Robust free-standing nanomembranes of organic/inorganic interpenetrating networks

Hybrid sol–gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in t...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 5; no. 6; pp. 494 - 501
Main Authors Vendamme, Richard, Onoue, Shin-Ya, Nakao, Aiko, Kunitake, Toyoki
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2006
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid sol–gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in the form of free-standing nanomembrane (around 35-nm thick) with unprecedented macroscopic size and characteristics. The quasi-2D interpenetration of the organic and inorganic networks brings to these materials a unique combination of properties that are not usually compatible within the same film: macroscopic robustness and homogeneity, nanoscale thickness, mechanical strength, high flexibility and optical transparency. Interestingly, such free-standing nanofilms of macroscopic size can seal large openings, are strong enough to hold amounts of liquid 70,000 times heavier than their own weight, and are flexible enough to reversibly pass through holes 30,000 times smaller than their own size.
AbstractList Hybrid sol-gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in the form of free-standing nanomembrane (around 35-nm thick) with unprecedented macroscopic size and characteristics. The quasi-2D interpenetration of the organic and inorganic networks brings to these materials a unique combination of properties that are not usually compatible within the same film: macroscopic robustness and homogeneity, nanoscale thickness, mechanical strength, high flexibility and optical transparency. Interestingly, such free-standing nanofilms of macroscopic size can seal large openings, are strong enough to hold amounts of liquid 70,000 times heavier than their own weight, and are flexible enough to reversibly pass through holes 30,000 times smaller than their own size.
Hybrid sol-gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in the form of free-standing nanomembrane (around 35-nm thick) with unprecedented macroscopic size and characteristics. The quasi-2D interpenetration of the organic and inorganic networks brings to these materials a unique combination of properties that are not usually compatible within the same film: macroscopic robustness and homogeneity, nanoscale thickness, mechanical strength, high flexibility and optical transparency. Interestingly, such free-standing nanofilms of macroscopic size can seal large openings, are strong enough to hold amounts of liquid 70,000 times heavier than their own weight, and are flexible enough to reversibly pass through holes 30,000 times smaller than their own size.Hybrid sol-gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in the form of free-standing nanomembrane (around 35-nm thick) with unprecedented macroscopic size and characteristics. The quasi-2D interpenetration of the organic and inorganic networks brings to these materials a unique combination of properties that are not usually compatible within the same film: macroscopic robustness and homogeneity, nanoscale thickness, mechanical strength, high flexibility and optical transparency. Interestingly, such free-standing nanofilms of macroscopic size can seal large openings, are strong enough to hold amounts of liquid 70,000 times heavier than their own weight, and are flexible enough to reversibly pass through holes 30,000 times smaller than their own size.
Hybrid sol-gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in the form of free-standing nanomembrane (around 35-nm thick) with unprecedented macroscopic size and characteristics. The quasi-2D interpenetration of the organic and inorganic networks brings to these materials a unique combination of properties that are not usually compatible within the same film: macroscopic robustness and homogeneity, nanoscale thickness, mechanical strength, high flexibility and optical transparency. Interestingly, such free-standing nanofilms of macroscopic size can seal large openings, are strong enough to hold amounts of liquid 70,000 times heavier than their own weight, and are flexible enough to reversibly pass through holes 30,000 times smaller than their ownnbsp;size. [PUBLICATION ABSTRACT]
Hybrid sol–gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in the form of free-standing nanomembrane (around 35-nm thick) with unprecedented macroscopic size and characteristics. The quasi-2D interpenetration of the organic and inorganic networks brings to these materials a unique combination of properties that are not usually compatible within the same film: macroscopic robustness and homogeneity, nanoscale thickness, mechanical strength, high flexibility and optical transparency. Interestingly, such free-standing nanofilms of macroscopic size can seal large openings, are strong enough to hold amounts of liquid 70,000 times heavier than their own weight, and are flexible enough to reversibly pass through holes 30,000 times smaller than their own size.
Author Vendamme, Richard
Kunitake, Toyoki
Onoue, Shin-Ya
Nakao, Aiko
Author_xml – sequence: 1
  givenname: Richard
  surname: Vendamme
  fullname: Vendamme, Richard
  organization: Topo Chemical Design Laboratory, Frontier Research System (FRS), The Institute of Physical and Chemical Research (RIKEN)
– sequence: 2
  givenname: Shin-Ya
  surname: Onoue
  fullname: Onoue, Shin-Ya
  organization: Topo Chemical Design Laboratory, Frontier Research System (FRS), The Institute of Physical and Chemical Research (RIKEN)
– sequence: 3
  givenname: Aiko
  surname: Nakao
  fullname: Nakao, Aiko
  organization: Surface Science Division, The Institute of Physical and Chemical Research (RIKEN)
– sequence: 4
  givenname: Toyoki
  surname: Kunitake
  fullname: Kunitake, Toyoki
  email: kunitake@ruby.ocn.ne.jp
  organization: Topo Chemical Design Laboratory, Frontier Research System (FRS), The Institute of Physical and Chemical Research (RIKEN)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16715083$$D View this record in MEDLINE/PubMed
BookMark eNqF0d9LwzAQB_AgE92m4F8gxQfRh25J2t7aRxn-AkEUfS5pehmdazKTFPG_N7qNwRR8yj187vjmbkB62mgk5ITREaNJPtat8AyybI_0WTqBOAWgvXXNGOeHZODcnFLOsgwOyCGDCctonvTJ07OpOucjZRFj54WuGz2LtNCmxbayQqOLjIqMnQndyHGj11XUaI92iRq9Ff6nB_2HsW_uiOwrsXB4vH6H5PXm-mV6Fz883t5Prx5iGVL5WECqpKiZFDIEhzSHpMBEFUxJrJCJokJRqVzWBQUseE6zQiZpDRmvVFank2RIzldzl9a8d-h82TZO4mIRMpvOlZDThOfA_oUJsBxSVgR4tgPnprM6fKLknE-AMg4Bna5RV7VYl0vbtMJ-lpuVBnCxAtIa5yyqLaHl97XKzbUCHe1Q2fiwTaPDUpvFXw2XqwYXZuoZ2m3CX_YLAFimQA
CitedBy_id crossref_primary_10_1002_mame_201900430
crossref_primary_10_1021_acsapm_1c00622
crossref_primary_10_1038_nmat1980
crossref_primary_10_1016_j_cej_2022_137481
crossref_primary_10_1021_nn8000017
crossref_primary_10_1016_j_nimb_2008_03_020
crossref_primary_10_3390_s20174748
crossref_primary_10_1016_j_nimb_2008_03_022
crossref_primary_10_1021_la061830e
crossref_primary_10_1021_acsabm_1c00712
crossref_primary_10_1016_j_polymer_2023_125829
crossref_primary_10_1002_adma_202107941
crossref_primary_10_1021_acsnano_9b03326
crossref_primary_10_1002_jbm_a_34312
crossref_primary_10_1002_adfm_200900103
crossref_primary_10_1002_smll_201501752
crossref_primary_10_1021_nl071061z
crossref_primary_10_1246_bcsj_80_433
crossref_primary_10_1002_macp_201000104
crossref_primary_10_1177_1747519820958604
crossref_primary_10_1002_adma_201204619
crossref_primary_10_4028_www_scientific_net_MSF_663_665_1333
crossref_primary_10_1002_anie_201412461
crossref_primary_10_1021_cm8031708
crossref_primary_10_1016_j_memsci_2017_08_052
crossref_primary_10_1299_kikaic_75_2942
crossref_primary_10_3390_nano12223988
crossref_primary_10_3390_ma3010165
crossref_primary_10_1093_ce_zkx006
crossref_primary_10_1039_D0TA05796G
crossref_primary_10_1002_marc_201300395
crossref_primary_10_1016_j_biomaterials_2010_04_051
crossref_primary_10_1016_j_jpowsour_2016_04_033
crossref_primary_10_1038_nmat1965
crossref_primary_10_1002_adhm_201300537
crossref_primary_10_1002_adom_201801167
crossref_primary_10_1016_j_mee_2009_11_074
crossref_primary_10_2472_jsms_73_718
crossref_primary_10_1002_smll_201002078
crossref_primary_10_1007_s11458_010_0213_6
crossref_primary_10_1016_j_memsci_2021_120097
crossref_primary_10_1039_C4RA04549A
crossref_primary_10_1295_koron_70_351
crossref_primary_10_1016_j_nimb_2010_05_010
crossref_primary_10_1021_la503684k
crossref_primary_10_1246_cl_190558
crossref_primary_10_3390_polym5031115
crossref_primary_10_1021_ma302081e
crossref_primary_10_1002_masy_200851002
crossref_primary_10_1039_b717151j
crossref_primary_10_1016_j_actbio_2015_01_014
crossref_primary_10_3390_biomimetics5020024
crossref_primary_10_1039_D1MH00135C
crossref_primary_10_1016_j_nantod_2009_10_005
crossref_primary_10_1038_pj_2016_38
crossref_primary_10_1002_adma_201404054
crossref_primary_10_1021_nn505761x
crossref_primary_10_1021_ma062850q
crossref_primary_10_1002_adma_201401226
crossref_primary_10_1021_acsami_1c19220
crossref_primary_10_1016_j_jcrysgro_2015_01_040
crossref_primary_10_3390_ma4010001
crossref_primary_10_1039_b916489h
crossref_primary_10_1039_C6PY01127F
crossref_primary_10_1002_smll_201000448
crossref_primary_10_1021_nn304526k
crossref_primary_10_1002_adma_200903054
crossref_primary_10_1007_s10544_017_0192_1
crossref_primary_10_1016_j_cocis_2011_08_005
crossref_primary_10_1021_acsomega_2c06977
crossref_primary_10_1039_b805653f
crossref_primary_10_1246_cl_2007_288
crossref_primary_10_7317_pk_2013_37_5_579
crossref_primary_10_1002_adma_202204874
crossref_primary_10_1021_la5011665
crossref_primary_10_1038_s41428_023_00850_0
crossref_primary_10_1016_j_dyepig_2013_11_026
crossref_primary_10_3390_membranes13060549
crossref_primary_10_1002_adma_201202241
crossref_primary_10_1021_acsami_1c06447
crossref_primary_10_1039_b717080g
crossref_primary_10_1177_0885328210394470
crossref_primary_10_1002_adma_200700162
crossref_primary_10_1002_ange_202306994
crossref_primary_10_1016_j_progsurf_2012_05_001
crossref_primary_10_1295_polymj_PJ2006235
crossref_primary_10_1002_adfm_202214409
crossref_primary_10_1021_jacs_5b13220
crossref_primary_10_3724_SP_J_1105_2008_00979
crossref_primary_10_1016_j_jcis_2012_07_080
crossref_primary_10_1039_c3ta11198a
crossref_primary_10_1089_ten_tea_2008_0441
crossref_primary_10_1002_adma_200700618
crossref_primary_10_1021_acsapm_8b00104
crossref_primary_10_1039_b819213h
crossref_primary_10_1039_b717485c
crossref_primary_10_1002_adfm_202312324
crossref_primary_10_1088_1748_605X_ac8e43
crossref_primary_10_1016_j_eurpolymj_2016_01_019
crossref_primary_10_1039_C2PY20654D
crossref_primary_10_1002_adma_202404825
crossref_primary_10_4028_www_scientific_net_MSF_688_213
crossref_primary_10_1126_sciadv_aau0476
crossref_primary_10_1016_j_memsci_2017_02_032
crossref_primary_10_1002_adma_200601630
crossref_primary_10_14723_tmrsj_39_379
crossref_primary_10_1016_j_jcis_2011_11_075
crossref_primary_10_1002_adma_201703678
crossref_primary_10_1039_C8MH01302K
crossref_primary_10_1002_smll_200800337
crossref_primary_10_1021_am900664v
crossref_primary_10_1073_pnas_0911450106
crossref_primary_10_1021_acsami_3c15966
crossref_primary_10_1021_jp7099064
crossref_primary_10_1021_jp801919h
crossref_primary_10_1039_c1jm12362a
crossref_primary_10_7317_pk_2013_37_2_225
crossref_primary_10_1016_j_porgcoat_2016_04_007
crossref_primary_10_1021_nn201719g
crossref_primary_10_1021_la401423d
crossref_primary_10_1039_B905381F
crossref_primary_10_1295_polymj_PJ2007223
crossref_primary_10_1021_cm061759y
crossref_primary_10_1515_nanoph_2022_0667
crossref_primary_10_1016_j_electacta_2013_01_116
crossref_primary_10_1002_adem_202001428
crossref_primary_10_1016_j_biomaterials_2014_01_002
crossref_primary_10_1002_adma_200801589
crossref_primary_10_1021_am800188z
crossref_primary_10_1016_j_electacta_2009_06_027
crossref_primary_10_1002_smll_201703665
crossref_primary_10_1016_j_colsurfa_2008_09_056
crossref_primary_10_1117_1_3609273
crossref_primary_10_1016_j_procbio_2021_02_010
crossref_primary_10_1039_C7LC00363C
crossref_primary_10_1002_jbm_b_33714
crossref_primary_10_1021_ja405629k
crossref_primary_10_1039_b611805d
crossref_primary_10_3390_membranes14020030
crossref_primary_10_1016_j_micromeso_2007_02_016
crossref_primary_10_2324_gomu_96_42
crossref_primary_10_1021_la803479a
crossref_primary_10_3390_biomimetics7040222
crossref_primary_10_1021_la3045576
crossref_primary_10_1007_s40820_021_00627_1
crossref_primary_10_1063_1_3625256
crossref_primary_10_3390_ma8115404
crossref_primary_10_1039_D2SM00147K
crossref_primary_10_1038_nmat2440
crossref_primary_10_1039_D2NR05626G
crossref_primary_10_1039_C7SM01842H
crossref_primary_10_1088_0957_4484_24_43_435603
crossref_primary_10_1246_cl_2012_552
crossref_primary_10_1039_b902622c
crossref_primary_10_1039_C7TC01235G
crossref_primary_10_1039_c2jm30641g
crossref_primary_10_1039_D4CC06751G
crossref_primary_10_1002_ange_201412461
crossref_primary_10_1021_jp3051142
crossref_primary_10_1063_1_4817298
crossref_primary_10_1016_j_conbuildmat_2024_138232
crossref_primary_10_1021_jp710284e
crossref_primary_10_1039_C8NJ03170C
crossref_primary_10_1002_anie_202306994
crossref_primary_10_1021_acs_chemrev_6b00275
crossref_primary_10_1021_la9014916
crossref_primary_10_1021_nl4024275
crossref_primary_10_1002_adfm_201700474
crossref_primary_10_1021_acs_langmuir_5b00975
crossref_primary_10_3762_bjnano_2_92
crossref_primary_10_1039_b617343h
crossref_primary_10_1039_c2py00584k
crossref_primary_10_1002_adma_200700661
crossref_primary_10_1002_cphc_200900734
crossref_primary_10_3390_nano5031454
crossref_primary_10_1002_adma_201304536
crossref_primary_10_1002_adma_201504438
crossref_primary_10_1039_D3TA02842A
crossref_primary_10_1016_j_nimb_2010_02_116
crossref_primary_10_1016_j_surg_2009_12_009
crossref_primary_10_1021_am502150q
crossref_primary_10_1039_C4RA16653A
crossref_primary_10_1021_jp8002454
crossref_primary_10_1039_C0SM01105C
crossref_primary_10_1016_j_actbio_2012_04_019
crossref_primary_10_1002_adma_201901400
crossref_primary_10_1016_j_mseb_2021_115244
crossref_primary_10_1016_j_tsf_2019_02_043
crossref_primary_10_1039_C9TC04940A
crossref_primary_10_1002_pen_25572
crossref_primary_10_1002_adfm_201203491
crossref_primary_10_1002_adma_200901035
crossref_primary_10_1021_cm0626233
crossref_primary_10_1063_1_5129351
crossref_primary_10_1002_adma_201200108
crossref_primary_10_1039_D1MA00823D
crossref_primary_10_1021_acs_langmuir_6b02030
crossref_primary_10_1021_acssuschemeng_6b00024
crossref_primary_10_1002_adma_201200574
crossref_primary_10_4028_www_scientific_net_AMM_99_100_1199
crossref_primary_10_1039_B917739F
crossref_primary_10_1351_pac200880112259
crossref_primary_10_1021_acsami_9b00599
crossref_primary_10_1021_la0635247
crossref_primary_10_1002_jbm_b_32937
crossref_primary_10_1002_jps_24298
crossref_primary_10_1016_j_jocn_2012_05_028
crossref_primary_10_1021_ja410047u
crossref_primary_10_4028_www_scientific_net_MSF_688_191
crossref_primary_10_1021_la203140a
crossref_primary_10_1021_ma800819s
crossref_primary_10_1111_j_1551_2916_2011_04662_x
crossref_primary_10_1002_adhm_201801181
crossref_primary_10_1016_j_mattod_2023_05_005
crossref_primary_10_3724_SP_J_1105_2012_12125
crossref_primary_10_1088_1361_648X_acabf3
crossref_primary_10_1016_j_materresbull_2022_111829
crossref_primary_10_1039_b714480f
crossref_primary_10_1016_j_polymer_2019_121632
crossref_primary_10_1039_D0TB00060D
crossref_primary_10_3390_nano13030373
crossref_primary_10_1039_C4RA08733J
crossref_primary_10_1209_0295_5075_87_58001
crossref_primary_10_1016_j_ensm_2018_05_002
crossref_primary_10_1021_acsami_4c17707
crossref_primary_10_1021_ja0718974
crossref_primary_10_4028_www_scientific_net_AMR_919_921_1169
crossref_primary_10_1021_la505011j
crossref_primary_10_1021_am900111r
crossref_primary_10_1039_C1JM14168F
crossref_primary_10_1364_OL_36_002152
crossref_primary_10_1002_smll_201001066
crossref_primary_10_1016_j_progpolymsci_2019_06_001
crossref_primary_10_1016_j_cplett_2008_02_008
crossref_primary_10_1039_C5PY02013A
crossref_primary_10_1007_s00339_012_7426_0
crossref_primary_10_1039_c2jm31941a
crossref_primary_10_1021_acsami_8b02329
crossref_primary_10_1021_am502850p
crossref_primary_10_1680_bbn_12_00013
crossref_primary_10_1002_adma_201202851
crossref_primary_10_1016_j_solmat_2011_11_004
crossref_primary_10_1016_j_mser_2014_08_002
crossref_primary_10_1007_s10853_010_4404_9
crossref_primary_10_1016_j_memsci_2022_121167
crossref_primary_10_1007_s10544_010_9435_0
crossref_primary_10_1364_OE_17_016603
crossref_primary_10_4325_seikeikakou_28_142
crossref_primary_10_1002_aenm_201804005
crossref_primary_10_1007_s10853_010_4964_8
crossref_primary_10_1016_j_ijhydene_2023_04_200
crossref_primary_10_1016_j_jbiotec_2018_10_002
crossref_primary_10_1016_j_jtcvs_2007_03_028
crossref_primary_10_1002_admi_201600191
crossref_primary_10_1021_am300300f
crossref_primary_10_1016_j_jcis_2008_05_018
crossref_primary_10_1039_b908568h
Cites_doi 10.1002/adma.200401123
10.1021/la035079a
10.1002/1521-3773(20010716)40:14<2645::AID-ANIE2645>3.0.CO;2-H
10.1002/1521-4095(200108)13:15<1167::AID-ADMA1167>3.0.CO;2-A
10.1021/la034788l
10.1021/la000204t
10.1002/adma.200500016
10.1021/la026379f
10.1039/b507309j
10.1002/(SICI)1099-1581(199604)7:4<197::AID-PAT514>3.0.CO;2-4
10.1021/ma049506i
10.1021/la000560b
10.1021/cm011061e
10.1007/BF00254956
10.1126/science.277.5330.1232
10.1038/nmat906
10.1002/polb.10565
10.1126/science.1069580
10.1021/la980122t
10.1038/nmat858
10.1021/ja053472s
10.1016/S0040-6090(00)01562-5
10.1002/1521-3900(200106)171:1<181::AID-MASY181>3.0.CO;2-Y
10.1021/cm050495x
10.1126/science.1105658
10.1002/1521-4095(200107)13:14<1076::AID-ADMA1076>3.0.CO;2-M
10.1002/adma.200304907
10.1002/adma.200500900
10.1016/0014-3057(85)90213-7
10.1039/b207957g
10.1016/j.tsf.2005.04.076
10.1103/PhysRevE.62.5187
10.1295/polymj.30.990
10.1002/adma.200306010
10.1351/pac199567121965
10.1038/nmat747
10.1038/nmat1212
10.1002/(SICI)1521-4095(199810)10:15<1243::AID-ADMA1243>3.0.CO;2-6
10.1002/(SICI)1521-3773(20000317)39:6<1058::AID-ANIE1058>3.0.CO;2-6
10.1007/s002890050152
10.1295/polymj.31.1065
10.1021/la011026m
10.1002/adfm.200400149
ContentType Journal Article
Copyright Springer Nature Limited 2006
Copyright Nature Publishing Group Jun 2006
Copyright_xml – notice: Springer Nature Limited 2006
– notice: Copyright Nature Publishing Group Jun 2006
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7U5
L7M
7X8
DOI 10.1038/nmat1655
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 501
ExternalDocumentID 1046520341
16715083
10_1038_nmat1655
Genre Journal Article
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHSBF
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
O9-
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
70F
AAZLF
ABZEH
AFBBN
AHOSX
AIBTJ
ARMCB
EE.
NNMJJ
NPM
ODYON
RIG
SHXYY
SIXXV
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7U5
L7M
7X8
ID FETCH-LOGICAL-c476t-a64fcad1cac655648639e3f91fcebe1a9beabf8cd906e928059c34d652bf5d473
IEDL.DBID 7X7
ISSN 1476-1122
IngestDate Fri Jul 11 01:34:02 EDT 2025
Fri Jul 11 09:27:18 EDT 2025
Sat Aug 23 14:28:56 EDT 2025
Wed Feb 19 01:54:55 EST 2025
Tue Jul 01 02:13:47 EDT 2025
Thu Apr 24 22:50:20 EDT 2025
Fri Feb 21 02:38:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-a64fcad1cac655648639e3f91fcebe1a9beabf8cd906e928059c34d652bf5d473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 16715083
PQID 222760126
PQPubID 27576
PageCount 8
ParticipantIDs proquest_miscellaneous_68032861
proquest_miscellaneous_36186419
proquest_journals_222760126
pubmed_primary_16715083
crossref_primary_10_1038_nmat1655
crossref_citationtrail_10_1038_nmat1655
springer_journals_10_1038_nmat1655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-06-01
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2006
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References W Eck (BFnmat1655_CR11) 2005; 17
F Mallwitz (BFnmat1655_CR10) 2001; 40
KG Sharp (BFnmat1655_CR22) 1998; 10
M Hashizume (BFnmat1655_CR20) 2003; 19
S Chang (BFnmat1655_CR28) 2005; 489
Z Tang (BFnmat1655_CR5) 2003; 2
S Markutsya (BFnmat1655_CR15) 2005; 15
A Stroock (BFnmat1655_CR1) 2003; 19
C Jiang (BFnmat1655_CR2) 2004; 3
C Nardin (BFnmat1655_CR13) 2000; 16
R Tamaki (BFnmat1655_CR26) 1997; 39
M Hashizume (BFnmat1655_CR21) 2001; 38
TC Merkel (BFnmat1655_CR35) 2002; 296
A Mamedov (BFnmat1655_CR9) 2000; 16
J Cho (BFnmat1655_CR39) 2001; 13
PA O'Connel (BFnmat1655_CR3) 2005; 307
YH Na (BFnmat1655_CR44) 2004; 37
H Xu (BFnmat1655_CR12) 2002; 18
C Jiang (BFnmat1655_CR14) 2004; 16
MS Johal (BFnmat1655_CR19) 2003; 19
GS Sur (BFnmat1655_CR32) 1985; 14
I Ichinose (BFnmat1655_CR37) 1999; 31
LH Sperling (BFnmat1655_CR27) 1996; 7
T Saegusa (BFnmat1655_CR24) 1995; 67
J Mattsson (BFnmat1655_CR4) 2000; 62
GS Sur (BFnmat1655_CR34) 1985; 21
A Mamedov (BFnmat1655_CR7) 2002; 1
WA Goedel (BFnmat1655_CR41) 1998; 14
PA Chiarelli (BFnmat1655_CR40) 2001; 15
H Ko (BFnmat1655_CR17) 2005; 17
GS Rajan (BFnmat1655_CR31) 2003; 41
AD Polli (BFnmat1655_CR29) 2000; 379
Y Imai (BFnmat1655_CR25) 1998; 30
N Becker (BFnmat1655_CR42) 2003; 2
JP Gong (BFnmat1655_CR43) 2003; 15
C Jiang (BFnmat1655_CR16) 2005; 17
F Mammeri (BFnmat1655_CR33) 2005; 15
L Matejka (BFnmat1655_CR23) 2001; 171
C Sanchez (BFnmat1655_CR30) 2001; 13
BFnmat1655_CR36
JL Lutkenhaus (BFnmat1655_CR38) 2005; 127
G Decher (BFnmat1655_CR18) 1997; 277
F Mallwitz (BFnmat1655_CR6) 2005; 17
WT Huck (BFnmat1655_CR8) 2000; 39
References_xml – volume: 17,
  start-page: 1296
  year: 2005
  ident: BFnmat1655_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401123
– volume: 19,
  start-page: 10172
  year: 2003
  ident: BFnmat1655_CR20
  publication-title: Langmuir
  doi: 10.1021/la035079a
– volume: 40,
  start-page: 2645
  year: 2001
  ident: BFnmat1655_CR10
  publication-title: Angew. Chem. Int. Edn
  doi: 10.1002/1521-3773(20010716)40:14<2645::AID-ANIE2645>3.0.CO;2-H
– volume: 15,
  start-page: 1167
  year: 2001
  ident: BFnmat1655_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200108)13:15<1167::AID-ADMA1167>3.0.CO;2-A
– volume: 19,
  start-page: 8876
  year: 2003
  ident: BFnmat1655_CR19
  publication-title: Langmuir
  doi: 10.1021/la034788l
– volume: 16,
  start-page: 7708
  year: 2000
  ident: BFnmat1655_CR13
  publication-title: Langmuir
  doi: 10.1021/la000204t
– volume: 17,
  start-page: 1669
  year: 2005
  ident: BFnmat1655_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500016
– volume: 19,
  start-page: 2466
  year: 2003
  ident: BFnmat1655_CR1
  publication-title: Langmuir
  doi: 10.1021/la026379f
– volume: 15,
  start-page: 3787
  year: 2005
  ident: BFnmat1655_CR33
  publication-title: J. Mater. Chem.
  doi: 10.1039/b507309j
– volume: 7,
  start-page: 197
  year: 1996
  ident: BFnmat1655_CR27
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/(SICI)1099-1581(199604)7:4<197::AID-PAT514>3.0.CO;2-4
– volume: 37,
  start-page: 5370
  year: 2004
  ident: BFnmat1655_CR44
  publication-title: Macromolecules
  doi: 10.1021/ma049506i
– volume: 16,
  start-page: 5530
  year: 2000
  ident: BFnmat1655_CR9
  publication-title: Langmuir
  doi: 10.1021/la000560b
– volume: 13,
  start-page: 3061
  year: 2001
  ident: BFnmat1655_CR30
  publication-title: Chem. Mater.
  doi: 10.1021/cm011061e
– volume: 14,
  start-page: 325
  year: 1985
  ident: BFnmat1655_CR32
  publication-title: Polym. Bull.
  doi: 10.1007/BF00254956
– volume: 277,
  start-page: 1232
  year: 1997
  ident: BFnmat1655_CR18
  publication-title: Science
  doi: 10.1126/science.277.5330.1232
– volume: 2,
  start-page: 413
  year: 2003
  ident: BFnmat1655_CR5
  publication-title: Nature Mater.
  doi: 10.1038/nmat906
– volume: 41,
  start-page: 1897
  year: 2003
  ident: BFnmat1655_CR31
  publication-title: J. Polym. Sci. B
  doi: 10.1002/polb.10565
– volume: 38,
  start-page: 36
  year: 2001
  ident: BFnmat1655_CR21
  publication-title: RIKEN Rev.
– volume: 296,
  start-page: 519
  year: 2002
  ident: BFnmat1655_CR35
  publication-title: Science
  doi: 10.1126/science.1069580
– volume: 14,
  start-page: 3470
  year: 1998
  ident: BFnmat1655_CR41
  publication-title: Langmuir
  doi: 10.1021/la980122t
– volume: 2,
  start-page: 278
  year: 2003
  ident: BFnmat1655_CR42
  publication-title: Nature Mater.
  doi: 10.1038/nmat858
– volume: 127,
  start-page: 17228
  year: 2005
  ident: BFnmat1655_CR38
  publication-title: J. Am. Chem. Soc. J.
  doi: 10.1021/ja053472s
– volume: 379,
  start-page: 122
  year: 2000
  ident: BFnmat1655_CR29
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(00)01562-5
– volume: 171,
  start-page: 181
  year: 2001
  ident: BFnmat1655_CR23
  publication-title: Macromol. Symp.
  doi: 10.1002/1521-3900(200106)171:1<181::AID-MASY181>3.0.CO;2-Y
– volume: 17,
  start-page: 2490
  year: 2005
  ident: BFnmat1655_CR17
  publication-title: Chem. Mater.
  doi: 10.1021/cm050495x
– volume: 307,
  start-page: 1760
  year: 2005
  ident: BFnmat1655_CR3
  publication-title: Science
  doi: 10.1126/science.1105658
– volume: 13,
  start-page: 1076
  year: 2001
  ident: BFnmat1655_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200107)13:14<1076::AID-ADMA1076>3.0.CO;2-M
– volume: 15,
  start-page: 1155
  year: 2003
  ident: BFnmat1655_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304907
– volume: 17,
  start-page: 2583
  year: 2005
  ident: BFnmat1655_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500900
– volume: 21,
  start-page: 1051
  year: 1985
  ident: BFnmat1655_CR34
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(85)90213-7
– ident: BFnmat1655_CR36
  doi: 10.1039/b207957g
– volume: 489,
  start-page: 17
  year: 2005
  ident: BFnmat1655_CR28
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.04.076
– volume: 62,
  start-page: 5187
  year: 2000
  ident: BFnmat1655_CR4
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.5187
– volume: 30,
  start-page: 990
  year: 1998
  ident: BFnmat1655_CR25
  publication-title: Polym. J.
  doi: 10.1295/polymj.30.990
– volume: 16,
  start-page: 157
  year: 2004
  ident: BFnmat1655_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306010
– volume: 67,
  start-page: 1965
  year: 1995
  ident: BFnmat1655_CR24
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199567121965
– volume: 1,
  start-page: 190
  year: 2002
  ident: BFnmat1655_CR7
  publication-title: Nature Mater.
  doi: 10.1038/nmat747
– volume: 3,
  start-page: 721
  year: 2004
  ident: BFnmat1655_CR2
  publication-title: Nature Mater.
  doi: 10.1038/nmat1212
– volume: 10,
  start-page: 1243
  year: 1998
  ident: BFnmat1655_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199810)10:15<1243::AID-ADMA1243>3.0.CO;2-6
– volume: 39,
  start-page: 1058
  year: 2000
  ident: BFnmat1655_CR8
  publication-title: Angew. Chem. Int. Edn
  doi: 10.1002/(SICI)1521-3773(20000317)39:6<1058::AID-ANIE1058>3.0.CO;2-6
– volume: 39,
  start-page: 303
  year: 1997
  ident: BFnmat1655_CR26
  publication-title: Polym. Bull.
  doi: 10.1007/s002890050152
– volume: 31,
  start-page: 1065
  year: 1999
  ident: BFnmat1655_CR37
  publication-title: Polym. J.
  doi: 10.1295/polymj.31.1065
– volume: 18,
  start-page: 2363
  year: 2002
  ident: BFnmat1655_CR12
  publication-title: Langmuir
  doi: 10.1021/la011026m
– volume: 15,
  start-page: 771
  year: 2005
  ident: BFnmat1655_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400149
SSID ssj0021556
Score 2.3574839
Snippet Hybrid sol–gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic...
Hybrid sol-gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 494
SubjectTerms Biomaterials
Chemistry and Materials Science
Composite materials
Condensed Matter Physics
Flexibility
Homogeneity
Materials Science
Nanotechnology
Optical and Electronic Materials
Physical properties
Polymers
Title Robust free-standing nanomembranes of organic/inorganic interpenetrating networks
URI https://link.springer.com/article/10.1038/nmat1655
https://www.ncbi.nlm.nih.gov/pubmed/16715083
https://www.proquest.com/docview/222760126
https://www.proquest.com/docview/36186419
https://www.proquest.com/docview/68032861
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vehBfFsfaxXBU9ht06bJSVRcRVBUFPZWkjSBBW3V7v5_J33siq9LKTSlyUw6j8zMNwDHIrGxpP2MMM36JIqVJgqdHsJjVPZ9raip0PZv79j1c3QzjIdNbk7ZpFW2MrES1Fmh3Rl5z9VsovMQstO3d-KaRrngatNBYx4WHHKZy-hKhjN_C1VlXVyUMIJmRdhiz1Ley9EcDJir7_uqjX6YmD_Co5XWGazAcmMu-mc1f1dhzuRrsPQFRHAdHh4LNSnHvv0whrRlKn4u8-LVvKIvjLLML6xft2_SvVHe3PmjKt8QZV2FnOveqVPCyw14Hlw-XVyTplEC0bi2MZEsslpmgZYa18QijmaHoVYEViOPAimUkcpynYk-MyLkaFJpGmUsDpWNsyihm9DJi9xsg48OhjSh80JoEgkqlJA2ZonMEhkoyqUHJy3BUt2giLtmFi9pFc2mPG1J68HhdORbjZzxy5jdluZp8--U6ZTTHhxMn-Kmd5EMpFkxKVPqUP6jQPw9gnEHFMgCD7ZqVs7mwJIKA9-Do5a3s29_n-DOvxPchcX6RMYdyuxBZ_wxMftoo4xVt9qJeOWDqy4snF_e3T9-AiYv6sI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqJRXKNC0AnGydhM_Yh9QhYBl-5RArdRbsB1bqkST0uwK8aP6HztO4m1FgVtvkeIkznieHs83AG9U4bmm44oIK8aEcWOJwaCHSI7GfmwNdR3a_v6BmB6xnWN-vAQXsRYmHKuMOrFT1FVjwx75KNRsYvCQi62znyQ0jQrJ1dhBo-eKXff7F0Zs7fvtT7i8b_N88vnw45QMTQWIZYWYES2Yt7rKrLaCc8EkmmhHvcq8xf_JtDJOGy9tpcbCqVyi-2EpqwTPjecVKyi-9w7cZZSqIFBy8mUR36Fp7ouZCkHQjckj1i2Voxrdz0yEesLr1u-GS3sjHdtZuckKPBzc0_RDz0-PYMnVq_DgGmjhY_j6rTHzdpb6c-dILItJa103p-4UY2_UnWnj075dlB2d1MNVetKdb0Td2iH1hmf6I-jtEzi6FRo-heW6qd1zSDGg0S4PUQ8tmKLKKO25KHRV6MxQqRN4FwlW2gG1PDTP-FF22XMqy0jaBDYWI896pI6_jFmLNC8HWW3LBWclsL64i0IWMidIs2beljR0FWCZ-vcIIQMwocgSeNYv5dUcRNFh7iewGdf26tt_TvDFfye4Dvemh_t75d72we4a3O93g8KG0EtYnp3P3Sv0j2bmdceVKXy_bTG4BCMUJwk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4oJZnKLQpAnGydhO_4gOqEGXV0lIBotLegu3YUiWalGZXiJ_Wf9dxEu9WFLj1FilO4oznac98A_BKSc81HVdEWDEmjBtLDAY9pOBo7MfWUNeh7X86EnvH7OOUT1fgItbChLTKqBM7RV01NuyRj0LNJgYPuRj5ISvi8-5k5-wnCQ2kwkFr7KbRc8iB-_0Lo7f27f4uLvXrPJ98-PZ-jwwNBohlUsyIFsxbXWVWW8G5YAWaa0e9yrzFf8u0Mk4bX9hKjYVTeYGuiKWsEjw3nldMUnzvLbgtKc-CiMnpMtZDM90XNklB0KXJI-4tLUY1uqKZCLWFVy3hNff22tFsZ_Ema3B_cFXTdz1vrcOKqx_AvSsAhg_hy9fGzNtZ6s-dI7FEJq113Zy6U4zDUY-mjU_71lF2dFIPV-lJl-uIerZD7Q3P9Ono7SM4vhEaPobVuqndU0gxuNEuDxEQlUxRZZT2XEhdSZ0ZWugE3kSClXZAMA-NNH6U3Uk6LcpI2gS2FyPPetSOv4zZiDQvB7ltywWXJbC1uIsCF05RkGbNvC1p6DDAMvXvEaIIIIUiS-BJv5TLOQjZ4e8n8DKu7fLbf07w2X8nuAV3UADKw_2jgw24228Mhb2h57A6O5-7F-gqzcxmx5QpfL9pKbgEXHorNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+free-standing+nanomembranes+of+organic%2Finorganic+interpenetrating+networks&rft.jtitle=Nature+materials&rft.au=Vendamme%2C+Richard&rft.au=Onoue%2C+Shin-Ya&rft.au=Nakao%2C+Aiko&rft.au=Kunitake%2C+Toyoki&rft.date=2006-06-01&rft.issn=1476-1122&rft.volume=5&rft.issue=6&rft.spage=494&rft_id=info:doi/10.1038%2Fnmat1655&rft_id=info%3Apmid%2F16715083&rft.externalDocID=16715083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon