Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation of Human Neural Stem Cells: A Biocompatible Platform for Translational Neural Tissue Engineering
Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the...
Saved in:
Published in | Tissue engineering. Part C, Methods Vol. 21; no. 4; pp. 385 - 393 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Mary Ann Liebert, Inc
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1937-3384 1937-3392 1937-3392 |
DOI | 10.1089/ten.tec.2014.0338 |
Cover
Abstract | Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include
in vitro
or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced
in vitro
modeling, translational drug discovery, and regenerative medicine. |
---|---|
AbstractList | Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include
in vitro
or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced
in vitro
modeling, translational drug discovery, and regenerative medicine. Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine. Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine. Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly beta -III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine. |
Author | Jamali, Sina Higgins, Michael J. Kobayashi, Nao R. Moulton, Simon E. Crook, Jeremy M. Kapsa, Robert M.I. Wallace, Gordon G. Quigley, Anita F. Stewart, Elise |
Author_xml | – sequence: 1 givenname: Elise surname: Stewart fullname: Stewart, Elise organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia – sequence: 2 givenname: Nao R. surname: Kobayashi fullname: Kobayashi, Nao R. organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia – sequence: 3 givenname: Michael J. surname: Higgins fullname: Higgins, Michael J. organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia – sequence: 4 givenname: Anita F. surname: Quigley fullname: Quigley, Anita F. organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia – sequence: 5 givenname: Sina surname: Jamali fullname: Jamali, Sina organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia – sequence: 6 givenname: Simon E. surname: Moulton fullname: Moulton, Simon E. organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia – sequence: 7 givenname: Robert M.I. surname: Kapsa fullname: Kapsa, Robert M.I. organization: 2Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Australia – sequence: 8 givenname: Gordon G. surname: Wallace fullname: Wallace, Gordon G. organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia – sequence: 9 givenname: Jeremy M. surname: Crook fullname: Crook, Jeremy M. organization: 4Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25296166$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhkeoiF7gAdggS2zYJNjjy3jYlRAoUgVIpGvL456pXPkSbA9SHoz3w5OkLLpAXRwfy_7-c7HPeXMSYoCmeU3wkmDZvy8QlgXMssWELTGl8llzRnraLSjt25N_e8lOm_Oc7zEWWHT9i-a05W0viBBnzZ-1A1OSNdqhn8X6yeliY0A32YY7tIrhdjLF_gb0I7qdh7T3211K0dWzFH0skNEnO46QIBR7UMcRXU1eB_QNprSPDB6twLn8AV2ijzaa6LcVHeYgNeMYk0d1QZukQz6UUGVH9cbmPAFahzsbAFIt7GXzfNQuw6ujv2huPq83q6vF9fcvX1eX1wvDOlEW2rSjkZ2QgmHS0WqtZhxLIfEwcKJvR8Ggw4ZyCkITNoi-5_WWcSZFizt60bw7xN2m-GuCXJS32dQ-dIA4ZUVEJyjHnPEnoKKXtOdkRt8-Qu_jlGrDe0rStpWUVurNkZoGD7dqm6zXaace_q4C3QEwKeacYFTGlv3TlaStUwSreUpUnZJqRs1TouYpqUrySPkQ_H-aY7aZ0yE4CwOk8gTlX5881fk |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_8b01326 crossref_primary_10_1021_acs_biomac_7b00749 crossref_primary_10_3390_biom9090448 crossref_primary_10_1002_adhm_201801321 crossref_primary_10_1016_j_nano_2018_05_004 crossref_primary_10_1186_s40824_016_0078_y crossref_primary_10_3390_cells9030658 crossref_primary_10_1089_ten_tea_2016_0430 crossref_primary_10_3390_polym13030326 crossref_primary_10_1016_j_actbio_2018_09_035 crossref_primary_10_1016_j_msec_2020_111518 crossref_primary_10_1089_bioe_2020_0025 crossref_primary_10_1039_D2CS00830K crossref_primary_10_1016_j_expneurol_2018_09_020 crossref_primary_10_3390_polym9090446 crossref_primary_10_1002_adhm_201701046 crossref_primary_10_1097_PRS_0000000000004121 crossref_primary_10_1007_s11434_016_1090_2 crossref_primary_10_1016_j_bioadv_2022_212808 crossref_primary_10_1021_acs_chemmater_0c02906 crossref_primary_10_1016_j_brainresbull_2019_07_016 crossref_primary_10_1134_S1063784223900279 crossref_primary_10_3390_jfb14100523 crossref_primary_10_1016_j_yexcr_2018_12_021 crossref_primary_10_1038_srep22718 crossref_primary_10_1016_j_expneurol_2019_112963 crossref_primary_10_1016_j_biomaterials_2017_07_020 crossref_primary_10_1016_j_bioadv_2023_213472 crossref_primary_10_1038_mtm_2015_51 crossref_primary_10_1002_admt_202200853 crossref_primary_10_1016_j_jbiosc_2021_12_003 crossref_primary_10_1016_j_medntd_2022_100176 crossref_primary_10_3390_cells9091990 crossref_primary_10_1038_s41598_018_27784_5 crossref_primary_10_1080_09205063_2020_1767375 crossref_primary_10_1002_mabi_202000123 crossref_primary_10_1039_D3MA00736G crossref_primary_10_1016_j_ijbiomac_2019_09_020 crossref_primary_10_1021_acs_chemrev_1c00539 crossref_primary_10_1089_bioe_2023_0023 crossref_primary_10_1002_adtp_201900205 crossref_primary_10_1002_adma_202107207 crossref_primary_10_1002_adbi_202000125 crossref_primary_10_1116_6_0000708 crossref_primary_10_1021_acs_analchem_0c02556 crossref_primary_10_1186_s42490_025_00090_8 crossref_primary_10_1039_C7BM01156C crossref_primary_10_1080_00914037_2022_2060219 crossref_primary_10_1016_j_ijpharm_2019_01_044 crossref_primary_10_1039_D0BM00621A crossref_primary_10_1002_btm2_10347 crossref_primary_10_1116_1_5144983 crossref_primary_10_1016_j_bioelechem_2022_108099 crossref_primary_10_1039_C6BM00212A crossref_primary_10_1039_D2TB02079C crossref_primary_10_1089_bioe_2020_0034 crossref_primary_10_1016_j_msec_2017_09_007 crossref_primary_10_1039_D0RA06556K crossref_primary_10_1038_s41598_019_56021_w crossref_primary_10_1038_srep42525 crossref_primary_10_1021_acs_biomac_8b00341 crossref_primary_10_1016_j_msec_2019_109865 crossref_primary_10_1080_1539445X_2020_1853162 crossref_primary_10_1063_5_0241234 crossref_primary_10_1039_D1CS00572C crossref_primary_10_1007_s10439_016_1755_7 crossref_primary_10_1039_D2TB02387C crossref_primary_10_1016_j_biomaterials_2021_120982 crossref_primary_10_1038_s41583_021_00496_y crossref_primary_10_1039_C5TB02130H crossref_primary_10_1063_5_0032196 crossref_primary_10_3389_fbioe_2021_591838 crossref_primary_10_1016_j_bbagen_2016_03_023 crossref_primary_10_1021_acsbiomaterials_4c00111 crossref_primary_10_1155_2021_6697574 crossref_primary_10_1039_C7SM00335H crossref_primary_10_1116_1_5082204 crossref_primary_10_1016_j_cis_2023_102860 crossref_primary_10_1016_j_coelec_2017_07_003 crossref_primary_10_1186_s13036_015_0012_1 crossref_primary_10_1016_j_bios_2022_114134 crossref_primary_10_1002_adhm_201900425 crossref_primary_10_1093_rb_rbae137 crossref_primary_10_1007_s41745_019_00126_8 crossref_primary_10_1021_acs_chemmater_5b03995 crossref_primary_10_1002_adhm_201601087 crossref_primary_10_1186_s12951_021_01031_y crossref_primary_10_1021_acs_analchem_2c00288 crossref_primary_10_1021_acs_chemmater_0c00767 crossref_primary_10_3389_fmedt_2022_693438 crossref_primary_10_3390_mi13101756 crossref_primary_10_1002_adfm_201907792 crossref_primary_10_1515_pac_2019_1107 crossref_primary_10_1039_C7NR05446G crossref_primary_10_1039_D4MH01804D crossref_primary_10_1016_j_biomaterials_2016_09_020 crossref_primary_10_1007_s40883_018_0073_z crossref_primary_10_1016_j_actbio_2016_10_035 crossref_primary_10_1002_mabi_201700270 crossref_primary_10_1002_adfm_201505304 crossref_primary_10_1002_aelm_202300369 crossref_primary_10_1007_s10856_017_5979_3 crossref_primary_10_1016_j_bioactmat_2020_03_010 crossref_primary_10_1038_s41467_022_29017_w crossref_primary_10_1186_s40824_019_0176_8 crossref_primary_10_1177_00405175211006217 crossref_primary_10_1016_j_biotechadv_2019_02_011 crossref_primary_10_1007_s10853_020_04467_z crossref_primary_10_1002_smll_201805440 crossref_primary_10_1021_acsabm_4c00523 crossref_primary_10_3390_ijms222111543 crossref_primary_10_1016_j_brainresbull_2019_02_015 crossref_primary_10_1016_j_eurpolymj_2021_110773 crossref_primary_10_1039_C8RA01323C crossref_primary_10_1088_1748_605X_ab763b crossref_primary_10_2217_nnm_16_13 crossref_primary_10_1002_advs_202310010 crossref_primary_10_3390_ijms22020501 crossref_primary_10_1002_adhm_202101577 crossref_primary_10_1002_adhm_202001244 crossref_primary_10_1002_adhm_202001125 crossref_primary_10_1007_s00441_018_2885_z crossref_primary_10_1002_advs_202002112 crossref_primary_10_3390_polym15132860 crossref_primary_10_1177_03913988221109618 crossref_primary_10_1002_adfm_202003710 crossref_primary_10_1021_acsabm_1c00567 crossref_primary_10_1016_j_actbio_2023_07_054 |
Cites_doi | 10.1016/S0013-4686(97)00158-8 10.1016/j.bbagen.2013.03.005 10.1088/1748-6041/4/4/045002 10.1002/jcb.2400510406 10.1038/nrm1890 10.1038/mp.2009.131 10.1016/S0091-679X(07)83005-6 10.1002/(SICI)1097-4636(199902)44:2<121::AID-JBM1>3.0.CO;2-A 10.1021/j100014a026 10.1016/j.biomaterials.2006.09.008 10.1126/science.1116995 10.1002/1097-4636(20011205)57:3<366::AID-JBM1179>3.0.CO;2-X 10.1088/1748-6041/3/3/034124 10.1016/j.cell.2006.06.044 10.1089/ten.tea.2012.0626 10.1002/mabi.201000176 10.1016/j.semcdb.2008.12.009 10.1002/anie.201103728 10.1016/j.colsurfb.2008.10.022 10.1186/1471-2202-8-36 10.1634/stemcells.2006-0011 10.1242/jcs.01125 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I 10.1016/j.biomaterials.2009.06.005 10.1002/9783527628599.app3 10.1016/S0013-4686(00)00627-7 10.1007/s11517-007-0218-6 10.1083/jcb.101.6.2023 10.1371/journal.pone.0018624 10.1002/cne.21974 10.1016/j.jconrel.2006.09.004 |
ContentType | Journal Article |
Copyright | 2015, Mary Ann Liebert, Inc. (©) Copyright 2015, Mary Ann Liebert, Inc. |
Copyright_xml | – notice: 2015, Mary Ann Liebert, Inc. – notice: (©) Copyright 2015, Mary Ann Liebert, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7T5 7X7 7XB 88A 88E 88I 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M2P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 7QO |
DOI | 10.1089/ten.tec.2014.0338 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-3392 |
EndPage | 393 |
ExternalDocumentID | 3643111131 25296166 10_1089_ten_tec_2014_0338 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- 0R~ 123 29Q 3V. 4.4 53G 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ ABBKN ABUWG ACGFO ACGFS ACGOD ACPRK ADBBV ADFRT AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BNQNF BPHCQ BVXVI CCPQU CS3 DWQXO EBS EJD F5P FYUFA GNUQQ HCIFZ HMCUK IHR IM4 LK8 M0L M1P M2P M7P MV1 NQHIM O9- P2P PQQKQ PROAC PSQYO RML RNS UE5 UKHRP AAYXX CAG CITATION COF IAO IER IGS ITC PHGZM PHGZT 1-M CGR CUY CVF ECM EIF NPM 7QP 7T5 7XB 8FD 8FK FR3 H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SCNPE 7X8 PUEGO 7QO |
ID | FETCH-LOGICAL-c476t-ac2fc87686401730172a4508680bb51adf64e70c353e6a14b6995868454862073 |
IEDL.DBID | 7X7 |
ISSN | 1937-3384 1937-3392 |
IngestDate | Fri Sep 05 07:08:02 EDT 2025 Fri Sep 05 07:16:15 EDT 2025 Wed Aug 13 04:09:59 EDT 2025 Thu Jan 02 22:20:46 EST 2025 Tue Jul 01 04:31:21 EDT 2025 Thu Apr 24 22:49:06 EDT 2025 Fri Sep 27 01:18:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-ac2fc87686401730172a4508680bb51adf64e70c353e6a14b6995868454862073 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25296166 |
PQID | 1668322833 |
PQPubID | 40313 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1676350545 proquest_miscellaneous_1669839515 proquest_journals_1668322833 pubmed_primary_25296166 crossref_citationtrail_10_1089_ten_tec_2014_0338 crossref_primary_10_1089_ten_tec_2014_0338 maryannliebert_primary_10_1089_ten_tec_2014_0338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New Rochelle |
PublicationTitle | Tissue engineering. Part C, Methods |
PublicationTitleAlternate | Tissue Eng Part C Methods |
PublicationYear | 2015 |
Publisher | Mary Ann Liebert, Inc |
Publisher_xml | – name: Mary Ann Liebert, Inc |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 |
References_xml | – ident: B14 doi: 10.1016/S0013-4686(97)00158-8 – ident: B30 doi: 10.1016/j.bbagen.2013.03.005 – ident: B22 doi: 10.1088/1748-6041/4/4/045002 – ident: B5 doi: 10.1002/jcb.2400510406 – ident: B18 doi: 10.1038/nrm1890 – ident: B25 doi: 10.1038/mp.2009.131 – ident: B17 doi: 10.1016/S0091-679X(07)83005-6 – ident: B11 doi: 10.1002/(SICI)1097-4636(199902)44:2<121::AID-JBM1>3.0.CO;2-A – ident: B13 doi: 10.1021/j100014a026 – ident: B12 doi: 10.1016/j.biomaterials.2006.09.008 – ident: B16 doi: 10.1126/science.1116995 – ident: B19 doi: 10.1002/1097-4636(20011205)57:3<366::AID-JBM1179>3.0.CO;2-X – ident: B27 doi: 10.1088/1748-6041/3/3/034124 – ident: B15 doi: 10.1016/j.cell.2006.06.044 – ident: B1 doi: 10.1089/ten.tea.2012.0626 – ident: B9 doi: 10.1002/mabi.201000176 – ident: B4 doi: 10.1016/j.semcdb.2008.12.009 – ident: B7 doi: 10.1002/anie.201103728 – ident: B21 doi: 10.1016/j.colsurfb.2008.10.022 – ident: B31 doi: 10.1186/1471-2202-8-36 – ident: B2 doi: 10.1634/stemcells.2006-0011 – ident: B3 doi: 10.1242/jcs.01125 – ident: B10 doi: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I – ident: B20 doi: 10.1016/j.biomaterials.2009.06.005 – ident: B24 doi: 10.1002/9783527628599.app3 – ident: B26 doi: 10.1016/S0013-4686(00)00627-7 – ident: B29 doi: 10.1007/s11517-007-0218-6 – ident: B6 doi: 10.1083/jcb.101.6.2023 – ident: B8 doi: 10.1371/journal.pone.0018624 – ident: B28 doi: 10.1002/cne.21974 – ident: B23 doi: 10.1016/j.jconrel.2006.09.004 |
SSID | ssj0060679 |
Score | 2.447084 |
Snippet | Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include
in vitro
or implantable electrodes for... Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for... |
SourceID | proquest pubmed crossref maryannliebert |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 385 |
SubjectTerms | Antigens, Differentiation - metabolism Cell Differentiation Electric currents Electric Stimulation Gene expression Humans Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Neural Stem Cells - cytology Neural Stem Cells - metabolism Neurons Neurons - cytology Neurons - metabolism Polymers - chemistry Pyrroles - chemistry Stem cells Tissue Engineering Translational Medical Research |
Title | Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation of Human Neural Stem Cells: A Biocompatible Platform for Translational Neural Tissue Engineering |
URI | https://www.liebertpub.com/doi/abs/10.1089/ten.tec.2014.0338 https://www.ncbi.nlm.nih.gov/pubmed/25296166 https://www.proquest.com/docview/1668322833 https://www.proquest.com/docview/1669839515 https://www.proquest.com/docview/1676350545 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpcmmhoelz0ySokFPAiR-yLPVSku2GEEhY8oC9GVmWYMFrb3edQ35Y_19nZHm7PWTpwfZBDwvPaPTNwzOEHNtCFsqWIghVCQqKjEQgTBkHpSxBUKaZSSyaBm5u-dUju56kE29wW_qwyl4mOkFdNhpt5GcR58h8Ikl-zH8FWDUKvau-hMYrsuNSlwE_Z5OVwsXRSNJ5lWEjJYL1Xk0hzwCQnrYGcxhG7DRM8PeUtXPpLf42puoaYCCGN7-MPt0pdPmO7Hr4SM87eu-RLVO_J2_Wkgp-IL9HrrINfnx6305nvj4XdcEBdNjUmOEVZBwdN9XzzCzcc_68wDhDOnbReWZJf_rCKW1HOtpY6uz9FLN5uJnNjA5NVS2_03N6MW1cMHs7LXASeCNiYQo36g7Dypsc-9EPjtx0bd0fyePl6GF4FfjiDIFmGW8DpWOrQZQKDhoaioksVgzQHhdhUaSRKi1nJgt1kiaGq4gVXMoUWhmoSDwGwfKJbNdNbb4QakrARKnlMRwCLNVGWg2MYy3nKoOWcEDCnjS59pnLsYBGlTsPupA5UBMunSM1c6TmgJyshsy7tB2bOof_0vt_hhz0HJH7Tb_M_7LogHxbNcN2RR-Mqk3z5PpIwKSAIjf1wSyBgKWhz-eO21YritFPDpPsb17AV_Ia1pp2IUYHZLtdPJlDQE9tceS2yBHZuRjdju_-ALHLHls |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9ACVQLwbKLBIcEFy68d6bSMh1KapUtpGEaRSb6693pUiOXZIXKH8KW78P2bWdggHIi49JDnsIyvNN7Pf7szOALzTaZQmOgstO8nwgBI5oRWqzLWyKEND6QfK03Q1cDEUg0v-5cq_2oKf7VsYCqtsbaIx1Fkp6Y78wBGCwBd63ufZd4uqRpF3tS2hUcPiTC1_4JFt8en0GOX73nVP-uPewGqqCliSB6KyEulqiTYgFHi0IHwHbsKRpojQTlPfSTItuAps6fmeEonDUxFFPrZy5PbCRY3Aee_ANqcXrR3YPuoPR19b2y_oWqb2Y6PqeiFv_ahhdIAUeL9SlDXR4fu2Rw9i1nbC-_RQLSkKJJ4UUP1vvmv2vZOH8KAhrOywRtgj2FLFY9hZS2P4BH71TS0dEjf7Vk2mTUUwZsIRWK8sKKcsWlU2KvPlVM3N72w5p8hGNjLxgGrBjptSLVUNFlZqZjwMjPKHmJnVlPVUni8-skN2NClN-Hw1SWkS_Edi3wy_mNl-8-aSsx09NgBja-t-Cpe3Irhn0CnKQu0CUxmyMF8LF7cd7ksVaYlQ1VqIJMAWuwt2K5pYNrnSqWRHHhuffRjFKE38yJikGZM0u_BhNWRWJwrZ1Nn-W97_M2SvRUTcmJlF_EcpuvB21YwGgrw-SaHKG9MnQhaMvHVTH8pLiOwd-zyv0bZakUueeZzkxeYFvIG7g_HFeXx-Ojx7Cfdw3X4d4LQHnWp-o14hd6vS143CMLi-bR39DemmV5I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRBIIN4NFDASXJC22YfXayMhVJJGLYUqEq2U2-L12lKkzW6abIXyw7jw65jx7oZwIOLSQ5KDH7E034w_e8YzhLyxmcyUzYXnqxwOKDIQnjB56OUyB0MZJyayeDXw9YwfX7DPk3iyQ351b2EwrLKzic5Q55XGO_J-wDmCT0RR37ZhEePh6OP80sMKUuhp7cppNBA5NasfcHxbfjgZgqzfhuHo6Hxw7LUVBjzNEl57SodWgz0QHI4ZiPUkVAwoCxd-lsWByi1nJvF1FEeGq4BlXMoYWhnwfB6CdsC8N8jNJAJWBbqUTNaHPY4XNI1HG5Q4EqzzqArZBzJ8UBvMnxiwAz_CpzEbe-JdfLKmyhIoKIZW_5v5uh1wdJ_ca6krPWyw9oDsmPIhubOR0PAR-Xnkquqg4Om3ejpra4NRF5hAB1WJ2WXBvtJxVaxmZuF-56sFxjjSsYsMNEs6bIu21A1saGWp8zVQzCTiZjYzOjBFsXxPD-mnaeUC6etphpPAPyIPp_BF3UZctNed3ehzBzW6se7H5OJaxPaE7JZVafYINTnwsdjyEDYgFmsjrQbQWsu5SqDF7xG_E02q26zpWLyjSJ33XsgUpAkfnaI0U5Rmj7xbD5k3KUO2dfb_lvf_DNnvEJG2BmeZ_lGPHnm9bgZTgf4fVZrqyvWRwIeBwW7rgxkKgcdDn6cN2tYrCtFHD5M8276AV-QWaGb65eTs9Dm5DcuOm0infbJbL67MCyBxdfbSaQsl369bPX8D65FaWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+stimulation+using+conductive+polymer+polypyrrole+promotes+differentiation+of+human+neural+stem+cells%3A+a+biocompatible+platform+for+translational+neural+tissue+engineering&rft.jtitle=Tissue+engineering.+Part+C%2C+Methods&rft.au=Stewart%2C+Elise&rft.au=Kobayashi%2C+Nao+R&rft.au=Higgins%2C+Michael+J&rft.au=Quigley%2C+Anita+F&rft.date=2015-04-01&rft.eissn=1937-3392&rft.volume=21&rft.issue=4&rft.spage=385&rft_id=info:doi/10.1089%2Ften.TEC.2014.0338&rft_id=info%3Apmid%2F25296166&rft.externalDocID=25296166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3384&client=summon |