Complexity of gradient descent for multiobjective optimization

A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergen...

Full description

Saved in:
Bibliographic Details
Published inOptimization methods & software Vol. 34; no. 5; pp. 949 - 959
Main Authors Fliege, J., Vaz, A. I. F., Vicente, L. N.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.09.2019
Taylor and Francis
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function.
AbstractList Published online: 29 Aug 2018 A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worstcase complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function. Support for A.I.F. Vaz was partially provided by FCT [grant number COMPETE:POCI-01- 0145-FEDER-007043], [grant number UID/CEC/00319/2013], and support for L.N. Vicente was partially provided by FCT [grant number UID/MAT/00324/2013], [grant number P2020 SAICTPAC/0011/2015.]
A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function.
Author Vaz, A. I. F.
Vicente, L. N.
Fliege, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Fliege
  fullname: Fliege, J.
  organization: School of Mathematical Sciences, University of Southampton
– sequence: 2
  givenname: A. I. F.
  surname: Vaz
  fullname: Vaz, A. I. F.
  organization: ALGORITMI Research Center, University of Minho
– sequence: 3
  givenname: L. N.
  surname: Vicente
  fullname: Vicente, L. N.
  email: lnv@mat.uc.pt
  organization: CMUC, Department of Mathematics, University of Coimbra
BookMark eNp9kE1LxDAQhoOs4K76E4SC566TpmnSiyiLX7DgRc9hNk0kS9vUJKuuv96W1aundxiedwaeBZn1vjeEXFBYUpBwRYHzSki5LIDKJeUU6kIekTmFos7LmonZNHOeT9AJWcS4BYCSltWcXK98N7Tmy6V95m32FrBxpk9ZY6Ke0vqQdbs2Ob_ZGp3ch8n8kFznvnHc9Wfk2GIbzflvnpLX-7uX1WO-fn54Wt2uc12KKuWbhvMSGWpRM8s5gxp4jRqlqS0w0VjRUGygYcJoEBuO3Ehg2m7QCFrqip2Sy8PdIfj3nYlJbf0u9ONLVRRSViWrSjlS_EDp4GMMxqohuA7DXlFQkyr1p0pNqtSvqrGXHXpBIw4qmA8XE0ZFZVEoARWfkJsD4vpRSYefPrSNSrhvfbABe-2iYv9_-QEKaX0K
CitedBy_id crossref_primary_10_1016_j_amc_2022_127791
crossref_primary_10_1007_s11081_019_09478_7
crossref_primary_10_1109_TCCN_2022_3222847
crossref_primary_10_1007_s11047_022_09907_0
crossref_primary_10_1080_02331934_2023_2257709
crossref_primary_10_1007_s10589_022_00425_4
crossref_primary_10_1109_JIOT_2021_3113895
crossref_primary_10_1109_OJCOMS_2022_3220782
crossref_primary_10_1109_TVT_2020_2972596
crossref_primary_10_3390_s21227559
crossref_primary_10_1007_s11081_020_09586_9
crossref_primary_10_18359_rcin_6919
crossref_primary_10_1109_TWC_2021_3065029
crossref_primary_10_1007_s10589_020_00260_5
crossref_primary_10_1007_s10957_019_01615_7
crossref_primary_10_1109_TNSE_2022_3169117
crossref_primary_10_1109_JSYST_2020_2976693
crossref_primary_10_1109_ACCESS_2023_3317075
crossref_primary_10_1109_TWC_2023_3243611
crossref_primary_10_1080_10556788_2022_2124989
crossref_primary_10_1109_ACCESS_2020_3016046
crossref_primary_10_1109_LWC_2024_3358371
crossref_primary_10_3390_s21175861
crossref_primary_10_3390_s21237837
crossref_primary_10_1080_03772063_2020_1870876
crossref_primary_10_1016_j_orl_2024_107115
crossref_primary_10_1155_2021_9939805
crossref_primary_10_3390_s21093186
crossref_primary_10_1007_s11590_022_01932_3
crossref_primary_10_1109_JIOT_2021_3128936
crossref_primary_10_3390_en14248285
crossref_primary_10_1109_TVT_2021_3103521
crossref_primary_10_3390_s21238040
crossref_primary_10_1007_s11590_022_01877_7
crossref_primary_10_1016_j_ejor_2023_04_022
crossref_primary_10_1016_j_jnca_2024_103887
crossref_primary_10_1109_JSEN_2021_3139116
crossref_primary_10_1007_s10957_020_01781_z
crossref_primary_10_1007_s11590_020_01623_x
crossref_primary_10_1109_TVT_2022_3208839
crossref_primary_10_1007_s10287_022_00425_z
crossref_primary_10_1007_s10957_023_02334_w
crossref_primary_10_1007_s10589_023_00497_w
crossref_primary_10_1007_s11590_019_01471_4
crossref_primary_10_1080_10556788_2020_1719408
crossref_primary_10_1109_ACCESS_2024_3399563
crossref_primary_10_1109_TVT_2022_3154020
Cites_doi 10.1007/s001860000043
10.1137/08071692X
10.1007/978-1-4419-8853-9
10.1007/s13675-012-0003-7
10.1137/1.9781611974997
10.1007/s10107-015-0962-6
10.1590/0101-7438.2014.034.03.0585
10.1137/090774100
10.1007/s10107-014-0794-9
10.1080/10556788.2015.1130129
10.1007/s10107-016-1065-8
10.1137/S1052623403429093
10.1007/s11228-013-0245-4
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID RCLKO
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2018.1510928
DatabaseName RCAAP open access repository
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DissertationSchool Universidade do Minho
EISSN 1029-4937
EndPage 959
ExternalDocumentID 10_1080_10556788_2018_1510928
1822_70658
1510928
Genre Original Articles
GrantInformation_xml – fundername: FCT
  grantid: COMPETE:POCI-01-0145-FEDER-007043; UID/CEC/00319/2013; UID/MAT/00324/2013; P2020 SAICTPAC/0011/2015
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQEST
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TTHFI
TUS
TWF
UT5
UU3
V1K
ZGOLN
~S~
07G
1TA
5VS
AAIKQ
AAKBW
ABJNI
ABPAQ
ABXYU
ACAGQ
ACGEE
AEUMN
AGCQS
AGLEN
AGROQ
AHDZW
AHMOU
ALCKM
AMXXU
AWYRJ
BCCOT
BPLKW
C06
CAG
COF
CRFIH
DMQIW
DWIFK
EJD
IVXBP
NUSFT
QCRFL
RCLKO
TAQ
TBQAZ
TDBHL
TFMCV
TOXWX
TUROJ
UB9
UU8
V3K
V4Q
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c476t-bd554a3ac793f55309059aca8e9f037df7d1ad0d37ec07b5a5e803cfbae714c63
ISSN 1055-6788
IngestDate Thu Oct 10 19:07:05 EDT 2024
Fri Aug 23 00:34:51 EDT 2024
Fri Nov 08 15:45:49 EST 2024
Tue Jun 13 19:18:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c476t-bd554a3ac793f55309059aca8e9f037df7d1ad0d37ec07b5a5e803cfbae714c63
OpenAccessLink http://hdl.handle.net/1822/70658
PQID 2288643648
PQPubID 186278
PageCount 11
ParticipantIDs rcaap_revistas_1822_70658
informaworld_taylorfrancis_310_1080_10556788_2018_1510928
proquest_journals_2288643648
crossref_primary_10_1080_10556788_2018_1510928
PublicationCentury 2000
PublicationDate 2019-09-03
PublicationDateYYYYMMDD 2019-09-03
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2019
Publisher Taylor & Francis
Taylor and Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor and Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0001
CIT0012
CIT0011
Jahn J. (CIT0013) 2009
Nesterov Y. (CIT0015) 1983; 27
CIT0003
CIT0014
CIT0002
CIT0005
CIT0016
CIT0004
CIT0007
CIT0006
CIT0017
CIT0009
CIT0008
References_xml – ident: CIT0008
  doi: 10.1007/s001860000043
– ident: CIT0007
  doi: 10.1137/08071692X
– volume-title: Vector Optimization
  year: 2009
  ident: CIT0013
  contributor:
    fullname: Jahn J.
– ident: CIT0014
– ident: CIT0016
  doi: 10.1007/978-1-4419-8853-9
– ident: CIT0017
  doi: 10.1007/s13675-012-0003-7
– ident: CIT0002
  doi: 10.1137/1.9781611974997
– ident: CIT0010
– ident: CIT0005
  doi: 10.1007/s10107-015-0962-6
– ident: CIT0009
  doi: 10.1590/0101-7438.2014.034.03.0585
– ident: CIT0006
  doi: 10.1137/090774100
– ident: CIT0012
  doi: 10.1007/s10107-014-0794-9
– ident: CIT0011
  doi: 10.1080/10556788.2015.1130129
– ident: CIT0003
  doi: 10.1007/s10107-016-1065-8
– ident: CIT0004
  doi: 10.1137/S1052623403429093
– ident: CIT0001
  doi: 10.1007/s11228-013-0245-4
– volume: 27
  start-page: 372
  year: 1983
  ident: CIT0015
  publication-title: Soviet Math. Doklady
  contributor:
    fullname: Nesterov Y.
SSID ssj0004146
Score 2.5148675
Snippet A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has...
Published online: 29 Aug 2018 A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to...
SourceID proquest
crossref
rcaap
informaworld
SourceType Aggregation Database
Publisher
StartPage 949
SubjectTerms Complexity
Convergence
Global rates
Gradient descent
Mathematical programming
Multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimum
Science & Technology
Steepest descent
worst-case complexity
Title Complexity of gradient descent for multiobjective optimization
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2018.1510928
http://hdl.handle.net/1822/70658
https://www.proquest.com/docview/2288643648
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZge4ED4ikKC8qBW5WQxk7sXJAqlqogAZddWHGxHGeMdrXbrppUSPx6xo80Cax4XaLKVpN25svnGXsehLwQdcEN4yq21dJipmkaV7XJ40xokwrOAFyG3PsPxeqEvTvNT_sNfZdd0laJ_n5tXsn_aBXHUK82S_YfNLu_KQ7gZ9QvXlHDeP0rHduX2Ra09FEVX7cufKud1b5Ek4sgdAGDm-rc89psgwxxGVIvh3bpx8F46CrdOFQ0SNPfVB8hu7ywp-xO90k39km5XehFMnvbXCq4mC37qTP7S3wz5507lD9CYt2tYbTdMPfxVHQPEL-P4A42QucPv5B49rSxNKz0VVw6eg17lWfDA2zHlaWvVRqW3dIXBv-F0X0IpGvjid66jcUTCVopaRlyykcVtH9a2fbxhuhEZdIe6IqbZJIhJSEXTharoy-f-xxaXDK6DC-Rvrz2gSPbZVTZduSfTLZaqauBmXJ8l9wJ_kW08GC5R27A-j65Pag6-YC86mETbUzUwSYKsInwedEYNtEQNg_JyfLN8etVHNpoxJrxosV3D01GRZXG_21sl6gSTWqllYDSpJTXhtdzVac15aBTXuUqB5FSbSoFfM50QR-Rg_VmDY9JBAWrgVMQAnIGnKPzwDNACi-UyvE2U5J0ApJXvlqKnIcitJ1EpZWoDBKdknIoRtk6eBmPLEn_8N3DTuYyvJSNzDIh0MguGE5PnR6kDZdHT6uRPQqe_GbuKbnV4_6QHLTbHTxDw7OtngfM_ABUr4Br
link.rule.ids 315,783,787,27936,27937,60218,61007
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgHYCBb0ShQAbWlDR2YmdBQoiqQNuplbpZjj-QQDRVmw7w6zk7iUiREAOzZUf22XfPzrt3CF0zFVNDqPCtWppPJA78VJnID5k0AaNEa5chNxzF_Ql5mkbTWi6MpVXaO7QphCKcr7aH2z5GV5S4G1fUEe5ulpnFOhCzgiRkm6gZ24Bl0ziC0XduZJlhBF1826fK4vltmLX4tKZeuoZBmwspxLwWinp7SFaTKBgob51Vnnbk5w99x__Nch_tlkjVuyu21gHa0LNDtFPTLzxCt9abWEXN_MPLjPeycPyx3FOFRpQHs_IcYzFLXwvH6mXgot7L3M9jNOk9jO_7flmQwZeExjlYEcCHwELCoTa23lAC4ExIwXRiAkyVoaorVKAw1TKgaSQizQIsTSo07RIZ4xPUmGUzfYo8HROlKdaM6YhoSgGG0lCDM4iFiGCYFupUZuDzQneDd0s502phuF0YXi5MCyV1Y_HcPXiYojoJx3_0bVeW5eURXvIwZAzgWkygueWszS3xGjD7ksOlLOT2BzE7-8dnr9BWfzwc8MHj6PkcbUNTwV7DbdTIFyt9AXAnTy_dfv4C8gvxDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaglRAMvBHlmYE1xY2d2FmQEFCVV8VAJTbL8QMJRFO16QC_nrOTiBYJMXS2zpF99vlz_N13CJ1xnTBLmQydWlpIFcFhpm0cRlxZzBk1xmfIPfaT3oDevcQ1m3BS0SrdHdqWQhE-VrvNPdK2ZsSd-5qOcHVzxCzehiMLpxFfRs3Evfi7LA7c_0mNrBKMwCR0NnUSz1_dzB1Pc-KlcxC0OVZSjmZOou4GyuoxlASU9_a0yNrq65e840KD3ETrFU4NLsuFtYWWzHAbrc2oF-6gCxdLnJ5m8RnkNngde_ZYEehSISqAQQWer5hnb2VYDXIIUB9V5ucuGnRvnq96YVWOIVSUJQX4EKCHJFLBlrau2lAK0EwqyU1qMWHaMt2RGmvCjMIsi2VsOCbKZtKwDlUJ2UONYT40-ygwCdWGEcO5ialhDEAoiwyEgkTKGLppoXbtBTEqVTdEpxIzrSdGuIkR1cS0UDrrK1H43x22rE0iyD-2R7VjRbWBJyKKOAewllBobnlnC0e7BsQ-EXAli4R7HuYHC3z2FK08XXfFw23__hCtQktJXSNHqFGMp-YYsE6RnfjV_A0Yse-6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+gradient+descent+for+multiobjective+optimization&rft.jtitle=Optimization+methods+%26+software&rft.au=Fliege%2C+J.&rft.au=Vaz%2C+A.+Ismael+F.&rft.au=Vicente%2C+Lu%C3%ADs+Nunes&rft.date=2019-09-03&rft.pub=Taylor+and+Francis&rft.eissn=1029-4937&rft.volume=34&rft.issue=5&rft.spage=949&rft.epage=959&rft_id=info:doi/10.1080%2F10556788.2018.1510928&rft.externalDBID=n%2Fa&rft.externalDocID=1822_70658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon