Complexity of gradient descent for multiobjective optimization
A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergen...
Saved in:
Published in | Optimization methods & software Vol. 34; no. 5; pp. 949 - 959 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.09.2019
Taylor and Francis Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function. |
---|---|
AbstractList | Published online: 29 Aug 2018
A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worstcase complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function.
Support for A.I.F. Vaz was partially provided by FCT [grant number COMPETE:POCI-01- 0145-FEDER-007043], [grant number UID/CEC/00319/2013], and support for L.N. Vicente was partially provided by FCT [grant number UID/MAT/00324/2013], [grant number P2020 SAICTPAC/0011/2015.] A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function. |
Author | Vaz, A. I. F. Vicente, L. N. Fliege, J. |
Author_xml | – sequence: 1 givenname: J. surname: Fliege fullname: Fliege, J. organization: School of Mathematical Sciences, University of Southampton – sequence: 2 givenname: A. I. F. surname: Vaz fullname: Vaz, A. I. F. organization: ALGORITMI Research Center, University of Minho – sequence: 3 givenname: L. N. surname: Vicente fullname: Vicente, L. N. email: lnv@mat.uc.pt organization: CMUC, Department of Mathematics, University of Coimbra |
BookMark | eNp9kE1LxDAQhoOs4K76E4SC566TpmnSiyiLX7DgRc9hNk0kS9vUJKuuv96W1aundxiedwaeBZn1vjeEXFBYUpBwRYHzSki5LIDKJeUU6kIekTmFos7LmonZNHOeT9AJWcS4BYCSltWcXK98N7Tmy6V95m32FrBxpk9ZY6Ke0vqQdbs2Ob_ZGp3ch8n8kFznvnHc9Wfk2GIbzflvnpLX-7uX1WO-fn54Wt2uc12KKuWbhvMSGWpRM8s5gxp4jRqlqS0w0VjRUGygYcJoEBuO3Ehg2m7QCFrqip2Sy8PdIfj3nYlJbf0u9ONLVRRSViWrSjlS_EDp4GMMxqohuA7DXlFQkyr1p0pNqtSvqrGXHXpBIw4qmA8XE0ZFZVEoARWfkJsD4vpRSYefPrSNSrhvfbABe-2iYv9_-QEKaX0K |
CitedBy_id | crossref_primary_10_1016_j_amc_2022_127791 crossref_primary_10_1007_s11081_019_09478_7 crossref_primary_10_1109_TCCN_2022_3222847 crossref_primary_10_1007_s11047_022_09907_0 crossref_primary_10_1080_02331934_2023_2257709 crossref_primary_10_1007_s10589_022_00425_4 crossref_primary_10_1109_JIOT_2021_3113895 crossref_primary_10_1109_OJCOMS_2022_3220782 crossref_primary_10_1109_TVT_2020_2972596 crossref_primary_10_3390_s21227559 crossref_primary_10_1007_s11081_020_09586_9 crossref_primary_10_18359_rcin_6919 crossref_primary_10_1109_TWC_2021_3065029 crossref_primary_10_1007_s10589_020_00260_5 crossref_primary_10_1007_s10957_019_01615_7 crossref_primary_10_1109_TNSE_2022_3169117 crossref_primary_10_1109_JSYST_2020_2976693 crossref_primary_10_1109_ACCESS_2023_3317075 crossref_primary_10_1109_TWC_2023_3243611 crossref_primary_10_1080_10556788_2022_2124989 crossref_primary_10_1109_ACCESS_2020_3016046 crossref_primary_10_1109_LWC_2024_3358371 crossref_primary_10_3390_s21175861 crossref_primary_10_3390_s21237837 crossref_primary_10_1080_03772063_2020_1870876 crossref_primary_10_1016_j_orl_2024_107115 crossref_primary_10_1155_2021_9939805 crossref_primary_10_3390_s21093186 crossref_primary_10_1007_s11590_022_01932_3 crossref_primary_10_1109_JIOT_2021_3128936 crossref_primary_10_3390_en14248285 crossref_primary_10_1109_TVT_2021_3103521 crossref_primary_10_3390_s21238040 crossref_primary_10_1007_s11590_022_01877_7 crossref_primary_10_1016_j_ejor_2023_04_022 crossref_primary_10_1016_j_jnca_2024_103887 crossref_primary_10_1109_JSEN_2021_3139116 crossref_primary_10_1007_s10957_020_01781_z crossref_primary_10_1007_s11590_020_01623_x crossref_primary_10_1109_TVT_2022_3208839 crossref_primary_10_1007_s10287_022_00425_z crossref_primary_10_1007_s10957_023_02334_w crossref_primary_10_1007_s10589_023_00497_w crossref_primary_10_1007_s11590_019_01471_4 crossref_primary_10_1080_10556788_2020_1719408 crossref_primary_10_1109_ACCESS_2024_3399563 crossref_primary_10_1109_TVT_2022_3154020 |
Cites_doi | 10.1007/s001860000043 10.1137/08071692X 10.1007/978-1-4419-8853-9 10.1007/s13675-012-0003-7 10.1137/1.9781611974997 10.1007/s10107-015-0962-6 10.1590/0101-7438.2014.034.03.0585 10.1137/090774100 10.1007/s10107-014-0794-9 10.1080/10556788.2015.1130129 10.1007/s10107-016-1065-8 10.1137/S1052623403429093 10.1007/s11228-013-0245-4 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
DBID | RCLKO AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/10556788.2018.1510928 |
DatabaseName | RCAAP open access repository CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DissertationSchool | Universidade do Minho |
EISSN | 1029-4937 |
EndPage | 959 |
ExternalDocumentID | 10_1080_10556788_2018_1510928 1822_70658 1510928 |
Genre | Original Articles |
GrantInformation_xml | – fundername: FCT grantid: COMPETE:POCI-01-0145-FEDER-007043; UID/CEC/00319/2013; UID/MAT/00324/2013; P2020 SAICTPAC/0011/2015 |
GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQEST PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TTHFI TUS TWF UT5 UU3 V1K ZGOLN ~S~ 07G 1TA 5VS AAIKQ AAKBW ABJNI ABPAQ ABXYU ACAGQ ACGEE AEUMN AGCQS AGLEN AGROQ AHDZW AHMOU ALCKM AMXXU AWYRJ BCCOT BPLKW C06 CAG COF CRFIH DMQIW DWIFK EJD IVXBP NUSFT QCRFL RCLKO TAQ TBQAZ TDBHL TFMCV TOXWX TUROJ UB9 UU8 V3K V4Q AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c476t-bd554a3ac793f55309059aca8e9f037df7d1ad0d37ec07b5a5e803cfbae714c63 |
ISSN | 1055-6788 |
IngestDate | Thu Oct 10 19:07:05 EDT 2024 Fri Aug 23 00:34:51 EDT 2024 Fri Nov 08 15:45:49 EST 2024 Tue Jun 13 19:18:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c476t-bd554a3ac793f55309059aca8e9f037df7d1ad0d37ec07b5a5e803cfbae714c63 |
OpenAccessLink | http://hdl.handle.net/1822/70658 |
PQID | 2288643648 |
PQPubID | 186278 |
PageCount | 11 |
ParticipantIDs | rcaap_revistas_1822_70658 informaworld_taylorfrancis_310_1080_10556788_2018_1510928 proquest_journals_2288643648 crossref_primary_10_1080_10556788_2018_1510928 |
PublicationCentury | 2000 |
PublicationDate | 2019-09-03 |
PublicationDateYYYYMMDD | 2019-09-03 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Optimization methods & software |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor and Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor and Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0001 CIT0012 CIT0011 Jahn J. (CIT0013) 2009 Nesterov Y. (CIT0015) 1983; 27 CIT0003 CIT0014 CIT0002 CIT0005 CIT0016 CIT0004 CIT0007 CIT0006 CIT0017 CIT0009 CIT0008 |
References_xml | – ident: CIT0008 doi: 10.1007/s001860000043 – ident: CIT0007 doi: 10.1137/08071692X – volume-title: Vector Optimization year: 2009 ident: CIT0013 contributor: fullname: Jahn J. – ident: CIT0014 – ident: CIT0016 doi: 10.1007/978-1-4419-8853-9 – ident: CIT0017 doi: 10.1007/s13675-012-0003-7 – ident: CIT0002 doi: 10.1137/1.9781611974997 – ident: CIT0010 – ident: CIT0005 doi: 10.1007/s10107-015-0962-6 – ident: CIT0009 doi: 10.1590/0101-7438.2014.034.03.0585 – ident: CIT0006 doi: 10.1137/090774100 – ident: CIT0012 doi: 10.1007/s10107-014-0794-9 – ident: CIT0011 doi: 10.1080/10556788.2015.1130129 – ident: CIT0003 doi: 10.1007/s10107-016-1065-8 – ident: CIT0004 doi: 10.1137/S1052623403429093 – ident: CIT0001 doi: 10.1007/s11228-013-0245-4 – volume: 27 start-page: 372 year: 1983 ident: CIT0015 publication-title: Soviet Math. Doklady contributor: fullname: Nesterov Y. |
SSID | ssj0004146 |
Score | 2.5148675 |
Snippet | A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has... Published online: 29 Aug 2018 A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to... |
SourceID | proquest crossref rcaap informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 949 |
SubjectTerms | Complexity Convergence Global rates Gradient descent Mathematical programming Multiobjective optimization Multiple objective analysis Optimization Pareto optimum Science & Technology Steepest descent worst-case complexity |
Title | Complexity of gradient descent for multiobjective optimization |
URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2018.1510928 http://hdl.handle.net/1822/70658 https://www.proquest.com/docview/2288643648 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZge4ED4ikKC8qBW5WQxk7sXJAqlqogAZddWHGxHGeMdrXbrppUSPx6xo80Cax4XaLKVpN25svnGXsehLwQdcEN4yq21dJipmkaV7XJ40xokwrOAFyG3PsPxeqEvTvNT_sNfZdd0laJ_n5tXsn_aBXHUK82S_YfNLu_KQ7gZ9QvXlHDeP0rHduX2Ra09FEVX7cufKud1b5Ek4sgdAGDm-rc89psgwxxGVIvh3bpx8F46CrdOFQ0SNPfVB8hu7ywp-xO90k39km5XehFMnvbXCq4mC37qTP7S3wz5507lD9CYt2tYbTdMPfxVHQPEL-P4A42QucPv5B49rSxNKz0VVw6eg17lWfDA2zHlaWvVRqW3dIXBv-F0X0IpGvjid66jcUTCVopaRlyykcVtH9a2fbxhuhEZdIe6IqbZJIhJSEXTharoy-f-xxaXDK6DC-Rvrz2gSPbZVTZduSfTLZaqauBmXJ8l9wJ_kW08GC5R27A-j65Pag6-YC86mETbUzUwSYKsInwedEYNtEQNg_JyfLN8etVHNpoxJrxosV3D01GRZXG_21sl6gSTWqllYDSpJTXhtdzVac15aBTXuUqB5FSbSoFfM50QR-Rg_VmDY9JBAWrgVMQAnIGnKPzwDNACi-UyvE2U5J0ApJXvlqKnIcitJ1EpZWoDBKdknIoRtk6eBmPLEn_8N3DTuYyvJSNzDIh0MguGE5PnR6kDZdHT6uRPQqe_GbuKbnV4_6QHLTbHTxDw7OtngfM_ABUr4Br |
link.rule.ids | 315,783,787,27936,27937,60218,61007 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgHYCBb0ShQAbWlDR2YmdBQoiqQNuplbpZjj-QQDRVmw7w6zk7iUiREAOzZUf22XfPzrt3CF0zFVNDqPCtWppPJA78VJnID5k0AaNEa5chNxzF_Ql5mkbTWi6MpVXaO7QphCKcr7aH2z5GV5S4G1fUEe5ulpnFOhCzgiRkm6gZ24Bl0ziC0XduZJlhBF1826fK4vltmLX4tKZeuoZBmwspxLwWinp7SFaTKBgob51Vnnbk5w99x__Nch_tlkjVuyu21gHa0LNDtFPTLzxCt9abWEXN_MPLjPeycPyx3FOFRpQHs_IcYzFLXwvH6mXgot7L3M9jNOk9jO_7flmQwZeExjlYEcCHwELCoTa23lAC4ExIwXRiAkyVoaorVKAw1TKgaSQizQIsTSo07RIZ4xPUmGUzfYo8HROlKdaM6YhoSgGG0lCDM4iFiGCYFupUZuDzQneDd0s502phuF0YXi5MCyV1Y_HcPXiYojoJx3_0bVeW5eURXvIwZAzgWkygueWszS3xGjD7ksOlLOT2BzE7-8dnr9BWfzwc8MHj6PkcbUNTwV7DbdTIFyt9AXAnTy_dfv4C8gvxDQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaglRAMvBHlmYE1xY2d2FmQEFCVV8VAJTbL8QMJRFO16QC_nrOTiBYJMXS2zpF99vlz_N13CJ1xnTBLmQydWlpIFcFhpm0cRlxZzBk1xmfIPfaT3oDevcQ1m3BS0SrdHdqWQhE-VrvNPdK2ZsSd-5qOcHVzxCzehiMLpxFfRs3Evfi7LA7c_0mNrBKMwCR0NnUSz1_dzB1Pc-KlcxC0OVZSjmZOou4GyuoxlASU9_a0yNrq65e840KD3ETrFU4NLsuFtYWWzHAbrc2oF-6gCxdLnJ5m8RnkNngde_ZYEehSISqAQQWer5hnb2VYDXIIUB9V5ucuGnRvnq96YVWOIVSUJQX4EKCHJFLBlrau2lAK0EwqyU1qMWHaMt2RGmvCjMIsi2VsOCbKZtKwDlUJ2UONYT40-ygwCdWGEcO5ialhDEAoiwyEgkTKGLppoXbtBTEqVTdEpxIzrSdGuIkR1cS0UDrrK1H43x22rE0iyD-2R7VjRbWBJyKKOAewllBobnlnC0e7BsQ-EXAli4R7HuYHC3z2FK08XXfFw23__hCtQktJXSNHqFGMp-YYsE6RnfjV_A0Yse-6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+gradient+descent+for+multiobjective+optimization&rft.jtitle=Optimization+methods+%26+software&rft.au=Fliege%2C+J.&rft.au=Vaz%2C+A.+Ismael+F.&rft.au=Vicente%2C+Lu%C3%ADs+Nunes&rft.date=2019-09-03&rft.pub=Taylor+and+Francis&rft.eissn=1029-4937&rft.volume=34&rft.issue=5&rft.spage=949&rft.epage=959&rft_id=info:doi/10.1080%2F10556788.2018.1510928&rft.externalDBID=n%2Fa&rft.externalDocID=1822_70658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |