Influence of powder particle size on the microstructure of a hot isostatically pressed superalloy

The influence of powder particle size on the microstructure of the powder metallurgy superalloy FGH97 was investigated. The powder atomized by the plasma rotating electrode process was sieved to three types: fine powder (0–53 μm), medium-sized powder (53–150 μm), and coarse powder (150–212 μm), whic...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 16; pp. 1283 - 1292
Main Authors Qu, Zonghong, Zhang, Pingxiang, Lai, Yunjin, Wang, Qingxiang, Song, Jiaming, Liang, Shujin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The influence of powder particle size on the microstructure of the powder metallurgy superalloy FGH97 was investigated. The powder atomized by the plasma rotating electrode process was sieved to three types: fine powder (0–53 μm), medium-sized powder (53–150 μm), and coarse powder (150–212 μm), which were all characterized by their nearly perfect spherical shape and low oxygen content. The powder was filled, degassed, sealed, and then densified by hot isostatic pressing. Then the microstructures of the fully dense compacts were characterized. The results show that fine powder led to limited plastic deformation of particles during densification, resulting in a minimum of Σ3 boundaries and modest PPB (Previous Particle Boundary) decoration. The fine powder compact showed that low impact toughness was caused by fracture along the PPB. However, the addition of Nb and Hf promoted the formation of the dispersed stable MC particles inside the grain, thus preventing the diffusion of C to the surface of the powder particles to form M6C carbides, and resulting in little tendency to present PPB for this alloy. Therefore, the medium-sized powder and coarse powder compact did not present PPB. Thus, the medium-sized powder is optimal for HIP compact preparation, given that fine powder produced PPB while the coarse powder increased the grain size.
AbstractList The influence of powder particle size on the microstructure of the powder metallurgy superalloy FGH97 was investigated. The powder atomized by the plasma rotating electrode process was sieved to three types: fine powder (0–53 μm), medium-sized powder (53–150 μm), and coarse powder (150–212 μm), which were all characterized by their nearly perfect spherical shape and low oxygen content. The powder was filled, degassed, sealed, and then densified by hot isostatic pressing. Then the microstructures of the fully dense compacts were characterized. The results show that fine powder led to limited plastic deformation of particles during densification, resulting in a minimum of Σ3 boundaries and modest PPB (Previous Particle Boundary) decoration. The fine powder compact showed that low impact toughness was caused by fracture along the PPB. However, the addition of Nb and Hf promoted the formation of the dispersed stable MC particles inside the grain, thus preventing the diffusion of C to the surface of the powder particles to form M6C carbides, and resulting in little tendency to present PPB for this alloy. Therefore, the medium-sized powder and coarse powder compact did not present PPB. Thus, the medium-sized powder is optimal for HIP compact preparation, given that fine powder produced PPB while the coarse powder increased the grain size.
Author Qu, Zonghong
Song, Jiaming
Lai, Yunjin
Wang, Qingxiang
Zhang, Pingxiang
Liang, Shujin
Author_xml – sequence: 1
  givenname: Zonghong
  surname: Qu
  fullname: Qu, Zonghong
  organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 2
  givenname: Pingxiang
  surname: Zhang
  fullname: Zhang, Pingxiang
  organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 3
  givenname: Yunjin
  surname: Lai
  fullname: Lai, Yunjin
  organization: Sino-Euro Materials Technologies of Xi'an Co., Ltd, Xi'an, 710018, China
– sequence: 4
  givenname: Qingxiang
  surname: Wang
  fullname: Wang, Qingxiang
  organization: Sino-Euro Materials Technologies of Xi'an Co., Ltd, Xi'an, 710018, China
– sequence: 5
  givenname: Jiaming
  surname: Song
  fullname: Song, Jiaming
  organization: Sino-Euro Materials Technologies of Xi'an Co., Ltd, Xi'an, 710018, China
– sequence: 6
  givenname: Shujin
  orcidid: 0000-0001-7308-2308
  surname: Liang
  fullname: Liang, Shujin
  email: liangsjsmt@outlook.com
  organization: Sino-Euro Materials Technologies of Xi'an Co., Ltd, Xi'an, 710018, China
BookMark eNp9kUtLAzEUhbOoYNX-AVf5Ax3zmFfAjYiPguBG1yGT3NgM08mQpEr99WasuHDh6sK59xw43z1Di9GPgNAlJQUltL7qi34XUsEIowVlBWnpAi0Z4-26aavyFK1i7AkhtBJ13i2R2ox22MOoAXuLJ_9hIOBJheT0ADi6z6yPOG0B75wOPqaw12kfvq8V3vqEXcyqyvdqGA54ChAjGBz3E4Ss-MMFOrFqiLD6mefo9f7u5fZx_fT8sLm9eVrrsqnTulNQQ0e4UFVtCGss67gxXDElWEeBtRUhzIoKKt1RbkotoCak6QQYwRoh-DnaHHONV72cgtupcJBeOfkt-PAmf2pJZWjDLRNc1KYE0wpbM9tYS8GUbVfqnMWOWXPlGMD-5lEiZ86ylzNnOXOWlMnMMpvaPybtZjB-TEG54X_r9dEKGdC7gyCjdvNTjAugU27g_rN_Adidn78
CitedBy_id crossref_primary_10_1016_j_corsci_2023_111295
crossref_primary_10_1016_j_powtec_2025_120734
crossref_primary_10_1016_j_jmrt_2023_03_154
crossref_primary_10_1007_s11661_024_07621_3
crossref_primary_10_1016_j_jmrt_2024_05_128
crossref_primary_10_1016_j_jmrt_2024_05_259
crossref_primary_10_1557_s43578_023_01127_1
crossref_primary_10_2497_jjspm_17C_T4_01
crossref_primary_10_1016_j_jallcom_2023_171321
crossref_primary_10_1016_j_jmrt_2025_01_197
crossref_primary_10_1016_j_vacuum_2022_111751
crossref_primary_10_3390_met14101159
crossref_primary_10_1016_j_msea_2023_145265
crossref_primary_10_1016_j_msea_2024_147226
crossref_primary_10_1016_j_jmrt_2023_11_238
crossref_primary_10_1016_j_msea_2023_145671
crossref_primary_10_3390_ma17246216
crossref_primary_10_1016_j_jmrt_2022_08_128
crossref_primary_10_1016_j_jmrt_2024_06_217
crossref_primary_10_1016_j_matchar_2024_113849
crossref_primary_10_1007_s00339_024_07762_7
Cites_doi 10.1016/0378-4363(80)90054-6
10.1016/j.matdes.2017.06.004
10.1016/j.jmrt.2018.12.008
10.1016/j.msea.2005.04.006
10.1016/j.jmrt.2021.01.036
10.1016/j.msea.2014.12.112
10.1016/j.matdes.2017.05.025
10.1016/j.matdes.2020.108926
10.4028/www.scientific.net/AMR.278.277
10.1016/j.calphad.2005.07.001
10.2514/1.18239
10.1016/j.msea.2016.11.031
10.1016/j.matdes.2016.06.037
10.1016/j.jmrt.2021.01.066
10.1016/j.msea.2006.05.030
10.1016/j.msea.2006.07.053
10.1016/j.jmrt.2019.12.084
10.1016/S0921-5093(01)01758-0
10.1007/s11661-000-0078-2
10.1016/j.jmrt.2020.10.042
10.1016/j.actamat.2015.02.023
10.1016/j.jmrt.2020.03.026
10.1016/j.msea.2019.03.064
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jmrt.2021.12.081
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1292
ExternalDocumentID oai_doaj_org_article_ad173f29396d4ed89f62f7ff1ed48b4c
10_1016_j_jmrt_2021_12_081
S2238785421015246
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ABXRA
ACGFS
ADBBV
ADCUG
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GROUPED_DOAJ
GX1
HH5
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ADVLN
AFJKZ
CITATION
ID FETCH-LOGICAL-c476t-bae6eb039a56d027f2b3dd3a2a92b1e285002f95e5cb13d4c9e6007b9ed927993
IEDL.DBID IXB
ISSN 2238-7854
IngestDate Wed Aug 27 01:05:04 EDT 2025
Tue Jul 01 01:14:22 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
Wed May 17 01:49:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Previous particle boundaries
Plasma rotating electrode process
FGH97
Powder particle size
Hot isostatic pressing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-bae6eb039a56d027f2b3dd3a2a92b1e285002f95e5cb13d4c9e6007b9ed927993
ORCID 0000-0001-7308-2308
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2238785421015246
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ad173f29396d4ed89f62f7ff1ed48b4c
crossref_primary_10_1016_j_jmrt_2021_12_081
crossref_citationtrail_10_1016_j_jmrt_2021_12_081
elsevier_sciencedirect_doi_10_1016_j_jmrt_2021_12_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January-February 2022
2022-01-00
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January-February 2022
PublicationDecade 2020
PublicationTitle Journal of materials research and technology
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Frisk, Bratberg, Markström (bib29) 2005; 29
Reed (bib1) 2006
Higashi, Kanno (bib21) 2020; 194
Wu, Zhuang, Nie, Li, Jiang (bib14) 2019; 754
Chang, Sun, Cui, Yang (bib15) 2017; 682
Atkinson, Davies (bib4) 2000; 31
Li, Sun, Hardy, Evans, Williams, Doel (bib13) 2015; 90
Wu, Liu, Wang, Huang, Tan, Yang (bib10) 2020; 9
Perry, Philips (bib25) 1995
Alniak, Bedir (bib6) 2006; 429
Li, Cheng, Zhang, Wang, Li (bib30) 2019; 8
Radavich, Furrer (bib5) 2004
Detrois, Rotella, Goetz, Helmink, Tin (bib24) 2015; 627
Tan, Huang, Liu, He, Wang, Huang (bib16) 2017; 131
Li, Liu, Luo, Wang, Wang, Huang (bib3) 2020; 9
Gale, Totemeier (bib28) 2004
Raisson, Guédou, Guichard, Rongvaux (bib9) 2011; 278
Mao, Chang, Yang, Furrer, Ray, Vaze (bib7) 2002; 332
Xue, Luo, Tang, Yu, Lu, Ren (bib23) 2021; 11
B, Lin (bib12) 2015; 4
Toop (bib26) 1965; 223
Geng, Qin, Ma, Zhou, Ma (bib11) 2021; 11
Flageolet, Jouiad, Villechaise, Mendez (bib8) 2005; 399
Zhong, Chen, Linnenbrink, Gasser, Sui, Poprawe (bib19) 2016; 107
Wu, Li, Liu, Huang, Zeng, Fang (bib17) 2017; 128
Kissinger, Nair, Tien (bib20) 1984
Song, Tang, Wang, Zhou, Zhang, Chen (bib22) 2020; 9
Rao, Srinivas, Sarma (bib18) 2006; 435–436
Pollock, Tin (bib2) 2006; 22
Miedema, de Châtel, de Boer (bib27) 1980; 100
Reed (10.1016/j.jmrt.2021.12.081_bib1) 2006
Frisk (10.1016/j.jmrt.2021.12.081_bib29) 2005; 29
Pollock (10.1016/j.jmrt.2021.12.081_bib2) 2006; 22
Wu (10.1016/j.jmrt.2021.12.081_bib14) 2019; 754
Detrois (10.1016/j.jmrt.2021.12.081_bib24) 2015; 627
Li (10.1016/j.jmrt.2021.12.081_bib30) 2019; 8
Song (10.1016/j.jmrt.2021.12.081_bib22) 2020; 9
Toop (10.1016/j.jmrt.2021.12.081_bib26) 1965; 223
Atkinson (10.1016/j.jmrt.2021.12.081_bib4) 2000; 31
Radavich (10.1016/j.jmrt.2021.12.081_bib5) 2004
Li (10.1016/j.jmrt.2021.12.081_bib13) 2015; 90
Rao (10.1016/j.jmrt.2021.12.081_bib18) 2006; 435–436
B (10.1016/j.jmrt.2021.12.081_bib12) 2015; 4
Tan (10.1016/j.jmrt.2021.12.081_bib16) 2017; 131
Chang (10.1016/j.jmrt.2021.12.081_bib15) 2017; 682
Geng (10.1016/j.jmrt.2021.12.081_bib11) 2021; 11
Mao (10.1016/j.jmrt.2021.12.081_bib7) 2002; 332
Wu (10.1016/j.jmrt.2021.12.081_bib17) 2017; 128
Li (10.1016/j.jmrt.2021.12.081_bib3) 2020; 9
Flageolet (10.1016/j.jmrt.2021.12.081_bib8) 2005; 399
Alniak (10.1016/j.jmrt.2021.12.081_bib6) 2006; 429
Higashi (10.1016/j.jmrt.2021.12.081_bib21) 2020; 194
Perry (10.1016/j.jmrt.2021.12.081_bib25) 1995
Raisson (10.1016/j.jmrt.2021.12.081_bib9) 2011; 278
Wu (10.1016/j.jmrt.2021.12.081_bib10) 2020; 9
Xue (10.1016/j.jmrt.2021.12.081_bib23) 2021; 11
Miedema (10.1016/j.jmrt.2021.12.081_bib27) 1980; 100
Zhong (10.1016/j.jmrt.2021.12.081_bib19) 2016; 107
Kissinger (10.1016/j.jmrt.2021.12.081_bib20) 1984
Gale (10.1016/j.jmrt.2021.12.081_bib28) 2004
References_xml – start-page: 285
  year: 1984
  end-page: 294
  ident: bib20
  article-title: Influence of powder particle size distribution and pressure on the kinetics of hot isostatic pressing (HIP) consolidation of P/M superalloy Rene 95
  publication-title: The Minerals, Metals & Materials Society. Proceedings of the 5th International Symposium on Superalloys; 1984 Sep 19–23; Pennsylvania, USA
– volume: 9
  start-page: 14467
  year: 2020
  end-page: 14477
  ident: bib3
  article-title: Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys
  publication-title: J Mater Res Technol
– volume: 11
  start-page: 633
  year: 2021
  end-page: 649
  ident: bib11
  article-title: Linear friction welding of dissimilar Ni-based superalloys: microstructure evolution and thermo-mechanical interaction
  publication-title: J Mater Res Technol
– year: 2004
  ident: bib28
  article-title: Smithells metals reference book
– volume: 332
  start-page: 318
  year: 2002
  end-page: 329
  ident: bib7
  article-title: Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT
  publication-title: Mater Sci Eng, A
– volume: 131
  start-page: 60
  year: 2017
  end-page: 68
  ident: bib16
  article-title: Effects of strain amount and strain rate on grain structure of a novel high Co nickel-based polycrystalline superalloy
  publication-title: Mater Des
– volume: 8
  start-page: 1781
  year: 2019
  end-page: 1788
  ident: bib30
  article-title: Effect of delta ferrites on the anisotropy of impact toughness in martensitic heat-resistant steel
  publication-title: J Mater Res Technol
– volume: 100
  start-page: 1
  year: 1980
  end-page: 28
  ident: bib27
  article-title: Cohesion in alloys — fundamentals of a semi-empirical model
  publication-title: Phys B+C
– volume: 429
  start-page: 295
  year: 2006
  end-page: 303
  ident: bib6
  article-title: Modelling of deformation and microstructural changes in P/M Rene 95 under isothermal forging conditions
  publication-title: Mater Sci Eng, A
– volume: 627
  start-page: 95
  year: 2015
  end-page: 105
  ident: bib24
  article-title: Grain boundary engineering of powder processed Ni-base superalloy RR1000: influence of the deformation parameters
  publication-title: Mater Sci Eng, A
– volume: 682
  start-page: 341
  year: 2017
  end-page: 344
  ident: bib15
  article-title: Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries
  publication-title: Mater Sci Eng, A
– volume: 29
  start-page: 91
  year: 2005
  end-page: 96
  ident: bib29
  article-title: Thermodynamic modelling of the M
  publication-title: Calphad
– volume: 128
  start-page: 176
  year: 2017
  end-page: 181
  ident: bib17
  article-title: A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy
  publication-title: Mater Des
– volume: 435–436
  start-page: 84
  year: 2006
  end-page: 99
  ident: bib18
  article-title: Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718
  publication-title: Mater Sci Eng, A
– volume: 9
  start-page: 2535
  year: 2020
  end-page: 2544
  ident: bib22
  article-title: Plastic strain-induced evolution of CSL boundaries at elevated temperature for Ni-base superalloy: experimental and phase-field perspective
  publication-title: J Mater Res Technol
– volume: 278
  start-page: 277
  year: 2011
  end-page: 282
  ident: bib9
  article-title: Production of net-shape static parts by direct HIPing of nickel base superalloy prealloyed powders
  publication-title: Adv Mater Res
– volume: 223
  start-page: 850
  year: 1965
  end-page: 855
  ident: bib26
  article-title: Predicting ternary activities using binary data
  publication-title: Trans. TMS-AIME
– volume: 107
  start-page: 386
  year: 2016
  end-page: 392
  ident: bib19
  article-title: A comparative study of Inconel 718 formed by high deposition rate laser metal deposition with GA powder and PREP powder
  publication-title: Mater Des
– volume: 4
  year: 2015
  ident: bib12
  article-title: Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys
  publication-title: J Powder Metall Min
– start-page: 381
  year: 2004
  end-page: 390
  ident: bib5
  article-title: Assessment of Russian P/M superalloy EP741NP
  publication-title: The Minerals, Metals & Materials Society. Proceedings of the 10th International Symposium on Superalloys; 2004 Sep 19–23; Pennsylvania, USA
– volume: 754
  start-page: 29
  year: 2019
  end-page: 37
  ident: bib14
  article-title: Effect of heat treatment on mechanical property and microstructure of a powder metallurgy nickel-based superalloy
  publication-title: Mater Sci Eng, A
– volume: 9
  start-page: 5090
  year: 2020
  end-page: 5104
  ident: bib10
  article-title: Experimental study and numerical simulation of dynamic recrystallization for a FGH96 superalloy during isothermal compression
  publication-title: J Mater Res Technol
– year: 2006
  ident: bib1
  article-title: The superalloys: fundamentals and applications
– volume: 31
  start-page: 2981
  year: 2000
  end-page: 3000
  ident: bib4
  article-title: Fundamental aspects of hot isostatic pressing: an overview
  publication-title: Metall Mater Trans
– volume: 11
  start-page: 1281
  year: 2021
  end-page: 1289
  ident: bib23
  article-title: Solute segregation induced stabilizing and strengthening effects on Ni Σ3 [110](111) symmetrical tilt grain boundary in nickel-based superalloys
  publication-title: J Mater Res Technol
– year: 1995
  ident: bib25
  article-title: Handbook of inorganic compounds
– volume: 22
  start-page: 361
  year: 2006
  end-page: 374
  ident: bib2
  article-title: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties
  publication-title: J Propul Power
– volume: 399
  start-page: 199
  year: 2005
  end-page: 205
  ident: bib8
  article-title: On the role of γ particles within γ′ precipitates on damage accumulation in the P/M nickel-base superalloy N18
  publication-title: Mater Sci Eng, A
– volume: 194
  year: 2020
  ident: bib21
  article-title: Effect of initial powder particle size on the hot workability of powder metallurgy Ni-based superalloys
  publication-title: Mater Des
– volume: 90
  start-page: 355
  year: 2015
  end-page: 369
  ident: bib13
  article-title: Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy
  publication-title: Acta Mater
– volume: 100
  start-page: 1
  year: 1980
  ident: 10.1016/j.jmrt.2021.12.081_bib27
  article-title: Cohesion in alloys — fundamentals of a semi-empirical model
  publication-title: Phys B+C
  doi: 10.1016/0378-4363(80)90054-6
– volume: 131
  start-page: 60
  year: 2017
  ident: 10.1016/j.jmrt.2021.12.081_bib16
  article-title: Effects of strain amount and strain rate on grain structure of a novel high Co nickel-based polycrystalline superalloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.06.004
– volume: 8
  start-page: 1781
  year: 2019
  ident: 10.1016/j.jmrt.2021.12.081_bib30
  article-title: Effect of delta ferrites on the anisotropy of impact toughness in martensitic heat-resistant steel
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2018.12.008
– volume: 399
  start-page: 199
  year: 2005
  ident: 10.1016/j.jmrt.2021.12.081_bib8
  article-title: On the role of γ particles within γ′ precipitates on damage accumulation in the P/M nickel-base superalloy N18
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2005.04.006
– volume: 11
  start-page: 633
  year: 2021
  ident: 10.1016/j.jmrt.2021.12.081_bib11
  article-title: Linear friction welding of dissimilar Ni-based superalloys: microstructure evolution and thermo-mechanical interaction
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2021.01.036
– volume: 627
  start-page: 95
  year: 2015
  ident: 10.1016/j.jmrt.2021.12.081_bib24
  article-title: Grain boundary engineering of powder processed Ni-base superalloy RR1000: influence of the deformation parameters
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2014.12.112
– volume: 128
  start-page: 176
  year: 2017
  ident: 10.1016/j.jmrt.2021.12.081_bib17
  article-title: A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.05.025
– volume: 194
  year: 2020
  ident: 10.1016/j.jmrt.2021.12.081_bib21
  article-title: Effect of initial powder particle size on the hot workability of powder metallurgy Ni-based superalloys
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.108926
– volume: 278
  start-page: 277
  year: 2011
  ident: 10.1016/j.jmrt.2021.12.081_bib9
  article-title: Production of net-shape static parts by direct HIPing of nickel base superalloy prealloyed powders
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.278.277
– volume: 29
  start-page: 91
  year: 2005
  ident: 10.1016/j.jmrt.2021.12.081_bib29
  article-title: Thermodynamic modelling of the M6C carbide in cemented carbides and high-speed steel
  publication-title: Calphad
  doi: 10.1016/j.calphad.2005.07.001
– start-page: 285
  year: 1984
  ident: 10.1016/j.jmrt.2021.12.081_bib20
  article-title: Influence of powder particle size distribution and pressure on the kinetics of hot isostatic pressing (HIP) consolidation of P/M superalloy Rene 95
– volume: 22
  start-page: 361
  year: 2006
  ident: 10.1016/j.jmrt.2021.12.081_bib2
  article-title: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties
  publication-title: J Propul Power
  doi: 10.2514/1.18239
– volume: 682
  start-page: 341
  year: 2017
  ident: 10.1016/j.jmrt.2021.12.081_bib15
  article-title: Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2016.11.031
– year: 2004
  ident: 10.1016/j.jmrt.2021.12.081_bib28
– volume: 107
  start-page: 386
  year: 2016
  ident: 10.1016/j.jmrt.2021.12.081_bib19
  article-title: A comparative study of Inconel 718 formed by high deposition rate laser metal deposition with GA powder and PREP powder
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.06.037
– volume: 11
  start-page: 1281
  year: 2021
  ident: 10.1016/j.jmrt.2021.12.081_bib23
  article-title: Solute segregation induced stabilizing and strengthening effects on Ni Σ3 [110](111) symmetrical tilt grain boundary in nickel-based superalloys
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2021.01.066
– volume: 429
  start-page: 295
  year: 2006
  ident: 10.1016/j.jmrt.2021.12.081_bib6
  article-title: Modelling of deformation and microstructural changes in P/M Rene 95 under isothermal forging conditions
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2006.05.030
– volume: 435–436
  start-page: 84
  year: 2006
  ident: 10.1016/j.jmrt.2021.12.081_bib18
  article-title: Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2006.07.053
– volume: 9
  start-page: 2535
  year: 2020
  ident: 10.1016/j.jmrt.2021.12.081_bib22
  article-title: Plastic strain-induced evolution of CSL boundaries at elevated temperature for Ni-base superalloy: experimental and phase-field perspective
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2019.12.084
– year: 2006
  ident: 10.1016/j.jmrt.2021.12.081_bib1
– volume: 332
  start-page: 318
  year: 2002
  ident: 10.1016/j.jmrt.2021.12.081_bib7
  article-title: Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT
  publication-title: Mater Sci Eng, A
  doi: 10.1016/S0921-5093(01)01758-0
– volume: 31
  start-page: 2981
  year: 2000
  ident: 10.1016/j.jmrt.2021.12.081_bib4
  article-title: Fundamental aspects of hot isostatic pressing: an overview
  publication-title: Metall Mater Trans
  doi: 10.1007/s11661-000-0078-2
– start-page: 381
  year: 2004
  ident: 10.1016/j.jmrt.2021.12.081_bib5
  article-title: Assessment of Russian P/M superalloy EP741NP
– volume: 9
  start-page: 14467
  year: 2020
  ident: 10.1016/j.jmrt.2021.12.081_bib3
  article-title: Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2020.10.042
– volume: 90
  start-page: 355
  year: 2015
  ident: 10.1016/j.jmrt.2021.12.081_bib13
  article-title: Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2015.02.023
– year: 1995
  ident: 10.1016/j.jmrt.2021.12.081_bib25
– volume: 223
  start-page: 850
  year: 1965
  ident: 10.1016/j.jmrt.2021.12.081_bib26
  article-title: Predicting ternary activities using binary data
  publication-title: Trans. TMS-AIME
– volume: 9
  start-page: 5090
  year: 2020
  ident: 10.1016/j.jmrt.2021.12.081_bib10
  article-title: Experimental study and numerical simulation of dynamic recrystallization for a FGH96 superalloy during isothermal compression
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2020.03.026
– volume: 754
  start-page: 29
  year: 2019
  ident: 10.1016/j.jmrt.2021.12.081_bib14
  article-title: Effect of heat treatment on mechanical property and microstructure of a powder metallurgy nickel-based superalloy
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2019.03.064
– volume: 4
  year: 2015
  ident: 10.1016/j.jmrt.2021.12.081_bib12
  article-title: Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys
  publication-title: J Powder Metall Min
SSID ssj0001596081
Score 2.352706
Snippet The influence of powder particle size on the microstructure of the powder metallurgy superalloy FGH97 was investigated. The powder atomized by the plasma...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1283
SubjectTerms FGH97
Hot isostatic pressing
Plasma rotating electrode process
Powder particle size
Previous particle boundaries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQT3BAy0vb5SEfuKGI-hn7CIiqcOBEpd4sP7Wt2qRqu0Ll1zN2kipcyoWrNYmTmZHnG2vmG4TeE0ecdVxVwYtUQf6VKu2drYRkEC08Yd6XKt8fcrHk31diNRr1lWvCOnrgTnEfbSA1SxCUtAw8BqWTpKlOicTAleM-n74Q80bJVNcfDMi8TCiF8KeqWgned8x0xV2b3SEXUlJS7gIV-SsqFfL-UXAaBZz5DXraI0X8qfvCZ-hRbJ6jJyP-wBfIfhtGjOA24X37K8QD3vf_hI_r37DeYIB4eJfr7jqu2IdDkbb4vj3h9bHNLUXZUtszLkWxMeDjwz5fVW3b80u0nH_9-WVR9TMTKs9reaqcjTK6GdNWyAApZ6KOhcAstZo6EqkScAQmLaLwjrDAvY6Zod7pGDStAay8QpOmbeItwiJ4TpR0ZOYZpDVM2URJmHEvIshLO0Vk0JnxPaF4nmuxNUPl2MZkPZusZ0OoAT1P0YfLM_uOTuOq9OdsiotkpsIuC-Agplem-ZeDTJEYDGl6VNGhBXjV-srmd_9j89foMc39EuXO5g2agJ3jW0AxJ_euOOwfab7w8A
  priority: 102
  providerName: Directory of Open Access Journals
Title Influence of powder particle size on the microstructure of a hot isostatically pressed superalloy
URI https://dx.doi.org/10.1016/j.jmrt.2021.12.081
https://doaj.org/article/ad173f29396d4ed89f62f7ff1ed48b4c
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnsoBQQGxPCofuKFo18_YR1pRtRy4QKW9WX5Cqu0m2t0KlV_P2HHK9tJDr9bYSWaieVjffIPQJ-KIs46rJniRGqi_UqO9s42QDKKFJ8z7gvL9Li-u-LelWB6gs6kXJsMqq-8ffXrx1nVlXrU5H7pu_gMCm2qV4FC0wLE8024zrkoT3_L0_z2LgBy9zCrN8k3eUHtnRpjX9c0mQyopKbeCijyIT4XGfy9M7YWe8xfoec0Z8ZfxtV6ig7g-Rs_2mARfIXs5DRvBfcJD_yfEDR7qh-Bt9xfW1xiSPXyTEXgja-ztpkhb_Lvf4W7b5-aibLPVHS7w2Bjw9nbIl1ar_u41ujr_-vPsoqnTExrPW7lrnI0yugXTVsgAxWeijoXALLWaOhKpEuAMkxZReEdY4F7HzFXvdAyatpC2vEGH634d3yIsgudESUcWHjTcMmUTJWHBvYggL-0MkUlnxldq8TzhYmUmDNm1yXo2Wc-GUAN6nqHP93uGkVjjUenTbIp7yUyKXRb6zS9TlWlsIC1LkL9oGXgMSidJU5sSiYErx_0MicmQ5sE_Bkd1jzz83RP3vUdHNDdLFPTfB3QIpo0fIYXZuZNS-p-UP_UfanzxVQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSdGg7FH2ibvrg0K0QbFIkRY5JkMBu0yxNAG8En60CxxJsB0Xy63OUqMRZMnQl7ijpTrj7jvh4h9A3Yok1lsnCOx4LqL9ioZw1BRclZAtHSuc6lu-pmJ6zH3M-30GHw12YRKvMsb-P6V20zivjbM1xW9fj35DYZCU5g6IFtmXiCXoKaKBK8xtm84P7gxYOIL0bVpoUiqSRL8_0PK-Ly1XiVFLSHQtK8iBBdX38t_LUVu45foVeZtCI9_v3eo12wvINerHVSvAtMrNh2ghuIm6bfz6scJu_BK_rG1hfYkB7-DJR8Pq2sVerTtrgv80G1-sm3S5KTltc444fGzxeX7Xp1GrRXL9D58dHZ4fTIo9PKByrxKawJohgJ6UyXHioPiO1pfeloUZRSwKVHKJhVDxwZ0npmVMhNau3KnhFK8At79HuslmGDwhz7xiRwpKJK6HCKaWJlPgJczyAvDAjRAabaZd7i6cRFws9kMgudLKzTnbWhGqw8wh9v9Np-84aj0ofJFfcSaau2N1Cs_qjszG18aQqIwAYJTwLXqooaKxiJMEzaZkbIT44Uj_4yWCr-pGHf_xPva_o2fTs14k-mZ3-3EPPaRodnOhr9BPaBTeHz4BnNvZL97_eAuBw84M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+powder+particle+size+on+the+microstructure+of+a+hot+isostatically+pressed+superalloy&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Qu%2C+Zonghong&rft.au=Zhang%2C+Pingxiang&rft.au=Lai%2C+Yunjin&rft.au=Wang%2C+Qingxiang&rft.date=2022-01-01&rft.issn=2238-7854&rft.volume=16&rft.spage=1283&rft.epage=1292&rft_id=info:doi/10.1016%2Fj.jmrt.2021.12.081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmrt_2021_12_081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon