib60) 2017; 246
Wan (10.1016/j.chemosphere.2020.126539_bib81) 2017; 47
Wang (10.1016/j.chemosphere.2020.126539_bib87) 2016; 6
Hussain (10.1016/j.chemosphere.2020.126539_bib30) 2017
Dugdug (10.1016/j.chemosphere.2020.126539_bib20) 2018; 25
Lyu (10.1016/j.chemosphere.2020.126539_bib48) 2017; 5
Sun (10.1016/j.chemosphere.2020.126539_bib71) 2017; 249
Zhang (10.1016/j.chemosphere.2020.126539_bib127) 2017; 338
An (10.1016/j.chemosphere.2020.126539_bib5) 2019; 214
Chen (10.1016/j.chemosphere.2020.126539_bib12) 2019; 651
Wang (10.1016/j.chemosphere.2020.126539_bib86) 2018; 634
Ashoori (10.1016/j.chemosphere.2020.126539_bib6) 2019; 154
Deal (10.1016/j.chemosphere.2020.126539_bib18) 2012; 37
Essandoh (10.1016/j.chemosphere.2020.126539_bib22) 2017; 24
Xue (10.1016/j.chemosphere.2020.126539_bib101) 2012; 200–202
González (10.1016/j.chemosphere.2020.126539_bib25) 2017; 137
Lin (10.1016/j.chemosphere.2020.126539_bib42) 2016; 34
Li (10.1016/j.chemosphere.2020.126539_bib41) 2017; 147
Ulrich (10.1016/j.chemosphere.2020.126539_bib77) 2017; 3
Vikrant (10.1016/j.chemosphere.2020.126539_bib80) 2017; 616–617
Yoo (10.1016/j.chemosphere.2020.126539_bib116) 2018; 616
Yao (10.1016/j.chemosphere.2020.126539_bib109) 2014; 242
Lyu (10.1016/j.chemosphere.2020.126539_bib47) 2018; 335
Mohan (10.1016/j.chemosphere.2020.126539_bib54) 2014; 160
Yao (10.1016/j.chemosphere.2020.126539_bib114) 2017
Manyuchi (10.1016/j.chemosphere.2020.126539_bib51) 2018; 107
Mutsengerere (10.1016/j.chemosphere.2020.126539_bib57) 2019; 104
Yao (10.1016/j.chemosphere.2020.126539_bib106) 2012; 209–210
Ghezzehei (10.1016/j.chemosphere.2020.126539_bib24) 2014; 5
Tan (10.1016/j.chemosphere.2020.126539_bib72) 2016; 212
Tang (10.1016/j.chemosphere.2020.126539_bib74) 2019; 209
Blum (10.1016/j.chemosphere.2020.126539_bib8) 2018; 361
Wang (10.1016/j.chemosphere.2020.126539_bib89) 2017; 178
Zhang (10.1016/j.chemosphere.2020.126539_bib130) 2019; 171
Wei (10.1016/j.chemosphere.2020.126539_bib93) 2018; 197
Lam (10.1016/j.chemosphere.2020.126539_bib38) 2017; 162
Wang (10.1016/j.chemosphere.2020.126539_bib88) 2017; 186
Inyang (10.1016/j.chemosphere.2020.126539_bib32) 2015; 22
Lyu (10.1016/j.chemosphere.2020.126539_bib49) 2018; 233
Rajapaksha (10.1016/j.chemosphere.2020.126539_bib62) 2016; 148
Xiong (10.1016/j.chemosphere.2020.126539_bib95) 2017; 246
Yu (10.1016/j.chemosphere.2020.126539_bib118) 2019; 232
Tian (10.1016/j.chemosphere.2020.126539_bib75) 2019; 148
Cole (10.1016/j.chemosphere.2020.126539_bib15) 2017; 200
Tian (10.1016/j.chemosphere.2020.126539_bib76) 2016; 553
Mandal (10.1016/j.chemosphere.2020.126539_bib50) 2017; 220
Yao (10.1016/j.chemosphere.2020.126539_bib107) 2013; 47
Zhang (10.1016/j.chemosphere.2020.126539_bib125) 2012; 435
Colantoni (10.1016/j.chemosphere.2020.126539_bib14) 2016; 64
Cao (10.1016/j.chemosphere.2020.126539_bib10) 2019; 273
Zhang (10.1016/j.chemosphere.2020.126539_bib128) 2019; 245
Shao (10.1016/j.chemosphere.2020.126539_bib67) 2019; 135
Cha (10.1016/j.chemosphere.2020.126539_bib11) 2016; 40
Rajapaksha (10.1016/j.chemosphere.2020.126539_bib63) 2015; 290
Higashikawa (10.1016/j.chemosphere.2020.126539_bib27) 2016; 137
Yang (10.1016/j.chemosphere.2020.126539_bib105) 2019; 366
Wan (10.1016/j.chemosphere.2020.126539_bib82) 2018
Braghiroli (10.1016/j.chemosphere.2020.126539_bib9) 2018
Lefèvre (10.1016/j.chemosphere.2020.126539_bib40) 2018; 128
Durán-Jiménez (10.1016/j.chemosphere.2020.126539_bib21) 2018; 135
Zhang (10.1016/j.chemosphere.2020.126539_bib123) 2013; 130
Zhao (10.1016/j.chemosphere.2020.126539_bib131) 2018; 88
Al-Wabel (10.1016/j.chemosphere.2020.126539_bib4) 2013; 131
Liu (10.1016/j.chemosphere.2020.126539_bib43) 2015; 198
Poonam (10.1016/j.chemosphere.2020.126539_bib61) 2018; 8
Fang (10.1016/j.chemosphere.2020.126539_bib23) 2018; 57
References_xml – volume: 124
  start-page: 113
  year: 2017
  end-page: 121
  ident: bib35
  article-title: New insights into microwave pyrolysis of biomass: preparation of carbon-based products from pecan nutshells and their application in wastewater treatment
  publication-title: J. Anal. Appl. Pyrol.
– volume: 57
  start-page: 15
  year: 2018
  end-page: 21
  ident: bib23
  article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass
  publication-title: J. Ind. Eng. Chem.
– volume: 235
  start-page: 276
  year: 2019
  end-page: 281
  ident: bib45
  article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar
  publication-title: J. Environ. Manag.
– volume: 169
  start-page: 253
  year: 2016
  end-page: 260
  ident: bib65
  article-title: The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva
  publication-title: J. Environ. Manag.
– volume: 362
  start-page: 460
  year: 2019
  end-page: 468
  ident: bib134
  article-title: Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 246
  year: 2017
  end-page: 253
  ident: bib81
  article-title: Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions
  publication-title: J. Ind. Eng. Chem.
– volume: 47
  start-page: 2158
  year: 2017
  end-page: 2207
  ident: bib83
  article-title: Recent advances in engineered biochar productions and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 246
  start-page: 242
  year: 2017
  end-page: 253
  ident: bib117
  article-title: A critical review on sustainable biochar system through gasification: energy and environmental applications
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 28171
  year: 2014
  end-page: 28175
  ident: bib122
  article-title: Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: characterization and phosphate removal ability
  publication-title: RSC Adv.
– volume: 8
  year: 2018
  ident: bib61
  article-title: Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent
  publication-title: Applied Water Science
– volume: 175
  start-page: 391
  year: 2015
  end-page: 395
  ident: bib90
  article-title: Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite
  publication-title: Bioresour. Technol.
– volume: 230
  start-page: 143
  year: 2017
  end-page: 151
  ident: bib129
  article-title: Effects of feedstock characteristics on microwave-assisted pyrolysis - a review
  publication-title: Bioresour. Technol.
– volume: 178
  start-page: 59
  year: 2017
  end-page: 64
  ident: bib89
  article-title: Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: a case study of Phytolacca acinosa Roxb. (Phytolaccaceae)
  publication-title: Chemosphere
– volume: 25
  start-page: 25659
  year: 2018
  end-page: 25667
  ident: bib115
  article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 214
  start-page: 836
  year: 2016
  end-page: 851
  ident: bib3
  article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater
  publication-title: Bioresour. Technol.
– volume: 52
  start-page: 8321
  year: 2018
  end-page: 8329
  ident: bib102
  article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 651
  start-page: 2631
  year: 2019
  end-page: 2640
  ident: bib12
  article-title: Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 4577
  year: 2017
  end-page: 4590
  ident: bib22
  article-title: Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 197
  start-page: 356
  year: 2015
  end-page: 362
  ident: bib85
  article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO
  publication-title: Bioresour. Technol.
– volume: 361
  start-page: 111
  year: 2018
  ident: bib8
  article-title: Comprehensive assessment of organic contaminant removal from on-site sewage treatment facility effluent by char-fortified filter beds
  publication-title: J. Hazard Mater.
– volume: 249
  start-page: 57
  year: 2017
  end-page: 61
  ident: bib71
  article-title: Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 41907
  year: 2016
  end-page: 41913
  ident: bib84
  article-title: Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times
  publication-title: RSC Adv.
– volume: 147
  start-page: 338
  year: 2013
  end-page: 344
  ident: bib133
  article-title: Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine
  publication-title: Bioresour. Technol.
– volume: 628–629
  start-page: 1139
  year: 2018
  end-page: 1148
  ident: bib91
  article-title: H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions
  publication-title: Sci. Total Environ.
– volume: 640–641
  start-page: 73
  year: 2018
  end-page: 79
  ident: bib132
  article-title: Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II)
  publication-title: Sci. Total Environ.
– volume: 232
  start-page: 204
  year: 2017
  end-page: 210
  ident: bib136
  article-title: Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization
  publication-title: Bioresour. Technol.
– volume: 335
  start-page: 110
  year: 2018
  end-page: 119
  ident: bib47
  article-title: Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue
  publication-title: Chem. Eng. J.
– volume: 246
  start-page: 150
  year: 2017
  end-page: 159
  ident: bib60
  article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review
  publication-title: Bioresour. Technol.
– volume: 61
  start-page: 288
  year: 2014
  end-page: 296
  ident: bib55
  article-title: Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow
  publication-title: Water Res.
– volume: 640–641
  start-page: 704
  year: 2018
  end-page: 713
  ident: bib104
  article-title: Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil
  publication-title: Sci. Total Environ.
– volume: 382
  start-page: 122705
  year: 2020
  ident: bib98
  article-title: Interaction between chlortetracycline and calcium-rich biochar: enhanced removal by adsorption coupled with flocculation
  publication-title: Chem. Eng. J.
– volume: 64
  start-page: 187
  year: 2016
  end-page: 194
  ident: bib14
  article-title: Characterization of biochars produced from pyrolysis of pelletized agricultural residues
  publication-title: Renew. Sustain. Energy Rev.
– volume: 171
  start-page: 581
  year: 2019
  end-page: 598
  ident: bib130
  article-title: Insights into biochar and hydrochar production and applications: a review
  publication-title: Energy
– volume: 209
  start-page: 927
  year: 2019
  end-page: 936
  ident: bib74
  article-title: Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater
  publication-title: J. Clean. Prod.
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib114
  article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 197
  start-page: 165
  year: 2018
  ident: bib93
  article-title: Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs
  publication-title: Chemosphere
– volume: 368
  start-page: 564
  year: 2019
  end-page: 572
  ident: bib99
  article-title: N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red
  publication-title: Chem. Eng. J.
– volume: 101
  start-page: 72
  year: 2013
  end-page: 78
  ident: bib1
  article-title: Biochar production by sewage sludge pyrolysis
  publication-title: J. Anal. Appl. Pyrol.
– volume: 101
  start-page: 8868
  year: 2010
  end-page: 8872
  ident: bib31
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
– volume: 290
  start-page: 43
  year: 2015
  end-page: 50
  ident: bib63
  article-title: Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar
  publication-title: J. Hazard Mater.
– volume: 553
  start-page: 596
  year: 2016
  end-page: 606
  ident: bib76
  article-title: Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 953
  year: 2014
  end-page: 962
  ident: bib24
  article-title: Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties
  publication-title: Solid Earth
– volume: 7
  start-page: 10634
  year: 2015
  end-page: 10640
  ident: bib112
  article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  start-page: 793
  year: 2016
  end-page: 801
  ident: bib42
  article-title: Effect of pyrolysis conditions on the characteristics of biochar produced from a tobacco stem
  publication-title: Waste Manag. Res.
– volume: 616
  year: 2018
  ident: bib116
  article-title: A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils
  publication-title: Sci. Total Environ.
– volume: 22
  start-page: 1868
  year: 2015
  end-page: 1876
  ident: bib32
  article-title: Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 37
  start-page: 161
  year: 2012
  end-page: 168
  ident: bib18
  article-title: Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics
  publication-title: Biomass Bioenergy
– volume: 137
  start-page: 165
  year: 2017
  end-page: 173
  ident: bib25
  article-title: Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production
  publication-title: Energy Convers. Manag.
– volume: 145
  year: 2019
  ident: bib44
  article-title: Aluminum-impregnated biochar for adsorption of arsenic(V) in urban stormwater runoff
  publication-title: J. Environ. Eng.
– volume: 187
  year: 2018
  ident: bib97
  article-title: Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides
  publication-title: J. Clean. Prod.
– volume: 200–202
  start-page: 673
  year: 2012
  end-page: 680
  ident: bib101
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chem. Eng. J.
– volume: 147
  start-page: 96
  year: 2017
  end-page: 107
  ident: bib41
  article-title: Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment
  publication-title: J. Clean. Prod.
– volume: 233
  start-page: 54
  year: 2018
  end-page: 63
  ident: bib49
  article-title: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms
  publication-title: Environ. Pollut.
– volume: 6
  start-page: 2108
  year: 2016
  end-page: 2123
  ident: bib26
  article-title: Black is green: biochar for stormwater management
  publication-title: Proceedings of the Water Environment Federation
– volume: 88
  start-page: 152
  year: 2018
  end-page: 160
  ident: bib131
  article-title: Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
– volume: 192
  start-page: 271
  year: 2017
  end-page: 280
  ident: bib64
  article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters
  publication-title: J. Environ. Manag.
– volume: 123
  start-page: 25
  year: 2019
  end-page: 33
  ident: bib36
  article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology
  publication-title: Biomass Bioenergy
– volume: 135
  start-page: 1327
  year: 2019
  end-page: 1334
  ident: bib67
  article-title: Hydrochar derived from green waste by microwave hydrothermal carbonization
  publication-title: Renew. Energy
– volume: 131
  start-page: 374
  year: 2013
  end-page: 379
  ident: bib4
  article-title: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes
  publication-title: Bioresour. Technol.
– volume: 169
  start-page: 89
  year: 2016
  ident: bib39
  article-title: Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater
  publication-title: Chemosphere
– volume: 180
  start-page: 437
  year: 2018
  end-page: 449
  ident: bib2
  article-title: Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass
  publication-title: J. Clean. Prod.
– volume: 107
  start-page: 92
  year: 2018
  end-page: 95
  ident: bib51
  article-title: Potential to use municipal waste bio char in wastewater treatment for nutrients recovery
  publication-title: Phys. Chem. Earth
– volume: 201
  start-page: 121
  year: 2016
  end-page: 132
  ident: bib53
  article-title: Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties
  publication-title: Bioresour. Technol.
– volume: 46
  start-page: 406
  year: 2016
  end-page: 433
  ident: bib33
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 3
  year: 2017
  ident: bib77
  article-title: Improved contaminant removal in vegetated stormwater biofilters amended with biochar
  publication-title: Environmental Science Water Research & Technology
– volume: 89
  start-page: 1467
  year: 2012
  end-page: 1471
  ident: bib113
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
– volume: 435
  start-page: 567
  year: 2012
  end-page: 572
  ident: bib125
  article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar
  publication-title: Sci. Total Environ.
– volume: 616–617
  start-page: 1242
  year: 2017
  ident: bib80
  article-title: Engineered/designer biochar for the removal of phosphate in water and wastewater
  publication-title: Sci. Total Environ.
– volume: 214
  start-page: 846
  year: 2019
  end-page: 854
  ident: bib5
  article-title: Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: implicit mechanism
  publication-title: Chemosphere
– volume: 102
  start-page: 6273
  year: 2011
  end-page: 6278
  ident: bib110
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
– volume: 225
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib17
  article-title: Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis
  publication-title: Bioresour. Technol.
– volume: 11
  start-page: 299
  year: 2018
  ident: bib126
  article-title: Adsorption behavior of selective recognition functionalized biochar to Cd(II) in wastewater
  publication-title: Materials
– volume: 6
  start-page: 17792
  year: 2016
  end-page: 17799
  ident: bib87
  article-title: Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites
  publication-title: RSC Adv.
– volume: 246
  start-page: 254
  year: 2017
  end-page: 270
  ident: bib95
  article-title: A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control
  publication-title: Bioresour. Technol.
– volume: 211
  start-page: 457
  year: 2016
  end-page: 463
  ident: bib34
  article-title: Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib11
  article-title: Production and utilization of biochar: a review
  publication-title: J. Ind. Eng. Chem.
– volume: 190
  start-page: 501
  year: 2011
  end-page: 507
  ident: bib111
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. Hazard Mater.
– volume: 145
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib13
  article-title: Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium
  publication-title: Energy Convers. Manag.
– start-page: 229
  year: 2018
  end-page: 230
  ident: bib9
  article-title: Activated biochar as an effective sorbent for organic and inorganic contaminants in water
  publication-title: Water Air Soil Pollut.
– volume: 210
  start-page: 26
  year: 2012
  end-page: 32
  ident: bib124
  article-title: Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 8700
  year: 2013
  end-page: 8708
  ident: bib107
  article-title: Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer
  publication-title: Environ. Sci. Technol.
– volume: 366
  start-page: 608
  year: 2019
  end-page: 621
  ident: bib105
  article-title: Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review
  publication-title: Chem. Eng. J.
– volume: 63
  start-page: 312
  year: 2016
  end-page: 317
  ident: bib100
  article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
– volume: 25
  start-page: 25799
  year: 2018
  end-page: 25812
  ident: bib20
  article-title: Phosphorus sorption capacity of biochars varies with biochar type and salinity level
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 119
  start-page: 293
  year: 2018
  end-page: 303
  ident: bib58
  article-title: Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor
  publication-title: Biomass Bioenergy
– volume: 212
  start-page: 318
  year: 2016
  end-page: 333
  ident: bib72
  article-title: Biochar-based nano-composites for the decontamination of wastewater: a review
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 89
  year: 2019
  end-page: 96
  ident: bib135
  article-title: Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation
  publication-title: Biochar
– volume: 128
  start-page: 102
  year: 2018
  end-page: 110
  ident: bib40
  article-title: Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A
  publication-title: Water Res.
– volume: 186
  start-page: 495
  year: 2017
  end-page: 500
  ident: bib88
  article-title: The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size
  publication-title: Chemosphere
– volume: 186
  start-page: 414
  year: 2017
  end-page: 421
  ident: bib29
  article-title: Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: influencing factors and mechanism
  publication-title: Chemosphere
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib103
  article-title: Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars
  publication-title: Environ. Sci. Pollut. Res.
– volume: 338
  start-page: 102
  year: 2017
  end-page: 123
  ident: bib127
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J. Hazard Mater.
– volume: 137
  start-page: 965
  year: 2016
  end-page: 972
  ident: bib27
  article-title: Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water
  publication-title: J. Clean. Prod.
– volume: 226
  start-page: 286
  year: 2013
  end-page: 292
  ident: bib121
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
– volume: 615
  start-page: 161
  year: 2018
  ident: bib69
  article-title: Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass
  publication-title: Sci. Total Environ.
– volume: 226
  start-page: 37
  year: 2018
  end-page: 45
  ident: bib120
  article-title: Exploratory study on modification of sludge-based activated carbon for nutrient removal from stormwater runoff
  publication-title: J. Environ. Manag.
– volume: 148
  start-page: 276
  year: 2016
  end-page: 291
  ident: bib62
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
– volume: 38
  start-page: 511
  year: 2016
  end-page: 521
  ident: bib78
  article-title: Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions
  publication-title: Environ. Geochem. Health
– volume: 336
  start-page: 160
  year: 2018
  end-page: 169
  ident: bib73
  article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal
  publication-title: Chem. Eng. J.
– volume: 209–210
  start-page: 408
  year: 2012
  end-page: 413
  ident: bib106
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: J. Hazard Mater.
– volume: 243
  start-page: 1539
  year: 2018
  end-page: 1549
  ident: bib46
  article-title: Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: combined with batch sorption and fixed-bed column studies
  publication-title: Environ. Pollut.
– volume: 119
  start-page: 52
  year: 2016
  end-page: 59
  ident: bib7
  article-title: Pyrolysis of crop residues in a mobile bench-scale pyrolyser: product characterization and environmental performance
  publication-title: J. Anal. Appl. Pyrol.
– volume: 245
  start-page: 125664
  year: 2019
  ident: bib128
  article-title: Adsorption of acetone and cyclohexane onto CO2 activated hydrochars
  publication-title: Chemosphere
– volume: 5
  start-page: 9568
  year: 2017
  end-page: 9585
  ident: bib48
  article-title: Ball-milled carbon nanomaterials for energy and environmental applications
  publication-title: Acs Sustain Chem Eng
– volume: 148
  start-page: 378
  year: 2019
  end-page: 387
  ident: bib75
  article-title: A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater
  publication-title: Water Res.
– volume: 375
  start-page: 121983
  year: 2019
  ident: bib96
  article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects
  publication-title: Chem. Eng. J.
– volume: 103
  start-page: 151
  year: 2013
  end-page: 155
  ident: bib52
  article-title: Influence of production conditions on the yield and environmental stability of biochar
  publication-title: Fuel
– volume: 232
  start-page: 8
  year: 2019
  end-page: 21
  ident: bib118
  article-title: Biochar amendment improves crop production in problem soils: a review
  publication-title: J. Environ. Manag.
– volume: 273
  start-page: 8
  year: 2019
  ident: bib10
  article-title: Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar
  publication-title: Bioresour. Technol.
– volume: 137
  start-page: 138
  year: 2019
  end-page: 145
  ident: bib66
  article-title: Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood
  publication-title: J. Anal. Appl. Pyrol.
– volume: 104
  start-page: 328
  year: 2019
  end-page: 336
  ident: bib57
  article-title: A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass
  publication-title: Renew. Sustain. Energy Rev.
– volume: 385
  start-page: 123842
  year: 2020
  ident: bib94
  article-title: Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)
  publication-title: Chem. Eng. J.
– volume: 130
  start-page: 457
  year: 2013
  end-page: 462
  ident: bib123
  article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal
  publication-title: Bioresour. Technol.
– volume: 160
  start-page: 191
  year: 2014
  end-page: 202
  ident: bib54
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
– volume: 92
  start-page: 223
  year: 2011
  end-page: 228
  ident: bib28
  article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar
  publication-title: J. Environ. Manag.
– volume: 45
  start-page: 359
  year: 2015
  end-page: 378
  ident: bib37
  article-title: A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 169
  start-page: 525
  year: 2014
  end-page: 531
  ident: bib19
  article-title: Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 3488
  year: 2011
  end-page: 3497
  ident: bib119
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
– volume: 50
  start-page: 7276
  year: 2016
  end-page: 7289
  ident: bib16
  article-title: Carbon-based adsorbents for postcombustion CO
  publication-title: Environ. Sci. Technol.
– start-page: 1
  year: 2019
  end-page: 63
  ident: bib59
  article-title: Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– start-page: 1
  year: 2017
  end-page: 15
  ident: bib92
  article-title: Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment
  publication-title: Environ. Geochem. Health
– volume: 245
  start-page: 266
  year: 2017
  end-page: 273
  ident: bib137
  article-title: Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling
  publication-title: Bioresour. Technol.
– volume: 147
  start-page: 91
  year: 2018
  end-page: 100
  ident: bib70
  article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine
  publication-title: Water Res.
– volume: 138
  start-page: 8
  year: 2013
  end-page: 13
  ident: bib108
  article-title: Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
– volume: 220
  start-page: 637
  year: 2017
  end-page: 645
  ident: bib50
  article-title: Optimization of atrazine and imidacloprid removal from water using biochars: designing single or multi-staged batch adsorption systems
  publication-title: Int. J. Hyg Environ. Health
– volume: 200
  start-page: 105
  year: 2017
  ident: bib15
  article-title: Good for sewage treatment and good for agriculture: algal based compost and biochar
  publication-title: J. Environ. Manag.
– volume: 373
  start-page: 15
  year: 2019
  ident: bib68
  article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review
  publication-title: J. Hazard Mater.
– volume: 12
  start-page: 1283
  year: 2015
  end-page: 1294
  ident: bib79
  article-title: Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 242
  start-page: 136
  year: 2014
  end-page: 143
  ident: bib109
  article-title: Characterization and environmental applications of clay-biochar composites
  publication-title: Chem. Eng. J.
– volume: 154
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib6
  article-title: Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff
  publication-title: Water Res.
– start-page: 4525
  year: 2017
  end-page: 4537
  ident: bib30
  article-title: Development of biochar and chitosan blend for heavy metalsuptake from synthetic and industrial wastewater
  publication-title: Applied Water Science
– volume: 625
  start-page: 1644
  year: 2018
  end-page: 1658
  ident: bib56
  article-title: Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment
  publication-title: Sci. Total Environ.
– volume: 198
  start-page: 55
  year: 2015
  end-page: 62
  ident: bib43
  article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study
  publication-title: Bioresour. Technol.
– start-page: 616
  year: 2018
  end-page: 617
  ident: bib82
  article-title: Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: behavior and mechanism
  publication-title: Sci. Total Environ.
– volume: 135
  start-page: 160
  year: 2018
  end-page: 168
  ident: bib21
  article-title: Microwave pyrolysis of pecan nut shell and thermogravimetric, textural and spectroscopic characterization of carbonaceous products
  publication-title: J. Anal. Appl. Pyrol.
– volume: 162
  start-page: 1376
  year: 2017
  end-page: 1387
  ident: bib38
  article-title: Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent
  publication-title: J. Clean. Prod.
– volume: 634
  start-page: 188
  year: 2018
  end-page: 194
  ident: bib86
  article-title: Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH
  publication-title: Sci. Total Environ.
– volume: 190
  start-page: 501
  year: 2011
  ident: 10.1016/j.chemosphere.2020.126539_bib111
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2011.03.083
– volume: 214
  start-page: 846
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib5
  article-title: Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: implicit mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.007
– volume: 362
  start-page: 460
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib134
  article-title: Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.036
– start-page: 229
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib9
  article-title: Activated biochar as an effective sorbent for organic and inorganic contaminants in water
  publication-title: Water Air Soil Pollut.
– volume: 435
  start-page: 567
  year: 2012
  ident: 10.1016/j.chemosphere.2020.126539_bib125
  article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.07.038
– volume: 107
  start-page: 92
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib51
  article-title: Potential to use municipal waste bio char in wastewater treatment for nutrients recovery
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2018.07.002
– volume: 197
  start-page: 165
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib93
  article-title: Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.193
– volume: 246
  start-page: 242
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib117
  article-title: A critical review on sustainable biochar system through gasification: energy and environmental applications
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.177
– volume: 361
  start-page: 111
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib8
  article-title: Comprehensive assessment of organic contaminant removal from on-site sewage treatment facility effluent by char-fortified filter beds
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.08.009
– volume: 640–641
  start-page: 704
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib104
  article-title: Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.298
– volume: 169
  start-page: 253
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib65
  article-title: The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva
  publication-title: J. Environ. Manag.
– volume: 137
  start-page: 138
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib66
  article-title: Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2018.11.018
– volume: 38
  start-page: 511
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib78
  article-title: Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-015-9736-6
– volume: 382
  start-page: 122705
  year: 2020
  ident: 10.1016/j.chemosphere.2020.126539_bib98
  article-title: Interaction between chlortetracycline and calcium-rich biochar: enhanced removal by adsorption coupled with flocculation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122705
– volume: 225
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib17
  article-title: Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.11.017
– volume: 616
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib116
  article-title: A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils
  publication-title: Sci. Total Environ.
– volume: 138
  start-page: 8
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib108
  article-title: Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.057
– volume: 1
  start-page: 89
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib135
  article-title: Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation
  publication-title: Biochar
  doi: 10.1007/s42773-019-00007-4
– volume: 171
  start-page: 581
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib130
  article-title: Insights into biochar and hydrochar production and applications: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.035
– volume: 242
  start-page: 136
  year: 2014
  ident: 10.1016/j.chemosphere.2020.126539_bib109
  article-title: Characterization and environmental applications of clay-biochar composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.062
– volume: 233
  start-page: 54
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib49
  article-title: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.10.037
– volume: 145
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib13
  article-title: Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.04.095
– volume: 57
  start-page: 15
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib23
  article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.08.026
– volume: 209–210
  start-page: 408
  year: 2012
  ident: 10.1016/j.chemosphere.2020.126539_bib106
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2012.01.046
– volume: 197
  start-page: 356
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib85
  article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.132
– volume: 89
  start-page: 1467
  year: 2012
  ident: 10.1016/j.chemosphere.2020.126539_bib113
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.06.002
– volume: 135
  start-page: 1327
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib67
  article-title: Hydrochar derived from green waste by microwave hydrothermal carbonization
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.09.041
– volume: 52
  start-page: 8321
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib102
  article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00306
– volume: 186
  start-page: 414
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib29
  article-title: Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: influencing factors and mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.154
– volume: 211
  start-page: 457
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib34
  article-title: Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.077
– volume: 47
  start-page: 2158
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib83
  article-title: Recent advances in engineered biochar productions and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2017.1418580
– volume: 11
  start-page: 299
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib126
  article-title: Adsorption behavior of selective recognition functionalized biochar to Cd(II) in wastewater
  publication-title: Materials
  doi: 10.3390/ma11020299
– volume: 162
  start-page: 1376
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib38
  article-title: Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.06.131
– start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib92
  article-title: Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment
  publication-title: Environ. Geochem. Health
– volume: 92
  start-page: 223
  year: 2011
  ident: 10.1016/j.chemosphere.2020.126539_bib28
  article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar
  publication-title: J. Environ. Manag.
– volume: 148
  start-page: 276
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib62
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.043
– volume: 375
  start-page: 121983
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib96
  article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121983
– volume: 148
  start-page: 378
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib75
  article-title: A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.030
– volume: 245
  start-page: 125664
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib128
  article-title: Adsorption of acetone and cyclohexane onto CO2 activated hydrochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125664
– volume: 101
  start-page: 72
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib1
  article-title: Biochar production by sewage sludge pyrolysis
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2013.02.010
– volume: 192
  start-page: 271
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib64
  article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters
  publication-title: J. Environ. Manag.
– volume: 47
  start-page: 246
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib81
  article-title: Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.11.039
– volume: 226
  start-page: 37
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib120
  article-title: Exploratory study on modification of sludge-based activated carbon for nutrient removal from stormwater runoff
  publication-title: J. Environ. Manag.
– volume: 220
  start-page: 637
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib50
  article-title: Optimization of atrazine and imidacloprid removal from water using biochars: designing single or multi-staged batch adsorption systems
  publication-title: Int. J. Hyg Environ. Health
  doi: 10.1016/j.ijheh.2017.02.010
– volume: 200
  start-page: 105
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib15
  article-title: Good for sewage treatment and good for agriculture: algal based compost and biochar
  publication-title: J. Environ. Manag.
– start-page: 616
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib82
  article-title: Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: behavior and mechanism
  publication-title: Sci. Total Environ.
– volume: 119
  start-page: 293
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib58
  article-title: Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2018.09.035
– volume: 235
  start-page: 276
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib45
  article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar
  publication-title: J. Environ. Manag.
– volume: 246
  start-page: 150
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib60
  article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.150
– volume: 373
  start-page: 15
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib68
  article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review
  publication-title: J. Hazard Mater.
– volume: 102
  start-page: 6273
  year: 2011
  ident: 10.1016/j.chemosphere.2020.126539_bib110
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.006
– volume: 101
  start-page: 8868
  year: 2010
  ident: 10.1016/j.chemosphere.2020.126539_bib31
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.088
– volume: 553
  start-page: 596
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib76
  article-title: Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.02.129
– volume: 64
  start-page: 187
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib14
  article-title: Characterization of biochars produced from pyrolysis of pelletized agricultural residues
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.06.003
– volume: 131
  start-page: 374
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib4
  article-title: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.165
– start-page: 4525
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib30
  article-title: Development of biochar and chitosan blend for heavy metalsuptake from synthetic and industrial wastewater
  publication-title: Applied Water Science
  doi: 10.1007/s13201-017-0604-7
– volume: 336
  start-page: 160
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib73
  article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.048
– volume: 5
  start-page: 9568
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib48
  article-title: Ball-milled carbon nanomaterials for energy and environmental applications
  publication-title: Acs Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02170
– volume: 200–202
  start-page: 673
  year: 2012
  ident: 10.1016/j.chemosphere.2020.126539_bib101
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.06.116
– volume: 37
  start-page: 161
  year: 2012
  ident: 10.1016/j.chemosphere.2020.126539_bib18
  article-title: Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.12.017
– volume: 616–617
  start-page: 1242
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib80
  article-title: Engineered/designer biochar for the removal of phosphate in water and wastewater
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 17792
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib87
  article-title: Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites
  publication-title: RSC Adv.
  doi: 10.1039/C5RA17490B
– volume: 169
  start-page: 525
  year: 2014
  ident: 10.1016/j.chemosphere.2020.126539_bib19
  article-title: Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.07.062
– volume: 103
  start-page: 151
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib52
  article-title: Influence of production conditions on the yield and environmental stability of biochar
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.08.044
– volume: 3
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib77
  article-title: Improved contaminant removal in vegetated stormwater biofilters amended with biochar
  publication-title: Environmental Science Water Research & Technology
  doi: 10.1039/C7EW00070G
– volume: 180
  start-page: 437
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib2
  article-title: Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.133
– volume: 34
  start-page: 793
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib42
  article-title: Effect of pyrolysis conditions on the characteristics of biochar produced from a tobacco stem
  publication-title: Waste Manag. Res.
  doi: 10.1177/0734242X16654977
– volume: 22
  start-page: 1868
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib32
  article-title: Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-014-2740-z
– volume: 6
  start-page: 41907
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib84
  article-title: Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06419A
– volume: 4
  start-page: 28171
  year: 2014
  ident: 10.1016/j.chemosphere.2020.126539_bib122
  article-title: Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: characterization and phosphate removal ability
  publication-title: RSC Adv.
  doi: 10.1039/c4ra02332c
– volume: 335
  start-page: 110
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib47
  article-title: Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.130
– volume: 243
  start-page: 1539
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib46
  article-title: Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: combined with batch sorption and fixed-bed column studies
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.09.097
– volume: 130
  start-page: 457
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib123
  article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.132
– volume: 102
  start-page: 3488
  year: 2011
  ident: 10.1016/j.chemosphere.2020.126539_bib119
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– volume: 634
  start-page: 188
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib86
  article-title: Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.189
– volume: 50
  start-page: 7276
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib16
  article-title: Carbon-based adsorbents for postcombustion CO2 capture: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00627
– volume: 24
  start-page: 4577
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib22
  article-title: Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-016-8188-6
– volume: 169
  start-page: 89
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib39
  article-title: Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.11.048
– volume: 338
  start-page: 102
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib127
  article-title: Adsorption of VOCs onto engineered carbon materials: a review
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.05.013
– volume: 147
  start-page: 96
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib41
  article-title: Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.01.069
– volume: 160
  start-page: 191
  year: 2014
  ident: 10.1016/j.chemosphere.2020.126539_bib54
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 230
  start-page: 143
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib129
  article-title: Effects of feedstock characteristics on microwave-assisted pyrolysis - a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.01.046
– volume: 7
  start-page: 10634
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib112
  article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03131
– volume: 40
  start-page: 1
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib11
  article-title: Production and utilization of biochar: a review
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.06.002
– volume: 135
  start-page: 160
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib21
  article-title: Microwave pyrolysis of pecan nut shell and thermogravimetric, textural and spectroscopic characterization of carbonaceous products
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2018.09.007
– volume: 178
  start-page: 59
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib89
  article-title: Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: a case study of Phytolacca acinosa Roxb. (Phytolaccaceae)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.121
– volume: 615
  start-page: 161
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib69
  article-title: Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.171
– volume: 154
  start-page: 1
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib6
  article-title: Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.01.040
– volume: 290
  start-page: 43
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib63
  article-title: Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.02.046
– volume: 61
  start-page: 288
  year: 2014
  ident: 10.1016/j.chemosphere.2020.126539_bib55
  article-title: Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.05.026
– start-page: 1
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib59
  article-title: Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 625
  start-page: 1644
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib56
  article-title: Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.037
– volume: 368
  start-page: 564
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib99
  article-title: N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.165
– volume: 226
  start-page: 286
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib121
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.077
– volume: 8
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib61
  article-title: Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent
  publication-title: Applied Water Science
  doi: 10.1007/s13201-018-0765-z
– volume: 47
  start-page: 8700
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib107
  article-title: Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4012977
– volume: 46
  start-page: 406
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib33
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2015.1096880
– volume: 640–641
  start-page: 73
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib132
  article-title: Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.251
– volume: 651
  start-page: 2631
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib12
  article-title: Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.131
– volume: 209
  start-page: 927
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib74
  article-title: Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.268
– volume: 12
  start-page: 1283
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib79
  article-title: Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-014-0507-1
– volume: 147
  start-page: 338
  year: 2013
  ident: 10.1016/j.chemosphere.2020.126539_bib133
  article-title: Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.08.042
– volume: 6
  start-page: 2108
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib26
  article-title: Black is green: biochar for stormwater management
  publication-title: Proceedings of the Water Environment Federation
  doi: 10.2175/193864716819715329
– start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib103
  article-title: Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars
  publication-title: Environ. Sci. Pollut. Res.
– volume: 147
  start-page: 91
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib70
  article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.09.051
– volume: 124
  start-page: 113
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib35
  article-title: New insights into microwave pyrolysis of biomass: preparation of carbon-based products from pecan nutshells and their application in wastewater treatment
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2017.02.013
– volume: 366
  start-page: 608
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib105
  article-title: Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.119
– volume: 187
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib97
  article-title: Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.03.206
– volume: 186
  start-page: 495
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib88
  article-title: The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.08.014
– volume: 88
  start-page: 152
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib131
  article-title: Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
  doi: 10.1016/j.jtice.2018.03.049
– volume: 137
  start-page: 165
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib25
  article-title: Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.01.063
– volume: 201
  start-page: 121
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib53
  article-title: Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.10.096
– volume: 128
  start-page: 102
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib40
  article-title: Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.047
– volume: 137
  start-page: 965
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib27
  article-title: Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.205
– volume: 212
  start-page: 318
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib72
  article-title: Biochar-based nano-composites for the decontamination of wastewater: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.093
– volume: 45
  start-page: 359
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib37
  article-title: A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.01.050
– volume: 232
  start-page: 8
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib118
  article-title: Biochar amendment improves crop production in problem soils: a review
  publication-title: J. Environ. Manag.
– volume: 25
  start-page: 25799
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib20
  article-title: Phosphorus sorption capacity of biochars varies with biochar type and salinity level
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-018-1368-9
– volume: 246
  start-page: 254
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib95
  article-title: A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.163
– volume: 145
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib44
  article-title: Aluminum-impregnated biochar for adsorption of arsenic(V) in urban stormwater runoff
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0001503
– volume: 5
  start-page: 953
  year: 2014
  ident: 10.1016/j.chemosphere.2020.126539_bib24
  article-title: Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties
  publication-title: Solid Earth
  doi: 10.5194/se-5-953-2014
– volume: 63
  start-page: 312
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib100
  article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
  doi: 10.1016/j.jtice.2016.03.021
– volume: 628–629
  start-page: 1139
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib91
  article-title: H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.137
– volume: 245
  start-page: 266
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib137
  article-title: Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.178
– volume: 104
  start-page: 328
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib57
  article-title: A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.030
– volume: 198
  start-page: 55
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib43
  article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.129
– volume: 385
  start-page: 123842
  year: 2020
  ident: 10.1016/j.chemosphere.2020.126539_bib94
  article-title: Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123842
– volume: 210
  start-page: 26
  year: 2012
  ident: 10.1016/j.chemosphere.2020.126539_bib124
  article-title: Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.08.052
– volume: 232
  start-page: 204
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib136
  article-title: Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.01.074
– volume: 123
  start-page: 25
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib36
  article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2019.01.014
– volume: 249
  start-page: 57
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib71
  article-title: Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.10.004
– volume: 175
  start-page: 391
  year: 2015
  ident: 10.1016/j.chemosphere.2020.126539_bib90
  article-title: Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.104
– volume: 273
  start-page: 8
  year: 2019
  ident: 10.1016/j.chemosphere.2020.126539_bib10
  article-title: Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.11.013
– volume: 214
  start-page: 836
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib3
  article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.057
– volume: 119
  start-page: 52
  year: 2016
  ident: 10.1016/j.chemosphere.2020.126539_bib7
  article-title: Pyrolysis of crop residues in a mobile bench-scale pyrolyser: product characterization and environmental performance
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.03.018
– start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2020.126539_bib114
  article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 25
  start-page: 25659
  year: 2018
  ident: 10.1016/j.chemosphere.2020.126539_bib115
  article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-017-8849-0
SSID ssj0001659
Score 2.716884
SecondaryResourceType review_article
Snippet Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126539
SubjectTerms adsorbents
adsorption
batteries
biochar
carbon
Carbonaceous adsorbents
cost effectiveness
dyes
Engineered biochar
feedstocks
industrial wastewater
manufacturing
metals
Modification methods
moieties
municipal wastewater
nutrients
pollutants
Production technologies
soil remediation
stormwater
surface area
toxicity
Wastewater treatment
Title Biochar technology in wastewater treatment: A critical review
URI https://dx.doi.org/10.1016/j.chemosphere.2020.126539
https://www.ncbi.nlm.nih.gov/pubmed/32220719
https://www.proquest.com/docview/2384215803
https://www.proquest.com/docview/2400496914
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6K4uMiWl_1USJ4Xd3uJtmNeClFqYqeLHgLm2wWKroVWxEv_nZn9tHqoSJ4zJKB7DfD5EsyD4DjWCU28zPjWRsleEBx3ItdR3hOCJk4PHMZS4nCt3eyP-DXD-KhAb06F4bCKivfX_r0wltXX04rNE9fhkPK8SU2ggSisNOAKn5yHpGVn3zOwjw6UpQUmAuPZi_D0SzGC3F5Ho0pf58qZgZUa4FKtc7bo-Zx0GIvulyHtYpEsm65zg1ouLwJK726d1sTli6KYtQfm0C3uJRZxSbTO3Q2zNl7MqZbMwSVTUPNz1iX2arzAStTWrZgcHlx3-t7VcsEz-KvT7zUN8pI30VCRtJwK20USj_NbCKs48baWEZOchmYRGYch0Hmq9TaDGVEwONwGxbyUe52gaVIXFI_DY0fBdyEVjk8ShvkV0lgnMpUC-IaJG2reuLU1uJJ14Fjj_obvprw1SW-LQimoi9lUY2_CJ3XmtA_LESj8_-L-FGtPY3KoGeRJHejt7FG0sKR-MR--MsccnVKqg5vwU6p-unK6a0KiZra-98C92GVRmVw4QEsTF7f3CESnolpFxbdhsXu1U3_7gvMtQFm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qxcdFfFufEbwu3e4m2Y14KcVS7ePUgrewyWahottiK-K_N9N9qIdKweM-BsI3YfIlmfkG4CYUkU7cRDlaB5HdoBjqhKbBHMMYj4zdcymNhcL9Ae-M6OMTe6pAq6iFwbTKPPZnMX0RrfM39RzN-nQ8xhpfZCOWQCzmqeevwTqqU7EqrDcfup1BGZAbnGUsmDIHDTbh-jvNy0LzOplhCT-KZnoot4BqrcuWqWU0dLEctXdhJ-eRpJkNdQ8qJt2HrVbRvm0fNu4XetSfB4AHuVhcReblMToZp-QjmuHBmcWVlNnmt6RJdN78gGRVLYcwat8PWx0n75rgaBrwuRO7SijumoDxgCuquQ587saJjpg2VGkd8sBwyj0V8YTaRy9xRax1Ym2YR0P_CKrpJDUnQGLLXWI39pUbeFT5Whi7m1aWYkWeMiIRNQgLkKTOJcWxs8WLLHLHnuUPfCXiKzN8a-CVptNMV2MVo7vCE_LXJJE2_q9ifl14T1pn4M1IlJrJ-0xa3kIt9wld_49_MNoJLhq0BseZ68uR43WV5Wri9H8DvIKtzrDfk72HQfcMtvFLlmt4DtX527u5sPxnri7z-f0Fl04EFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+technology+in+wastewater+treatment%3A+A+critical+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Xiang%2C+Wei&rft.au=Zhang%2C+Xueyang&rft.au=Chen%2C+Jianjun&rft.au=Zou%2C+Weixin&rft.date=2020-08-01&rft.issn=0045-6535&rft.volume=252&rft.spage=126539&rft_id=info:doi/10.1016%2Fj.chemosphere.2020.126539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2020_126539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon