Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56
We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km...
Saved in:
Published in | The Astrophysical journal Vol. 679; no. 2; pp. 1173 - 1180 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chicago, IL
IOP Publishing
01.06.2008
University of Chicago Press |
Online Access | Get full text |
Cover
Loading…
Abstract | We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km s super(-1), while lensing results show that the positions of the total mass peaks are consistent with the centroids of the collisionless galaxies (and inconsistent with the X-ray brightness peaks). Previous studies, based on older observational data sets, have placed upper limits on the self- interaction cross section of dark matter per unit mass, [image], using simplified analytic techniques. In this work, we take advantage of new, higher quality observational data sets by running full N-body simulations of 1E 0657-56 that include the effects of self-interacting dark matter, and comparing the results with observations. Furthermore, the recent data allow for a new independent method of constraining [image], based on the nonobservation of an offset between the bullet subcluster mass peak and galaxy centroid. This new method places an upper limit (68% confidence) of [image] cm super(2) g super(-1). If we make the assumption that the subcluster and the main cluster had equal mass-to-light ratios prior to the merger, we derive our most stringent constraint of [image] cm super(2) g super(-1), which comes from the consistency of the subcluster's observed mass-to-light ratio with the main cluster's, and with the universal cluster value, ruling out the possibility of a large fraction of dark matter particles being scattered away due to collisions. Our limit is a slight improvement over the previous result from analytic estimates, and rules out most of the 0.5-5 cm super(2) g super(-1) range invoked to explain inconsistencies between the standard collisionless cold dark matter model and observations. |
---|---|
AbstractList | We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km s(-1), while lensing results show that the positions of the total mass peaks are consistent with the centroids of the collisionless galaxies (and inconsistent with the X-ray brightness peaks). Previous studies, based on older observational data sets, have placed upper limits on the self- interaction cross section of dark matter per unit mass, [image], using simplified analytic techniques. In this work, we take advantage of new, higher quality observational data sets by running full N-body simulations of 1E 0657-56 that include the effects of self-interacting dark matter, and comparing the results with observations. Furthermore, the recent data allow for a new independent method of constraining [image], based on the nonobservation of an offset between the bullet subcluster mass peak and galaxy centroid. This new method places an upper limit (68% confidence) of [image] cm(2) g(-1). If we make the assumption that the subcluster and the main cluster had equal mass-to-light ratios prior to the merger, we derive our most stringent constraint of [image] cm(2) g(-1), which comes from the consistency of the subcluster's observed mass-to-light ratio with the main cluster's, and with the universal cluster value, ruling out the possibility of a large fraction of dark matter particles being scattered away due to collisions. Our limit is a slight improvement over the previous result from analytic estimates, and rules out most of the 0.5-5 cm(2) g(-1) range invoked to explain inconsistencies between the standard collisionless cold dark matter model and observations. We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km s super(-1), while lensing results show that the positions of the total mass peaks are consistent with the centroids of the collisionless galaxies (and inconsistent with the X-ray brightness peaks). Previous studies, based on older observational data sets, have placed upper limits on the self- interaction cross section of dark matter per unit mass, [image], using simplified analytic techniques. In this work, we take advantage of new, higher quality observational data sets by running full N-body simulations of 1E 0657-56 that include the effects of self-interacting dark matter, and comparing the results with observations. Furthermore, the recent data allow for a new independent method of constraining [image], based on the nonobservation of an offset between the bullet subcluster mass peak and galaxy centroid. This new method places an upper limit (68% confidence) of [image] cm super(2) g super(-1). If we make the assumption that the subcluster and the main cluster had equal mass-to-light ratios prior to the merger, we derive our most stringent constraint of [image] cm super(2) g super(-1), which comes from the consistency of the subcluster's observed mass-to-light ratio with the main cluster's, and with the universal cluster value, ruling out the possibility of a large fraction of dark matter particles being scattered away due to collisions. Our limit is a slight improvement over the previous result from analytic estimates, and rules out most of the 0.5-5 cm super(2) g super(-1) range invoked to explain inconsistencies between the standard collisionless cold dark matter model and observations. |
Author | Randall, Scott W Markevitch, Maxim Gonzalez, Anthony H Clowe, Douglas Bradač, Marusa |
Author_xml | – sequence: 1 fullname: Randall, Scott W – sequence: 2 fullname: Markevitch, Maxim – sequence: 3 fullname: Clowe, Douglas – sequence: 4 fullname: Gonzalez, Anthony H – sequence: 5 fullname: Bradač, Marusa |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20390080$$DView record in Pascal Francis |
BookMark | eNp90s1uFSEUB3BiauJt1WfAhbrQqTDM8LE0Y22btLqoJu4Il0JFGbgFJrE7V76Ab-iTCL2NTWx0Rc7Jj3_COeyCnRCDAeAxRvsYcfpq5IyP4h5Y4ZHwbiAj2wErhNDQUcI-PQC7OX9pZS_ECvyYYsglKRdKhjHA8tnAM-NtdxyKSUoXV5tTijnX9raKFr5R6Ss8VaUSaFOc4btlNslp5eGZmxevGsxNtrxTky5cuICHyqtvV3DyS24X8QFEdGS_vv8c6UNw3yqfzaObcw98fHvwYTrqTt4fHk-vTzo9MFo6ZbXCqFfDgKzW1IxK9Gs2rJEh1hLKreZGYM6tRWatKaWCsZ4xxM9HowlRZA883-ZuUrxcTC5ydlkb71UwccmSDQTX8J5V-ey_EguCGUGkwqc3UOU6AJtU0C7LTXKzSleyR0QgxNFtoG7TTMb-IRjJtji5XVyFL_-C2pXribY9-bv8yZa7uPl35Iu7pv0B2b6EpEzIXuL6Hrk5t-Q3bAOzDA |
CODEN | ASJOAB |
CitedBy_id | crossref_primary_10_1103_PhysRevD_105_103015 crossref_primary_10_1088_1475_7516_2018_06_036 crossref_primary_10_1103_PhysRevD_102_043024 crossref_primary_10_1140_epjc_s10052_017_5063_7 crossref_primary_10_1140_epjb_s10051_022_00299_9 crossref_primary_10_1007_s00159_020_00129_w crossref_primary_10_1140_epjc_s10052_020_8272_4 crossref_primary_10_1016_j_dark_2013_07_001 crossref_primary_10_1007_JHEP10_2017_015 crossref_primary_10_1111_j_1365_2966_2011_19266_x crossref_primary_10_1051_epjconf_201818201001 crossref_primary_10_1007_JHEP01_2023_128 crossref_primary_10_1103_PhysRevD_93_035024 crossref_primary_10_1088_0004_637X_805_2_143 crossref_primary_10_1103_PhysRevD_94_055035 crossref_primary_10_1103_PhysRevLett_118_141802 crossref_primary_10_1093_mnras_stv1713 crossref_primary_10_1088_0004_637X_693_2_L56 crossref_primary_10_1103_PhysRevD_103_075005 crossref_primary_10_1103_PhysRevD_94_033007 crossref_primary_10_1103_PhysRevD_90_055030 crossref_primary_10_1111_j_1365_2966_2012_21182_x crossref_primary_10_1140_epjc_s10052_020_8153_x crossref_primary_10_1088_1475_7516_2021_05_013 crossref_primary_10_1007_JHEP06_2024_052 crossref_primary_10_3847_1538_4357_ad71c4 crossref_primary_10_1093_mnras_stw1309 crossref_primary_10_1088_2041_8205_735_1_L4 crossref_primary_10_1103_PhysRevD_100_095009 crossref_primary_10_1103_PhysRevD_90_055022 crossref_primary_10_1093_mnras_stv1831 crossref_primary_10_1103_PhysRevD_94_055028 crossref_primary_10_1007_JHEP04_2019_118 crossref_primary_10_1016_j_nuclphysbps_2013_10_065 crossref_primary_10_1093_mnras_stt2097 crossref_primary_10_1103_PhysRevD_106_103515 crossref_primary_10_1007_s11214_024_01051_8 crossref_primary_10_1103_PhysRevD_108_095002 crossref_primary_10_1088_1475_7516_2019_07_012 crossref_primary_10_12942_lrr_2013_6 crossref_primary_10_1103_PhysRevD_96_016007 crossref_primary_10_1103_PhysRevLett_107_091301 crossref_primary_10_1088_1475_7516_2019_08_027 crossref_primary_10_1088_1361_6471_abe529 crossref_primary_10_1093_mnrasl_slv088 crossref_primary_10_1103_PhysRevD_100_083022 crossref_primary_10_1140_epjc_s10052_015_3788_8 crossref_primary_10_1093_mnras_sts535 crossref_primary_10_1088_1475_7516_2023_09_012 crossref_primary_10_1142_S0217732322502339 crossref_primary_10_3367_UFNr_0184_201404a_0339 crossref_primary_10_1103_PhysRevLett_121_061801 crossref_primary_10_1103_PhysRevD_107_063006 crossref_primary_10_1103_PhysRevD_93_115025 crossref_primary_10_1088_1475_7516_2015_01_021 crossref_primary_10_1142_S0217751X22501378 crossref_primary_10_1103_PhysRevLett_113_071303 crossref_primary_10_1134_S1063772921100425 crossref_primary_10_1103_PhysRevD_93_115020 crossref_primary_10_1088_1475_7516_2023_03_047 crossref_primary_10_1088_1475_7516_2015_08_036 crossref_primary_10_1088_1475_7516_2022_08_032 crossref_primary_10_1007_JHEP09_2021_028 crossref_primary_10_1103_PhysRevLett_108_191301 crossref_primary_10_1103_PhysRevD_108_083013 crossref_primary_10_1088_1475_7516_2016_11_027 crossref_primary_10_1088_1475_7516_2012_11_024 crossref_primary_10_1093_mnras_stv1805 crossref_primary_10_1093_mnras_stae664 crossref_primary_10_3847_1538_4357_aac271 crossref_primary_10_1093_mnras_stz1261 crossref_primary_10_1051_0004_6361_202348000 crossref_primary_10_1093_mnras_stac2830 crossref_primary_10_1007_JHEP05_2024_069 crossref_primary_10_21595_jme_2017_19212 crossref_primary_10_1088_1475_7516_2016_03_018 crossref_primary_10_1093_mnras_sty3401 crossref_primary_10_1088_1475_7516_2021_06_011 crossref_primary_10_1088_1475_7516_2017_05_022 crossref_primary_10_1103_PhysRevD_100_115032 crossref_primary_10_1103_PhysRevD_89_083002 crossref_primary_10_3847_1538_4357_ace104 crossref_primary_10_1093_mnras_stae1193 crossref_primary_10_1088_0004_637X_783_2_78 crossref_primary_10_3847_1538_4357_ace33f crossref_primary_10_1103_PhysRevD_89_063517 crossref_primary_10_1088_0034_4885_73_8_086901 crossref_primary_10_1088_0004_637X_728_1_54 crossref_primary_10_1103_PhysRevLett_115_021301 crossref_primary_10_1140_epjc_s10052_021_09610_x crossref_primary_10_1111_j_1365_2966_2012_21806_x crossref_primary_10_1007_JHEP07_2017_101 crossref_primary_10_1103_PhysRevD_111_063001 crossref_primary_10_1126_science_1261381 crossref_primary_10_1038_s41550_018_0598_6 crossref_primary_10_1093_mnras_stt2170 crossref_primary_10_1093_mnras_stt2291 crossref_primary_10_1016_j_physletb_2021_136238 crossref_primary_10_3389_fspas_2015_00007 crossref_primary_10_1088_1475_7516_2015_02_038 crossref_primary_10_1103_PhysRevD_109_063535 crossref_primary_10_1103_PhysRevLett_129_151102 crossref_primary_10_1093_mnras_stx1636 crossref_primary_10_3847_0004_637X_823_2_94 crossref_primary_10_1007_JHEP07_2019_049 crossref_primary_10_1093_mnras_stx2609 crossref_primary_10_1088_1475_7516_2021_07_039 crossref_primary_10_1140_epjc_s10052_024_13472_4 crossref_primary_10_1103_PhysRevD_101_063532 crossref_primary_10_1051_0004_6361_201936184 crossref_primary_10_1103_PhysRevLett_116_041302 crossref_primary_10_1088_1475_7516_2012_01_020 crossref_primary_10_1007_JHEP03_2020_118 crossref_primary_10_1103_PhysRevD_98_035007 crossref_primary_10_1016_j_physrep_2017_11_004 crossref_primary_10_1103_PhysRevD_96_095019 crossref_primary_10_1088_1475_7516_2012_02_044 crossref_primary_10_3847_1538_4357_ab4ce5 crossref_primary_10_1088_1475_7516_2016_04_038 crossref_primary_10_1103_PhysRevD_108_043512 crossref_primary_10_1088_0954_3899_43_9_095006 crossref_primary_10_1103_PhysRevD_85_084012 crossref_primary_10_1007_JHEP11_2018_066 crossref_primary_10_1016_j_physletb_2015_06_063 crossref_primary_10_1140_epjc_s10052_018_6371_2 crossref_primary_10_1088_0004_637X_758_2_128 crossref_primary_10_1088_1475_7516_2014_05_033 crossref_primary_10_1103_PhysRevD_97_103003 crossref_primary_10_1103_PhysRevD_103_123551 crossref_primary_10_1103_PhysRevD_99_015040 crossref_primary_10_1007_JHEP12_2020_202 crossref_primary_10_1088_1475_7516_2023_02_044 crossref_primary_10_1093_mnras_stt897 crossref_primary_10_1093_mnras_sts689 crossref_primary_10_1088_1475_7516_2024_09_024 crossref_primary_10_1093_mnras_sts159 crossref_primary_10_3847_0004_637X_825_1_39 crossref_primary_10_3847_1538_4357_ad283c crossref_primary_10_1134_S0202289315040106 crossref_primary_10_1088_1475_7516_2018_08_045 crossref_primary_10_1088_1475_7516_2023_07_012 crossref_primary_10_3847_1538_4365_adb0b6 crossref_primary_10_1007_JHEP07_2023_006 crossref_primary_10_1088_1475_7516_2021_12_047 crossref_primary_10_1088_1475_7516_2014_04_028 crossref_primary_10_1103_PhysRevD_97_055033 crossref_primary_10_3390_sym13101945 crossref_primary_10_1016_j_physletb_2012_02_015 crossref_primary_10_1111_j_1365_2966_2010_16264_x crossref_primary_10_3389_fspas_2023_1121920 crossref_primary_10_1007_JHEP01_2018_053 crossref_primary_10_1093_mnras_stw507 crossref_primary_10_1007_JHEP10_2020_049 crossref_primary_10_1103_PhysRevLett_116_221302 crossref_primary_10_1088_0004_637X_772_2_131 crossref_primary_10_1103_PhysRevD_99_095030 crossref_primary_10_1093_mnras_stx2715 crossref_primary_10_3847_1538_4357_ac68e8 crossref_primary_10_1140_epjst_e2020_000134_7 crossref_primary_10_1103_PhysRevD_109_043038 crossref_primary_10_1103_PhysRevD_98_115023 crossref_primary_10_1088_1475_7516_2020_10_023 crossref_primary_10_3390_galaxies9040123 crossref_primary_10_3847_1538_4357_aa667f crossref_primary_10_1088_1674_1137_42_7_073101 crossref_primary_10_1103_PhysRevD_106_043538 crossref_primary_10_1088_1361_6633_aab913 crossref_primary_10_1007_JHEP05_2024_281 crossref_primary_10_3847_1538_4357_aa9710 crossref_primary_10_1093_mnras_stv774 crossref_primary_10_1080_00107514_2015_1006001 crossref_primary_10_1140_epjc_s10052_020_7656_9 crossref_primary_10_1103_PhysRevLett_112_171602 crossref_primary_10_1103_PhysRevD_109_055036 crossref_primary_10_1103_PhysRevLett_120_131802 crossref_primary_10_3847_1538_4357_acaea9 crossref_primary_10_1103_PhysRevD_109_043043 crossref_primary_10_1146_annurev_astro_081710_102514 crossref_primary_10_3847_1538_4357_acd111 crossref_primary_10_1088_1742_6596_496_1_012023 crossref_primary_10_1088_1475_7516_2015_10_048 crossref_primary_10_1088_1475_7516_2022_05_019 crossref_primary_10_1016_j_physletb_2015_08_012 crossref_primary_10_1007_JHEP12_2018_118 crossref_primary_10_1016_j_physletb_2019_135149 crossref_primary_10_3390_galaxies6020045 crossref_primary_10_1016_j_physletb_2018_03_055 crossref_primary_10_1146_annurev_astro_120419_014455 crossref_primary_10_1103_PhysRevD_104_035011 crossref_primary_10_1142_S0218271817300075 crossref_primary_10_1103_PhysRevD_103_015006 crossref_primary_10_1088_1475_7516_2020_10_006 crossref_primary_10_1111_j_1365_2966_2010_16822_x crossref_primary_10_3390_galaxies5010017 crossref_primary_10_1093_mnras_staa2059 crossref_primary_10_1088_1475_7516_2010_05_021 crossref_primary_10_1093_mnras_stw3192 crossref_primary_10_1111_j_1365_2966_2010_16319_x crossref_primary_10_3847_1538_4357_aa6d66 crossref_primary_10_1103_PhysRevD_80_063501 crossref_primary_10_1103_PhysRevD_91_025010 crossref_primary_10_1103_PhysRevD_85_063503 crossref_primary_10_1103_PhysRevD_104_083523 crossref_primary_10_1093_mnras_staa3235 crossref_primary_10_1103_PhysRevD_108_083004 crossref_primary_10_1007_JHEP10_2020_082 crossref_primary_10_1093_mnras_stv467 crossref_primary_10_1093_mnras_stx522 crossref_primary_10_1103_PhysRevD_102_054507 crossref_primary_10_1007_JHEP04_2018_074 crossref_primary_10_1093_mnras_stad3180 crossref_primary_10_1007_JHEP03_2020_096 crossref_primary_10_1007_s40042_023_00976_7 crossref_primary_10_1016_j_nuclphysbps_2009_07_002 crossref_primary_10_1088_1475_7516_2014_10_049 crossref_primary_10_1016_j_dark_2016_12_003 crossref_primary_10_1103_PhysRevD_102_063518 crossref_primary_10_1103_PhysRevD_109_055040 crossref_primary_10_1007_JHEP01_2015_032 crossref_primary_10_1088_1475_7516_2018_09_033 crossref_primary_10_1088_1475_7516_2015_11_027 crossref_primary_10_1093_mnras_stu124 crossref_primary_10_1007_JHEP02_2025_051 crossref_primary_10_1088_0004_637X_772_1_23 crossref_primary_10_1103_PhysRevD_89_084040 crossref_primary_10_1142_S0218271815450066 crossref_primary_10_1088_2041_8205_769_1_L2 crossref_primary_10_3847_1538_4357_aa850d crossref_primary_10_1103_PhysRevD_106_063013 crossref_primary_10_1007_JHEP07_2021_220 crossref_primary_10_1103_PhysRevD_94_103529 crossref_primary_10_1088_1475_7516_2017_08_021 crossref_primary_10_1007_s00159_021_00135_6 crossref_primary_10_1016_j_nuclphysb_2016_08_012 crossref_primary_10_1016_j_physletb_2015_07_013 crossref_primary_10_1103_PhysRevD_101_043526 crossref_primary_10_1103_PhysRevD_89_043514 crossref_primary_10_1007_JHEP09_2015_063 crossref_primary_10_1088_1475_7516_2021_05_020 crossref_primary_10_1007_JHEP09_2021_179 crossref_primary_10_1088_1475_7516_2018_09_021 crossref_primary_10_3847_1538_4357_ab855f crossref_primary_10_1093_mnras_stab2042 crossref_primary_10_1103_PhysRevD_87_115007 crossref_primary_10_3847_1538_4357_abd777 crossref_primary_10_1111_j_1365_2966_2011_18283_x crossref_primary_10_1088_1475_7516_2015_04_012 crossref_primary_10_1103_PhysRevD_87_055012 crossref_primary_10_1088_1475_7516_2016_12_016 crossref_primary_10_1088_1475_7516_2020_03_027 crossref_primary_10_1038_s41586_018_0542_z crossref_primary_10_1088_1475_7516_2025_03_031 crossref_primary_10_1093_mnras_stab1198 crossref_primary_10_1103_PhysRevD_100_023526 crossref_primary_10_1088_0004_637X_792_1_24 crossref_primary_10_1093_mnras_staa2496 crossref_primary_10_1093_mnras_stu340 crossref_primary_10_1103_PhysRevD_102_083018 crossref_primary_10_1007_s41114_017_0010_3 crossref_primary_10_1007_JHEP07_2018_081 crossref_primary_10_1093_mnras_stx855 crossref_primary_10_1139_cjp_2024_0128 crossref_primary_10_1103_PhysRevD_102_123534 crossref_primary_10_1103_PhysRevD_90_015023 crossref_primary_10_1093_mnras_stab3241 crossref_primary_10_1103_PhysRevD_103_023017 crossref_primary_10_1073_pnas_1308716112 crossref_primary_10_1088_1475_7516_2014_09_007 crossref_primary_10_3847_1538_4365_aa96b0 crossref_primary_10_1103_PhysRevD_105_075013 crossref_primary_10_1088_1475_7516_2021_09_027 crossref_primary_10_1103_PhysRevD_83_095011 crossref_primary_10_1103_PhysRevD_99_035024 crossref_primary_10_1038_s41550_024_02322_8 crossref_primary_10_1007_s12043_011_0116_1 crossref_primary_10_1007_JHEP03_2022_105 crossref_primary_10_1088_0034_4885_77_6_066902 crossref_primary_10_1007_JHEP09_2017_159 crossref_primary_10_1103_PhysRevD_92_055031 crossref_primary_10_1007_JHEP09_2017_033 crossref_primary_10_1093_mnras_stae2811 crossref_primary_10_1142_S0218271814300055 crossref_primary_10_1088_1475_7516_2017_01_042 crossref_primary_10_3847_1538_4357_ab9df6 crossref_primary_10_1007_JHEP11_2015_012 crossref_primary_10_1103_PhysRevD_102_095018 crossref_primary_10_1093_mnras_stab1056 crossref_primary_10_1093_mnras_stab506 crossref_primary_10_1103_PhysRevD_91_115001 crossref_primary_10_1051_0004_6361_201936337 crossref_primary_10_1088_0004_637X_812_2_153 crossref_primary_10_1103_PhysRevD_84_115002 crossref_primary_10_1088_1475_7516_2018_11_048 crossref_primary_10_1103_PhysRevD_110_035011 crossref_primary_10_1088_1475_7516_2021_03_066 crossref_primary_10_1016_j_nuclphysbps_2015_09_049 crossref_primary_10_1093_mnras_stac2069 crossref_primary_10_1093_mnras_stac1094 crossref_primary_10_1093_mnrasl_slac132 crossref_primary_10_1088_0004_637X_814_2_120 crossref_primary_10_1007_JHEP11_2016_048 crossref_primary_10_1142_S021773231430002X crossref_primary_10_1007_JHEP10_2014_061 crossref_primary_10_1088_1742_6596_866_1_012007 crossref_primary_10_1103_PhysRevD_92_043011 crossref_primary_10_1103_PhysRevLett_122_071103 crossref_primary_10_1016_j_dark_2016_10_005 crossref_primary_10_1103_PhysRevD_99_035003 crossref_primary_10_1103_PhysRevD_109_075003 crossref_primary_10_1103_PhysRevD_96_043018 crossref_primary_10_1093_mnras_sty630 crossref_primary_10_1103_PhysRevD_110_083003 crossref_primary_10_1007_JHEP03_2023_184 crossref_primary_10_3847_1538_3881_ad14f7 crossref_primary_10_1103_PhysRevD_90_095011 crossref_primary_10_1103_PhysRevD_110_035009 crossref_primary_10_1007_JHEP07_2013_013 crossref_primary_10_1088_1475_7516_2021_11_055 crossref_primary_10_1093_mnras_stw215 crossref_primary_10_1103_PhysRevD_110_103013 crossref_primary_10_1007_JHEP04_2017_158 crossref_primary_10_1007_JHEP05_2019_177 crossref_primary_10_1103_PhysRevD_89_033007 crossref_primary_10_1103_PhysRevLett_110_211302 crossref_primary_10_1103_PhysRevLett_114_211303 crossref_primary_10_1103_PhysRevD_100_123006 crossref_primary_10_1103_PhysRevD_107_103008 crossref_primary_10_1103_PhysRevD_98_096001 crossref_primary_10_1088_1475_7516_2014_02_047 crossref_primary_10_1007_JHEP06_2020_135 crossref_primary_10_1093_mnras_staa311 crossref_primary_10_1103_PhysRevD_105_016014 crossref_primary_10_1103_PhysRevD_108_123011 crossref_primary_10_1103_PhysRevD_95_063515 crossref_primary_10_1088_1475_7516_2019_03_012 crossref_primary_10_3390_sym14040812 crossref_primary_10_1103_PhysRevLett_116_011301 crossref_primary_10_1088_1475_7516_2018_10_020 crossref_primary_10_1088_1475_7516_2014_01_003 crossref_primary_10_1088_1475_7516_2015_04_051 crossref_primary_10_1103_PhysRevLett_105_011301 crossref_primary_10_1103_PhysRevLett_124_151801 crossref_primary_10_1007_JHEP11_2023_105 crossref_primary_10_1103_PhysRevD_102_115041 crossref_primary_10_1103_PhysRevD_100_123012 crossref_primary_10_3847_1538_4357_ab321d crossref_primary_10_1016_j_physletb_2016_04_055 crossref_primary_10_1088_1475_7516_2018_02_044 crossref_primary_10_1103_PhysRevD_98_043502 crossref_primary_10_1051_0004_6361_202451969 crossref_primary_10_1088_0004_637X_780_2_163 crossref_primary_10_1093_mnras_stx896 crossref_primary_10_1007_s41114_022_00036_9 crossref_primary_10_1140_epjc_s10052_022_10907_8 crossref_primary_10_1103_PhysRevLett_115_061301 crossref_primary_10_1007_JHEP01_2018_020 crossref_primary_10_21468_SciPostPhysProc_12_059 crossref_primary_10_1103_PhysRevD_109_123509 crossref_primary_10_1093_mnras_stw3238 crossref_primary_10_3847_1538_4357_ab3052 crossref_primary_10_1007_JHEP05_2020_057 crossref_primary_10_3847_0004_637X_820_1_43 crossref_primary_10_1007_JHEP11_2015_108 crossref_primary_10_1016_j_physletb_2015_02_057 crossref_primary_10_1103_PhysRevLett_124_041101 crossref_primary_10_1088_0004_637X_785_1_20 crossref_primary_10_1007_JHEP07_2015_045 crossref_primary_10_1016_j_physrep_2018_07_003 crossref_primary_10_1088_1475_7516_2012_05_021 crossref_primary_10_1093_mnras_stad1838 crossref_primary_10_1093_mnras_stac2276 crossref_primary_10_1140_epjc_s10052_022_10173_8 crossref_primary_10_3847_0004_637X_831_1_110 crossref_primary_10_1140_epjp_i2015_15181_6 crossref_primary_10_1103_PhysRevD_90_043524 crossref_primary_10_1007_JHEP07_2020_105 crossref_primary_10_1093_mnras_stae099 crossref_primary_10_3847_1538_4357_ac3090 crossref_primary_10_1051_0004_6361_201526925 crossref_primary_10_1103_PhysRevD_96_103519 crossref_primary_10_3847_1538_4357_aa784a crossref_primary_10_1088_1475_7516_2024_10_064 crossref_primary_10_1093_astrogeo_atz191 crossref_primary_10_1088_1475_7516_2020_06_025 crossref_primary_10_1093_mnras_stv1470 crossref_primary_10_1140_epjs_s11734_024_01121_6 crossref_primary_10_1093_mnras_stz1816 crossref_primary_10_1093_mnras_stz1815 crossref_primary_10_1016_j_physletb_2015_11_001 crossref_primary_10_1103_PhysRevD_85_101302 crossref_primary_10_1007_JHEP02_2023_068 crossref_primary_10_1088_0264_9381_27_23_233001 crossref_primary_10_3847_1538_4357_ab412b crossref_primary_10_1088_1674_1137_ad4e24 crossref_primary_10_1088_1475_7516_2025_01_053 crossref_primary_10_1007_JHEP03_2022_172 crossref_primary_10_1103_PhysRevD_90_043538 crossref_primary_10_1016_j_astropartphys_2015_05_001 crossref_primary_10_1088_0004_637X_691_1_525 crossref_primary_10_1093_mnras_stab3544 crossref_primary_10_1103_PhysRevD_96_023016 crossref_primary_10_1086_591246 crossref_primary_10_1103_PhysRevD_97_023529 crossref_primary_10_3847_1538_4365_aaf88b crossref_primary_10_1088_1475_7516_2020_01_040 crossref_primary_10_1051_0004_6361_201628629 crossref_primary_10_1088_0004_637X_744_2_94 crossref_primary_10_1093_mnras_stac2376 crossref_primary_10_1088_1475_7516_2022_10_017 crossref_primary_10_3390_universe11030074 crossref_primary_10_3847_1538_4357_acb76b crossref_primary_10_1007_JHEP11_2024_050 crossref_primary_10_1016_j_physletb_2015_12_054 crossref_primary_10_1088_1475_7516_2020_01_039 crossref_primary_10_1088_1475_7516_2018_03_038 crossref_primary_10_1103_PhysRevD_102_075001 crossref_primary_10_1088_1475_7516_2013_08_031 crossref_primary_10_1093_mnras_stu2660 crossref_primary_10_1103_PhysRevD_102_035011 crossref_primary_10_1103_PhysRevD_92_023510 crossref_primary_10_1016_j_dark_2023_101291 crossref_primary_10_1088_1361_6587_aa7f48 crossref_primary_10_1088_1475_7516_2020_06_043 crossref_primary_10_1088_1475_7516_2018_02_005 crossref_primary_10_1016_j_nuclphysb_2023_116348 crossref_primary_10_1088_1475_7516_2019_05_054 crossref_primary_10_3847_1538_4357_ab0d7c crossref_primary_10_1093_mnras_stx2028 crossref_primary_10_1111_j_1365_2966_2012_21901_x crossref_primary_10_1088_1475_7516_2018_12_020 crossref_primary_10_1088_1475_7516_2025_01_071 crossref_primary_10_1093_mnras_stab3764 crossref_primary_10_1103_PhysRevD_90_115013 crossref_primary_10_1088_1475_7516_2011_10_011 crossref_primary_10_1016_j_physrep_2010_06_001 crossref_primary_10_1088_1475_7516_2020_05_001 crossref_primary_10_1093_mnras_staa3954 crossref_primary_10_1007_JHEP06_2021_108 crossref_primary_10_1007_JHEP08_2018_079 crossref_primary_10_1016_j_physletb_2017_08_043 crossref_primary_10_1103_PhysRevD_105_095023 crossref_primary_10_1103_PhysRevD_104_075010 crossref_primary_10_1007_JHEP06_2018_043 crossref_primary_10_1093_mnras_stab1103 crossref_primary_10_3847_1538_4357_ab07b1 crossref_primary_10_3847_1538_4357_ab6bca crossref_primary_10_1093_mnrasl_slv104 crossref_primary_10_1103_PhysRevD_104_123541 crossref_primary_10_1088_0004_637X_723_2_1678 crossref_primary_10_1103_PhysRevD_89_035009 crossref_primary_10_1103_PhysRevD_99_055034 crossref_primary_10_1088_1475_7516_2023_04_048 crossref_primary_10_1088_1475_7516_2019_06_022 crossref_primary_10_1051_0004_6361_202243278 crossref_primary_10_1088_1475_7516_2022_09_011 crossref_primary_10_1103_PhysRevLett_125_181102 crossref_primary_10_3847_1538_4357_ad2fb1 crossref_primary_10_1007_JHEP08_2018_069 crossref_primary_10_1088_1475_7516_2018_12_038 crossref_primary_10_1103_PhysRevLett_110_111301 crossref_primary_10_1088_0004_637X_748_1_7 crossref_primary_10_1103_PhysRevD_108_124080 crossref_primary_10_1088_1475_7516_2017_03_048 crossref_primary_10_1016_j_nuclphysb_2024_116503 crossref_primary_10_1093_mnras_stab2787 crossref_primary_10_1103_PhysRevD_95_056011 crossref_primary_10_21468_SciPostPhysLectNotes_52 crossref_primary_10_1007_JHEP03_2023_216 crossref_primary_10_1103_PhysRevD_94_063506 crossref_primary_10_1088_0004_637X_765_1_25 crossref_primary_10_1088_1475_7516_2020_09_041 crossref_primary_10_1103_PhysRevD_94_063503 crossref_primary_10_1103_PhysRevD_81_123513 crossref_primary_10_1103_PhysRevD_89_115017 crossref_primary_10_1007_JHEP08_2021_114 crossref_primary_10_1007_JHEP11_2024_129 crossref_primary_10_1007_JHEP02_2020_196 crossref_primary_10_1103_PhysRevD_101_055024 crossref_primary_10_1088_1475_7516_2022_10_052 crossref_primary_10_1051_0004_6361_202450468 crossref_primary_10_1007_JHEP05_2016_046 crossref_primary_10_3847_2041_8213_ad772c crossref_primary_10_3847_1538_4357_aaee77 crossref_primary_10_3847_1538_4357_ad6442 crossref_primary_10_1103_PhysRevD_92_123527 crossref_primary_10_1093_mnras_stac2207 crossref_primary_10_1142_S0217732321500322 crossref_primary_10_1088_1475_7516_2024_10_004 crossref_primary_10_1103_PhysRevD_103_043014 crossref_primary_10_1142_S0217751X1730023X crossref_primary_10_1103_PhysRevD_106_115033 crossref_primary_10_1093_mnras_stw291 crossref_primary_10_1103_PhysRevD_79_023505 crossref_primary_10_1093_mnras_stad1786 crossref_primary_10_1111_j_1365_2966_2011_18716_x crossref_primary_10_1103_PhysRevD_88_015001 crossref_primary_10_1103_PhysRevD_95_124049 crossref_primary_10_1103_PhysRevD_92_123530 crossref_primary_10_3847_1538_4357_ac9fd3 crossref_primary_10_1103_PhysRevD_104_063021 crossref_primary_10_1093_mnras_stac2675 crossref_primary_10_1093_mnras_stac649 crossref_primary_10_1103_PhysRevD_101_055044 crossref_primary_10_1088_1475_7516_2016_01_013 crossref_primary_10_1088_2041_8205_747_2_L42 crossref_primary_10_1103_PhysRevD_109_043504 crossref_primary_10_1093_mnras_stw2425 crossref_primary_10_1093_mnras_stx1370 crossref_primary_10_1103_PhysRevD_92_103510 crossref_primary_10_1088_1475_7516_2019_07_036 crossref_primary_10_1088_1475_7516_2020_08_022 crossref_primary_10_1103_PhysRevD_97_123004 crossref_primary_10_1140_epjp_i2015_15069_5 crossref_primary_10_1103_PhysRevD_100_123506 crossref_primary_10_1088_1475_7516_2024_04_007 crossref_primary_10_1103_PhysRevLett_113_171301 crossref_primary_10_1093_mnras_sts514 crossref_primary_10_1103_PhysRevD_93_123527 crossref_primary_10_1007_JHEP12_2021_059 crossref_primary_10_1093_mnras_stae1004 crossref_primary_10_1140_epjc_s10052_013_2428_4 crossref_primary_10_1007_JHEP06_2023_208 crossref_primary_10_1093_mnras_stw2670 crossref_primary_10_1093_mnras_stw2671 crossref_primary_10_1088_1475_7516_2021_01_024 crossref_primary_10_1103_PhysRevD_109_043516 crossref_primary_10_1093_mnras_stab2629 crossref_primary_10_1103_PhysRevD_106_083514 crossref_primary_10_1103_PhysRevD_109_096036 crossref_primary_10_1007_JHEP10_2017_162 crossref_primary_10_1038_s41586_022_04665_6 crossref_primary_10_1111_j_1365_2966_2011_18246_x crossref_primary_10_1103_PhysRevD_97_123018 crossref_primary_10_1103_PhysRevLett_113_021302 crossref_primary_10_1007_JHEP06_2024_005 crossref_primary_10_1007_JHEP08_2017_078 crossref_primary_10_1051_0004_6361_201731299 crossref_primary_10_1088_1475_7516_2019_06_014 crossref_primary_10_3847_1538_4365_aafad2 crossref_primary_10_1093_mnras_stae1012 crossref_primary_10_1155_2014_681312 crossref_primary_10_1007_JHEP05_2016_090 crossref_primary_10_1093_mnras_stw1433 crossref_primary_10_3847_1538_4357_ad3249 crossref_primary_10_1051_0004_6361_202452212 crossref_primary_10_3847_2041_8213_ac94d6 crossref_primary_10_1088_1475_7516_2024_05_020 crossref_primary_10_3847_1538_4357_aad04c crossref_primary_10_1093_mnras_stz361 crossref_primary_10_1088_0004_637X_804_2_129 crossref_primary_10_1088_1674_4527_15_12_001 crossref_primary_10_1088_1475_7516_2018_11_032 crossref_primary_10_4236_jmp_2020_116053 crossref_primary_10_3847_1538_4357_ab2f90 crossref_primary_10_1103_PhysRevD_95_115023 crossref_primary_10_1051_0004_6361_201527959 crossref_primary_10_1007_JHEP06_2023_103 crossref_primary_10_1103_PhysRevD_82_123507 crossref_primary_10_1088_1475_7516_2021_01_043 crossref_primary_10_1007_JHEP08_2016_057 crossref_primary_10_1088_1475_7516_2016_01_006 crossref_primary_10_1140_epjc_s10052_019_6608_8 crossref_primary_10_1142_S0217751X14430015 crossref_primary_10_3390_particles7010010 crossref_primary_10_1016_j_physletb_2022_137369 crossref_primary_10_1111_j_1365_2966_2011_18684_x crossref_primary_10_1111_j_1365_2966_2012_20808_x crossref_primary_10_1103_PhysRevD_98_123532 crossref_primary_10_1103_PhysRevLett_128_172001 crossref_primary_10_1051_0004_6361_202243205 crossref_primary_10_1088_0004_637X_804_2_131 crossref_primary_10_3367_UFNe_0184_201404a_0339 crossref_primary_10_1103_PhysRevD_87_123531 crossref_primary_10_3847_1538_4357_acfc9e |
Cites_doi | 10.1086/381970 10.1086/340226 10.1086/312674 10.1103/PhysRevD.65.123515 10.1086/339619 10.1086/342530 10.1086/432593 10.1103/PhysRevLett.84.3760 10.1086/342792 10.1111/j.1365-2966.2005.09655.x 10.1093/mnras/275.3.720 10.1038/370629a0 10.1086/383178 10.1111/j.1365-2966.2007.12159.x 10.1093/pasj/58.6.925 10.1055/s-2006-951900 10.1086/307643 10.1086/508601 10.1086/187350 10.1086/117088 10.1016/j.nuclphysbps.2007.08.150 10.1086/323211 10.1086/168845 10.1086/312287 10.5303/JKAS.2003.36.3.089 10.1086/518960 10.1086/304888 10.1086/318417 10.1086/324138 10.1046/j.1365-8711.1999.03039.x 10.1086/312707 10.1086/508162 10.1086/344259 10.1086/324693 10.1146/annurev.astro.37.1.127 10.1051/0004-6361:20020244 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TG KL. 8FD H8D L7M |
DOI | 10.1086/587859 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
EndPage | 1180 |
ExternalDocumentID | 20390080 10_1086_587859 |
GroupedDBID | 123 1JI 23N 2WC 4.4 85S 8RP AAGCD AAJIO AALHV ABFLS ABPTK ACGFS ACNCT AEFHF AENEX AFDAS ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CS3 DZ EBS EJD F5P G8K IOP KOT MVM N5L O3W O43 OHT OK1 RIN RNS ROL RPA SJN SY9 T37 TN5 WH7 X ZY4 -DZ -~X 2FS 41~ 6J9 6TJ 6TS 9M8 AAFWJ AAYXX ABDPE ABHWH ACBEA ACHIP ADACN ADIYS ADXHL AETEA AFPKN AI. AKPSB CITATION CRLBU FA8 FRP GROUPED_DOAJ IJHAN M~E PJBAE TR2 VH1 WHG XOL XSW YYP ZCG ZKB ABTAH IQODW 7TG KL. 8FD H8D L7M |
ID | FETCH-LOGICAL-c476t-afca102a440fcc6e5a92b74b0e3ff368fc8e9188ff0ebc66697727708d5ec33a3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Fri Jul 11 05:24:32 EDT 2025 Fri Jul 11 10:18:06 EDT 2025 Wed Apr 02 07:23:39 EDT 2025 Thu Apr 24 22:51:03 EDT 2025 Tue Jul 01 01:15:41 EDT 2025 Tue Nov 10 14:23:18 EST 2020 Mon May 13 13:09:55 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-afca102a440fcc6e5a92b74b0e3ff368fc8e9188ff0ebc66697727708d5ec33a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://iopscience.iop.org/article/10.1086/587859/pdf |
PQID | 19317303 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_19317303 crossref_primary_10_1086_587859 iop_primary_10_1086_587859 crossref_citationtrail_10_1086_587859 proquest_miscellaneous_743144027 pascalfrancis_primary_20390080 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Chicago, IL |
PublicationPlace_xml | – name: Chicago, IL |
PublicationTitle | The Astrophysical journal |
PublicationYear | 2008 |
Publisher | IOP Publishing University of Chicago Press |
Publisher_xml | – name: IOP Publishing – name: University of Chicago Press |
References | rf8_2701 rf17_2710 rf35_2728 rf32_2725 rf13_2706 rf10_2703 rf39_2732 rf4_2697 rf16_2709 rf1_2694 rf15_2708 rf37_2730 rf12_2705 rf25_2718 rf9_2702 rf22_2715 rf27_2720 rf24_2717 rf28_2721 rf14_2707 rf40_2733 rf5_2698 rf11_2704 rf2_2695 rf34_2727 rf31_2724 rf21_2714 rf18_2711 rf7_2700 rf19_2712 rf36_2729 rf26_2719 rf23_2716 rf29_2722 rf20_2713 rf6_2699 rf38_2731 rf3_2696 rf33_2726 rf30_2723 |
References_xml | – ident: rf8_2701 doi: 10.1086/381970 – ident: rf18_2711 doi: 10.1086/340226 – ident: rf5_2698 doi: 10.1086/312674 – ident: rf6_2699 doi: 10.1103/PhysRevD.65.123515 – ident: rf23_2716 doi: 10.1086/339619 – ident: rf34_2727 doi: 10.1086/342530 – ident: rf33_2726 doi: 10.1086/432593 – ident: rf35_2728 doi: 10.1103/PhysRevLett.84.3760 – ident: rf17_2710 doi: 10.1086/342792 – ident: rf36_2729 doi: 10.1111/j.1365-2966.2005.09655.x – ident: rf31_2724 doi: 10.1093/mnras/275.3.720 – ident: rf28_2721 doi: 10.1038/370629a0 – ident: rf22_2715 doi: 10.1086/383178 – ident: rf37_2730 doi: 10.1111/j.1365-2966.2007.12159.x – ident: rf21_2714 – ident: rf38_2731 doi: 10.1093/pasj/58.6.925 – ident: rf13_2706 doi: 10.1055/s-2006-951900 – ident: rf20_2713 doi: 10.1086/307643 – ident: rf4_2697 doi: 10.1086/508601 – ident: rf14_2707 doi: 10.1086/187350 – ident: rf25_2718 doi: 10.1086/117088 – ident: rf40_2733 – ident: rf2_2695 – ident: rf11_2704 – ident: rf9_2702 doi: 10.1016/j.nuclphysbps.2007.08.150 – ident: rf16_2709 doi: 10.1086/323211 – ident: rf19_2712 doi: 10.1086/168845 – ident: rf29_2722 doi: 10.1086/312287 – ident: rf1_2694 doi: 10.5303/JKAS.2003.36.3.089 – ident: rf26_2719 doi: 10.1086/518960 – ident: rf32_2725 doi: 10.1086/304888 – ident: rf12_2705 doi: 10.1086/318417 – ident: rf27_2720 doi: 10.1086/324138 – ident: rf30_2723 doi: 10.1046/j.1365-8711.1999.03039.x – ident: rf39_2732 doi: 10.1086/312707 – ident: rf7_2700 doi: 10.1086/508162 – ident: rf10_2703 doi: 10.1086/344259 – ident: rf15_2708 doi: 10.1086/324693 – ident: rf24_2717 doi: 10.1146/annurev.astro.37.1.127 – ident: rf3_2696 doi: 10.1051/0004-6361:20020244 |
SSID | ssj0004299 |
Score | 2.5145836 |
Snippet | We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E... |
SourceID | proquest pascalfrancis crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1173 |
Title | Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 |
URI | http://iopscience.iop.org/0004-637X/679/2/1173 https://www.proquest.com/docview/19317303 https://www.proquest.com/docview/743144027 |
Volume | 679 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Pb9MwFLdgEhIXBgO0Dhg-DG5pkzixneNUNgZS10ljorfIcWxpWpZUTSKxnXbiC_AN-SS8F6ddoQJxiZzkxf-eY__sZ_8eIQfcVzKXCfcyqzMPDW-eisPIYyxDM16Wxx2ZzuSUn1xEn2fx7H6ieFnN-55_CMHOko-ow-NMzEZcJKNwFAQCyT1h6Me51qfp2f0xyDDp0a77YM2VUCyFRDrStbHnISSAOyFVDZVhnReLjQ65G2WOt8l0eVbHbS65GrZNNtS3m9SN_1mAp-RJDzjpoWshz8gDU-6Q3cMal8Cr6xv6nnZht8JR75BHZy70nHxHZ56dC4mmplVJASrSc1NYr1tFdAci6BhLCo_dXWXpB7W4opOOtZPi2RV62jqjUEHPL697Z2E1SmJ8E7NAL0n0oyrUtxs6LlokbqDBEQUVip93P2L-glwcH30Zn3i92wZPR4I3nrJaAWxRUeRbrbmJVRJmIsp8w6xlXFotTRJIaa1vMg3TJ4CgoRC-zGOjGVPsJdkqq9LsEqpCrpJI5UwHKsosiPhGas6sSnQsFRuQd0uFprrnNMd6KdLOti556hQ_IG9XcnPH4rEhcQD6Wr1EnaWosxR0loZIic7SeW4HZG9d7M849n9rTSux0GcJQnPIxrJ5pfAXo2lGlaZq6xRgNKTgQ4HoXyQQ6UGNhmLvX1l4RR67DS24TPSabDWL1rwB1NRk-92_Atcp-_oLd18SEQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELb6EIgLogXULdD6ULiFZuP4kWO17VIeu1QqFXuzHMeWEGmy2uxK9MaJP8A_7C_pTJxdWiq4OcnEnsw48ZcZzwwhByI2qlCZiHJv8wgdb5HhSRoxlqMbLy94m0xnNBanF-mHCZ-sEb6Khamn3af_LTRDouAgwsNlWSCupOLZ4bTw62STM5lgyvzP7OufcMgk61BvGgkmJ7dKCoV776xB6zAO7og0DQjFh2oW9z7M7WozfEIedzCRHgWmtsiaq7bJzlGDhuv68oq-oW072CWabfLgLLSekl9YgrMt_DBvaF1RAHj03JU-am1_IYyBDpAvOB2Oak-Pzew7HbW5NilGnNDxIrhySnr-7bIr8dUgJfY3cjOsbUTfmdL8uKKDcoHpFmj_hILg5fXP31w8IxfDky-D06grthDZVIp5ZLw1ADZMmsbeWuG4yZJcpnnsmPdMKG-Vy_pKeR-73MJPDwDHRMpYFdxZxgx7TjaqunI7hJpEmCw1BbN9k-YeSGKnrGDeZJYrw3rk9VL82naZyFEupW494krooKYe2V_RTUPujXsUB6C91UXUuEaNayEznWAic6ZhnvTI7m2yv_vYu6P7FVkSswwBNbCxnAwa3j10qJjK1YtGA_iFEWJ4IPoPCsRnINFE7v6PhX3y8Ox4qD-9H398QR6FHSlo53lJNuazhXsFsGee77WT_AaIa_0R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+the+Self-Interaction+Cross+Section+of+Dark+Matter+from+Numerical+Simulations+of+the+Merging+Galaxy+Cluster+1E+0657-56&rft.jtitle=The+Astrophysical+journal&rft.au=Randall%2C+Scott+W&rft.au=Markevitch%2C+Maxim&rft.au=Clowe%2C+Douglas&rft.au=Gonzalez%2C+Anthony+H&rft.date=2008-06-01&rft.issn=0004-637X&rft.volume=679&rft.issue=2&rft.spage=1173&rft.epage=1180&rft_id=info:doi/10.1086%2F587859&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |