Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56

We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 679; no. 2; pp. 1173 - 1180
Main Authors Randall, Scott W, Markevitch, Maxim, Clowe, Douglas, Gonzalez, Anthony H, Bradač, Marusa
Format Journal Article
LanguageEnglish
Published Chicago, IL IOP Publishing 01.06.2008
University of Chicago Press
Online AccessGet full text

Cover

Loading…
Abstract We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km s super(-1), while lensing results show that the positions of the total mass peaks are consistent with the centroids of the collisionless galaxies (and inconsistent with the X-ray brightness peaks). Previous studies, based on older observational data sets, have placed upper limits on the self- interaction cross section of dark matter per unit mass, [image], using simplified analytic techniques. In this work, we take advantage of new, higher quality observational data sets by running full N-body simulations of 1E 0657-56 that include the effects of self-interacting dark matter, and comparing the results with observations. Furthermore, the recent data allow for a new independent method of constraining [image], based on the nonobservation of an offset between the bullet subcluster mass peak and galaxy centroid. This new method places an upper limit (68% confidence) of [image] cm super(2) g super(-1). If we make the assumption that the subcluster and the main cluster had equal mass-to-light ratios prior to the merger, we derive our most stringent constraint of [image] cm super(2) g super(-1), which comes from the consistency of the subcluster's observed mass-to-light ratio with the main cluster's, and with the universal cluster value, ruling out the possibility of a large fraction of dark matter particles being scattered away due to collisions. Our limit is a slight improvement over the previous result from analytic estimates, and rules out most of the 0.5-5 cm super(2) g super(-1) range invoked to explain inconsistencies between the standard collisionless cold dark matter model and observations.
AbstractList We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km s(-1), while lensing results show that the positions of the total mass peaks are consistent with the centroids of the collisionless galaxies (and inconsistent with the X-ray brightness peaks). Previous studies, based on older observational data sets, have placed upper limits on the self- interaction cross section of dark matter per unit mass, [image], using simplified analytic techniques. In this work, we take advantage of new, higher quality observational data sets by running full N-body simulations of 1E 0657-56 that include the effects of self-interacting dark matter, and comparing the results with observations. Furthermore, the recent data allow for a new independent method of constraining [image], based on the nonobservation of an offset between the bullet subcluster mass peak and galaxy centroid. This new method places an upper limit (68% confidence) of [image] cm(2) g(-1). If we make the assumption that the subcluster and the main cluster had equal mass-to-light ratios prior to the merger, we derive our most stringent constraint of [image] cm(2) g(-1), which comes from the consistency of the subcluster's observed mass-to-light ratio with the main cluster's, and with the universal cluster value, ruling out the possibility of a large fraction of dark matter particles being scattered away due to collisions. Our limit is a slight improvement over the previous result from analytic estimates, and rules out most of the 0.5-5 cm(2) g(-1) range invoked to explain inconsistencies between the standard collisionless cold dark matter model and observations.
We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent bow shock, which gives an estimate for the merger velocity of 4700 km s super(-1), while lensing results show that the positions of the total mass peaks are consistent with the centroids of the collisionless galaxies (and inconsistent with the X-ray brightness peaks). Previous studies, based on older observational data sets, have placed upper limits on the self- interaction cross section of dark matter per unit mass, [image], using simplified analytic techniques. In this work, we take advantage of new, higher quality observational data sets by running full N-body simulations of 1E 0657-56 that include the effects of self-interacting dark matter, and comparing the results with observations. Furthermore, the recent data allow for a new independent method of constraining [image], based on the nonobservation of an offset between the bullet subcluster mass peak and galaxy centroid. This new method places an upper limit (68% confidence) of [image] cm super(2) g super(-1). If we make the assumption that the subcluster and the main cluster had equal mass-to-light ratios prior to the merger, we derive our most stringent constraint of [image] cm super(2) g super(-1), which comes from the consistency of the subcluster's observed mass-to-light ratio with the main cluster's, and with the universal cluster value, ruling out the possibility of a large fraction of dark matter particles being scattered away due to collisions. Our limit is a slight improvement over the previous result from analytic estimates, and rules out most of the 0.5-5 cm super(2) g super(-1) range invoked to explain inconsistencies between the standard collisionless cold dark matter model and observations.
Author Randall, Scott W
Markevitch, Maxim
Gonzalez, Anthony H
Clowe, Douglas
Bradač, Marusa
Author_xml – sequence: 1
  fullname: Randall, Scott W
– sequence: 2
  fullname: Markevitch, Maxim
– sequence: 3
  fullname: Clowe, Douglas
– sequence: 4
  fullname: Gonzalez, Anthony H
– sequence: 5
  fullname: Bradač, Marusa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20390080$$DView record in Pascal Francis
BookMark eNp90s1uFSEUB3BiauJt1WfAhbrQqTDM8LE0Y22btLqoJu4Il0JFGbgFJrE7V76Ab-iTCL2NTWx0Rc7Jj3_COeyCnRCDAeAxRvsYcfpq5IyP4h5Y4ZHwbiAj2wErhNDQUcI-PQC7OX9pZS_ECvyYYsglKRdKhjHA8tnAM-NtdxyKSUoXV5tTijnX9raKFr5R6Ss8VaUSaFOc4btlNslp5eGZmxevGsxNtrxTky5cuICHyqtvV3DyS24X8QFEdGS_vv8c6UNw3yqfzaObcw98fHvwYTrqTt4fHk-vTzo9MFo6ZbXCqFfDgKzW1IxK9Gs2rJEh1hLKreZGYM6tRWatKaWCsZ4xxM9HowlRZA883-ZuUrxcTC5ydlkb71UwccmSDQTX8J5V-ey_EguCGUGkwqc3UOU6AJtU0C7LTXKzSleyR0QgxNFtoG7TTMb-IRjJtji5XVyFL_-C2pXribY9-bv8yZa7uPl35Iu7pv0B2b6EpEzIXuL6Hrk5t-Q3bAOzDA
CODEN ASJOAB
CitedBy_id crossref_primary_10_1103_PhysRevD_105_103015
crossref_primary_10_1088_1475_7516_2018_06_036
crossref_primary_10_1103_PhysRevD_102_043024
crossref_primary_10_1140_epjc_s10052_017_5063_7
crossref_primary_10_1140_epjb_s10051_022_00299_9
crossref_primary_10_1007_s00159_020_00129_w
crossref_primary_10_1140_epjc_s10052_020_8272_4
crossref_primary_10_1016_j_dark_2013_07_001
crossref_primary_10_1007_JHEP10_2017_015
crossref_primary_10_1111_j_1365_2966_2011_19266_x
crossref_primary_10_1051_epjconf_201818201001
crossref_primary_10_1007_JHEP01_2023_128
crossref_primary_10_1103_PhysRevD_93_035024
crossref_primary_10_1088_0004_637X_805_2_143
crossref_primary_10_1103_PhysRevD_94_055035
crossref_primary_10_1103_PhysRevLett_118_141802
crossref_primary_10_1093_mnras_stv1713
crossref_primary_10_1088_0004_637X_693_2_L56
crossref_primary_10_1103_PhysRevD_103_075005
crossref_primary_10_1103_PhysRevD_94_033007
crossref_primary_10_1103_PhysRevD_90_055030
crossref_primary_10_1111_j_1365_2966_2012_21182_x
crossref_primary_10_1140_epjc_s10052_020_8153_x
crossref_primary_10_1088_1475_7516_2021_05_013
crossref_primary_10_1007_JHEP06_2024_052
crossref_primary_10_3847_1538_4357_ad71c4
crossref_primary_10_1093_mnras_stw1309
crossref_primary_10_1088_2041_8205_735_1_L4
crossref_primary_10_1103_PhysRevD_100_095009
crossref_primary_10_1103_PhysRevD_90_055022
crossref_primary_10_1093_mnras_stv1831
crossref_primary_10_1103_PhysRevD_94_055028
crossref_primary_10_1007_JHEP04_2019_118
crossref_primary_10_1016_j_nuclphysbps_2013_10_065
crossref_primary_10_1093_mnras_stt2097
crossref_primary_10_1103_PhysRevD_106_103515
crossref_primary_10_1007_s11214_024_01051_8
crossref_primary_10_1103_PhysRevD_108_095002
crossref_primary_10_1088_1475_7516_2019_07_012
crossref_primary_10_12942_lrr_2013_6
crossref_primary_10_1103_PhysRevD_96_016007
crossref_primary_10_1103_PhysRevLett_107_091301
crossref_primary_10_1088_1475_7516_2019_08_027
crossref_primary_10_1088_1361_6471_abe529
crossref_primary_10_1093_mnrasl_slv088
crossref_primary_10_1103_PhysRevD_100_083022
crossref_primary_10_1140_epjc_s10052_015_3788_8
crossref_primary_10_1093_mnras_sts535
crossref_primary_10_1088_1475_7516_2023_09_012
crossref_primary_10_1142_S0217732322502339
crossref_primary_10_3367_UFNr_0184_201404a_0339
crossref_primary_10_1103_PhysRevLett_121_061801
crossref_primary_10_1103_PhysRevD_107_063006
crossref_primary_10_1103_PhysRevD_93_115025
crossref_primary_10_1088_1475_7516_2015_01_021
crossref_primary_10_1142_S0217751X22501378
crossref_primary_10_1103_PhysRevLett_113_071303
crossref_primary_10_1134_S1063772921100425
crossref_primary_10_1103_PhysRevD_93_115020
crossref_primary_10_1088_1475_7516_2023_03_047
crossref_primary_10_1088_1475_7516_2015_08_036
crossref_primary_10_1088_1475_7516_2022_08_032
crossref_primary_10_1007_JHEP09_2021_028
crossref_primary_10_1103_PhysRevLett_108_191301
crossref_primary_10_1103_PhysRevD_108_083013
crossref_primary_10_1088_1475_7516_2016_11_027
crossref_primary_10_1088_1475_7516_2012_11_024
crossref_primary_10_1093_mnras_stv1805
crossref_primary_10_1093_mnras_stae664
crossref_primary_10_3847_1538_4357_aac271
crossref_primary_10_1093_mnras_stz1261
crossref_primary_10_1051_0004_6361_202348000
crossref_primary_10_1093_mnras_stac2830
crossref_primary_10_1007_JHEP05_2024_069
crossref_primary_10_21595_jme_2017_19212
crossref_primary_10_1088_1475_7516_2016_03_018
crossref_primary_10_1093_mnras_sty3401
crossref_primary_10_1088_1475_7516_2021_06_011
crossref_primary_10_1088_1475_7516_2017_05_022
crossref_primary_10_1103_PhysRevD_100_115032
crossref_primary_10_1103_PhysRevD_89_083002
crossref_primary_10_3847_1538_4357_ace104
crossref_primary_10_1093_mnras_stae1193
crossref_primary_10_1088_0004_637X_783_2_78
crossref_primary_10_3847_1538_4357_ace33f
crossref_primary_10_1103_PhysRevD_89_063517
crossref_primary_10_1088_0034_4885_73_8_086901
crossref_primary_10_1088_0004_637X_728_1_54
crossref_primary_10_1103_PhysRevLett_115_021301
crossref_primary_10_1140_epjc_s10052_021_09610_x
crossref_primary_10_1111_j_1365_2966_2012_21806_x
crossref_primary_10_1007_JHEP07_2017_101
crossref_primary_10_1103_PhysRevD_111_063001
crossref_primary_10_1126_science_1261381
crossref_primary_10_1038_s41550_018_0598_6
crossref_primary_10_1093_mnras_stt2170
crossref_primary_10_1093_mnras_stt2291
crossref_primary_10_1016_j_physletb_2021_136238
crossref_primary_10_3389_fspas_2015_00007
crossref_primary_10_1088_1475_7516_2015_02_038
crossref_primary_10_1103_PhysRevD_109_063535
crossref_primary_10_1103_PhysRevLett_129_151102
crossref_primary_10_1093_mnras_stx1636
crossref_primary_10_3847_0004_637X_823_2_94
crossref_primary_10_1007_JHEP07_2019_049
crossref_primary_10_1093_mnras_stx2609
crossref_primary_10_1088_1475_7516_2021_07_039
crossref_primary_10_1140_epjc_s10052_024_13472_4
crossref_primary_10_1103_PhysRevD_101_063532
crossref_primary_10_1051_0004_6361_201936184
crossref_primary_10_1103_PhysRevLett_116_041302
crossref_primary_10_1088_1475_7516_2012_01_020
crossref_primary_10_1007_JHEP03_2020_118
crossref_primary_10_1103_PhysRevD_98_035007
crossref_primary_10_1016_j_physrep_2017_11_004
crossref_primary_10_1103_PhysRevD_96_095019
crossref_primary_10_1088_1475_7516_2012_02_044
crossref_primary_10_3847_1538_4357_ab4ce5
crossref_primary_10_1088_1475_7516_2016_04_038
crossref_primary_10_1103_PhysRevD_108_043512
crossref_primary_10_1088_0954_3899_43_9_095006
crossref_primary_10_1103_PhysRevD_85_084012
crossref_primary_10_1007_JHEP11_2018_066
crossref_primary_10_1016_j_physletb_2015_06_063
crossref_primary_10_1140_epjc_s10052_018_6371_2
crossref_primary_10_1088_0004_637X_758_2_128
crossref_primary_10_1088_1475_7516_2014_05_033
crossref_primary_10_1103_PhysRevD_97_103003
crossref_primary_10_1103_PhysRevD_103_123551
crossref_primary_10_1103_PhysRevD_99_015040
crossref_primary_10_1007_JHEP12_2020_202
crossref_primary_10_1088_1475_7516_2023_02_044
crossref_primary_10_1093_mnras_stt897
crossref_primary_10_1093_mnras_sts689
crossref_primary_10_1088_1475_7516_2024_09_024
crossref_primary_10_1093_mnras_sts159
crossref_primary_10_3847_0004_637X_825_1_39
crossref_primary_10_3847_1538_4357_ad283c
crossref_primary_10_1134_S0202289315040106
crossref_primary_10_1088_1475_7516_2018_08_045
crossref_primary_10_1088_1475_7516_2023_07_012
crossref_primary_10_3847_1538_4365_adb0b6
crossref_primary_10_1007_JHEP07_2023_006
crossref_primary_10_1088_1475_7516_2021_12_047
crossref_primary_10_1088_1475_7516_2014_04_028
crossref_primary_10_1103_PhysRevD_97_055033
crossref_primary_10_3390_sym13101945
crossref_primary_10_1016_j_physletb_2012_02_015
crossref_primary_10_1111_j_1365_2966_2010_16264_x
crossref_primary_10_3389_fspas_2023_1121920
crossref_primary_10_1007_JHEP01_2018_053
crossref_primary_10_1093_mnras_stw507
crossref_primary_10_1007_JHEP10_2020_049
crossref_primary_10_1103_PhysRevLett_116_221302
crossref_primary_10_1088_0004_637X_772_2_131
crossref_primary_10_1103_PhysRevD_99_095030
crossref_primary_10_1093_mnras_stx2715
crossref_primary_10_3847_1538_4357_ac68e8
crossref_primary_10_1140_epjst_e2020_000134_7
crossref_primary_10_1103_PhysRevD_109_043038
crossref_primary_10_1103_PhysRevD_98_115023
crossref_primary_10_1088_1475_7516_2020_10_023
crossref_primary_10_3390_galaxies9040123
crossref_primary_10_3847_1538_4357_aa667f
crossref_primary_10_1088_1674_1137_42_7_073101
crossref_primary_10_1103_PhysRevD_106_043538
crossref_primary_10_1088_1361_6633_aab913
crossref_primary_10_1007_JHEP05_2024_281
crossref_primary_10_3847_1538_4357_aa9710
crossref_primary_10_1093_mnras_stv774
crossref_primary_10_1080_00107514_2015_1006001
crossref_primary_10_1140_epjc_s10052_020_7656_9
crossref_primary_10_1103_PhysRevLett_112_171602
crossref_primary_10_1103_PhysRevD_109_055036
crossref_primary_10_1103_PhysRevLett_120_131802
crossref_primary_10_3847_1538_4357_acaea9
crossref_primary_10_1103_PhysRevD_109_043043
crossref_primary_10_1146_annurev_astro_081710_102514
crossref_primary_10_3847_1538_4357_acd111
crossref_primary_10_1088_1742_6596_496_1_012023
crossref_primary_10_1088_1475_7516_2015_10_048
crossref_primary_10_1088_1475_7516_2022_05_019
crossref_primary_10_1016_j_physletb_2015_08_012
crossref_primary_10_1007_JHEP12_2018_118
crossref_primary_10_1016_j_physletb_2019_135149
crossref_primary_10_3390_galaxies6020045
crossref_primary_10_1016_j_physletb_2018_03_055
crossref_primary_10_1146_annurev_astro_120419_014455
crossref_primary_10_1103_PhysRevD_104_035011
crossref_primary_10_1142_S0218271817300075
crossref_primary_10_1103_PhysRevD_103_015006
crossref_primary_10_1088_1475_7516_2020_10_006
crossref_primary_10_1111_j_1365_2966_2010_16822_x
crossref_primary_10_3390_galaxies5010017
crossref_primary_10_1093_mnras_staa2059
crossref_primary_10_1088_1475_7516_2010_05_021
crossref_primary_10_1093_mnras_stw3192
crossref_primary_10_1111_j_1365_2966_2010_16319_x
crossref_primary_10_3847_1538_4357_aa6d66
crossref_primary_10_1103_PhysRevD_80_063501
crossref_primary_10_1103_PhysRevD_91_025010
crossref_primary_10_1103_PhysRevD_85_063503
crossref_primary_10_1103_PhysRevD_104_083523
crossref_primary_10_1093_mnras_staa3235
crossref_primary_10_1103_PhysRevD_108_083004
crossref_primary_10_1007_JHEP10_2020_082
crossref_primary_10_1093_mnras_stv467
crossref_primary_10_1093_mnras_stx522
crossref_primary_10_1103_PhysRevD_102_054507
crossref_primary_10_1007_JHEP04_2018_074
crossref_primary_10_1093_mnras_stad3180
crossref_primary_10_1007_JHEP03_2020_096
crossref_primary_10_1007_s40042_023_00976_7
crossref_primary_10_1016_j_nuclphysbps_2009_07_002
crossref_primary_10_1088_1475_7516_2014_10_049
crossref_primary_10_1016_j_dark_2016_12_003
crossref_primary_10_1103_PhysRevD_102_063518
crossref_primary_10_1103_PhysRevD_109_055040
crossref_primary_10_1007_JHEP01_2015_032
crossref_primary_10_1088_1475_7516_2018_09_033
crossref_primary_10_1088_1475_7516_2015_11_027
crossref_primary_10_1093_mnras_stu124
crossref_primary_10_1007_JHEP02_2025_051
crossref_primary_10_1088_0004_637X_772_1_23
crossref_primary_10_1103_PhysRevD_89_084040
crossref_primary_10_1142_S0218271815450066
crossref_primary_10_1088_2041_8205_769_1_L2
crossref_primary_10_3847_1538_4357_aa850d
crossref_primary_10_1103_PhysRevD_106_063013
crossref_primary_10_1007_JHEP07_2021_220
crossref_primary_10_1103_PhysRevD_94_103529
crossref_primary_10_1088_1475_7516_2017_08_021
crossref_primary_10_1007_s00159_021_00135_6
crossref_primary_10_1016_j_nuclphysb_2016_08_012
crossref_primary_10_1016_j_physletb_2015_07_013
crossref_primary_10_1103_PhysRevD_101_043526
crossref_primary_10_1103_PhysRevD_89_043514
crossref_primary_10_1007_JHEP09_2015_063
crossref_primary_10_1088_1475_7516_2021_05_020
crossref_primary_10_1007_JHEP09_2021_179
crossref_primary_10_1088_1475_7516_2018_09_021
crossref_primary_10_3847_1538_4357_ab855f
crossref_primary_10_1093_mnras_stab2042
crossref_primary_10_1103_PhysRevD_87_115007
crossref_primary_10_3847_1538_4357_abd777
crossref_primary_10_1111_j_1365_2966_2011_18283_x
crossref_primary_10_1088_1475_7516_2015_04_012
crossref_primary_10_1103_PhysRevD_87_055012
crossref_primary_10_1088_1475_7516_2016_12_016
crossref_primary_10_1088_1475_7516_2020_03_027
crossref_primary_10_1038_s41586_018_0542_z
crossref_primary_10_1088_1475_7516_2025_03_031
crossref_primary_10_1093_mnras_stab1198
crossref_primary_10_1103_PhysRevD_100_023526
crossref_primary_10_1088_0004_637X_792_1_24
crossref_primary_10_1093_mnras_staa2496
crossref_primary_10_1093_mnras_stu340
crossref_primary_10_1103_PhysRevD_102_083018
crossref_primary_10_1007_s41114_017_0010_3
crossref_primary_10_1007_JHEP07_2018_081
crossref_primary_10_1093_mnras_stx855
crossref_primary_10_1139_cjp_2024_0128
crossref_primary_10_1103_PhysRevD_102_123534
crossref_primary_10_1103_PhysRevD_90_015023
crossref_primary_10_1093_mnras_stab3241
crossref_primary_10_1103_PhysRevD_103_023017
crossref_primary_10_1073_pnas_1308716112
crossref_primary_10_1088_1475_7516_2014_09_007
crossref_primary_10_3847_1538_4365_aa96b0
crossref_primary_10_1103_PhysRevD_105_075013
crossref_primary_10_1088_1475_7516_2021_09_027
crossref_primary_10_1103_PhysRevD_83_095011
crossref_primary_10_1103_PhysRevD_99_035024
crossref_primary_10_1038_s41550_024_02322_8
crossref_primary_10_1007_s12043_011_0116_1
crossref_primary_10_1007_JHEP03_2022_105
crossref_primary_10_1088_0034_4885_77_6_066902
crossref_primary_10_1007_JHEP09_2017_159
crossref_primary_10_1103_PhysRevD_92_055031
crossref_primary_10_1007_JHEP09_2017_033
crossref_primary_10_1093_mnras_stae2811
crossref_primary_10_1142_S0218271814300055
crossref_primary_10_1088_1475_7516_2017_01_042
crossref_primary_10_3847_1538_4357_ab9df6
crossref_primary_10_1007_JHEP11_2015_012
crossref_primary_10_1103_PhysRevD_102_095018
crossref_primary_10_1093_mnras_stab1056
crossref_primary_10_1093_mnras_stab506
crossref_primary_10_1103_PhysRevD_91_115001
crossref_primary_10_1051_0004_6361_201936337
crossref_primary_10_1088_0004_637X_812_2_153
crossref_primary_10_1103_PhysRevD_84_115002
crossref_primary_10_1088_1475_7516_2018_11_048
crossref_primary_10_1103_PhysRevD_110_035011
crossref_primary_10_1088_1475_7516_2021_03_066
crossref_primary_10_1016_j_nuclphysbps_2015_09_049
crossref_primary_10_1093_mnras_stac2069
crossref_primary_10_1093_mnras_stac1094
crossref_primary_10_1093_mnrasl_slac132
crossref_primary_10_1088_0004_637X_814_2_120
crossref_primary_10_1007_JHEP11_2016_048
crossref_primary_10_1142_S021773231430002X
crossref_primary_10_1007_JHEP10_2014_061
crossref_primary_10_1088_1742_6596_866_1_012007
crossref_primary_10_1103_PhysRevD_92_043011
crossref_primary_10_1103_PhysRevLett_122_071103
crossref_primary_10_1016_j_dark_2016_10_005
crossref_primary_10_1103_PhysRevD_99_035003
crossref_primary_10_1103_PhysRevD_109_075003
crossref_primary_10_1103_PhysRevD_96_043018
crossref_primary_10_1093_mnras_sty630
crossref_primary_10_1103_PhysRevD_110_083003
crossref_primary_10_1007_JHEP03_2023_184
crossref_primary_10_3847_1538_3881_ad14f7
crossref_primary_10_1103_PhysRevD_90_095011
crossref_primary_10_1103_PhysRevD_110_035009
crossref_primary_10_1007_JHEP07_2013_013
crossref_primary_10_1088_1475_7516_2021_11_055
crossref_primary_10_1093_mnras_stw215
crossref_primary_10_1103_PhysRevD_110_103013
crossref_primary_10_1007_JHEP04_2017_158
crossref_primary_10_1007_JHEP05_2019_177
crossref_primary_10_1103_PhysRevD_89_033007
crossref_primary_10_1103_PhysRevLett_110_211302
crossref_primary_10_1103_PhysRevLett_114_211303
crossref_primary_10_1103_PhysRevD_100_123006
crossref_primary_10_1103_PhysRevD_107_103008
crossref_primary_10_1103_PhysRevD_98_096001
crossref_primary_10_1088_1475_7516_2014_02_047
crossref_primary_10_1007_JHEP06_2020_135
crossref_primary_10_1093_mnras_staa311
crossref_primary_10_1103_PhysRevD_105_016014
crossref_primary_10_1103_PhysRevD_108_123011
crossref_primary_10_1103_PhysRevD_95_063515
crossref_primary_10_1088_1475_7516_2019_03_012
crossref_primary_10_3390_sym14040812
crossref_primary_10_1103_PhysRevLett_116_011301
crossref_primary_10_1088_1475_7516_2018_10_020
crossref_primary_10_1088_1475_7516_2014_01_003
crossref_primary_10_1088_1475_7516_2015_04_051
crossref_primary_10_1103_PhysRevLett_105_011301
crossref_primary_10_1103_PhysRevLett_124_151801
crossref_primary_10_1007_JHEP11_2023_105
crossref_primary_10_1103_PhysRevD_102_115041
crossref_primary_10_1103_PhysRevD_100_123012
crossref_primary_10_3847_1538_4357_ab321d
crossref_primary_10_1016_j_physletb_2016_04_055
crossref_primary_10_1088_1475_7516_2018_02_044
crossref_primary_10_1103_PhysRevD_98_043502
crossref_primary_10_1051_0004_6361_202451969
crossref_primary_10_1088_0004_637X_780_2_163
crossref_primary_10_1093_mnras_stx896
crossref_primary_10_1007_s41114_022_00036_9
crossref_primary_10_1140_epjc_s10052_022_10907_8
crossref_primary_10_1103_PhysRevLett_115_061301
crossref_primary_10_1007_JHEP01_2018_020
crossref_primary_10_21468_SciPostPhysProc_12_059
crossref_primary_10_1103_PhysRevD_109_123509
crossref_primary_10_1093_mnras_stw3238
crossref_primary_10_3847_1538_4357_ab3052
crossref_primary_10_1007_JHEP05_2020_057
crossref_primary_10_3847_0004_637X_820_1_43
crossref_primary_10_1007_JHEP11_2015_108
crossref_primary_10_1016_j_physletb_2015_02_057
crossref_primary_10_1103_PhysRevLett_124_041101
crossref_primary_10_1088_0004_637X_785_1_20
crossref_primary_10_1007_JHEP07_2015_045
crossref_primary_10_1016_j_physrep_2018_07_003
crossref_primary_10_1088_1475_7516_2012_05_021
crossref_primary_10_1093_mnras_stad1838
crossref_primary_10_1093_mnras_stac2276
crossref_primary_10_1140_epjc_s10052_022_10173_8
crossref_primary_10_3847_0004_637X_831_1_110
crossref_primary_10_1140_epjp_i2015_15181_6
crossref_primary_10_1103_PhysRevD_90_043524
crossref_primary_10_1007_JHEP07_2020_105
crossref_primary_10_1093_mnras_stae099
crossref_primary_10_3847_1538_4357_ac3090
crossref_primary_10_1051_0004_6361_201526925
crossref_primary_10_1103_PhysRevD_96_103519
crossref_primary_10_3847_1538_4357_aa784a
crossref_primary_10_1088_1475_7516_2024_10_064
crossref_primary_10_1093_astrogeo_atz191
crossref_primary_10_1088_1475_7516_2020_06_025
crossref_primary_10_1093_mnras_stv1470
crossref_primary_10_1140_epjs_s11734_024_01121_6
crossref_primary_10_1093_mnras_stz1816
crossref_primary_10_1093_mnras_stz1815
crossref_primary_10_1016_j_physletb_2015_11_001
crossref_primary_10_1103_PhysRevD_85_101302
crossref_primary_10_1007_JHEP02_2023_068
crossref_primary_10_1088_0264_9381_27_23_233001
crossref_primary_10_3847_1538_4357_ab412b
crossref_primary_10_1088_1674_1137_ad4e24
crossref_primary_10_1088_1475_7516_2025_01_053
crossref_primary_10_1007_JHEP03_2022_172
crossref_primary_10_1103_PhysRevD_90_043538
crossref_primary_10_1016_j_astropartphys_2015_05_001
crossref_primary_10_1088_0004_637X_691_1_525
crossref_primary_10_1093_mnras_stab3544
crossref_primary_10_1103_PhysRevD_96_023016
crossref_primary_10_1086_591246
crossref_primary_10_1103_PhysRevD_97_023529
crossref_primary_10_3847_1538_4365_aaf88b
crossref_primary_10_1088_1475_7516_2020_01_040
crossref_primary_10_1051_0004_6361_201628629
crossref_primary_10_1088_0004_637X_744_2_94
crossref_primary_10_1093_mnras_stac2376
crossref_primary_10_1088_1475_7516_2022_10_017
crossref_primary_10_3390_universe11030074
crossref_primary_10_3847_1538_4357_acb76b
crossref_primary_10_1007_JHEP11_2024_050
crossref_primary_10_1016_j_physletb_2015_12_054
crossref_primary_10_1088_1475_7516_2020_01_039
crossref_primary_10_1088_1475_7516_2018_03_038
crossref_primary_10_1103_PhysRevD_102_075001
crossref_primary_10_1088_1475_7516_2013_08_031
crossref_primary_10_1093_mnras_stu2660
crossref_primary_10_1103_PhysRevD_102_035011
crossref_primary_10_1103_PhysRevD_92_023510
crossref_primary_10_1016_j_dark_2023_101291
crossref_primary_10_1088_1361_6587_aa7f48
crossref_primary_10_1088_1475_7516_2020_06_043
crossref_primary_10_1088_1475_7516_2018_02_005
crossref_primary_10_1016_j_nuclphysb_2023_116348
crossref_primary_10_1088_1475_7516_2019_05_054
crossref_primary_10_3847_1538_4357_ab0d7c
crossref_primary_10_1093_mnras_stx2028
crossref_primary_10_1111_j_1365_2966_2012_21901_x
crossref_primary_10_1088_1475_7516_2018_12_020
crossref_primary_10_1088_1475_7516_2025_01_071
crossref_primary_10_1093_mnras_stab3764
crossref_primary_10_1103_PhysRevD_90_115013
crossref_primary_10_1088_1475_7516_2011_10_011
crossref_primary_10_1016_j_physrep_2010_06_001
crossref_primary_10_1088_1475_7516_2020_05_001
crossref_primary_10_1093_mnras_staa3954
crossref_primary_10_1007_JHEP06_2021_108
crossref_primary_10_1007_JHEP08_2018_079
crossref_primary_10_1016_j_physletb_2017_08_043
crossref_primary_10_1103_PhysRevD_105_095023
crossref_primary_10_1103_PhysRevD_104_075010
crossref_primary_10_1007_JHEP06_2018_043
crossref_primary_10_1093_mnras_stab1103
crossref_primary_10_3847_1538_4357_ab07b1
crossref_primary_10_3847_1538_4357_ab6bca
crossref_primary_10_1093_mnrasl_slv104
crossref_primary_10_1103_PhysRevD_104_123541
crossref_primary_10_1088_0004_637X_723_2_1678
crossref_primary_10_1103_PhysRevD_89_035009
crossref_primary_10_1103_PhysRevD_99_055034
crossref_primary_10_1088_1475_7516_2023_04_048
crossref_primary_10_1088_1475_7516_2019_06_022
crossref_primary_10_1051_0004_6361_202243278
crossref_primary_10_1088_1475_7516_2022_09_011
crossref_primary_10_1103_PhysRevLett_125_181102
crossref_primary_10_3847_1538_4357_ad2fb1
crossref_primary_10_1007_JHEP08_2018_069
crossref_primary_10_1088_1475_7516_2018_12_038
crossref_primary_10_1103_PhysRevLett_110_111301
crossref_primary_10_1088_0004_637X_748_1_7
crossref_primary_10_1103_PhysRevD_108_124080
crossref_primary_10_1088_1475_7516_2017_03_048
crossref_primary_10_1016_j_nuclphysb_2024_116503
crossref_primary_10_1093_mnras_stab2787
crossref_primary_10_1103_PhysRevD_95_056011
crossref_primary_10_21468_SciPostPhysLectNotes_52
crossref_primary_10_1007_JHEP03_2023_216
crossref_primary_10_1103_PhysRevD_94_063506
crossref_primary_10_1088_0004_637X_765_1_25
crossref_primary_10_1088_1475_7516_2020_09_041
crossref_primary_10_1103_PhysRevD_94_063503
crossref_primary_10_1103_PhysRevD_81_123513
crossref_primary_10_1103_PhysRevD_89_115017
crossref_primary_10_1007_JHEP08_2021_114
crossref_primary_10_1007_JHEP11_2024_129
crossref_primary_10_1007_JHEP02_2020_196
crossref_primary_10_1103_PhysRevD_101_055024
crossref_primary_10_1088_1475_7516_2022_10_052
crossref_primary_10_1051_0004_6361_202450468
crossref_primary_10_1007_JHEP05_2016_046
crossref_primary_10_3847_2041_8213_ad772c
crossref_primary_10_3847_1538_4357_aaee77
crossref_primary_10_3847_1538_4357_ad6442
crossref_primary_10_1103_PhysRevD_92_123527
crossref_primary_10_1093_mnras_stac2207
crossref_primary_10_1142_S0217732321500322
crossref_primary_10_1088_1475_7516_2024_10_004
crossref_primary_10_1103_PhysRevD_103_043014
crossref_primary_10_1142_S0217751X1730023X
crossref_primary_10_1103_PhysRevD_106_115033
crossref_primary_10_1093_mnras_stw291
crossref_primary_10_1103_PhysRevD_79_023505
crossref_primary_10_1093_mnras_stad1786
crossref_primary_10_1111_j_1365_2966_2011_18716_x
crossref_primary_10_1103_PhysRevD_88_015001
crossref_primary_10_1103_PhysRevD_95_124049
crossref_primary_10_1103_PhysRevD_92_123530
crossref_primary_10_3847_1538_4357_ac9fd3
crossref_primary_10_1103_PhysRevD_104_063021
crossref_primary_10_1093_mnras_stac2675
crossref_primary_10_1093_mnras_stac649
crossref_primary_10_1103_PhysRevD_101_055044
crossref_primary_10_1088_1475_7516_2016_01_013
crossref_primary_10_1088_2041_8205_747_2_L42
crossref_primary_10_1103_PhysRevD_109_043504
crossref_primary_10_1093_mnras_stw2425
crossref_primary_10_1093_mnras_stx1370
crossref_primary_10_1103_PhysRevD_92_103510
crossref_primary_10_1088_1475_7516_2019_07_036
crossref_primary_10_1088_1475_7516_2020_08_022
crossref_primary_10_1103_PhysRevD_97_123004
crossref_primary_10_1140_epjp_i2015_15069_5
crossref_primary_10_1103_PhysRevD_100_123506
crossref_primary_10_1088_1475_7516_2024_04_007
crossref_primary_10_1103_PhysRevLett_113_171301
crossref_primary_10_1093_mnras_sts514
crossref_primary_10_1103_PhysRevD_93_123527
crossref_primary_10_1007_JHEP12_2021_059
crossref_primary_10_1093_mnras_stae1004
crossref_primary_10_1140_epjc_s10052_013_2428_4
crossref_primary_10_1007_JHEP06_2023_208
crossref_primary_10_1093_mnras_stw2670
crossref_primary_10_1093_mnras_stw2671
crossref_primary_10_1088_1475_7516_2021_01_024
crossref_primary_10_1103_PhysRevD_109_043516
crossref_primary_10_1093_mnras_stab2629
crossref_primary_10_1103_PhysRevD_106_083514
crossref_primary_10_1103_PhysRevD_109_096036
crossref_primary_10_1007_JHEP10_2017_162
crossref_primary_10_1038_s41586_022_04665_6
crossref_primary_10_1111_j_1365_2966_2011_18246_x
crossref_primary_10_1103_PhysRevD_97_123018
crossref_primary_10_1103_PhysRevLett_113_021302
crossref_primary_10_1007_JHEP06_2024_005
crossref_primary_10_1007_JHEP08_2017_078
crossref_primary_10_1051_0004_6361_201731299
crossref_primary_10_1088_1475_7516_2019_06_014
crossref_primary_10_3847_1538_4365_aafad2
crossref_primary_10_1093_mnras_stae1012
crossref_primary_10_1155_2014_681312
crossref_primary_10_1007_JHEP05_2016_090
crossref_primary_10_1093_mnras_stw1433
crossref_primary_10_3847_1538_4357_ad3249
crossref_primary_10_1051_0004_6361_202452212
crossref_primary_10_3847_2041_8213_ac94d6
crossref_primary_10_1088_1475_7516_2024_05_020
crossref_primary_10_3847_1538_4357_aad04c
crossref_primary_10_1093_mnras_stz361
crossref_primary_10_1088_0004_637X_804_2_129
crossref_primary_10_1088_1674_4527_15_12_001
crossref_primary_10_1088_1475_7516_2018_11_032
crossref_primary_10_4236_jmp_2020_116053
crossref_primary_10_3847_1538_4357_ab2f90
crossref_primary_10_1103_PhysRevD_95_115023
crossref_primary_10_1051_0004_6361_201527959
crossref_primary_10_1007_JHEP06_2023_103
crossref_primary_10_1103_PhysRevD_82_123507
crossref_primary_10_1088_1475_7516_2021_01_043
crossref_primary_10_1007_JHEP08_2016_057
crossref_primary_10_1088_1475_7516_2016_01_006
crossref_primary_10_1140_epjc_s10052_019_6608_8
crossref_primary_10_1142_S0217751X14430015
crossref_primary_10_3390_particles7010010
crossref_primary_10_1016_j_physletb_2022_137369
crossref_primary_10_1111_j_1365_2966_2011_18684_x
crossref_primary_10_1111_j_1365_2966_2012_20808_x
crossref_primary_10_1103_PhysRevD_98_123532
crossref_primary_10_1103_PhysRevLett_128_172001
crossref_primary_10_1051_0004_6361_202243205
crossref_primary_10_1088_0004_637X_804_2_131
crossref_primary_10_3367_UFNe_0184_201404a_0339
crossref_primary_10_1103_PhysRevD_87_123531
crossref_primary_10_3847_1538_4357_acfc9e
Cites_doi 10.1086/381970
10.1086/340226
10.1086/312674
10.1103/PhysRevD.65.123515
10.1086/339619
10.1086/342530
10.1086/432593
10.1103/PhysRevLett.84.3760
10.1086/342792
10.1111/j.1365-2966.2005.09655.x
10.1093/mnras/275.3.720
10.1038/370629a0
10.1086/383178
10.1111/j.1365-2966.2007.12159.x
10.1093/pasj/58.6.925
10.1055/s-2006-951900
10.1086/307643
10.1086/508601
10.1086/187350
10.1086/117088
10.1016/j.nuclphysbps.2007.08.150
10.1086/323211
10.1086/168845
10.1086/312287
10.5303/JKAS.2003.36.3.089
10.1086/518960
10.1086/304888
10.1086/318417
10.1086/324138
10.1046/j.1365-8711.1999.03039.x
10.1086/312707
10.1086/508162
10.1086/344259
10.1086/324693
10.1146/annurev.astro.37.1.127
10.1051/0004-6361:20020244
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TG
KL.
8FD
H8D
L7M
DOI 10.1086/587859
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
EndPage 1180
ExternalDocumentID 20390080
10_1086_587859
GroupedDBID 123
1JI
23N
2WC
4.4
85S
8RP
AAGCD
AAJIO
AALHV
ABFLS
ABPTK
ACGFS
ACNCT
AEFHF
AENEX
AFDAS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CS3
DZ
EBS
EJD
F5P
G8K
IOP
KOT
MVM
N5L
O3W
O43
OHT
OK1
RIN
RNS
ROL
RPA
SJN
SY9
T37
TN5
WH7
X
ZY4
-DZ
-~X
2FS
41~
6J9
6TJ
6TS
9M8
AAFWJ
AAYXX
ABDPE
ABHWH
ACBEA
ACHIP
ADACN
ADIYS
ADXHL
AETEA
AFPKN
AI.
AKPSB
CITATION
CRLBU
FA8
FRP
GROUPED_DOAJ
IJHAN
M~E
PJBAE
TR2
VH1
WHG
XOL
XSW
YYP
ZCG
ZKB
ABTAH
IQODW
7TG
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-c476t-afca102a440fcc6e5a92b74b0e3ff368fc8e9188ff0ebc66697727708d5ec33a3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Fri Jul 11 05:24:32 EDT 2025
Fri Jul 11 10:18:06 EDT 2025
Wed Apr 02 07:23:39 EDT 2025
Thu Apr 24 22:51:03 EDT 2025
Tue Jul 01 01:15:41 EDT 2025
Tue Nov 10 14:23:18 EST 2020
Mon May 13 13:09:55 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-afca102a440fcc6e5a92b74b0e3ff368fc8e9188ff0ebc66697727708d5ec33a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://iopscience.iop.org/article/10.1086/587859/pdf
PQID 19317303
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_19317303
crossref_primary_10_1086_587859
iop_primary_10_1086_587859
crossref_citationtrail_10_1086_587859
proquest_miscellaneous_743144027
pascalfrancis_primary_20390080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Chicago, IL
PublicationPlace_xml – name: Chicago, IL
PublicationTitle The Astrophysical journal
PublicationYear 2008
Publisher IOP Publishing
University of Chicago Press
Publisher_xml – name: IOP Publishing
– name: University of Chicago Press
References rf8_2701
rf17_2710
rf35_2728
rf32_2725
rf13_2706
rf10_2703
rf39_2732
rf4_2697
rf16_2709
rf1_2694
rf15_2708
rf37_2730
rf12_2705
rf25_2718
rf9_2702
rf22_2715
rf27_2720
rf24_2717
rf28_2721
rf14_2707
rf40_2733
rf5_2698
rf11_2704
rf2_2695
rf34_2727
rf31_2724
rf21_2714
rf18_2711
rf7_2700
rf19_2712
rf36_2729
rf26_2719
rf23_2716
rf29_2722
rf20_2713
rf6_2699
rf38_2731
rf3_2696
rf33_2726
rf30_2723
References_xml – ident: rf8_2701
  doi: 10.1086/381970
– ident: rf18_2711
  doi: 10.1086/340226
– ident: rf5_2698
  doi: 10.1086/312674
– ident: rf6_2699
  doi: 10.1103/PhysRevD.65.123515
– ident: rf23_2716
  doi: 10.1086/339619
– ident: rf34_2727
  doi: 10.1086/342530
– ident: rf33_2726
  doi: 10.1086/432593
– ident: rf35_2728
  doi: 10.1103/PhysRevLett.84.3760
– ident: rf17_2710
  doi: 10.1086/342792
– ident: rf36_2729
  doi: 10.1111/j.1365-2966.2005.09655.x
– ident: rf31_2724
  doi: 10.1093/mnras/275.3.720
– ident: rf28_2721
  doi: 10.1038/370629a0
– ident: rf22_2715
  doi: 10.1086/383178
– ident: rf37_2730
  doi: 10.1111/j.1365-2966.2007.12159.x
– ident: rf21_2714
– ident: rf38_2731
  doi: 10.1093/pasj/58.6.925
– ident: rf13_2706
  doi: 10.1055/s-2006-951900
– ident: rf20_2713
  doi: 10.1086/307643
– ident: rf4_2697
  doi: 10.1086/508601
– ident: rf14_2707
  doi: 10.1086/187350
– ident: rf25_2718
  doi: 10.1086/117088
– ident: rf40_2733
– ident: rf2_2695
– ident: rf11_2704
– ident: rf9_2702
  doi: 10.1016/j.nuclphysbps.2007.08.150
– ident: rf16_2709
  doi: 10.1086/323211
– ident: rf19_2712
  doi: 10.1086/168845
– ident: rf29_2722
  doi: 10.1086/312287
– ident: rf1_2694
  doi: 10.5303/JKAS.2003.36.3.089
– ident: rf26_2719
  doi: 10.1086/518960
– ident: rf32_2725
  doi: 10.1086/304888
– ident: rf12_2705
  doi: 10.1086/318417
– ident: rf27_2720
  doi: 10.1086/324138
– ident: rf30_2723
  doi: 10.1046/j.1365-8711.1999.03039.x
– ident: rf39_2732
  doi: 10.1086/312707
– ident: rf7_2700
  doi: 10.1086/508162
– ident: rf10_2703
  doi: 10.1086/344259
– ident: rf15_2708
  doi: 10.1086/324693
– ident: rf24_2717
  doi: 10.1146/annurev.astro.37.1.127
– ident: rf3_2696
  doi: 10.1051/0004-6361:20020244
SSID ssj0004299
Score 2.5145836
Snippet We compare recent results from X-ray, strong lensing, weak lensing, and optical observations with numerical simulations of the merging galaxy cluster 1E...
SourceID proquest
pascalfrancis
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1173
Title Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56
URI http://iopscience.iop.org/0004-637X/679/2/1173
https://www.proquest.com/docview/19317303
https://www.proquest.com/docview/743144027
Volume 679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Pb9MwFLdgEhIXBgO0Dhg-DG5pkzixneNUNgZS10ljorfIcWxpWpZUTSKxnXbiC_AN-SS8F6ddoQJxiZzkxf-eY__sZ_8eIQfcVzKXCfcyqzMPDW-eisPIYyxDM16Wxx2ZzuSUn1xEn2fx7H6ieFnN-55_CMHOko-ow-NMzEZcJKNwFAQCyT1h6Me51qfp2f0xyDDp0a77YM2VUCyFRDrStbHnISSAOyFVDZVhnReLjQ65G2WOt8l0eVbHbS65GrZNNtS3m9SN_1mAp-RJDzjpoWshz8gDU-6Q3cMal8Cr6xv6nnZht8JR75BHZy70nHxHZ56dC4mmplVJASrSc1NYr1tFdAci6BhLCo_dXWXpB7W4opOOtZPi2RV62jqjUEHPL697Z2E1SmJ8E7NAL0n0oyrUtxs6LlokbqDBEQUVip93P2L-glwcH30Zn3i92wZPR4I3nrJaAWxRUeRbrbmJVRJmIsp8w6xlXFotTRJIaa1vMg3TJ4CgoRC-zGOjGVPsJdkqq9LsEqpCrpJI5UwHKsosiPhGas6sSnQsFRuQd0uFprrnNMd6KdLOti556hQ_IG9XcnPH4rEhcQD6Wr1EnaWosxR0loZIic7SeW4HZG9d7M849n9rTSux0GcJQnPIxrJ5pfAXo2lGlaZq6xRgNKTgQ4HoXyQQ6UGNhmLvX1l4RR67DS24TPSabDWL1rwB1NRk-92_Atcp-_oLd18SEQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELb6EIgLogXULdD6ULiFZuP4kWO17VIeu1QqFXuzHMeWEGmy2uxK9MaJP8A_7C_pTJxdWiq4OcnEnsw48ZcZzwwhByI2qlCZiHJv8wgdb5HhSRoxlqMbLy94m0xnNBanF-mHCZ-sEb6Khamn3af_LTRDouAgwsNlWSCupOLZ4bTw62STM5lgyvzP7OufcMgk61BvGgkmJ7dKCoV776xB6zAO7og0DQjFh2oW9z7M7WozfEIedzCRHgWmtsiaq7bJzlGDhuv68oq-oW072CWabfLgLLSekl9YgrMt_DBvaF1RAHj03JU-am1_IYyBDpAvOB2Oak-Pzew7HbW5NilGnNDxIrhySnr-7bIr8dUgJfY3cjOsbUTfmdL8uKKDcoHpFmj_hILg5fXP31w8IxfDky-D06grthDZVIp5ZLw1ADZMmsbeWuG4yZJcpnnsmPdMKG-Vy_pKeR-73MJPDwDHRMpYFdxZxgx7TjaqunI7hJpEmCw1BbN9k-YeSGKnrGDeZJYrw3rk9VL82naZyFEupW494krooKYe2V_RTUPujXsUB6C91UXUuEaNayEznWAic6ZhnvTI7m2yv_vYu6P7FVkSswwBNbCxnAwa3j10qJjK1YtGA_iFEWJ4IPoPCsRnINFE7v6PhX3y8Ox4qD-9H398QR6FHSlo53lJNuazhXsFsGee77WT_AaIa_0R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+the+Self-Interaction+Cross+Section+of+Dark+Matter+from+Numerical+Simulations+of+the+Merging+Galaxy+Cluster+1E+0657-56&rft.jtitle=The+Astrophysical+journal&rft.au=Randall%2C+Scott+W&rft.au=Markevitch%2C+Maxim&rft.au=Clowe%2C+Douglas&rft.au=Gonzalez%2C+Anthony+H&rft.date=2008-06-01&rft.issn=0004-637X&rft.volume=679&rft.issue=2&rft.spage=1173&rft.epage=1180&rft_id=info:doi/10.1086%2F587859&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon