Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation of Human Neural Stem Cells: A Biocompatible Platform for Translational Neural Tissue Engineering

Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the...

Full description

Saved in:
Bibliographic Details
Published inTissue engineering. Part C, Methods Vol. 21; no. 4; pp. 385 - 393
Main Authors Stewart, Elise, Kobayashi, Nao R., Higgins, Michael J., Quigley, Anita F., Jamali, Sina, Moulton, Simon E., Kapsa, Robert M.I., Wallace, Gordon G., Crook, Jeremy M.
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.04.2015
Subjects
Online AccessGet full text
ISSN1937-3384
1937-3392
1937-3392
DOI10.1089/ten.tec.2014.0338

Cover

Abstract Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.
AbstractList Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.
Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.
Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.
Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly beta -III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.
Author Jamali, Sina
Higgins, Michael J.
Kobayashi, Nao R.
Moulton, Simon E.
Crook, Jeremy M.
Kapsa, Robert M.I.
Wallace, Gordon G.
Quigley, Anita F.
Stewart, Elise
Author_xml – sequence: 1
  givenname: Elise
  surname: Stewart
  fullname: Stewart, Elise
  organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia
– sequence: 2
  givenname: Nao R.
  surname: Kobayashi
  fullname: Kobayashi, Nao R.
  organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia
– sequence: 3
  givenname: Michael J.
  surname: Higgins
  fullname: Higgins, Michael J.
  organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia
– sequence: 4
  givenname: Anita F.
  surname: Quigley
  fullname: Quigley, Anita F.
  organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia
– sequence: 5
  givenname: Sina
  surname: Jamali
  fullname: Jamali, Sina
  organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia
– sequence: 6
  givenname: Simon E.
  surname: Moulton
  fullname: Moulton, Simon E.
  organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia
– sequence: 7
  givenname: Robert M.I.
  surname: Kapsa
  fullname: Kapsa, Robert M.I.
  organization: 2Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
– sequence: 8
  givenname: Gordon G.
  surname: Wallace
  fullname: Wallace, Gordon G.
  organization: 1ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, Australia
– sequence: 9
  givenname: Jeremy M.
  surname: Crook
  fullname: Crook, Jeremy M.
  organization: 4Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25296166$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhkeoiF7gAdggS2zYJNjjy3jYlRAoUgVIpGvL456pXPkSbA9SHoz3w5OkLLpAXRwfy_7-c7HPeXMSYoCmeU3wkmDZvy8QlgXMssWELTGl8llzRnraLSjt25N_e8lOm_Oc7zEWWHT9i-a05W0viBBnzZ-1A1OSNdqhn8X6yeliY0A32YY7tIrhdjLF_gb0I7qdh7T3211K0dWzFH0skNEnO46QIBR7UMcRXU1eB_QNprSPDB6twLn8AV2ijzaa6LcVHeYgNeMYk0d1QZukQz6UUGVH9cbmPAFahzsbAFIt7GXzfNQuw6ujv2huPq83q6vF9fcvX1eX1wvDOlEW2rSjkZ2QgmHS0WqtZhxLIfEwcKJvR8Ggw4ZyCkITNoi-5_WWcSZFizt60bw7xN2m-GuCXJS32dQ-dIA4ZUVEJyjHnPEnoKKXtOdkRt8-Qu_jlGrDe0rStpWUVurNkZoGD7dqm6zXaace_q4C3QEwKeacYFTGlv3TlaStUwSreUpUnZJqRs1TouYpqUrySPkQ_H-aY7aZ0yE4CwOk8gTlX5881fk
CitedBy_id crossref_primary_10_1021_acsbiomaterials_8b01326
crossref_primary_10_1021_acs_biomac_7b00749
crossref_primary_10_3390_biom9090448
crossref_primary_10_1002_adhm_201801321
crossref_primary_10_1016_j_nano_2018_05_004
crossref_primary_10_1186_s40824_016_0078_y
crossref_primary_10_3390_cells9030658
crossref_primary_10_1089_ten_tea_2016_0430
crossref_primary_10_3390_polym13030326
crossref_primary_10_1016_j_actbio_2018_09_035
crossref_primary_10_1016_j_msec_2020_111518
crossref_primary_10_1089_bioe_2020_0025
crossref_primary_10_1039_D2CS00830K
crossref_primary_10_1016_j_expneurol_2018_09_020
crossref_primary_10_3390_polym9090446
crossref_primary_10_1002_adhm_201701046
crossref_primary_10_1097_PRS_0000000000004121
crossref_primary_10_1007_s11434_016_1090_2
crossref_primary_10_1016_j_bioadv_2022_212808
crossref_primary_10_1021_acs_chemmater_0c02906
crossref_primary_10_1016_j_brainresbull_2019_07_016
crossref_primary_10_1134_S1063784223900279
crossref_primary_10_3390_jfb14100523
crossref_primary_10_1016_j_yexcr_2018_12_021
crossref_primary_10_1038_srep22718
crossref_primary_10_1016_j_expneurol_2019_112963
crossref_primary_10_1016_j_biomaterials_2017_07_020
crossref_primary_10_1016_j_bioadv_2023_213472
crossref_primary_10_1038_mtm_2015_51
crossref_primary_10_1002_admt_202200853
crossref_primary_10_1016_j_jbiosc_2021_12_003
crossref_primary_10_1016_j_medntd_2022_100176
crossref_primary_10_3390_cells9091990
crossref_primary_10_1038_s41598_018_27784_5
crossref_primary_10_1080_09205063_2020_1767375
crossref_primary_10_1002_mabi_202000123
crossref_primary_10_1039_D3MA00736G
crossref_primary_10_1016_j_ijbiomac_2019_09_020
crossref_primary_10_1021_acs_chemrev_1c00539
crossref_primary_10_1089_bioe_2023_0023
crossref_primary_10_1002_adtp_201900205
crossref_primary_10_1002_adma_202107207
crossref_primary_10_1002_adbi_202000125
crossref_primary_10_1116_6_0000708
crossref_primary_10_1021_acs_analchem_0c02556
crossref_primary_10_1186_s42490_025_00090_8
crossref_primary_10_1039_C7BM01156C
crossref_primary_10_1080_00914037_2022_2060219
crossref_primary_10_1016_j_ijpharm_2019_01_044
crossref_primary_10_1039_D0BM00621A
crossref_primary_10_1002_btm2_10347
crossref_primary_10_1116_1_5144983
crossref_primary_10_1016_j_bioelechem_2022_108099
crossref_primary_10_1039_C6BM00212A
crossref_primary_10_1039_D2TB02079C
crossref_primary_10_1089_bioe_2020_0034
crossref_primary_10_1016_j_msec_2017_09_007
crossref_primary_10_1039_D0RA06556K
crossref_primary_10_1038_s41598_019_56021_w
crossref_primary_10_1038_srep42525
crossref_primary_10_1021_acs_biomac_8b00341
crossref_primary_10_1016_j_msec_2019_109865
crossref_primary_10_1080_1539445X_2020_1853162
crossref_primary_10_1063_5_0241234
crossref_primary_10_1039_D1CS00572C
crossref_primary_10_1007_s10439_016_1755_7
crossref_primary_10_1039_D2TB02387C
crossref_primary_10_1016_j_biomaterials_2021_120982
crossref_primary_10_1038_s41583_021_00496_y
crossref_primary_10_1039_C5TB02130H
crossref_primary_10_1063_5_0032196
crossref_primary_10_3389_fbioe_2021_591838
crossref_primary_10_1016_j_bbagen_2016_03_023
crossref_primary_10_1021_acsbiomaterials_4c00111
crossref_primary_10_1155_2021_6697574
crossref_primary_10_1039_C7SM00335H
crossref_primary_10_1116_1_5082204
crossref_primary_10_1016_j_cis_2023_102860
crossref_primary_10_1016_j_coelec_2017_07_003
crossref_primary_10_1186_s13036_015_0012_1
crossref_primary_10_1016_j_bios_2022_114134
crossref_primary_10_1002_adhm_201900425
crossref_primary_10_1093_rb_rbae137
crossref_primary_10_1007_s41745_019_00126_8
crossref_primary_10_1021_acs_chemmater_5b03995
crossref_primary_10_1002_adhm_201601087
crossref_primary_10_1186_s12951_021_01031_y
crossref_primary_10_1021_acs_analchem_2c00288
crossref_primary_10_1021_acs_chemmater_0c00767
crossref_primary_10_3389_fmedt_2022_693438
crossref_primary_10_3390_mi13101756
crossref_primary_10_1002_adfm_201907792
crossref_primary_10_1515_pac_2019_1107
crossref_primary_10_1039_C7NR05446G
crossref_primary_10_1039_D4MH01804D
crossref_primary_10_1016_j_biomaterials_2016_09_020
crossref_primary_10_1007_s40883_018_0073_z
crossref_primary_10_1016_j_actbio_2016_10_035
crossref_primary_10_1002_mabi_201700270
crossref_primary_10_1002_adfm_201505304
crossref_primary_10_1002_aelm_202300369
crossref_primary_10_1007_s10856_017_5979_3
crossref_primary_10_1016_j_bioactmat_2020_03_010
crossref_primary_10_1038_s41467_022_29017_w
crossref_primary_10_1186_s40824_019_0176_8
crossref_primary_10_1177_00405175211006217
crossref_primary_10_1016_j_biotechadv_2019_02_011
crossref_primary_10_1007_s10853_020_04467_z
crossref_primary_10_1002_smll_201805440
crossref_primary_10_1021_acsabm_4c00523
crossref_primary_10_3390_ijms222111543
crossref_primary_10_1016_j_brainresbull_2019_02_015
crossref_primary_10_1016_j_eurpolymj_2021_110773
crossref_primary_10_1039_C8RA01323C
crossref_primary_10_1088_1748_605X_ab763b
crossref_primary_10_2217_nnm_16_13
crossref_primary_10_1002_advs_202310010
crossref_primary_10_3390_ijms22020501
crossref_primary_10_1002_adhm_202101577
crossref_primary_10_1002_adhm_202001244
crossref_primary_10_1002_adhm_202001125
crossref_primary_10_1007_s00441_018_2885_z
crossref_primary_10_1002_advs_202002112
crossref_primary_10_3390_polym15132860
crossref_primary_10_1177_03913988221109618
crossref_primary_10_1002_adfm_202003710
crossref_primary_10_1021_acsabm_1c00567
crossref_primary_10_1016_j_actbio_2023_07_054
Cites_doi 10.1016/S0013-4686(97)00158-8
10.1016/j.bbagen.2013.03.005
10.1088/1748-6041/4/4/045002
10.1002/jcb.2400510406
10.1038/nrm1890
10.1038/mp.2009.131
10.1016/S0091-679X(07)83005-6
10.1002/(SICI)1097-4636(199902)44:2<121::AID-JBM1>3.0.CO;2-A
10.1021/j100014a026
10.1016/j.biomaterials.2006.09.008
10.1126/science.1116995
10.1002/1097-4636(20011205)57:3<366::AID-JBM1179>3.0.CO;2-X
10.1088/1748-6041/3/3/034124
10.1016/j.cell.2006.06.044
10.1089/ten.tea.2012.0626
10.1002/mabi.201000176
10.1016/j.semcdb.2008.12.009
10.1002/anie.201103728
10.1016/j.colsurfb.2008.10.022
10.1186/1471-2202-8-36
10.1634/stemcells.2006-0011
10.1242/jcs.01125
10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I
10.1016/j.biomaterials.2009.06.005
10.1002/9783527628599.app3
10.1016/S0013-4686(00)00627-7
10.1007/s11517-007-0218-6
10.1083/jcb.101.6.2023
10.1371/journal.pone.0018624
10.1002/cne.21974
10.1016/j.jconrel.2006.09.004
ContentType Journal Article
Copyright 2015, Mary Ann Liebert, Inc.
(©) Copyright 2015, Mary Ann Liebert, Inc.
Copyright_xml – notice: 2015, Mary Ann Liebert, Inc.
– notice: (©) Copyright 2015, Mary Ann Liebert, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7T5
7X7
7XB
88A
88E
88I
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
7QO
DOI 10.1089/ten.tec.2014.0338
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Central Student
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-3392
EndPage 393
ExternalDocumentID 3643111131
25296166
10_1089_ten_tec_2014_0338
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
0R~
123
29Q
3V.
4.4
53G
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
ABBKN
ABUWG
ACGFO
ACGFS
ACGOD
ACPRK
ADBBV
ADFRT
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BNQNF
BPHCQ
BVXVI
CCPQU
CS3
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
HCIFZ
HMCUK
IHR
IM4
LK8
M0L
M1P
M2P
M7P
MV1
NQHIM
O9-
P2P
PQQKQ
PROAC
PSQYO
RML
RNS
UE5
UKHRP
AAYXX
CAG
CITATION
COF
IAO
IER
IGS
ITC
PHGZM
PHGZT
1-M
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7XB
8FD
8FK
FR3
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SCNPE
7X8
PUEGO
7QO
ID FETCH-LOGICAL-c476t-ac2fc87686401730172a4508680bb51adf64e70c353e6a14b6995868454862073
IEDL.DBID 7X7
ISSN 1937-3384
1937-3392
IngestDate Fri Sep 05 07:08:02 EDT 2025
Fri Sep 05 07:16:15 EDT 2025
Wed Aug 13 04:09:59 EDT 2025
Thu Jan 02 22:20:46 EST 2025
Tue Jul 01 04:31:21 EDT 2025
Thu Apr 24 22:49:06 EDT 2025
Fri Sep 27 01:18:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-ac2fc87686401730172a4508680bb51adf64e70c353e6a14b6995868454862073
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25296166
PQID 1668322833
PQPubID 40313
PageCount 9
ParticipantIDs proquest_miscellaneous_1676350545
proquest_miscellaneous_1669839515
proquest_journals_1668322833
pubmed_primary_25296166
crossref_citationtrail_10_1089_ten_tec_2014_0338
crossref_primary_10_1089_ten_tec_2014_0338
maryannliebert_primary_10_1089_ten_tec_2014_0338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New Rochelle
PublicationTitle Tissue engineering. Part C, Methods
PublicationTitleAlternate Tissue Eng Part C Methods
PublicationYear 2015
Publisher Mary Ann Liebert, Inc
Publisher_xml – name: Mary Ann Liebert, Inc
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
References_xml – ident: B14
  doi: 10.1016/S0013-4686(97)00158-8
– ident: B30
  doi: 10.1016/j.bbagen.2013.03.005
– ident: B22
  doi: 10.1088/1748-6041/4/4/045002
– ident: B5
  doi: 10.1002/jcb.2400510406
– ident: B18
  doi: 10.1038/nrm1890
– ident: B25
  doi: 10.1038/mp.2009.131
– ident: B17
  doi: 10.1016/S0091-679X(07)83005-6
– ident: B11
  doi: 10.1002/(SICI)1097-4636(199902)44:2<121::AID-JBM1>3.0.CO;2-A
– ident: B13
  doi: 10.1021/j100014a026
– ident: B12
  doi: 10.1016/j.biomaterials.2006.09.008
– ident: B16
  doi: 10.1126/science.1116995
– ident: B19
  doi: 10.1002/1097-4636(20011205)57:3<366::AID-JBM1179>3.0.CO;2-X
– ident: B27
  doi: 10.1088/1748-6041/3/3/034124
– ident: B15
  doi: 10.1016/j.cell.2006.06.044
– ident: B1
  doi: 10.1089/ten.tea.2012.0626
– ident: B9
  doi: 10.1002/mabi.201000176
– ident: B4
  doi: 10.1016/j.semcdb.2008.12.009
– ident: B7
  doi: 10.1002/anie.201103728
– ident: B21
  doi: 10.1016/j.colsurfb.2008.10.022
– ident: B31
  doi: 10.1186/1471-2202-8-36
– ident: B2
  doi: 10.1634/stemcells.2006-0011
– ident: B3
  doi: 10.1242/jcs.01125
– ident: B10
  doi: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I
– ident: B20
  doi: 10.1016/j.biomaterials.2009.06.005
– ident: B24
  doi: 10.1002/9783527628599.app3
– ident: B26
  doi: 10.1016/S0013-4686(00)00627-7
– ident: B29
  doi: 10.1007/s11517-007-0218-6
– ident: B6
  doi: 10.1083/jcb.101.6.2023
– ident: B8
  doi: 10.1371/journal.pone.0018624
– ident: B28
  doi: 10.1002/cne.21974
– ident: B23
  doi: 10.1016/j.jconrel.2006.09.004
SSID ssj0060679
Score 2.447084
Snippet Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for...
Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for...
SourceID proquest
pubmed
crossref
maryannliebert
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms Antigens, Differentiation - metabolism
Cell Differentiation
Electric currents
Electric Stimulation
Gene expression
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neurons
Neurons - cytology
Neurons - metabolism
Polymers - chemistry
Pyrroles - chemistry
Stem cells
Tissue Engineering
Translational Medical Research
Title Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation of Human Neural Stem Cells: A Biocompatible Platform for Translational Neural Tissue Engineering
URI https://www.liebertpub.com/doi/abs/10.1089/ten.tec.2014.0338
https://www.ncbi.nlm.nih.gov/pubmed/25296166
https://www.proquest.com/docview/1668322833
https://www.proquest.com/docview/1669839515
https://www.proquest.com/docview/1676350545
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpcmmhoelz0ySokFPAiR-yLPVSku2GEEhY8oC9GVmWYMFrb3edQ35Y_19nZHm7PWTpwfZBDwvPaPTNwzOEHNtCFsqWIghVCQqKjEQgTBkHpSxBUKaZSSyaBm5u-dUju56kE29wW_qwyl4mOkFdNhpt5GcR58h8Ikl-zH8FWDUKvau-hMYrsuNSlwE_Z5OVwsXRSNJ5lWEjJYL1Xk0hzwCQnrYGcxhG7DRM8PeUtXPpLf42puoaYCCGN7-MPt0pdPmO7Hr4SM87eu-RLVO_J2_Wkgp-IL9HrrINfnx6305nvj4XdcEBdNjUmOEVZBwdN9XzzCzcc_68wDhDOnbReWZJf_rCKW1HOtpY6uz9FLN5uJnNjA5NVS2_03N6MW1cMHs7LXASeCNiYQo36g7Dypsc-9EPjtx0bd0fyePl6GF4FfjiDIFmGW8DpWOrQZQKDhoaioksVgzQHhdhUaSRKi1nJgt1kiaGq4gVXMoUWhmoSDwGwfKJbNdNbb4QakrARKnlMRwCLNVGWg2MYy3nKoOWcEDCnjS59pnLsYBGlTsPupA5UBMunSM1c6TmgJyshsy7tB2bOof_0vt_hhz0HJH7Tb_M_7LogHxbNcN2RR-Mqk3z5PpIwKSAIjf1wSyBgKWhz-eO21YritFPDpPsb17AV_Ia1pp2IUYHZLtdPJlDQE9tceS2yBHZuRjdju_-ALHLHls
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9ACVQLwbKLBIcEFy68d6bSMh1KapUtpGEaRSb6693pUiOXZIXKH8KW78P2bWdggHIi49JDnsIyvNN7Pf7szOALzTaZQmOgstO8nwgBI5oRWqzLWyKEND6QfK03Q1cDEUg0v-5cq_2oKf7VsYCqtsbaIx1Fkp6Y78wBGCwBd63ufZd4uqRpF3tS2hUcPiTC1_4JFt8en0GOX73nVP-uPewGqqCliSB6KyEulqiTYgFHi0IHwHbsKRpojQTlPfSTItuAps6fmeEonDUxFFPrZy5PbCRY3Aee_ANqcXrR3YPuoPR19b2y_oWqb2Y6PqeiFv_ahhdIAUeL9SlDXR4fu2Rw9i1nbC-_RQLSkKJJ4UUP1vvmv2vZOH8KAhrOywRtgj2FLFY9hZS2P4BH71TS0dEjf7Vk2mTUUwZsIRWK8sKKcsWlU2KvPlVM3N72w5p8hGNjLxgGrBjptSLVUNFlZqZjwMjPKHmJnVlPVUni8-skN2NClN-Hw1SWkS_Edi3wy_mNl-8-aSsx09NgBja-t-Cpe3Irhn0CnKQu0CUxmyMF8LF7cd7ksVaYlQ1VqIJMAWuwt2K5pYNrnSqWRHHhuffRjFKE38yJikGZM0u_BhNWRWJwrZ1Nn-W97_M2SvRUTcmJlF_EcpuvB21YwGgrw-SaHKG9MnQhaMvHVTH8pLiOwd-zyv0bZakUueeZzkxeYFvIG7g_HFeXx-Ojx7Cfdw3X4d4LQHnWp-o14hd6vS143CMLi-bR39DemmV5I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRBIIN4NFDASXJC22YfXayMhVJJGLYUqEq2U2-L12lKkzW6abIXyw7jw65jx7oZwIOLSQ5KDH7E034w_e8YzhLyxmcyUzYXnqxwOKDIQnjB56OUyB0MZJyayeDXw9YwfX7DPk3iyQ351b2EwrLKzic5Q55XGO_J-wDmCT0RR37ZhEePh6OP80sMKUuhp7cppNBA5NasfcHxbfjgZgqzfhuHo6Hxw7LUVBjzNEl57SodWgz0QHI4ZiPUkVAwoCxd-lsWByi1nJvF1FEeGq4BlXMoYWhnwfB6CdsC8N8jNJAJWBbqUTNaHPY4XNI1HG5Q4EqzzqArZBzJ8UBvMnxiwAz_CpzEbe-JdfLKmyhIoKIZW_5v5uh1wdJ_ca6krPWyw9oDsmPIhubOR0PAR-Xnkquqg4Om3ejpra4NRF5hAB1WJ2WXBvtJxVaxmZuF-56sFxjjSsYsMNEs6bIu21A1saGWp8zVQzCTiZjYzOjBFsXxPD-mnaeUC6etphpPAPyIPp_BF3UZctNed3ehzBzW6se7H5OJaxPaE7JZVafYINTnwsdjyEDYgFmsjrQbQWsu5SqDF7xG_E02q26zpWLyjSJ33XsgUpAkfnaI0U5Rmj7xbD5k3KUO2dfb_lvf_DNnvEJG2BmeZ_lGPHnm9bgZTgf4fVZrqyvWRwIeBwW7rgxkKgcdDn6cN2tYrCtFHD5M8276AV-QWaGb65eTs9Dm5DcuOm0infbJbL67MCyBxdfbSaQsl369bPX8D65FaWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+stimulation+using+conductive+polymer+polypyrrole+promotes+differentiation+of+human+neural+stem+cells%3A+a+biocompatible+platform+for+translational+neural+tissue+engineering&rft.jtitle=Tissue+engineering.+Part+C%2C+Methods&rft.au=Stewart%2C+Elise&rft.au=Kobayashi%2C+Nao+R&rft.au=Higgins%2C+Michael+J&rft.au=Quigley%2C+Anita+F&rft.date=2015-04-01&rft.eissn=1937-3392&rft.volume=21&rft.issue=4&rft.spage=385&rft_id=info:doi/10.1089%2Ften.TEC.2014.0338&rft_id=info%3Apmid%2F25296166&rft.externalDocID=25296166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3384&client=summon