State predictive information bottleneck
The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states,...
Saved in:
Published in | The Journal of chemical physics Vol. 154; no. 13; pp. 134111 - 134121 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations. |
---|---|
AbstractList | The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations.The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations. The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories. We demonstrate analytically and numerically how the RC learnt in this approach is connected to the committor in chemical physics and can be used to accurately identify transition states. A crucial hyperparameter in this approach is the time delay or how far into the future the algorithm should make predictions about. Through careful comparisons for benchmark systems, we demonstrate that this hyperparameter choice gives useful control over how coarse-grained we want the metastable state classification of the system to be. We thus believe that this work represents a step forward in systematic application of deep learning based ideas to molecular simulations. |
Author | Tiwary, Pratyush Wang, Dedi |
Author_xml | – sequence: 1 givenname: Dedi surname: Wang fullname: Wang, Dedi organization: Biophysics Program and Institute for Physical Science and Technology, University of Maryland – sequence: 2 givenname: Pratyush surname: Tiwary fullname: Tiwary, Pratyush organization: Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33832235$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1773945$$D View this record in Osti.gov |
BookMark | eNp90UFPFDEUB_DGYGBBD34Bs5GDSDLw3nTaaY-GCJqQcEDPTbd9E4uz07XtkvDtrewuJmg89fJ7_7z-3yHbm-JEjL1BOEOQ_FycAXCFWr1gMwSlm15q2GMzgBYbLUEesMOc7wAA-7bbZwecK962XMzY-9tiC81XiXxwJdzTPExDTEtbQpzmi1jKSBO5H6_Yy8GOmV5v3yP27fLT14vPzfXN1ZeLj9eN63pZGqd97wYQQnjb2sFbbon7TiKiRqnQoSbvuFw4VKrTBBoULLTgVlM1nh-xd5vcmEsw2YVC7ruLU92hGOx7rjtR0ckGrVL8uaZczDJkR-NoJ4rrbFqB2HJVG6n0-Bm9i-s01S9UBar2JLuuqrdbtV4syZtVCkubHsyupwrON8ClmHOiwdTNHjsqyYbRIJjflzDCbC9RJz48m9iF_suebmzepT7h-5j-QLPyw__w38m_AEQ8oGc |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jctc_4c00919 crossref_primary_10_1021_acs_jctc_2c00058 crossref_primary_10_1073_pnas_2408742121 crossref_primary_10_1039_D1SC01050F crossref_primary_10_1146_annurev_physchem_083122_125941 crossref_primary_10_1016_j_cossms_2023_101093 crossref_primary_10_1021_acs_jctc_1c00809 crossref_primary_10_1021_acscentsci_2c00149 crossref_primary_10_1021_acs_jctc_3c01120 crossref_primary_10_1063_5_0095554 crossref_primary_10_1039_D4SC04042B crossref_primary_10_1073_pnas_2408156121 crossref_primary_10_1021_acs_jpcb_3c08492 crossref_primary_10_1021_acs_jctc_3c00938 crossref_primary_10_1063_5_0244453 crossref_primary_10_1021_acs_jctc_3c00975 crossref_primary_10_1021_acs_jpcb_3c06735 crossref_primary_10_7554_eLife_99702_3 crossref_primary_10_1021_acs_jcim_3c00643 crossref_primary_10_1016_j_acha_2023_01_001 crossref_primary_10_1021_acs_jctc_4c01141 crossref_primary_10_1063_5_0191014 crossref_primary_10_1103_PhysRevLett_128_170602 crossref_primary_10_1021_acs_jctc_3c01025 crossref_primary_10_1039_D4DD00315B crossref_primary_10_1063_5_0087310 crossref_primary_10_1021_acs_jctc_4c00764 crossref_primary_10_1021_acs_jctc_4c00123 crossref_primary_10_1021_acs_jctc_4c00449 crossref_primary_10_3390_ijms24097747 crossref_primary_10_1063_5_0149207 crossref_primary_10_1021_acs_jctc_4c00249 crossref_primary_10_1021_acs_jctc_4c01139 crossref_primary_10_1063_5_0189429 crossref_primary_10_1021_acs_jpcb_1c05717 crossref_primary_10_1063_5_0102075 crossref_primary_10_1021_acs_jctc_1c00143 crossref_primary_10_1063_5_0084209 crossref_primary_10_1063_5_0245177 crossref_primary_10_1073_pnas_2216099120 crossref_primary_10_1021_acs_jpcb_2c01782 crossref_primary_10_1021_acs_jpcb_2c02232 crossref_primary_10_1021_acs_jctc_3c00448 crossref_primary_10_1021_acs_jctc_2c00110 crossref_primary_10_1021_acs_biomac_1c01436 crossref_primary_10_1021_acs_jctc_3c00923 crossref_primary_10_1021_acs_jpcb_1c09454 crossref_primary_10_1063_5_0176078 crossref_primary_10_1021_acs_jctc_3c01211 crossref_primary_10_1021_acs_jcim_2c01634 crossref_primary_10_1021_acs_jctc_3c00290 crossref_primary_10_1021_acs_jctc_4c00454 crossref_primary_10_1063_5_0086079 crossref_primary_10_1063_5_0143234 crossref_primary_10_1063_5_0203346 crossref_primary_10_1063_5_0241122 crossref_primary_10_1021_acs_jctc_3c00318 crossref_primary_10_1038_s41524_024_01259_w crossref_primary_10_1021_acs_jpcb_4c02740 crossref_primary_10_1021_acs_jcim_3c01436 crossref_primary_10_1021_acs_jpcb_3c08304 crossref_primary_10_1021_acs_jctc_4c00503 crossref_primary_10_7554_eLife_99702 crossref_primary_10_1021_acs_jctc_1c01075 crossref_primary_10_1021_acs_jctc_4c00428 crossref_primary_10_1038_s41467_024_51970_x |
Cites_doi | 10.1063/1.3569857 10.1038/s41467-018-06999-0 10.1038/s42254-020-0153-0 10.1073/pnas.0408098102 10.1103/physreve.97.062412 10.1016/j.cpc.2013.09.018 10.1063/1.3133782 10.1016/j.sbi.2008.01.008 10.1146/annurev-physchem-040215-112215 10.1073/pnas.1600917113 10.1021/acs.jpcb.7b11800 10.1063/1.475562 10.1016/j.sbi.2019.12.016 10.1021/jp045546c 10.1146/annurev.physchem.53.082301.113146 10.1109/tpami.2013.50 10.1016/0010-4655(95)00042-e 10.1103/physreve.75.056707 10.1021/jp984837g 10.1007/978-3-0348-9185-1_10 10.1021/jp037421y 10.1021/acs.jpcb.5b09344 10.1063/1.5063730 10.1063/1.481148 10.1016/j.softx.2015.06.001 10.1137/070696325 10.1021/acs.jpcc.6b00443 10.1016/j.acha.2005.07.004 10.1063/5.0009066 10.1063/1.2408420 10.1137/110858616 10.1063/1.2234477 10.1038/s41467-019-11405-4 10.1021/ja207470h 10.1063/1.5025487 10.1073/pnas.100127697 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OTOTI |
DOI | 10.1063/5.0038198 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 1773945 33832235 10_1063_5_0038198 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Energy grantid: DE-SC0021009 funderid: https://doi.org/10.13039/100000015 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 0ZJ ABPTK AGIHO OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c476t-c9d7cf0555da2afda3ae3d4611191681c19edc36bc18849e09080b953a9e111d3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri May 19 00:35:27 EDT 2023 Fri Jul 11 11:57:11 EDT 2025 Mon Jun 30 04:39:22 EDT 2025 Wed Feb 19 02:28:33 EST 2025 Tue Jul 01 00:27:50 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Thu Jun 23 13:36:48 EDT 2022 Fri Jun 21 00:13:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | Published under license by AIP Publishing. 0021-9606/2021/154(13)/134111/11/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c476t-c9d7cf0555da2afda3ae3d4611191681c19edc36bc18849e09080b953a9e111d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0021009 USDOE |
ORCID | 0000-0002-2412-6922 0000-0002-7524-5809 0000000224126922 0000000275245809 |
PMID | 33832235 |
PQID | 2508690644 |
PQPubID | 2050685 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0038198 osti_scitechconnect_1773945 scitation_primary_10_1063_5_0038198 pubmed_primary_33832235 crossref_primary_10_1063_5_0038198 proquest_miscellaneous_2511238819 proquest_journals_2508690644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-07 |
PublicationDateYYYYMMDD | 2021-04-07 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Noé, Fischer (c32) 2008; 18 Hernandez, Wayment-Steele, Sultan, Husic, Pande (c19) 2018; 97 Alemi, Poole, Fischer, Dillon, Saurus, Murphy (c27) 2018 Roy, Baer, Mundy, Schenter (c6) 2016; 120 Bussi, Donadio, Parrinello (c41) 2007; 126 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (c39) 2015; 1-2 Geissler, Dellago, Chandler (c4) 1999; 103 Tiwary, Berne (c18) 2016; 113 Bolhuis, Dellago, Chandler (c2) 2000; 97 Tribello, Bonomi, Branduardi, Camilloni, Bussi (c40) 2014; 185 Pluharova, Baer, Schenter, Jungwirth, Mundy (c5) 2016; 120 Peters (c11) 2016; 67 Wang, Lamim Ribeiro, Tiwary (c1) 2020; 61 Wales (c33) 2009; 130 Bussi, Parrinello (c37) 2007; 75 Ma, Dinner (c9) 2005; 109 Rohrdanz, Zheng, Maggioni, Clementi (c14) 2011; 134 Mardt, Pasquali, Wu, Noé (c17) 2018; 9 Bussi, Laio (c44) 2020; 2 Berendsen, van der Spoel, van Drunen (c38) 1995; 91 Bolhuis, Chandler, Dellago, Geissler (c3) 2002; 53 Dellago, Bolhuis, Csajka, Chandler (c7) 1998; 108 Noé, Nüske (c15) 2013; 11 Ribeiro, Bravo, Wang, Tiwary (c20) 2018; 149 Swope, Pitera, Suits (c31) 2004; 108 Shannon (c26) 1959; 4 Coifman, Kevrekidis, Lafon, Maggioni, Nadler (c13) 2008; 7 Wang, Ribeiro, Tiwary (c21) 2019; 10 Nadler, Lafon, Coifman, Kevrekidis (c12) 2006; 21 Espinosa-Garcia, Corchado (c16) 2000; 112 Lane, Bowman, Beauchamp, Voelz, Pande (c34) 2011; 133 Best, Hummer (c8) 2005; 102 Thiede, Giannakis, Dinner, Weare (c35) 2019; 150 Biswas, Lickert, Stock (c36) 2018; 122 Mori, Okazaki, Mori, Kim, Matubayasi (c43) 2020; 153 Peters, Trout (c10) 2006; 125 Bengio, Courville, Vincent (c45) 2013; 35 (2023080522153875400_c41) 2007; 126 (2023080522153875400_c37) 2007; 75 (2023080522153875400_c43) 2020; 153 (2023080522153875400_c12) 2006; 21 (2023080522153875400_c35) 2019; 150 (2023080522153875400_c14) 2011; 134 (2023080522153875400_c4) 1999; 103 (2023080522153875400_c23) 2016 (2023080522153875400_c33) 2009; 130 (2023080522153875400_c15) 2013; 11 (2023080522153875400_c28) 2018 (2023080522153875400_c24) 2000 (2023080522153875400_c19) 2018; 97 (2023080522153875400_c34) 2011; 133 (2023080522153875400_c11) 2016; 67 (2023080522153875400_c39) 2015; 1-2 (2023080522153875400_c17) 2018; 9 (2023080522153875400_c30) 1996 (2023080522153875400_c13) 2008; 7 (2023080522153875400_c45) 2013; 35 (2023080522153875400_c1) 2020; 61 (2023080522153875400_c32) 2008; 18 (2023080522153875400_c26) 1959; 4 (2023080522153875400_c44) 2020; 2 (2023080522153875400_c20) 2018; 149 (2023080522153875400_c29) 2017 (2023080522153875400_c3) 2002; 53 (2023080522153875400_c38) 1995; 91 (2023080522153875400_c9) 2005; 109 (2023080522153875400_c40) 2014; 185 (2023080522153875400_c6) 2016; 120 (2023080522153875400_c7) 1998; 108 (2023080522153875400_c16) 2000; 112 (2023080522153875400_c18) 2016; 113 (2023080522153875400_c27) 2018 (2023080522153875400_c5) 2016; 120 (2023080522153875400_c10) 2006; 125 (2023080522153875400_c21) 2019; 10 (2023080522153875400_c22) 2013 (2023080522153875400_c25) 2015 (2023080522153875400_c31) 2004; 108 (2023080522153875400_c2) 2000; 97 (2023080522153875400_c36) 2018; 122 (2023080522153875400_c8) 2005; 102 (2023080522153875400_c42) 2014 |
References_xml | – volume: 97 start-page: 062412 year: 2018 ident: c19 publication-title: Phys. Rev. E – volume: 108 start-page: 6571 year: 2004 ident: c31 publication-title: J. Phys. Chem. B – volume: 130 start-page: 204111 year: 2009 ident: c33 publication-title: J. Chem. Phys. – volume: 1-2 start-page: 19 year: 2015 ident: c39 publication-title: SoftwareX – volume: 102 start-page: 6732 year: 2005 ident: c8 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 125 start-page: 054108 year: 2006 ident: c10 publication-title: J. Chem. Phys. – volume: 122 start-page: 5508 year: 2018 ident: c36 publication-title: J. Phys. Chem. B – volume: 120 start-page: 7597 year: 2016 ident: c6 publication-title: J. Phys. Chem. C – volume: 153 start-page: 054115 year: 2020 ident: c43 publication-title: J. Chem. Phys. – volume: 120 start-page: 1749 year: 2016 ident: c5 publication-title: J. Phys. Chem. B – volume: 21 start-page: 113 year: 2006 ident: c12 publication-title: Appl. Comput. Harmonic Anal. – volume: 4 start-page: 1 year: 1959 ident: c26 publication-title: IRE Natl. Conv. Rec. – volume: 109 start-page: 6769 year: 2005 ident: c9 publication-title: J. Phys. Chem. B – volume: 97 start-page: 5877 year: 2000 ident: c2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 35 start-page: 1798 year: 2013 ident: c45 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 113 start-page: 2839 year: 2016 ident: c18 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 108 start-page: 1964 year: 1998 ident: c7 publication-title: J. Chem. Phys. – volume: 112 start-page: 5731 year: 2000 ident: c16 publication-title: J. Chem. Phys. – volume: 185 start-page: 604 year: 2014 ident: c40 publication-title: Comput. Phys. Commun. – volume: 53 start-page: 291 year: 2002 ident: c3 publication-title: Adv. Chem. Phys. – volume: 126 start-page: 014101 year: 2007 ident: c41 publication-title: J. Chem. Phys. – volume: 11 start-page: 635 year: 2013 ident: c15 publication-title: Multiscale Model. Simul. – volume: 91 start-page: 43 year: 1995 ident: c38 publication-title: Comput. Phys. Commun. – volume: 103 start-page: 3706 year: 1999 ident: c4 publication-title: J. Phys. Chem. B – volume: 133 start-page: 18413 year: 2011 ident: c34 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 139 year: 2020 ident: c1 publication-title: Curr. Opin. Struct. Biol. – volume: 150 start-page: 244111 year: 2019 ident: c35 publication-title: J. Chem. Phys. – volume: 7 start-page: 842 year: 2008 ident: c13 publication-title: Multiscale Model. Simul. – volume: 10 start-page: 3573 year: 2019 ident: c21 publication-title: Nat. Commun. – volume: 149 start-page: 072301 year: 2018 ident: c20 publication-title: J. Chem. Phys. – volume: 18 start-page: 154 year: 2008 ident: c32 publication-title: Curr. Opin. Struct. Biol. – volume: 9 start-page: 4443 year: 2018 ident: c17 publication-title: Nat. Commun. – volume: 2 start-page: 200 year: 2020 ident: c44 publication-title: Nat. Rev. Phys. – volume: 134 start-page: 124116 year: 2011 ident: c14 publication-title: J. Chem. Phys. – volume: 67 start-page: 669 year: 2016 ident: c11 publication-title: Annu. Rev. Phys. Chem. – year: 2018 ident: c27 publication-title: An information-theoretic analysis of deep latent-variable models – volume: 75 start-page: 056707 year: 2007 ident: c37 publication-title: Phys. Rev. E – volume: 134 start-page: 124116 year: 2011 ident: 2023080522153875400_c14 publication-title: J. Chem. Phys. doi: 10.1063/1.3569857 – volume: 4 start-page: 1 year: 1959 ident: 2023080522153875400_c26 publication-title: IRE Natl. Conv. Rec. – volume: 9 start-page: 4443 year: 2018 ident: 2023080522153875400_c17 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06999-0 – volume: 2 start-page: 200 year: 2020 ident: 2023080522153875400_c44 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0153-0 – volume: 102 start-page: 6732 year: 2005 ident: 2023080522153875400_c8 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0408098102 – volume: 97 start-page: 062412 year: 2018 ident: 2023080522153875400_c19 publication-title: Phys. Rev. E doi: 10.1103/physreve.97.062412 – volume: 185 start-page: 604 year: 2014 ident: 2023080522153875400_c40 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.09.018 – volume: 130 start-page: 204111 year: 2009 ident: 2023080522153875400_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.3133782 – year: 2018 ident: 2023080522153875400_c27 publication-title: An information-theoretic analysis of deep latent-variable models – year: 2018 ident: 2023080522153875400_c28 – volume: 18 start-page: 154 year: 2008 ident: 2023080522153875400_c32 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.01.008 – volume: 67 start-page: 669 year: 2016 ident: 2023080522153875400_c11 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040215-112215 – volume: 113 start-page: 2839 year: 2016 ident: 2023080522153875400_c18 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1600917113 – volume: 122 start-page: 5508 year: 2018 ident: 2023080522153875400_c36 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b11800 – volume: 108 start-page: 1964 year: 1998 ident: 2023080522153875400_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.475562 – volume: 61 start-page: 139 year: 2020 ident: 2023080522153875400_c1 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.12.016 – year: 2013 ident: 2023080522153875400_c22 – volume: 109 start-page: 6769 year: 2005 ident: 2023080522153875400_c9 publication-title: J. Phys. Chem. B doi: 10.1021/jp045546c – volume: 53 start-page: 291 year: 2002 ident: 2023080522153875400_c3 publication-title: Adv. Chem. Phys. doi: 10.1146/annurev.physchem.53.082301.113146 – volume: 35 start-page: 1798 year: 2013 ident: 2023080522153875400_c45 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2013.50 – volume-title: Algebraic Coding Theory year: 2015 ident: 2023080522153875400_c25 – volume: 91 start-page: 43 year: 1995 ident: 2023080522153875400_c38 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00042-e – year: 2016 ident: 2023080522153875400_c23 – volume: 75 start-page: 056707 year: 2007 ident: 2023080522153875400_c37 publication-title: Phys. Rev. E doi: 10.1103/physreve.75.056707 – volume: 103 start-page: 3706 year: 1999 ident: 2023080522153875400_c4 publication-title: J. Phys. Chem. B doi: 10.1021/jp984837g – start-page: 355 volume-title: Functional Analysis year: 1996 ident: 2023080522153875400_c30 article-title: Spectral decomposition of compact self adjoint operators. Analytic functions of operators doi: 10.1007/978-3-0348-9185-1_10 – volume: 108 start-page: 6571 year: 2004 ident: 2023080522153875400_c31 publication-title: J. Phys. Chem. B doi: 10.1021/jp037421y – volume: 120 start-page: 1749 year: 2016 ident: 2023080522153875400_c5 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b09344 – volume: 150 start-page: 244111 year: 2019 ident: 2023080522153875400_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.5063730 – year: 2014 ident: 2023080522153875400_c42 – volume: 112 start-page: 5731 year: 2000 ident: 2023080522153875400_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.481148 – year: 2000 ident: 2023080522153875400_c24 – year: 2017 ident: 2023080522153875400_c29 – volume: 1-2 start-page: 19 year: 2015 ident: 2023080522153875400_c39 publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 7 start-page: 842 year: 2008 ident: 2023080522153875400_c13 publication-title: Multiscale Model. Simul. doi: 10.1137/070696325 – volume: 120 start-page: 7597 year: 2016 ident: 2023080522153875400_c6 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00443 – volume: 21 start-page: 113 year: 2006 ident: 2023080522153875400_c12 publication-title: Appl. Comput. Harmonic Anal. doi: 10.1016/j.acha.2005.07.004 – volume: 153 start-page: 054115 year: 2020 ident: 2023080522153875400_c43 publication-title: J. Chem. Phys. doi: 10.1063/5.0009066 – volume: 126 start-page: 014101 year: 2007 ident: 2023080522153875400_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 11 start-page: 635 year: 2013 ident: 2023080522153875400_c15 publication-title: Multiscale Model. Simul. doi: 10.1137/110858616 – volume: 125 start-page: 054108 year: 2006 ident: 2023080522153875400_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.2234477 – volume: 10 start-page: 3573 year: 2019 ident: 2023080522153875400_c21 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11405-4 – volume: 133 start-page: 18413 year: 2011 ident: 2023080522153875400_c34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207470h – volume: 149 start-page: 072301 year: 2018 ident: 2023080522153875400_c20 publication-title: J. Chem. Phys. doi: 10.1063/1.5025487 – volume: 97 start-page: 5877 year: 2000 ident: 2023080522153875400_c2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.100127697 |
SSID | ssj0001724 |
Score | 2.6230416 |
Snippet | The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge... |
SourceID | osti proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134111 |
SubjectTerms | Algorithms Artificial intelligence Deep learning Machine learning Metastable state Molecular dynamics Physics Simulation Trajectory analysis |
Title | State predictive information bottleneck |
URI | http://dx.doi.org/10.1063/5.0038198 https://www.ncbi.nlm.nih.gov/pubmed/33832235 https://www.proquest.com/docview/2508690644 https://www.proquest.com/docview/2511238819 https://www.osti.gov/biblio/1773945 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB_0ilQ_iNbX2irrAxTKanPZ3Ww-lj4ocq0F7_C-hd0kSytyV9o9Rf96J5vHbmEp6pdw7A3Z7PySyS_JZAbgLZFIYmXFkpJplqQSxxzPsEiLuuIVWkfZOtEcn-RHs_TTPJt3KS_b2yVN9UH-HrxX8j-o4jPE1dyS_QdkQ6X4AH8jvlgiwlj-FcYtUzTX_NV5a7a2XRjUFlOTIwynFO2i3n_rukWPhEofL8DucASC_dVtI-9j1WFxf_7TuNidYp_5tbo66-8XjEnrZsI6hP1B0DVnhNPeS7yXP0nM6sbOE9Y47hQ8YblN7xmsp40B7bsJHTTLyINQl2b3yiwQi27u8eftJ5_F4WwyEdOD-fQ2rI2R86PRWtvdP558CRMrci0XVNs2zQeKyunHUPU1ejFa4icOLR3uwToSDOvr0KMT0wdw30EQ71pQH8ItvdiA9T2ffm8D7jhlPYJ3LcxxB3PcgznuYH4Ms8OD6d5R4vJbJDJleZNIrpisTcQ1VY7LWpW01FSlOTFB9_KCSMK1kjSvJCmKlOsdjvS-4hktuUYZRZ_AaLFc6GcQS6IYSktKK-ToqigpLlU10TVTWlFNInjv1SL8h5scJN9F64SQU5EJp8EIXgfRCxvxZEho0-hWGC1qeSaNU5ZsBGGM8jSLYMurXLjhciWQa5vsZ8i_I3gV_kalmhOqcqGXKyOD9J8W-IYInlqoQhvMXgpyWaz8TcDupgYOSP1YXnYS4kLVz29u6Cbc7UbQFoyay5V-gRy0qV66vvkHTe2FQA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+predictive+information+bottleneck&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Wang%2C+Dedi&rft.au=Tiwary+Pratyush&rft.date=2021-04-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=154&rft.issue=13&rft_id=info:doi/10.1063%2F5.0038198&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |