Biochar technology in wastewater treatment: A critical review
Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for...
Saved in:
Published in | Chemosphere (Oxford) Vol. 252; p. 126539 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater.
[Display omitted]
•Biochar technologies in various wastewater treatment are elucidated.•Feedstock pre-treatment and post-treatment effect on biochar production is reviewed.•Biochar as an innovative adsorbent to remove aqueous contaminants is discussed.•Future perspectives of biochar technology in wastewater treatment are summarized. |
---|---|
AbstractList | Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater. Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater.Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater. Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater. [Display omitted] •Biochar technologies in various wastewater treatment are elucidated.•Feedstock pre-treatment and post-treatment effect on biochar production is reviewed.•Biochar as an innovative adsorbent to remove aqueous contaminants is discussed.•Future perspectives of biochar technology in wastewater treatment are summarized. |
ArticleNumber | 126539 |
Author | Xiang, Wei Zou, Weixin Ok, Yong Sik Zhang, Xueyang Chen, Jianjun He, Feng Gao, Bin Tsang, Daniel C.W. Hu, Xin |
Author_xml | – sequence: 1 givenname: Wei surname: Xiang fullname: Xiang, Wei organization: School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China – sequence: 2 givenname: Xueyang surname: Zhang fullname: Zhang, Xueyang email: zhaxuy@163.com organization: School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China – sequence: 3 givenname: Jianjun surname: Chen fullname: Chen, Jianjun organization: Mid-Florida Research & Education Center, University of Florida, Apopka, FL, 32703, USA – sequence: 4 givenname: Weixin surname: Zou fullname: Zou, Weixin organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing, 210093, China – sequence: 5 givenname: Feng surname: He fullname: He, Feng organization: College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China – sequence: 6 givenname: Xin surname: Hu fullname: Hu, Xin organization: Center of Material Analysis, Nanjing University, Nanjing, 210093, China – sequence: 7 givenname: Daniel C.W. surname: Tsang fullname: Tsang, Daniel C.W. organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China – sequence: 8 givenname: Yong Sik surname: Ok fullname: Ok, Yong Sik organization: Korea Biochar Research Centre & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea – sequence: 9 givenname: Bin surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32220719$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1L9DAUhYMoOn78Bak7Nx2TNE0bQcR38AsEN7oO6e2tk6FtxiTzDv57I6MgbnQVcvOcc8k5-2R7dCMScsLolFEmzxZTmOPgwnKOHqec8jTnsizUFpmwulI546reJhNKRZmneblH9kNYUJrEpdolewXnnFZMTcjFP-tgbnwWEeaj693LW2bHbG1CxLWJmB48mjjgGM-zqwy8jRZMn3n8b3F9SHY60wc8-jwPyPPN9dPsLn94vL2fXT3kICoZ85Y2qpEUq1JWshEgoSokbTswJaBoAGpZoRSSN0Z2Il15R1UL0CVNyUVdHJDTje_Su9cVhqgHGwD73ozoVkFzkb6qpGLid7SoBWdlTYuEHn-iq2bAVi-9HYx_01_pJOByA4B3IXjsNNhoonVj9Mb2mlH90Yde6G996I8-9KaP5KB-OHwt-Yt2ttFiSjal7XUAiyNgaz1C1K2zf3B5B8qtrD4 |
CitedBy_id | crossref_primary_10_3390_molecules28166137 crossref_primary_10_1016_j_colsurfa_2023_131479 crossref_primary_10_1002_slct_202300511 crossref_primary_10_1016_j_jenvman_2023_118489 crossref_primary_10_1016_j_jece_2024_113548 crossref_primary_10_1016_j_jwpe_2024_104834 crossref_primary_10_3390_fermentation7040228 crossref_primary_10_1016_j_heliyon_2022_e10908 crossref_primary_10_1016_j_envres_2021_111966 crossref_primary_10_1007_s12649_023_02287_1 crossref_primary_10_3390_app12115334 crossref_primary_10_1016_j_fuproc_2022_107485 crossref_primary_10_1016_j_apsadv_2023_100547 crossref_primary_10_1016_j_jece_2020_104831 crossref_primary_10_1016_j_jenvman_2023_119329 crossref_primary_10_3390_microorganisms9010004 crossref_primary_10_5004_dwt_2023_30197 crossref_primary_10_1016_j_envres_2023_115534 crossref_primary_10_1016_j_watres_2025_123169 crossref_primary_10_1016_j_totert_2023_100044 crossref_primary_10_15243_jdmlm_2024_114_6329 crossref_primary_10_1016_j_scitotenv_2023_168426 crossref_primary_10_3390_min14010061 crossref_primary_10_1016_j_jwpe_2023_104545 crossref_primary_10_1016_j_jece_2021_107039 crossref_primary_10_1002_kin_21677 crossref_primary_10_1016_j_fuel_2023_128948 crossref_primary_10_1016_j_algal_2025_103977 crossref_primary_10_1016_j_jenvman_2022_114840 crossref_primary_10_1016_j_biombioe_2022_106581 crossref_primary_10_1016_j_bcab_2022_102560 crossref_primary_10_1002_bte2_20240055 crossref_primary_10_1016_j_eti_2021_101614 crossref_primary_10_1039_D4VA00109E crossref_primary_10_1080_09593330_2024_2402096 crossref_primary_10_1016_j_chemosphere_2021_129999 crossref_primary_10_1002_slct_202403538 crossref_primary_10_1016_j_eti_2024_103835 crossref_primary_10_1016_j_chemosphere_2020_127057 crossref_primary_10_1007_s10311_020_01167_7 crossref_primary_10_29233_sdufeffd_800157 crossref_primary_10_1016_j_wen_2024_11_001 crossref_primary_10_1016_j_jhazmat_2022_130168 crossref_primary_10_1007_s11356_024_32700_8 crossref_primary_10_1016_j_heliyon_2024_e36966 crossref_primary_10_1016_j_chemosphere_2022_135244 crossref_primary_10_1016_j_jaap_2023_106237 crossref_primary_10_1016_j_chemosphere_2024_143477 crossref_primary_10_1016_j_scitotenv_2021_151588 crossref_primary_10_1016_j_chemosphere_2021_129766 crossref_primary_10_1016_j_enzmictec_2023_110281 crossref_primary_10_1016_j_jhazmat_2021_125511 crossref_primary_10_1016_j_jwpe_2025_107154 crossref_primary_10_1016_j_chemosphere_2024_142382 crossref_primary_10_1016_j_scitotenv_2021_145901 crossref_primary_10_1021_acs_iecr_3c00445 crossref_primary_10_1016_j_chemosphere_2023_137979 crossref_primary_10_1016_j_scitotenv_2020_143664 crossref_primary_10_1038_s41598_022_24283_6 crossref_primary_10_1007_s13399_021_02155_9 crossref_primary_10_1016_j_cherd_2022_09_024 crossref_primary_10_4028_p_309506 crossref_primary_10_3389_fenvs_2024_1340565 crossref_primary_10_1007_s10904_022_02390_1 crossref_primary_10_1007_s10098_024_03117_1 crossref_primary_10_1080_21655979_2023_2252207 crossref_primary_10_1016_j_jwpe_2022_103146 crossref_primary_10_1016_j_cej_2022_135785 crossref_primary_10_1039_D4EW00702F crossref_primary_10_1016_j_scitotenv_2022_156493 crossref_primary_10_1016_j_emcon_2024_100336 crossref_primary_10_1016_j_scitotenv_2022_159762 crossref_primary_10_1016_j_joei_2024_101559 crossref_primary_10_1016_j_molliq_2022_120726 crossref_primary_10_21597_jist_1170769 crossref_primary_10_1016_j_scitotenv_2022_156014 crossref_primary_10_3390_soilsystems8030093 crossref_primary_10_1016_j_biortech_2024_130332 crossref_primary_10_1002_gch2_202400240 crossref_primary_10_1016_j_chemosphere_2022_137244 crossref_primary_10_1371_journal_pwat_0000092 crossref_primary_10_1007_s13738_020_02145_0 crossref_primary_10_1016_j_jwpe_2022_103391 crossref_primary_10_1016_j_jenvman_2024_123900 crossref_primary_10_1155_2023_5447693 crossref_primary_10_1007_s10532_025_10116_6 crossref_primary_10_1016_j_cej_2022_135434 crossref_primary_10_1016_j_chemosphere_2020_129283 crossref_primary_10_3390_c10010010 crossref_primary_10_3390_agronomy15010181 crossref_primary_10_1016_j_scitotenv_2023_167258 crossref_primary_10_32604_jrm_2022_021102 crossref_primary_10_1111_sum_12731 crossref_primary_10_51249_jid_v4i03_1471 crossref_primary_10_1016_j_cej_2023_147079 crossref_primary_10_1016_j_scitotenv_2021_152604 crossref_primary_10_5004_dwt_2022_28445 crossref_primary_10_1007_s10967_021_07782_0 crossref_primary_10_1016_j_cej_2020_128225 crossref_primary_10_1016_j_scitotenv_2021_150444 crossref_primary_10_1016_j_ecoenv_2023_115643 crossref_primary_10_1080_01932691_2022_2144878 crossref_primary_10_1002_jeq2_20331 crossref_primary_10_1016_j_jenvman_2021_113128 crossref_primary_10_1016_j_ijbiomac_2024_137555 crossref_primary_10_1016_j_envdev_2023_100819 crossref_primary_10_1016_j_fuel_2023_128811 crossref_primary_10_1007_s10311_022_01519_5 crossref_primary_10_1016_j_chemosphere_2022_135284 crossref_primary_10_1016_j_jaap_2020_104893 crossref_primary_10_3389_fenvs_2024_1388606 crossref_primary_10_1016_j_biortech_2024_131562 crossref_primary_10_1016_j_envres_2022_114339 crossref_primary_10_3390_nano15050321 crossref_primary_10_3390_su151813914 crossref_primary_10_1016_j_jaap_2023_106272 crossref_primary_10_3389_fenvs_2022_1035865 crossref_primary_10_3390_ma14216710 crossref_primary_10_1007_s42250_022_00467_5 crossref_primary_10_3390_ijerph182111506 crossref_primary_10_1016_j_sjbs_2022_103453 crossref_primary_10_1007_s10098_023_02621_0 crossref_primary_10_1016_j_hazadv_2022_100226 crossref_primary_10_1016_j_renene_2024_120508 crossref_primary_10_1515_rams_2023_0145 crossref_primary_10_3390_catal15030243 crossref_primary_10_1016_j_gee_2022_12_002 crossref_primary_10_1016_j_scitotenv_2021_146240 crossref_primary_10_3389_fenvs_2023_1238810 crossref_primary_10_1016_j_jenvman_2022_117159 crossref_primary_10_1016_j_scitotenv_2022_153054 crossref_primary_10_3390_su15097698 crossref_primary_10_1016_j_chemosphere_2022_136628 crossref_primary_10_3390_catal15030240 crossref_primary_10_1515_psr_2023_0043 crossref_primary_10_1016_j_cej_2022_141228 crossref_primary_10_3390_su162310162 crossref_primary_10_1002_slct_202200504 crossref_primary_10_22144_ctu_jsi_2021_039 crossref_primary_10_1016_j_jclepro_2023_136612 crossref_primary_10_1007_s13399_024_06198_6 crossref_primary_10_1016_j_jwpe_2022_102929 crossref_primary_10_1016_j_arabjc_2022_103904 crossref_primary_10_1016_j_isci_2024_110812 crossref_primary_10_5772_geet_05 crossref_primary_10_1007_s13399_022_02691_y crossref_primary_10_1016_j_matpr_2022_05_367 crossref_primary_10_1007_s13399_024_05677_0 crossref_primary_10_1016_j_envpol_2024_123452 crossref_primary_10_1039_D3NJ00403A crossref_primary_10_1016_j_biteb_2021_100937 crossref_primary_10_1016_j_chemosphere_2022_134586 crossref_primary_10_1016_j_jclepro_2021_130069 crossref_primary_10_1088_2053_1591_abd0a5 crossref_primary_10_1016_j_colsurfa_2025_136635 crossref_primary_10_3390_ijms21113752 crossref_primary_10_1016_j_hazadv_2023_100305 crossref_primary_10_1016_j_susmat_2024_e00903 crossref_primary_10_1007_s11356_022_24126_x crossref_primary_10_1016_j_hazadv_2022_100134 crossref_primary_10_1016_j_jclepro_2024_142566 crossref_primary_10_1016_j_jwpe_2024_106713 crossref_primary_10_1016_j_wmb_2023_07_007 crossref_primary_10_1093_toxres_tfaf014 crossref_primary_10_1016_j_biortech_2021_126402 crossref_primary_10_1016_j_colsurfa_2024_134291 crossref_primary_10_1016_j_chemosphere_2020_127694 crossref_primary_10_1016_j_jclepro_2024_143772 crossref_primary_10_1016_j_jenvman_2024_123180 crossref_primary_10_1016_j_chemosphere_2022_136610 crossref_primary_10_1007_s11356_022_20987_4 crossref_primary_10_2166_wrd_2023_129 crossref_primary_10_1016_j_heliyon_2023_e14930 crossref_primary_10_3390_w14223751 crossref_primary_10_1016_j_jece_2021_106238 crossref_primary_10_1016_j_scitotenv_2021_147240 crossref_primary_10_3390_w13162296 crossref_primary_10_1016_j_chemosphere_2024_141337 crossref_primary_10_1002_slct_202404918 crossref_primary_10_1016_j_indic_2021_100155 crossref_primary_10_1007_s10924_021_02333_w crossref_primary_10_1007_s42452_020_03501_8 crossref_primary_10_1016_j_jece_2023_110939 crossref_primary_10_1021_acsomega_1c01642 crossref_primary_10_1016_j_seppur_2022_121925 crossref_primary_10_1016_j_envres_2021_111916 crossref_primary_10_1016_j_susmat_2021_e00268 crossref_primary_10_1007_s10450_024_00529_9 crossref_primary_10_1016_j_jhazmat_2022_129693 crossref_primary_10_1016_j_jphotochem_2023_114883 crossref_primary_10_1016_j_envres_2025_121150 crossref_primary_10_1016_j_colsurfa_2021_127175 crossref_primary_10_1039_D3RA01444D crossref_primary_10_1016_j_jece_2024_114553 crossref_primary_10_1186_s12302_021_00558_z crossref_primary_10_1016_j_apsusc_2023_157446 crossref_primary_10_1007_s10973_025_14065_3 crossref_primary_10_1016_j_jwpe_2024_105208 crossref_primary_10_3390_app12199487 crossref_primary_10_1007_s11356_023_29264_4 crossref_primary_10_1016_j_chemosphere_2020_129213 crossref_primary_10_1016_j_ijbiomac_2024_131078 crossref_primary_10_3390_molecules29010173 crossref_primary_10_1039_D2VA00244B crossref_primary_10_1016_j_jwpe_2021_101994 crossref_primary_10_1016_j_ecoenv_2021_112750 crossref_primary_10_1007_s11274_024_04055_2 crossref_primary_10_1080_15567036_2022_2062490 crossref_primary_10_1016_j_biortech_2020_124281 crossref_primary_10_3390_nano11092288 crossref_primary_10_1002_ppsc_202300035 crossref_primary_10_1016_j_biortech_2023_129587 crossref_primary_10_1016_j_cej_2023_144523 crossref_primary_10_1016_j_resconrec_2023_107127 crossref_primary_10_1016_j_cscee_2021_100117 crossref_primary_10_1016_j_chemosphere_2021_129863 crossref_primary_10_1039_D4CS00338A crossref_primary_10_1016_j_ijhydene_2023_11_335 crossref_primary_10_1016_j_envpol_2022_120897 crossref_primary_10_3390_ijerph18062938 crossref_primary_10_3390_plants11212864 crossref_primary_10_1016_j_jclepro_2022_133676 crossref_primary_10_1002_bbb_2596 crossref_primary_10_51847_eQNvKNjL3k crossref_primary_10_47836_mjmhs_19_s9_40 crossref_primary_10_1007_s42773_025_00452_4 crossref_primary_10_1007_s44169_025_00081_9 crossref_primary_10_2166_wst_2022_288 crossref_primary_10_1002_app_53219 crossref_primary_10_1016_j_chemosphere_2021_130946 crossref_primary_10_3390_c8040058 crossref_primary_10_1016_j_envpol_2020_115910 crossref_primary_10_1016_j_envres_2025_121225 crossref_primary_10_1016_j_hazadv_2022_100171 crossref_primary_10_1038_s43586_024_00297_4 crossref_primary_10_1039_D2EW00985D crossref_primary_10_1080_17480272_2023_2242827 crossref_primary_10_1016_j_chemosphere_2022_134597 crossref_primary_10_1016_j_jcis_2021_09_161 crossref_primary_10_1186_s12302_024_00859_z crossref_primary_10_1016_j_chemosphere_2023_138912 crossref_primary_10_5004_dwt_2022_28134 crossref_primary_10_1016_j_jhazmat_2021_127066 crossref_primary_10_1016_j_bej_2021_108087 crossref_primary_10_1016_j_seppur_2022_121857 crossref_primary_10_1016_j_biotechadv_2023_108181 crossref_primary_10_5004_dwt_2022_28136 crossref_primary_10_1016_j_apsusc_2023_158869 crossref_primary_10_1007_s11356_020_11470_z crossref_primary_10_1016_j_heliyon_2024_e24722 crossref_primary_10_1088_2053_1591_ac9819 crossref_primary_10_3390_jox14010026 crossref_primary_10_1016_j_envpol_2024_124365 crossref_primary_10_1016_j_heliyon_2020_e05388 crossref_primary_10_1016_j_scitotenv_2020_141713 crossref_primary_10_3390_w14060894 crossref_primary_10_1016_j_biortech_2021_126604 crossref_primary_10_1016_j_chemosphere_2022_134126 crossref_primary_10_3390_w14152446 crossref_primary_10_1007_s10163_023_01687_8 crossref_primary_10_1039_D4RA02864C crossref_primary_10_1016_j_enconman_2022_115691 crossref_primary_10_3390_app12189216 crossref_primary_10_1016_j_clwas_2022_100051 crossref_primary_10_1016_j_apsadv_2023_100518 crossref_primary_10_1016_j_desal_2022_116227 crossref_primary_10_1016_j_jenvman_2021_112309 crossref_primary_10_1016_j_eti_2022_102647 crossref_primary_10_1016_j_ces_2024_120132 crossref_primary_10_1016_j_cherd_2022_04_009 crossref_primary_10_1080_23570008_2025_2467358 crossref_primary_10_1016_j_fuel_2022_126930 crossref_primary_10_1016_j_jece_2023_111638 crossref_primary_10_1016_j_scitotenv_2023_162210 crossref_primary_10_1016_j_jece_2021_105403 crossref_primary_10_1016_j_scitotenv_2020_139718 crossref_primary_10_3724_EE_1672_9250_2024_52_029 crossref_primary_10_1016_j_seppur_2023_124625 crossref_primary_10_1016_j_cej_2023_144167 crossref_primary_10_13005_ojc_380234 crossref_primary_10_1016_j_biortech_2023_129786 crossref_primary_10_1080_01919512_2024_2309958 crossref_primary_10_1016_j_cplett_2025_141967 crossref_primary_10_1016_j_matchemphys_2024_128994 crossref_primary_10_1016_j_biortech_2023_129782 crossref_primary_10_1016_j_jhazmat_2020_124987 crossref_primary_10_1016_j_jwpe_2024_106461 crossref_primary_10_1007_s10661_022_10559_x crossref_primary_10_1007_s13762_023_05030_4 crossref_primary_10_3390_resources12070084 crossref_primary_10_1016_j_chemosphere_2021_132382 crossref_primary_10_1007_s00128_021_03374_6 crossref_primary_10_1016_j_ceja_2022_100329 crossref_primary_10_1007_s13399_024_06336_0 crossref_primary_10_1016_j_chemosphere_2024_141702 crossref_primary_10_1016_j_colsurfa_2021_127095 crossref_primary_10_3389_fchem_2023_1266556 crossref_primary_10_1016_j_indcrop_2021_114378 crossref_primary_10_1016_j_scitotenv_2022_154648 crossref_primary_10_1016_j_dwt_2024_100542 crossref_primary_10_1016_j_jhazmat_2020_123540 crossref_primary_10_1016_j_chemosphere_2020_127610 crossref_primary_10_3389_fmicb_2021_647766 crossref_primary_10_1080_10934529_2022_2046987 crossref_primary_10_3390_w12123561 crossref_primary_10_3390_su162411234 crossref_primary_10_1016_j_chemosphere_2022_133981 crossref_primary_10_1021_acsearthspacechem_4c00133 crossref_primary_10_1016_j_ecoleng_2021_106477 crossref_primary_10_32362_2410_6593_2022_17_4_335_345 crossref_primary_10_1016_j_seppur_2024_127398 crossref_primary_10_1007_s10653_024_02142_9 crossref_primary_10_1016_j_clet_2022_100443 crossref_primary_10_3390_su15031778 crossref_primary_10_1016_j_seppur_2023_124525 crossref_primary_10_1007_s42773_024_00423_1 crossref_primary_10_1016_j_eti_2021_102019 crossref_primary_10_1016_j_ijbiomac_2023_128973 crossref_primary_10_1016_j_sciaf_2024_e02359 crossref_primary_10_1002_jobm_202100554 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1016_j_egyr_2023_03_111 crossref_primary_10_1016_j_eti_2021_102010 crossref_primary_10_3390_w14111691 crossref_primary_10_1093_tse_tdab026 crossref_primary_10_1016_j_biortech_2023_129447 crossref_primary_10_1016_j_jiec_2024_12_001 crossref_primary_10_1016_j_chemosphere_2021_131390 crossref_primary_10_1016_j_jece_2024_111925 crossref_primary_10_1016_j_fuel_2022_124984 crossref_primary_10_1021_acs_langmuir_4c03727 crossref_primary_10_1016_j_seppur_2025_131818 crossref_primary_10_1007_s10973_023_12461_1 crossref_primary_10_1016_j_hazadv_2024_100583 crossref_primary_10_1002_est2_668 crossref_primary_10_1016_j_jece_2024_115291 crossref_primary_10_3390_separations10100533 crossref_primary_10_1016_j_biortech_2022_128361 crossref_primary_10_1016_j_jtice_2023_105216 crossref_primary_10_1016_j_biortech_2022_127274 crossref_primary_10_1016_j_chemosphere_2020_128526 crossref_primary_10_20517_wecn_2024_78 crossref_primary_10_17352_2455_3492_000068 crossref_primary_10_1016_j_chemosphere_2022_135738 crossref_primary_10_1016_j_jece_2025_115889 crossref_primary_10_1016_j_crbiot_2024_100218 crossref_primary_10_2139_ssrn_4140135 crossref_primary_10_3389_fenvs_2023_1114752 crossref_primary_10_1007_s11270_023_06338_0 crossref_primary_10_1007_s13399_021_02181_7 crossref_primary_10_3390_batteries10050144 crossref_primary_10_1016_j_watres_2024_121296 crossref_primary_10_1088_1361_6528_ac705e crossref_primary_10_3390_w12102847 crossref_primary_10_1016_j_jaap_2023_105963 crossref_primary_10_3390_app10217810 crossref_primary_10_1080_15320383_2023_2170976 crossref_primary_10_1002_wer_10962 crossref_primary_10_1016_j_scitotenv_2022_155421 crossref_primary_10_1371_journal_pone_0290714 crossref_primary_10_1007_s10661_024_13334_2 crossref_primary_10_1016_j_ecoleng_2023_106927 crossref_primary_10_2166_wst_2023_356 crossref_primary_10_3389_fenvs_2023_1095920 crossref_primary_10_36659_dae_2022_063 crossref_primary_10_1016_j_chemosphere_2022_135753 crossref_primary_10_1016_j_jece_2023_111725 crossref_primary_10_1016_j_cej_2022_138027 crossref_primary_10_1016_j_ijbiomac_2025_141447 crossref_primary_10_1016_j_seppur_2024_128457 crossref_primary_10_1016_j_eti_2022_102340 crossref_primary_10_3389_fbioe_2021_778239 crossref_primary_10_3390_toxics12050356 crossref_primary_10_1016_j_jenvman_2024_122383 crossref_primary_10_5004_dwt_2023_29991 crossref_primary_10_1093_ijlct_ctad042 crossref_primary_10_1016_j_chemosphere_2024_142731 crossref_primary_10_1016_j_jenvman_2024_123017 crossref_primary_10_1016_j_matpr_2022_08_391 crossref_primary_10_1007_s42452_025_06479_3 crossref_primary_10_1016_j_cej_2021_131233 crossref_primary_10_1016_j_jece_2023_111702 crossref_primary_10_1016_j_jhazmat_2023_131176 crossref_primary_10_1016_j_matpr_2023_11_134 crossref_primary_10_3390_agriculture13030512 crossref_primary_10_1016_j_jhazmat_2021_126131 crossref_primary_10_1016_j_jaap_2021_105263 crossref_primary_10_1016_j_chemosphere_2020_127643 crossref_primary_10_1016_j_jclepro_2023_138495 crossref_primary_10_1016_j_watres_2022_118775 crossref_primary_10_3389_fenrg_2021_673758 crossref_primary_10_3390_f13122080 crossref_primary_10_1016_j_biortech_2022_128018 crossref_primary_10_3389_fenrg_2024_1448730 crossref_primary_10_1016_j_jwpe_2024_106360 crossref_primary_10_1016_j_memsci_2024_123427 crossref_primary_10_3390_agronomy12122987 crossref_primary_10_1016_j_jece_2023_110986 crossref_primary_10_1007_s13399_023_05092_x crossref_primary_10_3390_en17061310 crossref_primary_10_20964_2022_09_22 crossref_primary_10_1016_j_crgsc_2021_100084 crossref_primary_10_1016_j_watres_2023_120909 crossref_primary_10_1016_j_seppur_2023_125543 crossref_primary_10_1007_s13762_023_05390_x crossref_primary_10_1016_j_jenvman_2024_122044 crossref_primary_10_1016_j_jscs_2021_101213 crossref_primary_10_1016_j_jece_2021_106207 crossref_primary_10_1016_j_jhazmat_2021_127691 crossref_primary_10_1016_j_scitotenv_2023_167061 crossref_primary_10_1016_j_nbsj_2025_100220 crossref_primary_10_1680_jenge_21_00119 crossref_primary_10_5004_dwt_2023_29810 crossref_primary_10_1016_j_jhazmat_2021_125148 crossref_primary_10_1016_j_biombioe_2024_107149 crossref_primary_10_1007_s40097_021_00443_4 crossref_primary_10_1007_s12155_022_10560_9 crossref_primary_10_1155_2023_3848456 crossref_primary_10_1016_j_seppur_2025_131448 crossref_primary_10_1016_j_clay_2021_106297 crossref_primary_10_1007_s11356_023_28078_8 crossref_primary_10_3389_fmats_2022_870184 crossref_primary_10_1016_j_snr_2022_100107 crossref_primary_10_3390_en16145541 crossref_primary_10_4028_p_0Z9cWM crossref_primary_10_1007_s10924_021_02327_8 crossref_primary_10_1080_09593330_2023_2283082 crossref_primary_10_1007_s10311_022_01424_x crossref_primary_10_3390_ma17174350 crossref_primary_10_1016_j_biortech_2022_128310 crossref_primary_10_1155_2022_7218759 crossref_primary_10_3390_molecules28114526 crossref_primary_10_3390_nano14231933 crossref_primary_10_3390_toxics12040245 crossref_primary_10_1016_j_biortech_2022_127588 crossref_primary_10_1016_j_scitotenv_2021_152130 crossref_primary_10_1016_j_ijbiomac_2020_08_017 crossref_primary_10_1002_wer_10926 crossref_primary_10_1016_j_jece_2023_111019 crossref_primary_10_1016_j_mset_2022_11_008 crossref_primary_10_1016_j_agee_2023_108792 crossref_primary_10_1016_j_jclepro_2021_129994 crossref_primary_10_1016_j_energy_2023_127549 crossref_primary_10_1007_s42773_024_00372_9 crossref_primary_10_1016_j_desal_2024_118509 crossref_primary_10_1016_j_jwpe_2020_101845 crossref_primary_10_3390_ijerph20053876 crossref_primary_10_1016_j_jhazmat_2021_125252 crossref_primary_10_1016_j_jclepro_2023_137252 crossref_primary_10_1016_j_cej_2024_148634 crossref_primary_10_34172_jaehr_1361 crossref_primary_10_1016_j_scp_2023_101205 crossref_primary_10_1016_j_fuel_2021_120243 crossref_primary_10_1016_j_biortech_2020_124616 crossref_primary_10_1016_j_cej_2024_158322 crossref_primary_10_3390_w14040563 crossref_primary_10_1007_s11270_022_05885_2 crossref_primary_10_3390_resources13010008 crossref_primary_10_1002_jctb_7767 crossref_primary_10_1111_gcbb_13175 crossref_primary_10_3390_catal12101103 crossref_primary_10_1038_s41598_023_48373_1 crossref_primary_10_1016_j_envres_2024_119579 crossref_primary_10_1007_s10853_022_08126_3 crossref_primary_10_1007_s13399_021_02083_8 crossref_primary_10_1016_j_fuel_2023_129656 crossref_primary_10_1016_j_jaap_2024_106370 crossref_primary_10_1007_s42773_022_00169_8 crossref_primary_10_1016_j_eti_2023_103271 crossref_primary_10_1021_acssuschemeng_2c06292 crossref_primary_10_3390_en15113999 crossref_primary_10_1016_j_clema_2022_100045 crossref_primary_10_1016_j_chemosphere_2023_138665 crossref_primary_10_1016_j_crmicr_2024_100264 crossref_primary_10_3390_microorganisms10081593 crossref_primary_10_3390_foods12051042 crossref_primary_10_1016_j_envres_2024_119408 crossref_primary_10_3390_en16114311 crossref_primary_10_1016_j_est_2022_106598 crossref_primary_10_1016_j_chemosphere_2022_137084 crossref_primary_10_1016_j_scitotenv_2022_153892 crossref_primary_10_1016_j_biteb_2023_101704 crossref_primary_10_1016_j_jclepro_2021_129328 crossref_primary_10_1016_j_jenvman_2022_115213 crossref_primary_10_1039_D3RA00723E crossref_primary_10_1007_s13399_023_04325_3 crossref_primary_10_1007_s10450_024_00523_1 crossref_primary_10_1016_j_scitotenv_2022_157062 crossref_primary_10_1016_j_eti_2023_103261 crossref_primary_10_1007_s40726_024_00327_5 crossref_primary_10_1080_10934529_2021_1980309 crossref_primary_10_1016_j_scitotenv_2020_141037 crossref_primary_10_1016_j_cej_2024_156007 crossref_primary_10_23939_chcht18_02_211 crossref_primary_10_1016_j_clay_2022_106491 crossref_primary_10_1016_j_jece_2021_105602 crossref_primary_10_1016_j_jenvman_2024_122670 crossref_primary_10_1016_j_chemosphere_2021_131267 crossref_primary_10_1016_j_chemosphere_2021_132113 crossref_primary_10_1016_j_cscee_2023_100495 crossref_primary_10_1016_j_cej_2021_131749 crossref_primary_10_1016_j_jece_2021_105603 crossref_primary_10_1016_j_jhazmat_2021_127876 crossref_primary_10_1016_j_jwpe_2025_107459 crossref_primary_10_3390_pr12051006 crossref_primary_10_1007_s11356_024_35846_7 crossref_primary_10_1016_j_scitotenv_2021_150158 crossref_primary_10_1016_j_biombioe_2024_107199 crossref_primary_10_3390_horticulturae11010073 crossref_primary_10_1016_j_chemosphere_2021_131009 crossref_primary_10_1016_j_scitotenv_2021_151120 crossref_primary_10_1016_j_chemosphere_2021_132458 crossref_primary_10_3390_min11070674 crossref_primary_10_1007_s10811_023_03104_x crossref_primary_10_1016_j_jece_2022_109074 crossref_primary_10_1016_j_scitotenv_2021_145800 crossref_primary_10_1080_09593330_2022_2128891 crossref_primary_10_3390_pr11072099 crossref_primary_10_1002_ep_14558 crossref_primary_10_3390_w14233821 crossref_primary_10_3390_w14203272 crossref_primary_10_1016_j_chemosphere_2023_140515 crossref_primary_10_3390_en16020791 crossref_primary_10_1016_j_cclet_2021_09_099 crossref_primary_10_1002_tqem_22170 crossref_primary_10_1016_j_dwt_2024_100958 crossref_primary_10_1007_s40891_021_00277_8 crossref_primary_10_3390_en17092099 crossref_primary_10_1016_j_seppur_2023_124952 crossref_primary_10_1007_s12649_023_02112_9 crossref_primary_10_1016_j_inoche_2023_110900 crossref_primary_10_1016_j_biortech_2021_125190 crossref_primary_10_1016_j_ccr_2024_215766 crossref_primary_10_3390_en15103629 crossref_primary_10_1016_j_envres_2023_117169 crossref_primary_10_1016_j_scitotenv_2022_153996 crossref_primary_10_1080_10643389_2022_2128194 crossref_primary_10_3390_su142416483 crossref_primary_10_1007_s11270_022_06057_y crossref_primary_10_1016_j_biortech_2022_128303 crossref_primary_10_1016_j_fuel_2021_122501 crossref_primary_10_1016_j_scitotenv_2024_176199 crossref_primary_10_3390_su132313480 crossref_primary_10_1016_j_biortech_2022_128547 crossref_primary_10_1016_j_efmat_2024_12_005 crossref_primary_10_1007_s11356_021_16047_y crossref_primary_10_1007_s12649_024_02617_x crossref_primary_10_1007_s10311_021_01348_y crossref_primary_10_1007_s42452_024_06125_4 crossref_primary_10_1016_j_envres_2022_114732 crossref_primary_10_1016_j_chemosphere_2021_132577 crossref_primary_10_1016_j_chemosphere_2021_133302 crossref_primary_10_1016_j_jaap_2021_105423 crossref_primary_10_1016_j_seppur_2023_123511 crossref_primary_10_1016_j_chemosphere_2021_130273 crossref_primary_10_1016_j_seppur_2020_117662 crossref_primary_10_3390_jcs7120499 crossref_primary_10_1016_j_renene_2021_05_146 crossref_primary_10_1038_s41598_022_05652_7 crossref_primary_10_1016_j_eti_2023_103349 crossref_primary_10_1016_j_cej_2022_137359 crossref_primary_10_1016_j_ecoenv_2022_114408 crossref_primary_10_1055_a_2334_6930 crossref_primary_10_1021_acsagscitech_3c00459 crossref_primary_10_1016_j_jwpe_2023_104713 crossref_primary_10_1016_j_jece_2021_106846 crossref_primary_10_1016_j_watres_2024_122551 crossref_primary_10_1016_j_nanoso_2024_101307 |
Cites_doi | 10.1016/j.jhazmat.2011.03.083 10.1016/j.chemosphere.2018.10.007 10.1016/j.cej.2019.01.036 10.1016/j.scitotenv.2012.07.038 10.1016/j.pce.2018.07.002 10.1016/j.chemosphere.2017.12.193 10.1016/j.biortech.2017.06.177 10.1016/j.jhazmat.2018.08.009 10.1016/j.scitotenv.2018.05.298 10.1016/j.jaap.2018.11.018 10.1007/s10653-015-9736-6 10.1016/j.cej.2019.122705 10.1016/j.biortech.2016.11.017 10.1016/j.biortech.2013.03.057 10.1007/s42773-019-00007-4 10.1016/j.energy.2019.01.035 10.1016/j.cej.2013.12.062 10.1016/j.envpol.2017.10.037 10.1016/j.enconman.2017.04.095 10.1016/j.jiec.2017.08.026 10.1016/j.jhazmat.2012.01.046 10.1016/j.biortech.2015.08.132 10.1016/j.chemosphere.2012.06.002 10.1016/j.renene.2018.09.041 10.1021/acs.est.8b00306 10.1016/j.chemosphere.2017.07.154 10.1016/j.biortech.2016.03.077 10.1080/10643389.2017.1418580 10.3390/ma11020299 10.1016/j.jclepro.2017.06.131 10.1016/j.chemosphere.2016.01.043 10.1016/j.cej.2019.121983 10.1016/j.watres.2018.10.030 10.1016/j.chemosphere.2019.125664 10.1016/j.jaap.2013.02.010 10.1016/j.jiec.2016.11.039 10.1016/j.ijheh.2017.02.010 10.1016/j.biombioe.2018.09.035 10.1016/j.biortech.2017.07.150 10.1016/j.biortech.2011.03.006 10.1016/j.biortech.2010.06.088 10.1016/j.scitotenv.2016.02.129 10.1016/j.rser.2016.06.003 10.1016/j.biortech.2012.12.165 10.1007/s13201-017-0604-7 10.1016/j.cej.2017.11.048 10.1021/acssuschemeng.7b02170 10.1016/j.cej.2012.06.116 10.1016/j.biombioe.2011.12.017 10.1039/C5RA17490B 10.1016/j.biortech.2014.07.062 10.1016/j.fuel.2011.08.044 10.1039/C7EW00070G 10.1016/j.jclepro.2018.01.133 10.1177/0734242X16654977 10.1007/s11356-014-2740-z 10.1039/C6RA06419A 10.1039/c4ra02332c 10.1016/j.cej.2017.10.130 10.1016/j.envpol.2018.09.097 10.1016/j.biortech.2012.11.132 10.1016/j.biortech.2010.11.018 10.1016/j.scitotenv.2018.03.189 10.1021/acs.est.6b00627 10.1007/s11356-016-8188-6 10.1016/j.chemosphere.2016.11.048 10.1016/j.jhazmat.2017.05.013 10.1016/j.jclepro.2017.01.069 10.1016/j.biortech.2014.01.120 10.1016/j.biortech.2017.01.046 10.1021/acsami.5b03131 10.1016/j.jiec.2016.06.002 10.1016/j.jaap.2018.09.007 10.1016/j.chemosphere.2017.02.121 10.1016/j.scitotenv.2017.09.171 10.1016/j.watres.2019.01.040 10.1016/j.jhazmat.2015.02.046 10.1016/j.watres.2014.05.026 10.1016/j.scitotenv.2018.01.037 10.1016/j.cej.2019.02.165 10.1016/j.cej.2013.04.077 10.1007/s13201-018-0765-z 10.1021/es4012977 10.1080/10643389.2015.1096880 10.1016/j.scitotenv.2018.05.251 10.1016/j.scitotenv.2018.10.131 10.1016/j.jclepro.2018.10.268 10.1007/s13762-014-0507-1 10.1016/j.biortech.2013.08.042 10.2175/193864716819715329 10.1016/j.watres.2018.09.051 10.1016/j.jaap.2017.02.013 10.1016/j.cej.2019.02.119 10.1016/j.jclepro.2018.03.206 10.1016/j.chemosphere.2017.08.014 10.1016/j.jtice.2018.03.049 10.1016/j.enconman.2017.01.063 10.1016/j.biortech.2015.10.096 10.1016/j.watres.2017.09.047 10.1016/j.jclepro.2016.07.205 10.1016/j.biortech.2016.04.093 10.1016/j.rser.2015.01.050 10.1007/s11356-018-1368-9 10.1016/j.biortech.2017.06.163 10.1061/(ASCE)EE.1943-7870.0001503 10.5194/se-5-953-2014 10.1016/j.jtice.2016.03.021 10.1016/j.scitotenv.2018.02.137 10.1016/j.biortech.2017.08.178 10.1016/j.rser.2019.01.030 10.1016/j.biortech.2015.08.129 10.1016/j.cej.2019.123842 10.1016/j.cej.2012.08.052 10.1016/j.biortech.2017.01.074 10.1016/j.biombioe.2019.01.014 10.1016/j.biortech.2017.10.004 10.1016/j.biortech.2014.10.104 10.1016/j.biortech.2018.11.013 10.1016/j.biortech.2016.05.057 10.1016/j.jaap.2016.03.018 10.1007/s11356-017-8849-0 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2020.126539 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 32220719 10_1016_j_chemosphere_2020_126539 S0045653520307323 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSH SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c476t-d0b9b60e75676b4c6c7360dfca5ce4bcc867e6462ba6f4cc82f09dccf60e52483 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Mon Jul 21 11:38:00 EDT 2025 Thu Jul 10 22:30:46 EDT 2025 Thu Apr 03 06:58:17 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Tue Jul 01 02:34:05 EDT 2025 Sun Apr 06 06:54:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Engineered biochar Carbonaceous adsorbents Wastewater treatment Modification methods Production technologies |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-d0b9b60e75676b4c6c7360dfca5ce4bcc867e6462ba6f4cc82f09dccf60e52483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 32220719 |
PQID | 2384215803 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2400496914 proquest_miscellaneous_2384215803 pubmed_primary_32220719 crossref_citationtrail_10_1016_j_chemosphere_2020_126539 crossref_primary_10_1016_j_chemosphere_2020_126539 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2020_126539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 2020-Aug 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Al-Wabel, Al-Omran, El-Naggar, Nadeem, Usman (bib4) 2013; 131 Essandoh, Wolgemuth, Pittman, Mohan, Mlsna (bib22) 2017; 24 Zhang, Zhu, Shen, Liu (bib130) 2019; 171 Xu, Zheng, Gao, Cao (bib99) 2019; 368 Zhang, Gao, Varnoosfaderani, Hebard, Yao, Inyang (bib123) 2013; 130 Devi, Saroha (bib19) 2014; 169 Zhao, Lang (bib131) 2018; 88 Roberts, de Nys (bib65) 2016; 169 Ashoori, Teixido, Spahr, LeFevre, Sedlak, Luthy (bib6) 2019; 154 Dugdug, Chang, Ok, Rajapaksha, Anyia (bib20) 2018; 25 Sun, Li, Meng, Zhang, Song, Ren (bib70) 2018; 147 Wan, Wu, Zhou, Wang, Gao, He (bib82) 2018 Durán-Jiménez, Hernández-Montoya, Montes-Morán, Kingman, Monti, Binner (bib21) 2018; 135 Cho, Kwon, Yoon, Tsang, Ok, Kwon, Song (bib13) 2017; 145 Ghezzehei, Sarkhot, Berhe (bib24) 2014; 5 Wang, Liu (bib91) 2018; 628–629 Yu, Zou, Chen, Chen, Yu, Huang, Tang, Wei, Gao (bib118) 2019; 232 Inyang, Gao, Zimmerman, Zhou, Cao (bib32) 2015; 22 Yao, Gao, Chen, Zhang, Inyang, Li, Alva, Yang (bib108) 2013; 138 Manyuchi, Mbohwaa, Muzenda (bib51) 2018; 107 Wang, Gao, Wang, Fang, Xue, Yang (bib85) 2015; 197 Hossain, Strezov, Chan, Ziolkowski, Nelson (bib28) 2011; 92 You, Ok, Chen, Tsang, Kwon, Lee, Wang (bib117) 2017; 246 Sun, Qi, Zheng, Huang, Pan, Jiang, Hou, Xiao (bib71) 2017; 249 Zhang, Gao, Yao, Xue, Inyang (bib125) 2012; 435 Colantoni, Evic, Lord, Retschitzegger, Proto, Gallucci, Monarca (bib14) 2016; 64 Zheng, Wang, Wester, Chen, He, Chen, Gao (bib134) 2019; 362 Poonam, Bharti, Kumar (bib61) 2018; 8 Wang, Wang, Lee, Lehmann, Gao (bib86) 2018; 634 Yao, Gao, Zhang, Inyang, Zimmerman (bib113) 2012; 89 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (bib111) 2011; 190 Zhang, Yang, Liu, Ju, Zheng (bib126) 2018; 11 Zhang, Chen, Liu, Peng, Min, Cheng, Anderson, Zhou, Fan, Liu, Chen, Liu, Lei, Li, Ruan (bib129) 2017; 230 Hussain, Maitra, Khan (bib30) 2017 Mohan, Sarswat, Ok, Pittman (bib54) 2014; 160 Palansooriya, Yang, Tsang, Sarkar, Hou, Cao, Meers, Rinklebe, Kim, Ok (bib59) 2019 Lefèvre, Bossa, Gardner, Gehrke, Cooper, Stapleton, Hsu-Kim, Gunsch (bib40) 2018; 128 Inyang, Gao, Pullammanappallil, Ding, Zimmerman (bib31) 2010; 101 Xiang, Zhang, Chen, Fang, He, Hu, Tsang, Ok, Gao (bib94) 2020; 385 Tian, Miller, Chiu, Maresca, Guo, Imhoff (bib76) 2016; 553 Yao, Gao, Wu, Zhang, Yang (bib112) 2015; 7 Jimenez, Monti, Titman, Hernandez-Montoya, Kingman, Binner (bib35) 2017; 124 Yao, Zhang, Gao, Chen, Wu (bib115) 2018; 25 Mohamed, Kim, Ellis, Bi (bib53) 2016; 201 Agrafioti, Bouras, Kalderis, Diamadopoulos (bib1) 2013; 101 Zhang, Xiang, Wang, Fang, Zou, He, Li, Tsang, Ok, Gao (bib128) 2019; 245 Lyu, Gao, He, Zimmerman, Ding, Huang, Tang (bib49) 2018; 233 Bian, Ma, Zhu, Wang, Li, Joseph, Liu, Pan (bib7) 2016; 119 Zhou, Liu, Xiang, Wang, Zhang, Zhang, Wei, Luo, Lei, Tang (bib137) 2017; 245 Mašek, Brownsort, Cross, Sohi (bib52) 2013; 103 Zhang, Gao (bib121) 2013; 226 Yang, Lou, Rajapaksha, Ok, Anyia, Chang (bib103) 2017 Higashikawa, Conz, Colzato, Cerri, Alleoni (bib27) 2016; 137 Cha, Park, Jung, Ryu, Jeon, Shin, Park (bib11) 2016; 40 Liu, Charrua, Weng, Yuan, Ding (bib43) 2015; 198 Fang, Zhan, Ok, Gao (bib23) 2018; 57 Mohanty, Valenca, Berger, Yu, Xiong, Saunders, Tsang (bib56) 2018; 625 Shengsen Wang, Min, Yuncong C, Jun, Bin, Shinjiro, Ke, Weiqin, Avanthi Deshani, Patryk, Xiaozhi, Yong Sik (bib68) 2019; 373 Braghiroli, Bouafif, Neculita, Koubaa (bib9) 2018 Tian, Jin, Chiu, Cha, Guo, Imhoff (bib75) 2019; 148 Wang, Gao, Li, Zimmerman, Cao (bib87) 2016; 6 Wang, Gao, Li, Ok, Shen, Xue (bib89) 2017; 178 Chen, Yan, Xu, Yoza, Wang, Kou, Ye, Wang, Li (bib12) 2019; 651 Xiong, Yu, Cao, Tsang, Zhang, Ok (bib95) 2017; 246 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib62) 2016; 148 Wang, Gao, Zimmerman, Li, Ma, Harris, Migliaccio (bib90) 2015; 175 Zhang, Gao, Creamer, Cao, Li (bib127) 2017; 338 Tang, Alam, Konhauser, Alessi, Xu, Tian, Liu (bib74) 2019; 209 Yue, Li, Johnston (bib120) 2018; 226 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (bib110) 2011; 102 Yao, Gao, Fang, Zhang, Chen, Zhou, Creamer, Sun, Yang (bib109) 2014; 242 Wang, Lehmann, Hanley, Hestrin, Enders (bib84) 2016; 6 Blum, Gallampois, Andersson, Renman, Renman, Haglund (bib8) 2018; 361 Li, Wang, Zhou, Zhang, Liu, Lei, Xiao (bib41) 2017; 147 Ahmed, Zhou, Ngo, Guo, Chen (bib3) 2016; 214 Deal, Brewer, Brown, Okure, Amoding (bib18) 2012; 37 Ulrich, Loehnert, Higgins (bib77) 2017; 3 Rajapaksha, Vithanage, Ahmad, Seo, Cho, Lee, Sang, Yong (bib63) 2015; 290 Ahmad, Gao, Mosa, Yu, Yin, Bashir, Ghoveisi, Wang (bib2) 2018; 180 Dai, Fan, Liu, Ruan, Wang, Zhou, Zhao, Yu (bib17) 2017; 225 Lam, Liew, Wong, Yek, Ma, Lee, Chase (bib38) 2017; 162 Yao, Gao, Chen, Jiang, Inyang, Zimmerman, Cao, Yang, Xue, Li (bib106) 2012; 209–210 Gray (bib26) 2016; 6 Cao, Yu, Cho, Wang, Tsang, Zhang, Ding, Wang, Ok (bib10) 2019; 273 Yoo, Beiyuan, Wang, Dcw, Baek, Bolan, Ok, Li (bib116) 2018; 616 Liu, Sohi, Liu, Guan, Zhou, Chen (bib45) 2019; 235 Mandal, Singh (bib50) 2017; 220 Xiong, Yu, Tsang, Bolan, Sik Ok, Igalavithana, Kirkham, Kim, Vikrant (bib96) 2019; 375 Wang, Zhou, Gao, Wang, Yin, Feng, Wang (bib88) 2017; 186 Wathukarage, Herath, Iqbal, Vithanage (bib92) 2017 Irfan, Chen, Yue, Pang, Lin, Zhao, Chen (bib34) 2016; 211 Nhuchhen, Afzal, Dreise, Salema (bib58) 2018; 119 Lu, Chen (bib46) 2018; 243 Zhao, Yao, Li, Wu, Zhang, Gao (bib132) 2018; 640–641 Lyu, Gao, He, Zimmerman, Ding, Tang, Crittenden (bib47) 2018; 335 Zhang, Gao, Fang, Creamer, Ullman (bib122) 2014; 4 Kadlimatti, Raj Mohan, Saidutta (bib36) 2019; 123 Kambo, Dutta (bib37) 2015; 45 An, Jiang, Nan, Yu, Jiang (bib5) 2019; 214 Vikrant, Kim, Ok, Dcw, Tsang, Giri, Singh (bib80) 2017; 616–617 Cole, Paul, De, Roberts (bib15) 2017; 200 González, Cea, Reyes, Romero-Hermoso, Hidalgo, Meier, Benito, Navia (bib25) 2017; 137 Saha, Saba, Reza (bib66) 2019; 137 Xue, Gao, Wan, Fang, Wang, Li, Munoz-Carpena, Yang (bib100) 2016; 63 Liu, Wu, Gorring, Deng (bib44) 2019; 145 Van Vinh, Zafar, Behera, Park (bib79) 2015; 12 Yao, Zhang, Gao, Chen, Wu (bib114) 2017 Creamer, Gao (bib16) 2016; 50 Xu, Zhou, Pan, Dai (bib98) 2020; 382 Yuan, Xu, Zhang (bib119) 2011; 102 Lyu, Gao, He, Ding, Tang, Crittenden (bib48) 2017; 5 Wan, Wang, Li, Gao (bib81) 2017; 47 Tang, Yu, Pang, Zeng, Deng, Wang, Ren, Ye, Peng, Feng (bib73) 2018; 336 Yang, Igalavithana, Oh, Nam, Zhang, Wang, Kwon, Tsang, Ok (bib104) 2018; 640–641 Zhao, Ouyang, Hao, Lin, Wang, Han, Geng (bib133) 2013; 147 Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (bib101) 2012; 200–202 Yang, Xu, Yu, Gao, Xu, Zhao, Cao (bib102) 2018; 52 Shao, Long, Wang, Liu, Shen, Chen (bib67) 2019; 135 Mohanty, Cantrell, Nelson, Boehm (bib55) 2014; 61 Yao, Gao, Chen, Yang (bib107) 2013; 47 Peiris, Gunatilake, Mlsna, Mohan, Vithanage (bib60) 2017; 246 Randolph, Bansode, Hassan, Rehrah, Ravella, Reddy, Watts, Novak, Ahmedna (bib64) 2017; 192 Zhou, Chen, Xi, Yao, Zhou, Tian, Lu (bib136) 2017; 232 Wei, Li, Huang, Luo, Zhang, Yang, Guo, Tang, Zeng, Zhou (bib93) 2018; 197 Usman, Ahmad, El-Mahrouky, Al-Omran, Ok, Sallam, El-Naggar, Al-Wabel (bib78) 2016; 38 Zhang, Gao, Yao, Xue, Inyang (bib124) 2012; 210 Son, Poo, Chang, Chae (bib69) 2018; 615 Xu, Lin, Dou, Zheng, Tan, Wang (bib97) 2018; 187 Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bib33) 2016; 46 Lau, Tsang, Graham, Ok, Yang, Li (bib39) 2016; 169 Tan, Liu, Gu, Xu, Zeng, Hu, Liu, Wang, Liu, Li (bib72) 2016; 212 Zheng, Yang, Zhang, Zou, Luo, Dong, Gao (bib135) 2019; 1 Mutsengerere, Chihobo, Musademba, Nhapi (bib57) 2019; 104 Yang, Wan, Zheng, He, Yu, Huang, Wang, Ok, Jiang, Gao (bib105) 2019; 366 Huang, Wang, Zhang, Zeng, Peng, Zhou, Cheng, Wang, Hu, Qin (bib29) 2017; 186 Lin, Yan, Sheng (bib42) 2016; 34 Wang, Gao, Fang (bib83) 2017; 47 Zhou (10.1016/j.chemosphere.2020.126539_bib137) 2017; 245 Yao (10.1016/j.chemosphere.2020.126539_bib113) 2012; 89 Creamer (10.1016/j.chemosphere.2020.126539_bib16) 2016; 50 Jimenez (10.1016/j.chemosphere.2020.126539_bib35) 2017; 124 Sun (10.1016/j.chemosphere.2020.126539_bib70) 2018; 147 Yao (10.1016/j.chemosphere.2020.126539_bib108) 2013; 138 Wang (10.1016/j.chemosphere.2020.126539_bib85) 2015; 197 Zhang (10.1016/j.chemosphere.2020.126539_bib129) 2017; 230 Shengsen Wang (10.1016/j.chemosphere.2020.126539_bib68) 2019; 373 Gray (10.1016/j.chemosphere.2020.126539_bib26) 2016; 6 Wang (10.1016/j.chemosphere.2020.126539_bib91) 2018; 628–629 Palansooriya (10.1016/j.chemosphere.2020.126539_bib59) 2019 Lu (10.1016/j.chemosphere.2020.126539_bib46) 2018; 243 Cho (10.1016/j.chemosphere.2020.126539_bib13) 2017; 145 Zheng (10.1016/j.chemosphere.2020.126539_bib135) 2019; 1 Wang (10.1016/j.chemosphere.2020.126539_bib84) 2016; 6 Kadlimatti (10.1016/j.chemosphere.2020.126539_bib36) 2019; 123 Nhuchhen (10.1016/j.chemosphere.2020.126539_bib58) 2018; 119 Xue (10.1016/j.chemosphere.2020.126539_bib100) 2016; 63 Yao (10.1016/j.chemosphere.2020.126539_bib111) 2011; 190 Randolph (10.1016/j.chemosphere.2020.126539_bib64) 2017; 192 Inyang (10.1016/j.chemosphere.2020.126539_bib31) 2010; 101 Huang (10.1016/j.chemosphere.2020.126539_bib29) 2017; 186 Xu (10.1016/j.chemosphere.2020.126539_bib99) 2019; 368 Bian (10.1016/j.chemosphere.2020.126539_bib7) 2016; 119 Zhang (10.1016/j.chemosphere.2020.126539_bib124) 2012; 210 Mohanty (10.1016/j.chemosphere.2020.126539_bib55) 2014; 61 Liu (10.1016/j.chemosphere.2020.126539_bib44) 2019; 145 Zhou (10.1016/j.chemosphere.2020.126539_bib136) 2017; 232 Yue (10.1016/j.chemosphere.2020.126539_bib120) 2018; 226 Inyang (10.1016/j.chemosphere.2020.126539_bib33) 2016; 46 Usman (10.1016/j.chemosphere.2020.126539_bib78) 2016; 38 Zheng (10.1016/j.chemosphere.2020.126539_bib134) 2019; 362 Ahmad (10.1016/j.chemosphere.2020.126539_bib2) 2018; 180 Zhao (10.1016/j.chemosphere.2020.126539_bib132) 2018; 640–641 You (10.1016/j.chemosphere.2020.126539_bib117) 2017; 246 Lau (10.1016/j.chemosphere.2020.126539_bib39) 2016; 169 Mohamed (10.1016/j.chemosphere.2020.126539_bib53) 2016; 201 Yuan (10.1016/j.chemosphere.2020.126539_bib119) 2011; 102 Yang (10.1016/j.chemosphere.2020.126539_bib102) 2018; 52 Zhang (10.1016/j.chemosphere.2020.126539_bib126) 2018; 11 Saha (10.1016/j.chemosphere.2020.126539_bib66) 2019; 137 Liu (10.1016/j.chemosphere.2020.126539_bib45) 2019; 235 Irfan (10.1016/j.chemosphere.2020.126539_bib34) 2016; 211 Xu (10.1016/j.chemosphere.2020.126539_bib98) 2020; 382 Tang (10.1016/j.chemosphere.2020.126539_bib73) 2018; 336 Wang (10.1016/j.chemosphere.2020.126539_bib83) 2017; 47 Van Vinh (10.1016/j.chemosphere.2020.126539_bib79) 2015; 12 Xiang (10.1016/j.chemosphere.2020.126539_bib94) 2020; 385 Yang (10.1016/j.chemosphere.2020.126539_bib103) 2017 Roberts (10.1016/j.chemosphere.2020.126539_bib65) 2016; 169 Xiong (10.1016/j.chemosphere.2020.126539_bib96) 2019; 375 Yang (10.1016/j.chemosphere.2020.126539_bib104) 2018; 640–641 Zhao (10.1016/j.chemosphere.2020.126539_bib133) 2013; 147 Wang (10.1016/j.chemosphere.2020.126539_bib90) 2015; 175 Dai (10.1016/j.chemosphere.2020.126539_bib17) 2017; 225 Agrafioti (10.1016/j.chemosphere.2020.126539_bib1) 2013; 101 Devi (10.1016/j.chemosphere.2020.126539_bib19) 2014; 169 Yao (10.1016/j.chemosphere.2020.126539_bib112) 2015; 7 Mašek (10.1016/j.chemosphere.2020.126539_bib52) 2013; 103 Hossain (10.1016/j.chemosphere.2020.126539_bib28) 2011; 92 Son (10.1016/j.chemosphere.2020.126539_bib69) 2018; 615 Ahmed (10.1016/j.chemosphere.2020.126539_bib3) 2016; 214 Yao (10.1016/j.chemosphere.2020.126539_bib110) 2011; 102 Zhang (10.1016/j.chemosphere.2020.126539_bib122) 2014; 4 Kambo (10.1016/j.chemosphere.2020.126539_bib37) 2015; 45 Yao (10.1016/j.chemosphere.2020.126539_bib115) 2018; 25 Mohanty (10.1016/j.chemosphere.2020.126539_bib56) 2018; 625 Xu (10.1016/j.chemosphere.2020.126539_bib97) 2018; 187 Zhang (10.1016/j.chemosphere.2020.126539_bib121) 2013; 226 Wathukarage (10.1016/j.chemosphere.2020.126539_bib92) 2017 Peiris (10.1016/j.chemosphere.2020.126539_bib60) 2017; 246 Wan (10.1016/j.chemosphere.2020.126539_bib81) 2017; 47 Wang (10.1016/j.chemosphere.2020.126539_bib87) 2016; 6 Hussain (10.1016/j.chemosphere.2020.126539_bib30) 2017 Dugdug (10.1016/j.chemosphere.2020.126539_bib20) 2018; 25 Lyu (10.1016/j.chemosphere.2020.126539_bib48) 2017; 5 Sun (10.1016/j.chemosphere.2020.126539_bib71) 2017; 249 Zhang (10.1016/j.chemosphere.2020.126539_bib127) 2017; 338 An (10.1016/j.chemosphere.2020.126539_bib5) 2019; 214 Chen (10.1016/j.chemosphere.2020.126539_bib12) 2019; 651 Wang (10.1016/j.chemosphere.2020.126539_bib86) 2018; 634 Ashoori (10.1016/j.chemosphere.2020.126539_bib6) 2019; 154 Deal (10.1016/j.chemosphere.2020.126539_bib18) 2012; 37 Essandoh (10.1016/j.chemosphere.2020.126539_bib22) 2017; 24 Xue (10.1016/j.chemosphere.2020.126539_bib101) 2012; 200–202 González (10.1016/j.chemosphere.2020.126539_bib25) 2017; 137 Lin (10.1016/j.chemosphere.2020.126539_bib42) 2016; 34 Li (10.1016/j.chemosphere.2020.126539_bib41) 2017; 147 Ulrich (10.1016/j.chemosphere.2020.126539_bib77) 2017; 3 Vikrant (10.1016/j.chemosphere.2020.126539_bib80) 2017; 616–617 Yoo (10.1016/j.chemosphere.2020.126539_bib116) 2018; 616 Yao (10.1016/j.chemosphere.2020.126539_bib109) 2014; 242 Lyu (10.1016/j.chemosphere.2020.126539_bib47) 2018; 335 Mohan (10.1016/j.chemosphere.2020.126539_bib54) 2014; 160 Yao (10.1016/j.chemosphere.2020.126539_bib114) 2017 Manyuchi (10.1016/j.chemosphere.2020.126539_bib51) 2018; 107 Mutsengerere (10.1016/j.chemosphere.2020.126539_bib57) 2019; 104 Yao (10.1016/j.chemosphere.2020.126539_bib106) 2012; 209–210 Ghezzehei (10.1016/j.chemosphere.2020.126539_bib24) 2014; 5 Tan (10.1016/j.chemosphere.2020.126539_bib72) 2016; 212 Tang (10.1016/j.chemosphere.2020.126539_bib74) 2019; 209 Blum (10.1016/j.chemosphere.2020.126539_bib8) 2018; 361 Wang (10.1016/j.chemosphere.2020.126539_bib89) 2017; 178 Zhang (10.1016/j.chemosphere.2020.126539_bib130) 2019; 171 Wei (10.1016/j.chemosphere.2020.126539_bib93) 2018; 197 Lam (10.1016/j.chemosphere.2020.126539_bib38) 2017; 162 Wang (10.1016/j.chemosphere.2020.126539_bib88) 2017; 186 Inyang (10.1016/j.chemosphere.2020.126539_bib32) 2015; 22 Lyu (10.1016/j.chemosphere.2020.126539_bib49) 2018; 233 Rajapaksha (10.1016/j.chemosphere.2020.126539_bib62) 2016; 148 Xiong (10.1016/j.chemosphere.2020.126539_bib95) 2017; 246 Yu (10.1016/j.chemosphere.2020.126539_bib118) 2019; 232 Tian (10.1016/j.chemosphere.2020.126539_bib75) 2019; 148 Cole (10.1016/j.chemosphere.2020.126539_bib15) 2017; 200 Tian (10.1016/j.chemosphere.2020.126539_bib76) 2016; 553 Mandal (10.1016/j.chemosphere.2020.126539_bib50) 2017; 220 Yao (10.1016/j.chemosphere.2020.126539_bib107) 2013; 47 Zhang (10.1016/j.chemosphere.2020.126539_bib125) 2012; 435 Colantoni (10.1016/j.chemosphere.2020.126539_bib14) 2016; 64 Cao (10.1016/j.chemosphere.2020.126539_bib10) 2019; 273 Zhang (10.1016/j.chemosphere.2020.126539_bib128) 2019; 245 Shao (10.1016/j.chemosphere.2020.126539_bib67) 2019; 135 Cha (10.1016/j.chemosphere.2020.126539_bib11) 2016; 40 Rajapaksha (10.1016/j.chemosphere.2020.126539_bib63) 2015; 290 Higashikawa (10.1016/j.chemosphere.2020.126539_bib27) 2016; 137 Yang (10.1016/j.chemosphere.2020.126539_bib105) 2019; 366 Wan (10.1016/j.chemosphere.2020.126539_bib82) 2018 Braghiroli (10.1016/j.chemosphere.2020.126539_bib9) 2018 Lefèvre (10.1016/j.chemosphere.2020.126539_bib40) 2018; 128 Durán-Jiménez (10.1016/j.chemosphere.2020.126539_bib21) 2018; 135 Zhang (10.1016/j.chemosphere.2020.126539_bib123) 2013; 130 Zhao (10.1016/j.chemosphere.2020.126539_bib131) 2018; 88 Al-Wabel (10.1016/j.chemosphere.2020.126539_bib4) 2013; 131 Liu (10.1016/j.chemosphere.2020.126539_bib43) 2015; 198 Poonam (10.1016/j.chemosphere.2020.126539_bib61) 2018; 8 Fang (10.1016/j.chemosphere.2020.126539_bib23) 2018; 57 |
References_xml | – volume: 124 start-page: 113 year: 2017 end-page: 121 ident: bib35 article-title: New insights into microwave pyrolysis of biomass: preparation of carbon-based products from pecan nutshells and their application in wastewater treatment publication-title: J. Anal. Appl. Pyrol. – volume: 57 start-page: 15 year: 2018 end-page: 21 ident: bib23 article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass publication-title: J. Ind. Eng. Chem. – volume: 235 start-page: 276 year: 2019 end-page: 281 ident: bib45 article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar publication-title: J. Environ. Manag. – volume: 169 start-page: 253 year: 2016 end-page: 260 ident: bib65 article-title: The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva publication-title: J. Environ. Manag. – volume: 362 start-page: 460 year: 2019 end-page: 468 ident: bib134 article-title: Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar publication-title: Chem. Eng. J. – volume: 47 start-page: 246 year: 2017 end-page: 253 ident: bib81 article-title: Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions publication-title: J. Ind. Eng. Chem. – volume: 47 start-page: 2158 year: 2017 end-page: 2207 ident: bib83 article-title: Recent advances in engineered biochar productions and applications publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 246 start-page: 242 year: 2017 end-page: 253 ident: bib117 article-title: A critical review on sustainable biochar system through gasification: energy and environmental applications publication-title: Bioresour. Technol. – volume: 4 start-page: 28171 year: 2014 end-page: 28175 ident: bib122 article-title: Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: characterization and phosphate removal ability publication-title: RSC Adv. – volume: 8 year: 2018 ident: bib61 article-title: Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent publication-title: Applied Water Science – volume: 175 start-page: 391 year: 2015 end-page: 395 ident: bib90 article-title: Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite publication-title: Bioresour. Technol. – volume: 230 start-page: 143 year: 2017 end-page: 151 ident: bib129 article-title: Effects of feedstock characteristics on microwave-assisted pyrolysis - a review publication-title: Bioresour. Technol. – volume: 178 start-page: 59 year: 2017 end-page: 64 ident: bib89 article-title: Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: a case study of Phytolacca acinosa Roxb. (Phytolaccaceae) publication-title: Chemosphere – volume: 25 start-page: 25659 year: 2018 end-page: 25667 ident: bib115 article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse publication-title: Environ. Sci. Pollut. Control Ser. – volume: 214 start-page: 836 year: 2016 end-page: 851 ident: bib3 article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater publication-title: Bioresour. Technol. – volume: 52 start-page: 8321 year: 2018 end-page: 8329 ident: bib102 article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms publication-title: Environ. Sci. Technol. – volume: 651 start-page: 2631 year: 2019 end-page: 2640 ident: bib12 article-title: Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater publication-title: Sci. Total Environ. – volume: 24 start-page: 4577 year: 2017 end-page: 4590 ident: bib22 article-title: Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents publication-title: Environ. Sci. Pollut. Control Ser. – volume: 197 start-page: 356 year: 2015 end-page: 362 ident: bib85 article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO publication-title: Bioresour. Technol. – volume: 361 start-page: 111 year: 2018 ident: bib8 article-title: Comprehensive assessment of organic contaminant removal from on-site sewage treatment facility effluent by char-fortified filter beds publication-title: J. Hazard Mater. – volume: 249 start-page: 57 year: 2017 end-page: 61 ident: bib71 article-title: Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge publication-title: Bioresour. Technol. – volume: 6 start-page: 41907 year: 2016 end-page: 41913 ident: bib84 article-title: Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times publication-title: RSC Adv. – volume: 147 start-page: 338 year: 2013 end-page: 344 ident: bib133 article-title: Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine publication-title: Bioresour. Technol. – volume: 628–629 start-page: 1139 year: 2018 end-page: 1148 ident: bib91 article-title: H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions publication-title: Sci. Total Environ. – volume: 640–641 start-page: 73 year: 2018 end-page: 79 ident: bib132 article-title: Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II) publication-title: Sci. Total Environ. – volume: 232 start-page: 204 year: 2017 end-page: 210 ident: bib136 article-title: Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization publication-title: Bioresour. Technol. – volume: 335 start-page: 110 year: 2018 end-page: 119 ident: bib47 article-title: Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue publication-title: Chem. Eng. J. – volume: 246 start-page: 150 year: 2017 end-page: 159 ident: bib60 article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review publication-title: Bioresour. Technol. – volume: 61 start-page: 288 year: 2014 end-page: 296 ident: bib55 article-title: Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow publication-title: Water Res. – volume: 640–641 start-page: 704 year: 2018 end-page: 713 ident: bib104 article-title: Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil publication-title: Sci. Total Environ. – volume: 382 start-page: 122705 year: 2020 ident: bib98 article-title: Interaction between chlortetracycline and calcium-rich biochar: enhanced removal by adsorption coupled with flocculation publication-title: Chem. Eng. J. – volume: 64 start-page: 187 year: 2016 end-page: 194 ident: bib14 article-title: Characterization of biochars produced from pyrolysis of pelletized agricultural residues publication-title: Renew. Sustain. Energy Rev. – volume: 171 start-page: 581 year: 2019 end-page: 598 ident: bib130 article-title: Insights into biochar and hydrochar production and applications: a review publication-title: Energy – volume: 209 start-page: 927 year: 2019 end-page: 936 ident: bib74 article-title: Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater publication-title: J. Clean. Prod. – start-page: 1 year: 2017 end-page: 9 ident: bib114 article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse publication-title: Environ. Sci. Pollut. Control Ser. – volume: 197 start-page: 165 year: 2018 ident: bib93 article-title: Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs publication-title: Chemosphere – volume: 368 start-page: 564 year: 2019 end-page: 572 ident: bib99 article-title: N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red publication-title: Chem. Eng. J. – volume: 101 start-page: 72 year: 2013 end-page: 78 ident: bib1 article-title: Biochar production by sewage sludge pyrolysis publication-title: J. Anal. Appl. Pyrol. – volume: 101 start-page: 8868 year: 2010 end-page: 8872 ident: bib31 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. – volume: 290 start-page: 43 year: 2015 end-page: 50 ident: bib63 article-title: Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar publication-title: J. Hazard Mater. – volume: 553 start-page: 596 year: 2016 end-page: 606 ident: bib76 article-title: Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment publication-title: Sci. Total Environ. – volume: 5 start-page: 953 year: 2014 end-page: 962 ident: bib24 article-title: Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties publication-title: Solid Earth – volume: 7 start-page: 10634 year: 2015 end-page: 10640 ident: bib112 article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 793 year: 2016 end-page: 801 ident: bib42 article-title: Effect of pyrolysis conditions on the characteristics of biochar produced from a tobacco stem publication-title: Waste Manag. Res. – volume: 616 year: 2018 ident: bib116 article-title: A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils publication-title: Sci. Total Environ. – volume: 22 start-page: 1868 year: 2015 end-page: 1876 ident: bib32 article-title: Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars publication-title: Environ. Sci. Pollut. Control Ser. – volume: 37 start-page: 161 year: 2012 end-page: 168 ident: bib18 article-title: Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics publication-title: Biomass Bioenergy – volume: 137 start-page: 165 year: 2017 end-page: 173 ident: bib25 article-title: Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production publication-title: Energy Convers. Manag. – volume: 145 year: 2019 ident: bib44 article-title: Aluminum-impregnated biochar for adsorption of arsenic(V) in urban stormwater runoff publication-title: J. Environ. Eng. – volume: 187 year: 2018 ident: bib97 article-title: Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides publication-title: J. Clean. Prod. – volume: 200–202 start-page: 673 year: 2012 end-page: 680 ident: bib101 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chem. Eng. J. – volume: 147 start-page: 96 year: 2017 end-page: 107 ident: bib41 article-title: Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment publication-title: J. Clean. Prod. – volume: 233 start-page: 54 year: 2018 end-page: 63 ident: bib49 article-title: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms publication-title: Environ. Pollut. – volume: 6 start-page: 2108 year: 2016 end-page: 2123 ident: bib26 article-title: Black is green: biochar for stormwater management publication-title: Proceedings of the Water Environment Federation – volume: 88 start-page: 152 year: 2018 end-page: 160 ident: bib131 article-title: Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar publication-title: Journal of the Taiwan Institute of Chemical Engineers – volume: 192 start-page: 271 year: 2017 end-page: 280 ident: bib64 article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters publication-title: J. Environ. Manag. – volume: 123 start-page: 25 year: 2019 end-page: 33 ident: bib36 article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology publication-title: Biomass Bioenergy – volume: 135 start-page: 1327 year: 2019 end-page: 1334 ident: bib67 article-title: Hydrochar derived from green waste by microwave hydrothermal carbonization publication-title: Renew. Energy – volume: 131 start-page: 374 year: 2013 end-page: 379 ident: bib4 article-title: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes publication-title: Bioresour. Technol. – volume: 169 start-page: 89 year: 2016 ident: bib39 article-title: Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater publication-title: Chemosphere – volume: 180 start-page: 437 year: 2018 end-page: 449 ident: bib2 article-title: Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass publication-title: J. Clean. Prod. – volume: 107 start-page: 92 year: 2018 end-page: 95 ident: bib51 article-title: Potential to use municipal waste bio char in wastewater treatment for nutrients recovery publication-title: Phys. Chem. Earth – volume: 201 start-page: 121 year: 2016 end-page: 132 ident: bib53 article-title: Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties publication-title: Bioresour. Technol. – volume: 46 start-page: 406 year: 2016 end-page: 433 ident: bib33 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 3 year: 2017 ident: bib77 article-title: Improved contaminant removal in vegetated stormwater biofilters amended with biochar publication-title: Environmental Science Water Research & Technology – volume: 89 start-page: 1467 year: 2012 end-page: 1471 ident: bib113 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere – volume: 435 start-page: 567 year: 2012 end-page: 572 ident: bib125 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Sci. Total Environ. – volume: 616–617 start-page: 1242 year: 2017 ident: bib80 article-title: Engineered/designer biochar for the removal of phosphate in water and wastewater publication-title: Sci. Total Environ. – volume: 214 start-page: 846 year: 2019 end-page: 854 ident: bib5 article-title: Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: implicit mechanism publication-title: Chemosphere – volume: 102 start-page: 6273 year: 2011 end-page: 6278 ident: bib110 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. – volume: 225 start-page: 1 year: 2017 end-page: 8 ident: bib17 article-title: Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis publication-title: Bioresour. Technol. – volume: 11 start-page: 299 year: 2018 ident: bib126 article-title: Adsorption behavior of selective recognition functionalized biochar to Cd(II) in wastewater publication-title: Materials – volume: 6 start-page: 17792 year: 2016 end-page: 17799 ident: bib87 article-title: Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites publication-title: RSC Adv. – volume: 246 start-page: 254 year: 2017 end-page: 270 ident: bib95 article-title: A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control publication-title: Bioresour. Technol. – volume: 211 start-page: 457 year: 2016 end-page: 463 ident: bib34 article-title: Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures publication-title: Bioresour. Technol. – volume: 40 start-page: 1 year: 2016 end-page: 15 ident: bib11 article-title: Production and utilization of biochar: a review publication-title: J. Ind. Eng. Chem. – volume: 190 start-page: 501 year: 2011 end-page: 507 ident: bib111 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard Mater. – volume: 145 start-page: 1 year: 2017 end-page: 9 ident: bib13 article-title: Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium publication-title: Energy Convers. Manag. – start-page: 229 year: 2018 end-page: 230 ident: bib9 article-title: Activated biochar as an effective sorbent for organic and inorganic contaminants in water publication-title: Water Air Soil Pollut. – volume: 210 start-page: 26 year: 2012 end-page: 32 ident: bib124 article-title: Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions publication-title: Chem. Eng. J. – volume: 47 start-page: 8700 year: 2013 end-page: 8708 ident: bib107 article-title: Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer publication-title: Environ. Sci. Technol. – volume: 366 start-page: 608 year: 2019 end-page: 621 ident: bib105 article-title: Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review publication-title: Chem. Eng. J. – volume: 63 start-page: 312 year: 2016 end-page: 317 ident: bib100 article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions publication-title: Journal of the Taiwan Institute of Chemical Engineers – volume: 25 start-page: 25799 year: 2018 end-page: 25812 ident: bib20 article-title: Phosphorus sorption capacity of biochars varies with biochar type and salinity level publication-title: Environ. Sci. Pollut. Res. Int. – volume: 119 start-page: 293 year: 2018 end-page: 303 ident: bib58 article-title: Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor publication-title: Biomass Bioenergy – volume: 212 start-page: 318 year: 2016 end-page: 333 ident: bib72 article-title: Biochar-based nano-composites for the decontamination of wastewater: a review publication-title: Bioresour. Technol. – volume: 1 start-page: 89 year: 2019 end-page: 96 ident: bib135 article-title: Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation publication-title: Biochar – volume: 128 start-page: 102 year: 2018 end-page: 110 ident: bib40 article-title: Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A publication-title: Water Res. – volume: 186 start-page: 495 year: 2017 end-page: 500 ident: bib88 article-title: The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size publication-title: Chemosphere – volume: 186 start-page: 414 year: 2017 end-page: 421 ident: bib29 article-title: Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: influencing factors and mechanism publication-title: Chemosphere – start-page: 1 year: 2017 end-page: 10 ident: bib103 article-title: Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars publication-title: Environ. Sci. Pollut. Res. – volume: 338 start-page: 102 year: 2017 end-page: 123 ident: bib127 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard Mater. – volume: 137 start-page: 965 year: 2016 end-page: 972 ident: bib27 article-title: Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water publication-title: J. Clean. Prod. – volume: 226 start-page: 286 year: 2013 end-page: 292 ident: bib121 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. – volume: 615 start-page: 161 year: 2018 ident: bib69 article-title: Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass publication-title: Sci. Total Environ. – volume: 226 start-page: 37 year: 2018 end-page: 45 ident: bib120 article-title: Exploratory study on modification of sludge-based activated carbon for nutrient removal from stormwater runoff publication-title: J. Environ. Manag. – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: bib62 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 38 start-page: 511 year: 2016 end-page: 521 ident: bib78 article-title: Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions publication-title: Environ. Geochem. Health – volume: 336 start-page: 160 year: 2018 end-page: 169 ident: bib73 article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal publication-title: Chem. Eng. J. – volume: 209–210 start-page: 408 year: 2012 end-page: 413 ident: bib106 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: J. Hazard Mater. – volume: 243 start-page: 1539 year: 2018 end-page: 1549 ident: bib46 article-title: Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: combined with batch sorption and fixed-bed column studies publication-title: Environ. Pollut. – volume: 119 start-page: 52 year: 2016 end-page: 59 ident: bib7 article-title: Pyrolysis of crop residues in a mobile bench-scale pyrolyser: product characterization and environmental performance publication-title: J. Anal. Appl. Pyrol. – volume: 245 start-page: 125664 year: 2019 ident: bib128 article-title: Adsorption of acetone and cyclohexane onto CO2 activated hydrochars publication-title: Chemosphere – volume: 5 start-page: 9568 year: 2017 end-page: 9585 ident: bib48 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: Acs Sustain Chem Eng – volume: 148 start-page: 378 year: 2019 end-page: 387 ident: bib75 article-title: A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater publication-title: Water Res. – volume: 375 start-page: 121983 year: 2019 ident: bib96 article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects publication-title: Chem. Eng. J. – volume: 103 start-page: 151 year: 2013 end-page: 155 ident: bib52 article-title: Influence of production conditions on the yield and environmental stability of biochar publication-title: Fuel – volume: 232 start-page: 8 year: 2019 end-page: 21 ident: bib118 article-title: Biochar amendment improves crop production in problem soils: a review publication-title: J. Environ. Manag. – volume: 273 start-page: 8 year: 2019 ident: bib10 article-title: Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar publication-title: Bioresour. Technol. – volume: 137 start-page: 138 year: 2019 end-page: 145 ident: bib66 article-title: Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood publication-title: J. Anal. Appl. Pyrol. – volume: 104 start-page: 328 year: 2019 end-page: 336 ident: bib57 article-title: A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass publication-title: Renew. Sustain. Energy Rev. – volume: 385 start-page: 123842 year: 2020 ident: bib94 article-title: Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs) publication-title: Chem. Eng. J. – volume: 130 start-page: 457 year: 2013 end-page: 462 ident: bib123 article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal publication-title: Bioresour. Technol. – volume: 160 start-page: 191 year: 2014 end-page: 202 ident: bib54 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. – volume: 92 start-page: 223 year: 2011 end-page: 228 ident: bib28 article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar publication-title: J. Environ. Manag. – volume: 45 start-page: 359 year: 2015 end-page: 378 ident: bib37 article-title: A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications publication-title: Renew. Sustain. Energy Rev. – volume: 169 start-page: 525 year: 2014 end-page: 531 ident: bib19 article-title: Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent publication-title: Bioresour. Technol. – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: bib119 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. – volume: 50 start-page: 7276 year: 2016 end-page: 7289 ident: bib16 article-title: Carbon-based adsorbents for postcombustion CO publication-title: Environ. Sci. Technol. – start-page: 1 year: 2019 end-page: 63 ident: bib59 article-title: Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review publication-title: Crit. Rev. Environ. Sci. Technol. – start-page: 1 year: 2017 end-page: 15 ident: bib92 article-title: Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment publication-title: Environ. Geochem. Health – volume: 245 start-page: 266 year: 2017 end-page: 273 ident: bib137 article-title: Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling publication-title: Bioresour. Technol. – volume: 147 start-page: 91 year: 2018 end-page: 100 ident: bib70 article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine publication-title: Water Res. – volume: 138 start-page: 8 year: 2013 end-page: 13 ident: bib108 article-title: Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential publication-title: Bioresour. Technol. – volume: 220 start-page: 637 year: 2017 end-page: 645 ident: bib50 article-title: Optimization of atrazine and imidacloprid removal from water using biochars: designing single or multi-staged batch adsorption systems publication-title: Int. J. Hyg Environ. Health – volume: 200 start-page: 105 year: 2017 ident: bib15 article-title: Good for sewage treatment and good for agriculture: algal based compost and biochar publication-title: J. Environ. Manag. – volume: 373 start-page: 15 year: 2019 ident: bib68 article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review publication-title: J. Hazard Mater. – volume: 12 start-page: 1283 year: 2015 end-page: 1294 ident: bib79 article-title: Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies publication-title: Int. J. Environ. Sci. Technol. – volume: 242 start-page: 136 year: 2014 end-page: 143 ident: bib109 article-title: Characterization and environmental applications of clay-biochar composites publication-title: Chem. Eng. J. – volume: 154 start-page: 1 year: 2019 end-page: 11 ident: bib6 article-title: Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff publication-title: Water Res. – start-page: 4525 year: 2017 end-page: 4537 ident: bib30 article-title: Development of biochar and chitosan blend for heavy metalsuptake from synthetic and industrial wastewater publication-title: Applied Water Science – volume: 625 start-page: 1644 year: 2018 end-page: 1658 ident: bib56 article-title: Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment publication-title: Sci. Total Environ. – volume: 198 start-page: 55 year: 2015 end-page: 62 ident: bib43 article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study publication-title: Bioresour. Technol. – start-page: 616 year: 2018 end-page: 617 ident: bib82 article-title: Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: behavior and mechanism publication-title: Sci. Total Environ. – volume: 135 start-page: 160 year: 2018 end-page: 168 ident: bib21 article-title: Microwave pyrolysis of pecan nut shell and thermogravimetric, textural and spectroscopic characterization of carbonaceous products publication-title: J. Anal. Appl. Pyrol. – volume: 162 start-page: 1376 year: 2017 end-page: 1387 ident: bib38 article-title: Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent publication-title: J. Clean. Prod. – volume: 634 start-page: 188 year: 2018 end-page: 194 ident: bib86 article-title: Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH publication-title: Sci. Total Environ. – volume: 190 start-page: 501 year: 2011 ident: 10.1016/j.chemosphere.2020.126539_bib111 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2011.03.083 – volume: 214 start-page: 846 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib5 article-title: Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: implicit mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.007 – volume: 362 start-page: 460 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib134 article-title: Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.036 – start-page: 229 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib9 article-title: Activated biochar as an effective sorbent for organic and inorganic contaminants in water publication-title: Water Air Soil Pollut. – volume: 435 start-page: 567 year: 2012 ident: 10.1016/j.chemosphere.2020.126539_bib125 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.07.038 – volume: 107 start-page: 92 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib51 article-title: Potential to use municipal waste bio char in wastewater treatment for nutrients recovery publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2018.07.002 – volume: 197 start-page: 165 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib93 article-title: Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.193 – volume: 246 start-page: 242 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib117 article-title: A critical review on sustainable biochar system through gasification: energy and environmental applications publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.177 – volume: 361 start-page: 111 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib8 article-title: Comprehensive assessment of organic contaminant removal from on-site sewage treatment facility effluent by char-fortified filter beds publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.08.009 – volume: 640–641 start-page: 704 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib104 article-title: Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.298 – volume: 169 start-page: 253 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib65 article-title: The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva publication-title: J. Environ. Manag. – volume: 137 start-page: 138 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib66 article-title: Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2018.11.018 – volume: 38 start-page: 511 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib78 article-title: Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions publication-title: Environ. Geochem. Health doi: 10.1007/s10653-015-9736-6 – volume: 382 start-page: 122705 year: 2020 ident: 10.1016/j.chemosphere.2020.126539_bib98 article-title: Interaction between chlortetracycline and calcium-rich biochar: enhanced removal by adsorption coupled with flocculation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122705 – volume: 225 start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib17 article-title: Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.017 – volume: 616 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib116 article-title: A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils publication-title: Sci. Total Environ. – volume: 138 start-page: 8 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib108 article-title: Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.057 – volume: 1 start-page: 89 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib135 article-title: Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation publication-title: Biochar doi: 10.1007/s42773-019-00007-4 – volume: 171 start-page: 581 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib130 article-title: Insights into biochar and hydrochar production and applications: a review publication-title: Energy doi: 10.1016/j.energy.2019.01.035 – volume: 242 start-page: 136 year: 2014 ident: 10.1016/j.chemosphere.2020.126539_bib109 article-title: Characterization and environmental applications of clay-biochar composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.062 – volume: 233 start-page: 54 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib49 article-title: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.037 – volume: 145 start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib13 article-title: Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.04.095 – volume: 57 start-page: 15 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib23 article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.08.026 – volume: 209–210 start-page: 408 year: 2012 ident: 10.1016/j.chemosphere.2020.126539_bib106 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2012.01.046 – volume: 197 start-page: 356 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib85 article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.132 – volume: 89 start-page: 1467 year: 2012 ident: 10.1016/j.chemosphere.2020.126539_bib113 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.06.002 – volume: 135 start-page: 1327 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib67 article-title: Hydrochar derived from green waste by microwave hydrothermal carbonization publication-title: Renew. Energy doi: 10.1016/j.renene.2018.09.041 – volume: 52 start-page: 8321 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib102 article-title: Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00306 – volume: 186 start-page: 414 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib29 article-title: Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: influencing factors and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.154 – volume: 211 start-page: 457 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib34 article-title: Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.077 – volume: 47 start-page: 2158 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib83 article-title: Recent advances in engineered biochar productions and applications publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2017.1418580 – volume: 11 start-page: 299 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib126 article-title: Adsorption behavior of selective recognition functionalized biochar to Cd(II) in wastewater publication-title: Materials doi: 10.3390/ma11020299 – volume: 162 start-page: 1376 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib38 article-title: Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.06.131 – start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib92 article-title: Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment publication-title: Environ. Geochem. Health – volume: 92 start-page: 223 year: 2011 ident: 10.1016/j.chemosphere.2020.126539_bib28 article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar publication-title: J. Environ. Manag. – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib62 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – volume: 375 start-page: 121983 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib96 article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121983 – volume: 148 start-page: 378 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib75 article-title: A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater publication-title: Water Res. doi: 10.1016/j.watres.2018.10.030 – volume: 245 start-page: 125664 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib128 article-title: Adsorption of acetone and cyclohexane onto CO2 activated hydrochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125664 – volume: 101 start-page: 72 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib1 article-title: Biochar production by sewage sludge pyrolysis publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2013.02.010 – volume: 192 start-page: 271 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib64 article-title: Effect of biochars produced from solid organic municipal waste on soil quality parameters publication-title: J. Environ. Manag. – volume: 47 start-page: 246 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib81 article-title: Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.11.039 – volume: 226 start-page: 37 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib120 article-title: Exploratory study on modification of sludge-based activated carbon for nutrient removal from stormwater runoff publication-title: J. Environ. Manag. – volume: 220 start-page: 637 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib50 article-title: Optimization of atrazine and imidacloprid removal from water using biochars: designing single or multi-staged batch adsorption systems publication-title: Int. J. Hyg Environ. Health doi: 10.1016/j.ijheh.2017.02.010 – volume: 200 start-page: 105 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib15 article-title: Good for sewage treatment and good for agriculture: algal based compost and biochar publication-title: J. Environ. Manag. – start-page: 616 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib82 article-title: Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: behavior and mechanism publication-title: Sci. Total Environ. – volume: 119 start-page: 293 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib58 article-title: Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.09.035 – volume: 235 start-page: 276 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib45 article-title: Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar publication-title: J. Environ. Manag. – volume: 246 start-page: 150 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib60 article-title: Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.150 – volume: 373 start-page: 15 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib68 article-title: Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review publication-title: J. Hazard Mater. – volume: 102 start-page: 6273 year: 2011 ident: 10.1016/j.chemosphere.2020.126539_bib110 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.006 – volume: 101 start-page: 8868 year: 2010 ident: 10.1016/j.chemosphere.2020.126539_bib31 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.088 – volume: 553 start-page: 596 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib76 article-title: Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.02.129 – volume: 64 start-page: 187 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib14 article-title: Characterization of biochars produced from pyrolysis of pelletized agricultural residues publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.003 – volume: 131 start-page: 374 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib4 article-title: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.165 – start-page: 4525 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib30 article-title: Development of biochar and chitosan blend for heavy metalsuptake from synthetic and industrial wastewater publication-title: Applied Water Science doi: 10.1007/s13201-017-0604-7 – volume: 336 start-page: 160 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib73 article-title: Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.048 – volume: 5 start-page: 9568 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib48 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: Acs Sustain Chem Eng doi: 10.1021/acssuschemeng.7b02170 – volume: 200–202 start-page: 673 year: 2012 ident: 10.1016/j.chemosphere.2020.126539_bib101 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.116 – volume: 37 start-page: 161 year: 2012 ident: 10.1016/j.chemosphere.2020.126539_bib18 article-title: Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.12.017 – volume: 616–617 start-page: 1242 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib80 article-title: Engineered/designer biochar for the removal of phosphate in water and wastewater publication-title: Sci. Total Environ. – volume: 6 start-page: 17792 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib87 article-title: Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites publication-title: RSC Adv. doi: 10.1039/C5RA17490B – volume: 169 start-page: 525 year: 2014 ident: 10.1016/j.chemosphere.2020.126539_bib19 article-title: Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.07.062 – volume: 103 start-page: 151 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib52 article-title: Influence of production conditions on the yield and environmental stability of biochar publication-title: Fuel doi: 10.1016/j.fuel.2011.08.044 – volume: 3 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib77 article-title: Improved contaminant removal in vegetated stormwater biofilters amended with biochar publication-title: Environmental Science Water Research & Technology doi: 10.1039/C7EW00070G – volume: 180 start-page: 437 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib2 article-title: Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.133 – volume: 34 start-page: 793 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib42 article-title: Effect of pyrolysis conditions on the characteristics of biochar produced from a tobacco stem publication-title: Waste Manag. Res. doi: 10.1177/0734242X16654977 – volume: 22 start-page: 1868 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib32 article-title: Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-014-2740-z – volume: 6 start-page: 41907 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib84 article-title: Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times publication-title: RSC Adv. doi: 10.1039/C6RA06419A – volume: 4 start-page: 28171 year: 2014 ident: 10.1016/j.chemosphere.2020.126539_bib122 article-title: Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: characterization and phosphate removal ability publication-title: RSC Adv. doi: 10.1039/c4ra02332c – volume: 335 start-page: 110 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib47 article-title: Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.130 – volume: 243 start-page: 1539 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib46 article-title: Enhanced bisphenol A removal from stormwater in biochar-amended biofilters: combined with batch sorption and fixed-bed column studies publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.097 – volume: 130 start-page: 457 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib123 article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.132 – volume: 102 start-page: 3488 year: 2011 ident: 10.1016/j.chemosphere.2020.126539_bib119 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – volume: 634 start-page: 188 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib86 article-title: Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.189 – volume: 50 start-page: 7276 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib16 article-title: Carbon-based adsorbents for postcombustion CO2 capture: a critical review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00627 – volume: 24 start-page: 4577 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib22 article-title: Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-016-8188-6 – volume: 169 start-page: 89 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib39 article-title: Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.11.048 – volume: 338 start-page: 102 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib127 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.05.013 – volume: 147 start-page: 96 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib41 article-title: Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.069 – volume: 160 start-page: 191 year: 2014 ident: 10.1016/j.chemosphere.2020.126539_bib54 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 230 start-page: 143 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib129 article-title: Effects of feedstock characteristics on microwave-assisted pyrolysis - a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.01.046 – volume: 7 start-page: 10634 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib112 article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03131 – volume: 40 start-page: 1 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib11 article-title: Production and utilization of biochar: a review publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.06.002 – volume: 135 start-page: 160 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib21 article-title: Microwave pyrolysis of pecan nut shell and thermogravimetric, textural and spectroscopic characterization of carbonaceous products publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2018.09.007 – volume: 178 start-page: 59 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib89 article-title: Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: a case study of Phytolacca acinosa Roxb. (Phytolaccaceae) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.121 – volume: 615 start-page: 161 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib69 article-title: Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.171 – volume: 154 start-page: 1 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib6 article-title: Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff publication-title: Water Res. doi: 10.1016/j.watres.2019.01.040 – volume: 290 start-page: 43 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib63 article-title: Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.02.046 – volume: 61 start-page: 288 year: 2014 ident: 10.1016/j.chemosphere.2020.126539_bib55 article-title: Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow publication-title: Water Res. doi: 10.1016/j.watres.2014.05.026 – start-page: 1 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib59 article-title: Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 625 start-page: 1644 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib56 article-title: Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.037 – volume: 368 start-page: 564 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib99 article-title: N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.165 – volume: 226 start-page: 286 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib121 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.077 – volume: 8 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib61 article-title: Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent publication-title: Applied Water Science doi: 10.1007/s13201-018-0765-z – volume: 47 start-page: 8700 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib107 article-title: Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer publication-title: Environ. Sci. Technol. doi: 10.1021/es4012977 – volume: 46 start-page: 406 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib33 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2015.1096880 – volume: 640–641 start-page: 73 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib132 article-title: Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.251 – volume: 651 start-page: 2631 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib12 article-title: Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.131 – volume: 209 start-page: 927 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib74 article-title: Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.268 – volume: 12 start-page: 1283 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib79 article-title: Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-014-0507-1 – volume: 147 start-page: 338 year: 2013 ident: 10.1016/j.chemosphere.2020.126539_bib133 article-title: Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.08.042 – volume: 6 start-page: 2108 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib26 article-title: Black is green: biochar for stormwater management publication-title: Proceedings of the Water Environment Federation doi: 10.2175/193864716819715329 – start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib103 article-title: Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars publication-title: Environ. Sci. Pollut. Res. – volume: 147 start-page: 91 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib70 article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine publication-title: Water Res. doi: 10.1016/j.watres.2018.09.051 – volume: 124 start-page: 113 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib35 article-title: New insights into microwave pyrolysis of biomass: preparation of carbon-based products from pecan nutshells and their application in wastewater treatment publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2017.02.013 – volume: 366 start-page: 608 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib105 article-title: Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.119 – volume: 187 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib97 article-title: Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.03.206 – volume: 186 start-page: 495 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib88 article-title: The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.08.014 – volume: 88 start-page: 152 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib131 article-title: Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2018.03.049 – volume: 137 start-page: 165 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib25 article-title: Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.01.063 – volume: 201 start-page: 121 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib53 article-title: Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.096 – volume: 128 start-page: 102 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib40 article-title: Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A publication-title: Water Res. doi: 10.1016/j.watres.2017.09.047 – volume: 137 start-page: 965 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib27 article-title: Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.205 – volume: 212 start-page: 318 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib72 article-title: Biochar-based nano-composites for the decontamination of wastewater: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.093 – volume: 45 start-page: 359 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib37 article-title: A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.01.050 – volume: 232 start-page: 8 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib118 article-title: Biochar amendment improves crop production in problem soils: a review publication-title: J. Environ. Manag. – volume: 25 start-page: 25799 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib20 article-title: Phosphorus sorption capacity of biochars varies with biochar type and salinity level publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-018-1368-9 – volume: 246 start-page: 254 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib95 article-title: A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.163 – volume: 145 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib44 article-title: Aluminum-impregnated biochar for adsorption of arsenic(V) in urban stormwater runoff publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0001503 – volume: 5 start-page: 953 year: 2014 ident: 10.1016/j.chemosphere.2020.126539_bib24 article-title: Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties publication-title: Solid Earth doi: 10.5194/se-5-953-2014 – volume: 63 start-page: 312 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib100 article-title: High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2016.03.021 – volume: 628–629 start-page: 1139 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib91 article-title: H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.137 – volume: 245 start-page: 266 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib137 article-title: Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.178 – volume: 104 start-page: 328 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib57 article-title: A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.030 – volume: 198 start-page: 55 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib43 article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.129 – volume: 385 start-page: 123842 year: 2020 ident: 10.1016/j.chemosphere.2020.126539_bib94 article-title: Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123842 – volume: 210 start-page: 26 year: 2012 ident: 10.1016/j.chemosphere.2020.126539_bib124 article-title: Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.08.052 – volume: 232 start-page: 204 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib136 article-title: Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.01.074 – volume: 123 start-page: 25 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib36 article-title: Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2019.01.014 – volume: 249 start-page: 57 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib71 article-title: Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.10.004 – volume: 175 start-page: 391 year: 2015 ident: 10.1016/j.chemosphere.2020.126539_bib90 article-title: Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.104 – volume: 273 start-page: 8 year: 2019 ident: 10.1016/j.chemosphere.2020.126539_bib10 article-title: Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.11.013 – volume: 214 start-page: 836 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib3 article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.057 – volume: 119 start-page: 52 year: 2016 ident: 10.1016/j.chemosphere.2020.126539_bib7 article-title: Pyrolysis of crop residues in a mobile bench-scale pyrolyser: product characterization and environmental performance publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2016.03.018 – start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2020.126539_bib114 article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse publication-title: Environ. Sci. Pollut. Control Ser. – volume: 25 start-page: 25659 year: 2018 ident: 10.1016/j.chemosphere.2020.126539_bib115 article-title: Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-017-8849-0 |
SSID | ssj0001659 |
Score | 2.716884 |
SecondaryResourceType | review_article |
Snippet | Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126539 |
SubjectTerms | adsorbents adsorption batteries biochar carbon Carbonaceous adsorbents cost effectiveness dyes Engineered biochar feedstocks industrial wastewater manufacturing metals Modification methods moieties municipal wastewater nutrients pollutants Production technologies soil remediation stormwater surface area toxicity Wastewater treatment |
Title | Biochar technology in wastewater treatment: A critical review |
URI | https://dx.doi.org/10.1016/j.chemosphere.2020.126539 https://www.ncbi.nlm.nih.gov/pubmed/32220719 https://www.proquest.com/docview/2384215803 https://www.proquest.com/docview/2400496914 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6K4uMiWl_1USJ4Xd3uJtmNeClFqYqeLHgLm2wWKroVWxEv_nZn9tHqoSJ4zJKB7DfD5EsyD4DjWCU28zPjWRsleEBx3ItdR3hOCJk4PHMZS4nCt3eyP-DXD-KhAb06F4bCKivfX_r0wltXX04rNE9fhkPK8SU2ggSisNOAKn5yHpGVn3zOwjw6UpQUmAuPZi_D0SzGC3F5Ho0pf58qZgZUa4FKtc7bo-Zx0GIvulyHtYpEsm65zg1ouLwJK726d1sTli6KYtQfm0C3uJRZxSbTO3Q2zNl7MqZbMwSVTUPNz1iX2arzAStTWrZgcHlx3-t7VcsEz-KvT7zUN8pI30VCRtJwK20USj_NbCKs48baWEZOchmYRGYch0Hmq9TaDGVEwONwGxbyUe52gaVIXFI_DY0fBdyEVjk8ShvkV0lgnMpUC-IaJG2reuLU1uJJ14Fjj_obvprw1SW-LQimoi9lUY2_CJ3XmtA_LESj8_-L-FGtPY3KoGeRJHejt7FG0sKR-MR--MsccnVKqg5vwU6p-unK6a0KiZra-98C92GVRmVw4QEsTF7f3CESnolpFxbdhsXu1U3_7gvMtQFm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qxcdFfFufEbwu3e4m2Y14KcVS7ePUgrewyWahottiK-K_N9N9qIdKweM-BsI3YfIlmfkG4CYUkU7cRDlaB5HdoBjqhKbBHMMYj4zdcymNhcL9Ae-M6OMTe6pAq6iFwbTKPPZnMX0RrfM39RzN-nQ8xhpfZCOWQCzmqeevwTqqU7EqrDcfup1BGZAbnGUsmDIHDTbh-jvNy0LzOplhCT-KZnoot4BqrcuWqWU0dLEctXdhJ-eRpJkNdQ8qJt2HrVbRvm0fNu4XetSfB4AHuVhcReblMToZp-QjmuHBmcWVlNnmt6RJdN78gGRVLYcwat8PWx0n75rgaBrwuRO7SijumoDxgCuquQ587saJjpg2VGkd8sBwyj0V8YTaRy9xRax1Ym2YR0P_CKrpJDUnQGLLXWI39pUbeFT5Whi7m1aWYkWeMiIRNQgLkKTOJcWxs8WLLHLHnuUPfCXiKzN8a-CVptNMV2MVo7vCE_LXJJE2_q9ifl14T1pn4M1IlJrJ-0xa3kIt9wld_49_MNoJLhq0BseZ68uR43WV5Wri9H8DvIKtzrDfk72HQfcMtvFLlmt4DtX527u5sPxnri7z-f0Fl04EFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+technology+in+wastewater+treatment%3A+A+critical+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Xiang%2C+Wei&rft.au=Zhang%2C+Xueyang&rft.au=Chen%2C+Jianjun&rft.au=Zou%2C+Weixin&rft.date=2020-08-01&rft.issn=0045-6535&rft.volume=252&rft.spage=126539&rft_id=info:doi/10.1016%2Fj.chemosphere.2020.126539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2020_126539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |