On the Eigenfunctions for the Multi-species q-Boson System

In a previous paper a multi-species version of the q-Boson stochastic particle system is introduced and the eigenfunctions of its backward generator are constructed by using a representation of the Hecke algebra. In this article we prove a formula which expresses the eigenfunctions by means of the q...

Full description

Saved in:
Bibliographic Details
Published inFunkcialaj Ekvacioj Vol. 61; no. 3; pp. 349 - 376
Main Author Takeyama, Yoshihiro
Format Journal Article
LanguageEnglish
Published Tokyo Division of Functional Equations, The Mathematical Society of Japan 2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a previous paper a multi-species version of the q-Boson stochastic particle system is introduced and the eigenfunctions of its backward generator are constructed by using a representation of the Hecke algebra. In this article we prove a formula which expresses the eigenfunctions by means of the q-deformed bosonic operators, which are constructed from the L-operator of higher rank found in the recent work by Garbali, de Gier and Wheeler. The L-operator is obtained from the universal R-matrix of the quantum affine algebra of type Ar(1) by the use of the q-oscillator representation. Thus our formula may be regarded as a bridge between two approaches to studying integrable stochastic systems by means of the quantum affine algebra and the affine Hecke algebra.
AbstractList In a previous paper a multi-species version of the q-Boson stochastic particle system is introduced and the eigenfunctions of its backward generator are constructed by using a representation of the Hecke algebra. In this article we prove a formula which expresses the eigenfunctions by means of the q-deformed bosonic operators, which are constructed from the L-operator of higher rank found in the recent work by Garbali, de Gier and Wheeler. The L-operator is obtained from the universal R-matrix of the quantum affine algebra of type Ar(1) by the use of the q-oscillator representation. Thus our formula may be regarded as a bridge between two approaches to studying integrable stochastic systems by means of the quantum affine algebra and the affine Hecke algebra.
Author Takeyama, Yoshihiro
Author_xml – sequence: 1
  fullname: Takeyama, Yoshihiro
  organization: University of Tsukuba
BookMark eNpFkE1PAjEQhnvAREBP_oFNPJrFftHd9WCiBD8SDAf13Ax1CkughbZ74N-7uARPk8w8887kGZCe8w4JuWF0xBSr7i3GeqTYSMiqR_p0LHheFpxdkkGMa0oFH1PeJw9zl6UVZtN6ic42zqTau5hZH_7aH80m1XncoakxZvv82Ufvss9DTLi9IhcWNhGvT3VIvl-mX5O3fDZ_fZ88zXIjC5VyMKoEJVmpygqkpRUDuUDR_kPRsoJJCdzaojCiKgERDSsAgMMCC_YjmBFDctvl7oLfNxiTXvsmuPak5rxNUbSU45a66ygTfIwBrd6FegvhoBnVRyH6KEQrplshLf3Y0euYYIlnFkKqzQb_2dPCeWBWEDQ68Qtukm3f
CitedBy_id crossref_primary_10_1016_j_nuclphysb_2021_115513
crossref_primary_10_1063_1_5129567
crossref_primary_10_1016_j_geomphys_2019_103571
ContentType Journal Article
Copyright 2018 by the Division of Functional Equations, The Mathematical Society of Japan
Copyright Japan Science and Technology Agency 2018
Copyright_xml – notice: 2018 by the Division of Functional Equations, The Mathematical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2018
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1619/fesi.61.349
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 376
ExternalDocumentID 10_1619_fesi_61_349
article_fesi_61_3_61_349_article_char_en
GroupedDBID -~X
.L7
.LE
2WC
5GY
692
ACIWK
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
KQ8
OK1
PQEST
PQQKQ
RJT
RZJ
SJN
TKC
UPT
VH1
AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c476t-ac68a6418689a4f091a4be35320ef17144a2ff77c398aeeec17aaa2abe71d31c3
ISSN 0532-8721
IngestDate Thu Oct 10 16:27:17 EDT 2024
Fri Aug 23 01:16:01 EDT 2024
Wed Apr 05 02:40:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c476t-ac68a6418689a4f091a4be35320ef17144a2ff77c398aeeec17aaa2abe71d31c3
OpenAccessLink https://www.jstage.jst.go.jp/article/fesi/61/3/61_349/_article/-char/en
PQID 2232060845
PQPubID 1996351
PageCount 28
ParticipantIDs proquest_journals_2232060845
crossref_primary_10_1619_fesi_61_349
jstage_primary_article_fesi_61_3_61_349_article_char_en
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Funkcialaj Ekvacioj
PublicationTitleAlternate FE
PublicationYear 2018
Publisher Division of Functional Equations, The Mathematical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: Division of Functional Equations, The Mathematical Society of Japan
– name: Japan Science and Technology Agency
References [4] Garbali, A., de Gier, A. and Wheeler, M., A new generalisation of Macdonald polynomials, preprint, arXiv:1605.07200.
[5] Jimbo, M., A q-analogue of U(gl(N + 1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., 11 (1986), no. 3, 247-252.
[9] Sasamoto, T. and Wadati, M., Exact results for one-dimensional totally asymmetric diffusion models, J. Phys. A, 31 (1998), no. 28, 6057-6071.
[6] Kuan, J., A multi-species ASEP(q, j) and q-TAZRP with stochastic duality, preprint, arXiv:1605.00691.
[1] Borodin, A., On a family of symmetric rational functions, preprint, arXiv:1410.0976.
[2] Borodin, A., Corwin, I., Petrov, L. and Sasamoto, T., Spectral theory for the q-Boson particle system, Compos. Math., 151 (2015), no. 1, 1-67.
[7] Kuniba, A., Mangazeev, V. V., Maruyama, S. and Okado, M., Stochastic R matrix for Uq(An(1)), preprint, arXiv:1604.08304.
[8] Motegi, K. and Sakai, K., K-theoretic boson-fermion correspondence and melting crystals, J. Phys. A, 47 (2014), no. 44, 445202.
[10] Takeyama, Y., Algebraic construction of multi-species q-Boson system, preprint, arXiv:1507.02033.
[3] Fomin, S. and Kirillov, A., Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics (DIMACS), 183-189.
[11] Tracy, C. and Widom, H., On the asymmetric simple exclusion process with multiple species, J. Stat. Phys., 150 (2013), no. 3, 457-470.
11
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 2
– ident: 3
– ident: 5
– ident: 4
– ident: 1
– ident: 11
– ident: 6
– ident: 9
– ident: 7
– ident: 8
– ident: 10
SSID ssj0032502
Score 2.143362
Snippet In a previous paper a multi-species version of the q-Boson stochastic particle system is introduced and the eigenfunctions of its backward generator are...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 349
SubjectTerms Affine Hecke algebra
Algebra
Deformation
Eigenvectors
Integrable system
Operators (mathematics)
Quantum group
Representations
Stochastic process
Stochastic systems
Title On the Eigenfunctions for the Multi-species q-Boson System
URI https://www.jstage.jst.go.jp/article/fesi/61/3/61_349/_article/-char/en
https://www.proquest.com/docview/2232060845
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Funkcialaj Ekvacioj, 2018, Vol.61(3), pp.349-376
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELa2tIdyQNCHui2gHLghb5PYcZLeAO0KgVpUCSR6imzHLlnUBNjdHvrrOxM7S1ZwAC5W5MSJNTMezzgz3xCyVxqbx5kIKdxWlFtlqcpCRUWiERoGLPASE5y__xDHF_zkMrkcDE57UUuLuRrpf4_mlbyEq9AHfMUs2WdwdvlS6IBr4C-0wGFon8TjMxejOEZETdygXFRbFzjY5tZSTKUEb3j_lh42WG3QQZT3bdLJor7Gg3M53R9f_5W6aqb3_jyscfmnNTB_NbOr6qq6a_oHBV6rtXEelctTR_Nz4ieDoMW3DkzchyNhqaMOKBaBSHzQKIw5gW277umlhKESdYnNnRJ1iOpeWFhPIzKHSOo3V-aKvTzQ2-DGIbHNrBqJaLQcswKE7clc4FOFiArWNjwvuhuYpwZi8Yq8jkHrYHzn6c_lLyUGtl77S6mbvU_WhC9_7X13xTx5MwUL_ffDbbq1Pc43yYZ3GoIDN4MtMjD1O7Leg5J8T76d1QHQNViVhQBkoe1ekYXAy0LgZOEDuZiMz4-Oqa-LQTVPxZxKLTIpOBY6yCW3YPFJrgzDEh_GYkF7LmNr01SzPJPGGB2lUspYKpNGJYs0-0jW6qY2n0iQmySEQWVs8aBEMAUegC1FqEUJir9UQ7LXkaO4cfAnBbqNQLV7PvB8SFJHquVDT2XWkGx3tC38ypoVYLLGoQgznnx-8Yu_kLe4CNxp2TZZm98tzA7Yj3O128rFf2foexc
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Eigenfunctions+for+the+Multi-species+q-Boson+System&rft.jtitle=Funkcialaj+Ekvacioj&rft.au=Takeyama%2C+Yoshihiro&rft.date=2018&rft.pub=Division+of+Functional+Equations%2C+The+Mathematical+Society+of+Japan&rft.issn=0532-8721&rft.volume=61&rft.issue=3&rft.spage=349&rft.epage=376&rft_id=info:doi/10.1619%2Ffesi.61.349&rft.externalDocID=article_fesi_61_3_61_349_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0532-8721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0532-8721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0532-8721&client=summon