State predictive information bottleneck

The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states,...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 154; no. 13; pp. 134111 - 134121
Main Authors Wang, Dedi, Tiwary, Pratyush
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 07.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations.
AbstractList The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations.The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations.
The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations.
Author Tiwary, Pratyush
Wang, Dedi
Author_xml – sequence: 1
  givenname: Dedi
  surname: Wang
  fullname: Wang, Dedi
  organization: Biophysics Program and Institute for Physical Science and Technology, University of Maryland
– sequence: 2
  givenname: Pratyush
  surname: Tiwary
  fullname: Tiwary, Pratyush
  organization: Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33832235$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1773945$$D View this record in Osti.gov
BookMark eNp90UFPFDEUB_DGYGBBD34Bs5GDSDLw3nTaaY-GCJqQcEDPTbd9E4uz07XtkvDtrewuJmg89fJ7_7z-3yHbm-JEjL1BOEOQ_FycAXCFWr1gMwSlm15q2GMzgBYbLUEesMOc7wAA-7bbZwecK962XMzY-9tiC81XiXxwJdzTPExDTEtbQpzmi1jKSBO5H6_Yy8GOmV5v3yP27fLT14vPzfXN1ZeLj9eN63pZGqd97wYQQnjb2sFbbon7TiKiRqnQoSbvuFw4VKrTBBoULLTgVlM1nh-xd5vcmEsw2YVC7ruLU92hGOx7rjtR0ckGrVL8uaZczDJkR-NoJ4rrbFqB2HJVG6n0-Bm9i-s01S9UBar2JLuuqrdbtV4syZtVCkubHsyupwrON8ClmHOiwdTNHjsqyYbRIJjflzDCbC9RJz48m9iF_suebmzepT7h-5j-QLPyw__w38m_AEQ8oGc
CODEN JCPSA6
CitedBy_id crossref_primary_10_1021_acs_jctc_4c00919
crossref_primary_10_1021_acs_jctc_2c00058
crossref_primary_10_1073_pnas_2408742121
crossref_primary_10_1039_D1SC01050F
crossref_primary_10_1146_annurev_physchem_083122_125941
crossref_primary_10_1016_j_cossms_2023_101093
crossref_primary_10_1021_acs_jctc_1c00809
crossref_primary_10_1021_acscentsci_2c00149
crossref_primary_10_1021_acs_jctc_3c01120
crossref_primary_10_1063_5_0095554
crossref_primary_10_1039_D4SC04042B
crossref_primary_10_1073_pnas_2408156121
crossref_primary_10_1021_acs_jpcb_3c08492
crossref_primary_10_1021_acs_jctc_3c00938
crossref_primary_10_1063_5_0244453
crossref_primary_10_1021_acs_jctc_3c00975
crossref_primary_10_1021_acs_jpcb_3c06735
crossref_primary_10_7554_eLife_99702_3
crossref_primary_10_1021_acs_jcim_3c00643
crossref_primary_10_1016_j_acha_2023_01_001
crossref_primary_10_1021_acs_jctc_4c01141
crossref_primary_10_1063_5_0191014
crossref_primary_10_1103_PhysRevLett_128_170602
crossref_primary_10_1021_acs_jctc_3c01025
crossref_primary_10_1039_D4DD00315B
crossref_primary_10_1063_5_0087310
crossref_primary_10_1021_acs_jctc_4c00764
crossref_primary_10_1021_acs_jctc_4c00123
crossref_primary_10_1021_acs_jctc_4c00449
crossref_primary_10_3390_ijms24097747
crossref_primary_10_1063_5_0149207
crossref_primary_10_1021_acs_jctc_4c00249
crossref_primary_10_1021_acs_jctc_4c01139
crossref_primary_10_1063_5_0189429
crossref_primary_10_1021_acs_jpcb_1c05717
crossref_primary_10_1063_5_0102075
crossref_primary_10_1021_acs_jctc_1c00143
crossref_primary_10_1063_5_0084209
crossref_primary_10_1063_5_0245177
crossref_primary_10_1073_pnas_2216099120
crossref_primary_10_1021_acs_jpcb_2c01782
crossref_primary_10_1021_acs_jpcb_2c02232
crossref_primary_10_1021_acs_jctc_3c00448
crossref_primary_10_1021_acs_jctc_2c00110
crossref_primary_10_1021_acs_biomac_1c01436
crossref_primary_10_1021_acs_jctc_3c00923
crossref_primary_10_1021_acs_jpcb_1c09454
crossref_primary_10_1063_5_0176078
crossref_primary_10_1021_acs_jctc_3c01211
crossref_primary_10_1021_acs_jcim_2c01634
crossref_primary_10_1021_acs_jctc_3c00290
crossref_primary_10_1021_acs_jctc_4c00454
crossref_primary_10_1063_5_0086079
crossref_primary_10_1063_5_0143234
crossref_primary_10_1063_5_0203346
crossref_primary_10_1063_5_0241122
crossref_primary_10_1021_acs_jctc_3c00318
crossref_primary_10_1038_s41524_024_01259_w
crossref_primary_10_1021_acs_jpcb_4c02740
crossref_primary_10_1021_acs_jcim_3c01436
crossref_primary_10_1021_acs_jpcb_3c08304
crossref_primary_10_1021_acs_jctc_4c00503
crossref_primary_10_7554_eLife_99702
crossref_primary_10_1021_acs_jctc_1c01075
crossref_primary_10_1021_acs_jctc_4c00428
crossref_primary_10_1038_s41467_024_51970_x
Cites_doi 10.1063/1.3569857
10.1038/s41467-018-06999-0
10.1038/s42254-020-0153-0
10.1073/pnas.0408098102
10.1103/physreve.97.062412
10.1016/j.cpc.2013.09.018
10.1063/1.3133782
10.1016/j.sbi.2008.01.008
10.1146/annurev-physchem-040215-112215
10.1073/pnas.1600917113
10.1021/acs.jpcb.7b11800
10.1063/1.475562
10.1016/j.sbi.2019.12.016
10.1021/jp045546c
10.1146/annurev.physchem.53.082301.113146
10.1109/tpami.2013.50
10.1016/0010-4655(95)00042-e
10.1103/physreve.75.056707
10.1021/jp984837g
10.1007/978-3-0348-9185-1_10
10.1021/jp037421y
10.1021/acs.jpcb.5b09344
10.1063/1.5063730
10.1063/1.481148
10.1016/j.softx.2015.06.001
10.1137/070696325
10.1021/acs.jpcc.6b00443
10.1016/j.acha.2005.07.004
10.1063/5.0009066
10.1063/1.2408420
10.1137/110858616
10.1063/1.2234477
10.1038/s41467-019-11405-4
10.1021/ja207470h
10.1063/1.5025487
10.1073/pnas.100127697
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
OTOTI
DOI 10.1063/5.0038198
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Technology Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 1773945
33832235
10_1063_5_0038198
jcp
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-SC0021009
  funderid: https://doi.org/10.13039/100000015
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
0ZJ
ABPTK
AGIHO
OTOTI
UE8
ZHY
ID FETCH-LOGICAL-c476t-c9d7cf0555da2afda3ae3d4611191681c19edc36bc18849e09080b953a9e111d3
ISSN 0021-9606
1089-7690
IngestDate Fri May 19 00:35:27 EDT 2023
Fri Jul 11 11:57:11 EDT 2025
Mon Jun 30 04:39:22 EDT 2025
Wed Feb 19 02:28:33 EST 2025
Tue Jul 01 00:27:50 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Thu Jun 23 13:36:48 EDT 2022
Fri Jun 21 00:13:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Published under license by AIP Publishing.
0021-9606/2021/154(13)/134111/11/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c476t-c9d7cf0555da2afda3ae3d4611191681c19edc36bc18849e09080b953a9e111d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0021009
USDOE
ORCID 0000-0002-2412-6922
0000-0002-7524-5809
0000000224126922
0000000275245809
PMID 33832235
PQID 2508690644
PQPubID 2050685
PageCount 11
ParticipantIDs crossref_citationtrail_10_1063_5_0038198
osti_scitechconnect_1773945
scitation_primary_10_1063_5_0038198
pubmed_primary_33832235
crossref_primary_10_1063_5_0038198
proquest_miscellaneous_2511238819
proquest_journals_2508690644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-07
PublicationDateYYYYMMDD 2021-04-07
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Noé, Fischer (c32) 2008; 18
Hernandez, Wayment-Steele, Sultan, Husic, Pande (c19) 2018; 97
Alemi, Poole, Fischer, Dillon, Saurus, Murphy (c27) 2018
Roy, Baer, Mundy, Schenter (c6) 2016; 120
Bussi, Donadio, Parrinello (c41) 2007; 126
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (c39) 2015; 1-2
Geissler, Dellago, Chandler (c4) 1999; 103
Tiwary, Berne (c18) 2016; 113
Bolhuis, Dellago, Chandler (c2) 2000; 97
Tribello, Bonomi, Branduardi, Camilloni, Bussi (c40) 2014; 185
Pluharova, Baer, Schenter, Jungwirth, Mundy (c5) 2016; 120
Peters (c11) 2016; 67
Wang, Lamim Ribeiro, Tiwary (c1) 2020; 61
Wales (c33) 2009; 130
Bussi, Parrinello (c37) 2007; 75
Ma, Dinner (c9) 2005; 109
Rohrdanz, Zheng, Maggioni, Clementi (c14) 2011; 134
Mardt, Pasquali, Wu, Noé (c17) 2018; 9
Bussi, Laio (c44) 2020; 2
Berendsen, van der Spoel, van Drunen (c38) 1995; 91
Bolhuis, Chandler, Dellago, Geissler (c3) 2002; 53
Dellago, Bolhuis, Csajka, Chandler (c7) 1998; 108
Noé, Nüske (c15) 2013; 11
Ribeiro, Bravo, Wang, Tiwary (c20) 2018; 149
Swope, Pitera, Suits (c31) 2004; 108
Shannon (c26) 1959; 4
Coifman, Kevrekidis, Lafon, Maggioni, Nadler (c13) 2008; 7
Wang, Ribeiro, Tiwary (c21) 2019; 10
Nadler, Lafon, Coifman, Kevrekidis (c12) 2006; 21
Espinosa-Garcia, Corchado (c16) 2000; 112
Lane, Bowman, Beauchamp, Voelz, Pande (c34) 2011; 133
Best, Hummer (c8) 2005; 102
Thiede, Giannakis, Dinner, Weare (c35) 2019; 150
Biswas, Lickert, Stock (c36) 2018; 122
Mori, Okazaki, Mori, Kim, Matubayasi (c43) 2020; 153
Peters, Trout (c10) 2006; 125
Bengio, Courville, Vincent (c45) 2013; 35
(2023080522153875400_c41) 2007; 126
(2023080522153875400_c37) 2007; 75
(2023080522153875400_c43) 2020; 153
(2023080522153875400_c12) 2006; 21
(2023080522153875400_c35) 2019; 150
(2023080522153875400_c14) 2011; 134
(2023080522153875400_c4) 1999; 103
(2023080522153875400_c23) 2016
(2023080522153875400_c33) 2009; 130
(2023080522153875400_c15) 2013; 11
(2023080522153875400_c28) 2018
(2023080522153875400_c24) 2000
(2023080522153875400_c19) 2018; 97
(2023080522153875400_c34) 2011; 133
(2023080522153875400_c11) 2016; 67
(2023080522153875400_c39) 2015; 1-2
(2023080522153875400_c17) 2018; 9
(2023080522153875400_c30) 1996
(2023080522153875400_c13) 2008; 7
(2023080522153875400_c45) 2013; 35
(2023080522153875400_c1) 2020; 61
(2023080522153875400_c32) 2008; 18
(2023080522153875400_c26) 1959; 4
(2023080522153875400_c44) 2020; 2
(2023080522153875400_c20) 2018; 149
(2023080522153875400_c29) 2017
(2023080522153875400_c3) 2002; 53
(2023080522153875400_c38) 1995; 91
(2023080522153875400_c9) 2005; 109
(2023080522153875400_c40) 2014; 185
(2023080522153875400_c6) 2016; 120
(2023080522153875400_c7) 1998; 108
(2023080522153875400_c16) 2000; 112
(2023080522153875400_c18) 2016; 113
(2023080522153875400_c27) 2018
(2023080522153875400_c5) 2016; 120
(2023080522153875400_c10) 2006; 125
(2023080522153875400_c21) 2019; 10
(2023080522153875400_c22) 2013
(2023080522153875400_c25) 2015
(2023080522153875400_c31) 2004; 108
(2023080522153875400_c2) 2000; 97
(2023080522153875400_c36) 2018; 122
(2023080522153875400_c8) 2005; 102
(2023080522153875400_c42) 2014
References_xml – volume: 97
  start-page: 062412
  year: 2018
  ident: c19
  publication-title: Phys. Rev. E
– volume: 108
  start-page: 6571
  year: 2004
  ident: c31
  publication-title: J. Phys. Chem. B
– volume: 130
  start-page: 204111
  year: 2009
  ident: c33
  publication-title: J. Chem. Phys.
– volume: 1-2
  start-page: 19
  year: 2015
  ident: c39
  publication-title: SoftwareX
– volume: 102
  start-page: 6732
  year: 2005
  ident: c8
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 125
  start-page: 054108
  year: 2006
  ident: c10
  publication-title: J. Chem. Phys.
– volume: 122
  start-page: 5508
  year: 2018
  ident: c36
  publication-title: J. Phys. Chem. B
– volume: 120
  start-page: 7597
  year: 2016
  ident: c6
  publication-title: J. Phys. Chem. C
– volume: 153
  start-page: 054115
  year: 2020
  ident: c43
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 1749
  year: 2016
  ident: c5
  publication-title: J. Phys. Chem. B
– volume: 21
  start-page: 113
  year: 2006
  ident: c12
  publication-title: Appl. Comput. Harmonic Anal.
– volume: 4
  start-page: 1
  year: 1959
  ident: c26
  publication-title: IRE Natl. Conv. Rec.
– volume: 109
  start-page: 6769
  year: 2005
  ident: c9
  publication-title: J. Phys. Chem. B
– volume: 97
  start-page: 5877
  year: 2000
  ident: c2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 35
  start-page: 1798
  year: 2013
  ident: c45
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 113
  start-page: 2839
  year: 2016
  ident: c18
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 108
  start-page: 1964
  year: 1998
  ident: c7
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 5731
  year: 2000
  ident: c16
  publication-title: J. Chem. Phys.
– volume: 185
  start-page: 604
  year: 2014
  ident: c40
  publication-title: Comput. Phys. Commun.
– volume: 53
  start-page: 291
  year: 2002
  ident: c3
  publication-title: Adv. Chem. Phys.
– volume: 126
  start-page: 014101
  year: 2007
  ident: c41
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 635
  year: 2013
  ident: c15
  publication-title: Multiscale Model. Simul.
– volume: 91
  start-page: 43
  year: 1995
  ident: c38
  publication-title: Comput. Phys. Commun.
– volume: 103
  start-page: 3706
  year: 1999
  ident: c4
  publication-title: J. Phys. Chem. B
– volume: 133
  start-page: 18413
  year: 2011
  ident: c34
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 139
  year: 2020
  ident: c1
  publication-title: Curr. Opin. Struct. Biol.
– volume: 150
  start-page: 244111
  year: 2019
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 842
  year: 2008
  ident: c13
  publication-title: Multiscale Model. Simul.
– volume: 10
  start-page: 3573
  year: 2019
  ident: c21
  publication-title: Nat. Commun.
– volume: 149
  start-page: 072301
  year: 2018
  ident: c20
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 154
  year: 2008
  ident: c32
  publication-title: Curr. Opin. Struct. Biol.
– volume: 9
  start-page: 4443
  year: 2018
  ident: c17
  publication-title: Nat. Commun.
– volume: 2
  start-page: 200
  year: 2020
  ident: c44
  publication-title: Nat. Rev. Phys.
– volume: 134
  start-page: 124116
  year: 2011
  ident: c14
  publication-title: J. Chem. Phys.
– volume: 67
  start-page: 669
  year: 2016
  ident: c11
  publication-title: Annu. Rev. Phys. Chem.
– year: 2018
  ident: c27
  publication-title: An information-theoretic analysis of deep latent-variable models
– volume: 75
  start-page: 056707
  year: 2007
  ident: c37
  publication-title: Phys. Rev. E
– volume: 134
  start-page: 124116
  year: 2011
  ident: 2023080522153875400_c14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3569857
– volume: 4
  start-page: 1
  year: 1959
  ident: 2023080522153875400_c26
  publication-title: IRE Natl. Conv. Rec.
– volume: 9
  start-page: 4443
  year: 2018
  ident: 2023080522153875400_c17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06999-0
– volume: 2
  start-page: 200
  year: 2020
  ident: 2023080522153875400_c44
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0153-0
– volume: 102
  start-page: 6732
  year: 2005
  ident: 2023080522153875400_c8
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0408098102
– volume: 97
  start-page: 062412
  year: 2018
  ident: 2023080522153875400_c19
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.97.062412
– volume: 185
  start-page: 604
  year: 2014
  ident: 2023080522153875400_c40
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.09.018
– volume: 130
  start-page: 204111
  year: 2009
  ident: 2023080522153875400_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3133782
– year: 2018
  ident: 2023080522153875400_c27
  publication-title: An information-theoretic analysis of deep latent-variable models
– year: 2018
  ident: 2023080522153875400_c28
– volume: 18
  start-page: 154
  year: 2008
  ident: 2023080522153875400_c32
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2008.01.008
– volume: 67
  start-page: 669
  year: 2016
  ident: 2023080522153875400_c11
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040215-112215
– volume: 113
  start-page: 2839
  year: 2016
  ident: 2023080522153875400_c18
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1600917113
– volume: 122
  start-page: 5508
  year: 2018
  ident: 2023080522153875400_c36
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b11800
– volume: 108
  start-page: 1964
  year: 1998
  ident: 2023080522153875400_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475562
– volume: 61
  start-page: 139
  year: 2020
  ident: 2023080522153875400_c1
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.12.016
– year: 2013
  ident: 2023080522153875400_c22
– volume: 109
  start-page: 6769
  year: 2005
  ident: 2023080522153875400_c9
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp045546c
– volume: 53
  start-page: 291
  year: 2002
  ident: 2023080522153875400_c3
  publication-title: Adv. Chem. Phys.
  doi: 10.1146/annurev.physchem.53.082301.113146
– volume: 35
  start-page: 1798
  year: 2013
  ident: 2023080522153875400_c45
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2013.50
– volume-title: Algebraic Coding Theory
  year: 2015
  ident: 2023080522153875400_c25
– volume: 91
  start-page: 43
  year: 1995
  ident: 2023080522153875400_c38
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00042-e
– year: 2016
  ident: 2023080522153875400_c23
– volume: 75
  start-page: 056707
  year: 2007
  ident: 2023080522153875400_c37
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.75.056707
– volume: 103
  start-page: 3706
  year: 1999
  ident: 2023080522153875400_c4
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp984837g
– start-page: 355
  volume-title: Functional Analysis
  year: 1996
  ident: 2023080522153875400_c30
  article-title: Spectral decomposition of compact self adjoint operators. Analytic functions of operators
  doi: 10.1007/978-3-0348-9185-1_10
– volume: 108
  start-page: 6571
  year: 2004
  ident: 2023080522153875400_c31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037421y
– volume: 120
  start-page: 1749
  year: 2016
  ident: 2023080522153875400_c5
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b09344
– volume: 150
  start-page: 244111
  year: 2019
  ident: 2023080522153875400_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5063730
– year: 2014
  ident: 2023080522153875400_c42
– volume: 112
  start-page: 5731
  year: 2000
  ident: 2023080522153875400_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481148
– year: 2000
  ident: 2023080522153875400_c24
– year: 2017
  ident: 2023080522153875400_c29
– volume: 1-2
  start-page: 19
  year: 2015
  ident: 2023080522153875400_c39
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 7
  start-page: 842
  year: 2008
  ident: 2023080522153875400_c13
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/070696325
– volume: 120
  start-page: 7597
  year: 2016
  ident: 2023080522153875400_c6
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00443
– volume: 21
  start-page: 113
  year: 2006
  ident: 2023080522153875400_c12
  publication-title: Appl. Comput. Harmonic Anal.
  doi: 10.1016/j.acha.2005.07.004
– volume: 153
  start-page: 054115
  year: 2020
  ident: 2023080522153875400_c43
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0009066
– volume: 126
  start-page: 014101
  year: 2007
  ident: 2023080522153875400_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 11
  start-page: 635
  year: 2013
  ident: 2023080522153875400_c15
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/110858616
– volume: 125
  start-page: 054108
  year: 2006
  ident: 2023080522153875400_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2234477
– volume: 10
  start-page: 3573
  year: 2019
  ident: 2023080522153875400_c21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11405-4
– volume: 133
  start-page: 18413
  year: 2011
  ident: 2023080522153875400_c34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207470h
– volume: 149
  start-page: 072301
  year: 2018
  ident: 2023080522153875400_c20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5025487
– volume: 97
  start-page: 5877
  year: 2000
  ident: 2023080522153875400_c2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.100127697
SSID ssj0001724
Score 2.6230416
Snippet The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge...
SourceID osti
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134111
SubjectTerms Algorithms
Artificial intelligence
Deep learning
Machine learning
Metastable state
Molecular dynamics
Physics
Simulation
Trajectory analysis
Title State predictive information bottleneck
URI http://dx.doi.org/10.1063/5.0038198
https://www.ncbi.nlm.nih.gov/pubmed/33832235
https://www.proquest.com/docview/2508690644
https://www.proquest.com/docview/2511238819
https://www.osti.gov/biblio/1773945
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB_0ilQ_iNbX2irrAxTKanPZ3Ww-lj4ocq0F7_C-hd0kSytyV9o9Rf96J5vHbmEp6pdw7A3Z7PySyS_JZAbgLZFIYmXFkpJplqQSxxzPsEiLuuIVWkfZOtEcn-RHs_TTPJt3KS_b2yVN9UH-HrxX8j-o4jPE1dyS_QdkQ6X4AH8jvlgiwlj-FcYtUzTX_NV5a7a2XRjUFlOTIwynFO2i3n_rukWPhEofL8DucASC_dVtI-9j1WFxf_7TuNidYp_5tbo66-8XjEnrZsI6hP1B0DVnhNPeS7yXP0nM6sbOE9Y47hQ8YblN7xmsp40B7bsJHTTLyINQl2b3yiwQi27u8eftJ5_F4WwyEdOD-fQ2rI2R86PRWtvdP558CRMrci0XVNs2zQeKyunHUPU1ejFa4icOLR3uwToSDOvr0KMT0wdw30EQ71pQH8ItvdiA9T2ffm8D7jhlPYJ3LcxxB3PcgznuYH4Ms8OD6d5R4vJbJDJleZNIrpisTcQ1VY7LWpW01FSlOTFB9_KCSMK1kjSvJCmKlOsdjvS-4hktuUYZRZ_AaLFc6GcQS6IYSktKK-ToqigpLlU10TVTWlFNInjv1SL8h5scJN9F64SQU5EJp8EIXgfRCxvxZEho0-hWGC1qeSaNU5ZsBGGM8jSLYMurXLjhciWQa5vsZ8i_I3gV_kalmhOqcqGXKyOD9J8W-IYInlqoQhvMXgpyWaz8TcDupgYOSP1YXnYS4kLVz29u6Cbc7UbQFoyay5V-gRy0qV66vvkHTe2FQA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+predictive+information+bottleneck&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Wang%2C+Dedi&rft.au=Tiwary+Pratyush&rft.date=2021-04-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=154&rft.issue=13&rft_id=info:doi/10.1063%2F5.0038198&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon