Constraining Black Hole Spin via X-Ray Spectroscopy

We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert 1.2 galaxy MCG-06-30-15. The new kerrdisk model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a fr...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 652; no. 2; pp. 1028 - 1043
Main Authors Brenneman, Laura W, Reynolds, Christopher S
Format Journal Article
LanguageEnglish
Published Chicago, IL IOP Publishing 01.12.2006
University of Chicago Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert 1.2 galaxy MCG-06-30-15. The new kerrdisk model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-06-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton EPIC pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a = 0.989 super(+0.009-0.002) at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a nonrotating black hole is strongly ruled out.
AbstractList We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert 1.2 galaxy MCG-06-30-15. The new kerrdisk model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-06-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton EPIC pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a = 0.989(+0.009-0.002) at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a nonrotating black hole is strongly ruled out.
We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert 1.2 galaxy MCG-06-30-15. The new kerrdisk model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-06-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton EPIC pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a = 0.989 super(+0.009-0.002) at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a nonrotating black hole is strongly ruled out.
Author Reynolds, Christopher S
Brenneman, Laura W
Author_xml – sequence: 1
  fullname: Brenneman, Laura W
– sequence: 2
  fullname: Reynolds, Christopher S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18364679$$DView record in Pascal Francis
BookMark eNp90U1LAzEQBuAgFWyr_ob1oB5kNdl8bY5a1AoFwQ_oLWSziUS3yZpshf57d6nQg-hpGHjmhZmZgJEP3gBwjOAlgiW7orBEhO2BMaK4zAmmfATGEEKSM8yXB2CS0vvQFkKMAZ4Fn7qonHf-LbtplP7I5qEx2XPrfPblVLbMn9Smb43uYkg6tJtDsG9Vk8zRT52C17vbl9k8XzzeP8yuF7kmnHW5oKaCNYMWoZpwWmtboMqSorY1MjWCVAiGq0pXhkHMiYVccwqFrTjmWJQUT8H5NreN4XNtUidXLmnTNMqbsE6SE4wIYZD38uxfiQQRCDO8g7rfJUVjZRvdSsWNRFAO15Pb6_Xw9CdRJa0aG5XXLu10iRlhXPTuZOtcaP_Ouvhthg_I4SGS0UIW_UBRyra2-BtQOoVS
CODEN ASJOAB
CitedBy_id crossref_primary_10_1093_mnras_sts555
crossref_primary_10_1093_mnras_stac2634
crossref_primary_10_1140_epjp_i2012_12067_1
crossref_primary_10_1093_mnras_stz2030
crossref_primary_10_1088_1361_6382_abc189
crossref_primary_10_1016_j_crhy_2013_01_004
crossref_primary_10_1088_0004_637X_728_1_13
crossref_primary_10_1093_pasj_psv125
crossref_primary_10_3847_1538_4357_ace7b3
crossref_primary_10_1088_1475_7516_2016_10_003
crossref_primary_10_3847_0004_637X_830_2_136
crossref_primary_10_1016_j_newar_2011_11_002
crossref_primary_10_1088_0004_637X_814_2_87
crossref_primary_10_3847_1538_4357_ab8017
crossref_primary_10_3390_galaxies9020021
crossref_primary_10_1093_mnras_stw2635
crossref_primary_10_1093_mnras_stt2095
crossref_primary_10_1088_0004_637X_787_1_83
crossref_primary_10_3847_1538_4357_ad245c
crossref_primary_10_1051_0004_6361_201527246
crossref_primary_10_1086_520763
crossref_primary_10_1093_pasj_psad017
crossref_primary_10_1103_PhysRevD_87_124010
crossref_primary_10_1093_mnras_stw1875
crossref_primary_10_1093_mnras_stz169
crossref_primary_10_1111_j_1365_2966_2011_18936_x
crossref_primary_10_1007_s11214_021_00841_8
crossref_primary_10_3847_1538_4357_ab89ab
crossref_primary_10_3847_1538_4357_abe305
crossref_primary_10_3847_1538_4357_ac3827
crossref_primary_10_1093_mnras_stac1873
crossref_primary_10_1051_0004_6361_201630293
crossref_primary_10_1103_PhysRevD_93_024035
crossref_primary_10_1103_PhysRevD_90_044038
crossref_primary_10_1093_mnras_sty1233
crossref_primary_10_1017_S1743921314004049
crossref_primary_10_1088_1742_6596_1936_1_012009
crossref_primary_10_1103_PhysRevD_78_024017
crossref_primary_10_3847_1538_4357_ac88cf
crossref_primary_10_1007_s10509_017_3216_7
crossref_primary_10_1093_mnras_stt327
crossref_primary_10_1111_j_1365_2966_2008_13358_x
crossref_primary_10_3847_0004_637X_826_1_87
crossref_primary_10_1007_s40065_021_00336_y
crossref_primary_10_1016_j_nuclphysbps_2011_04_155
crossref_primary_10_3390_universe4070079
crossref_primary_10_3847_1538_4357_acafe7
crossref_primary_10_3847_1538_4357_836_1_140
crossref_primary_10_1111_j_1365_2966_2011_18912_x
crossref_primary_10_1140_epjc_s10052_020_7998_3
crossref_primary_10_1103_PhysRevD_96_104047
crossref_primary_10_3367_UFNe_0185_201508c_0829
crossref_primary_10_1111_j_1365_2966_2011_18531_x
crossref_primary_10_1093_mnras_sts102
crossref_primary_10_1088_1475_7516_2016_04_054
crossref_primary_10_1017_S174392130700484X
crossref_primary_10_1088_2041_8205_759_1_L15
crossref_primary_10_1111_j_1365_2966_2010_17628_x
crossref_primary_10_3847_1538_4357_aad598
crossref_primary_10_1111_j_1365_2966_2009_15092_x
crossref_primary_10_1051_0004_6361_201117126
crossref_primary_10_1103_PhysRevD_76_042003
crossref_primary_10_3847_1538_4357_ac350e
crossref_primary_10_3847_1538_4357_ac3766
crossref_primary_10_1111_j_1365_2966_2010_17518_x
crossref_primary_10_1093_mnras_sts227
crossref_primary_10_1088_1475_7516_2021_07_033
crossref_primary_10_1017_S1743921310015735
crossref_primary_10_1088_1475_7516_2020_05_026
crossref_primary_10_1088_1475_7516_2013_03_031
crossref_primary_10_1093_mnras_stt2068
crossref_primary_10_1111_j_1365_2966_2011_18446_x
crossref_primary_10_1088_0004_637X_691_2_1159
crossref_primary_10_1111_j_1365_2966_2010_17852_x
crossref_primary_10_1088_0004_637X_700_1_859
crossref_primary_10_1111_j_1745_3933_2009_00726_x
crossref_primary_10_3367_UFNr_0185_201508c_0829
crossref_primary_10_1016_j_chinastron_2019_04_007
crossref_primary_10_1103_PhysRevD_104_024058
crossref_primary_10_1088_0004_637X_757_1_11
crossref_primary_10_1103_PhysRevD_95_064006
crossref_primary_10_1103_PhysRevD_95_064009
crossref_primary_10_1002_andp_201700430
crossref_primary_10_3847_1538_4357_aae309
crossref_primary_10_1103_PhysRevD_93_044067
crossref_primary_10_1007_s10509_009_0004_z
crossref_primary_10_1093_mnras_stt530
crossref_primary_10_1017_S1743921316004580
crossref_primary_10_1086_529361
crossref_primary_10_1007_s10509_016_2877_y
crossref_primary_10_1093_mnras_stu1086
crossref_primary_10_1038_nature11938
crossref_primary_10_3847_1538_4357_ad43ea
crossref_primary_10_1088_1742_6596_942_1_012017
crossref_primary_10_1103_PhysRevD_98_024007
crossref_primary_10_3389_fspas_2023_1308056
crossref_primary_10_1088_0004_637X_713_2_1256
crossref_primary_10_1007_s11214_013_0006_6
crossref_primary_10_1111_j_1365_2966_2011_19224_x
crossref_primary_10_1088_2041_8205_779_1_L2
crossref_primary_10_1093_mnras_stw753
crossref_primary_10_1093_mnras_stv304
crossref_primary_10_1088_1742_6596_942_1_012004
crossref_primary_10_3847_1538_4357_ab46ac
crossref_primary_10_1111_j_1365_2966_2010_16700_x
crossref_primary_10_1093_mnras_stw1824
crossref_primary_10_1103_PhysRevD_101_123014
crossref_primary_10_1093_mnras_stz1216
crossref_primary_10_1111_j_1365_2966_2010_17705_x
crossref_primary_10_1088_0004_637X_777_1_13
crossref_primary_10_1088_0004_637X_691_1_847
crossref_primary_10_1111_j_1365_2966_2011_18834_x
crossref_primary_10_1088_2041_8205_775_2_L45
crossref_primary_10_1088_0004_637X_790_1_29
crossref_primary_10_1088_0264_9381_30_13_135009
crossref_primary_10_1088_0264_9381_26_16_163001
crossref_primary_10_1111_j_1745_3933_2012_01335_x
crossref_primary_10_1103_PhysRevD_82_044009
crossref_primary_10_1088_0004_637X_777_1_47
crossref_primary_10_1007_s10714_014_1832_x
crossref_primary_10_3847_1538_4357_ab24d6
crossref_primary_10_3847_1538_4357_aa9925
crossref_primary_10_1088_0004_637X_698_2_1398
crossref_primary_10_1086_587740
crossref_primary_10_1088_0264_9381_31_2_025023
crossref_primary_10_1088_0004_637X_762_2_68
crossref_primary_10_1086_590927
crossref_primary_10_1088_2041_8205_719_1_L79
crossref_primary_10_3847_1538_4357_836_1_119
crossref_primary_10_1146_annurev_astro_112420_035022
crossref_primary_10_3847_0004_637X_825_1_45
crossref_primary_10_3847_1538_4357_ab4271
crossref_primary_10_1093_mnras_sts360
crossref_primary_10_1007_s11214_024_01043_8
crossref_primary_10_1155_2013_204315
crossref_primary_10_3847_1538_4357_ab9600
crossref_primary_10_1088_0004_637X_702_2_1367
crossref_primary_10_1088_0004_637X_720_1_205
crossref_primary_10_1088_2041_8205_716_1_L27
crossref_primary_10_1086_588840
crossref_primary_10_1111_j_1365_2966_2011_19904_x
crossref_primary_10_1088_0004_637X_755_2_88
crossref_primary_10_1103_PhysRevD_76_044007
crossref_primary_10_3847_1538_4357_abc9b7
crossref_primary_10_1093_mnras_stab2191
crossref_primary_10_1088_0264_9381_30_5_055007
crossref_primary_10_1103_PhysRevD_99_123007
crossref_primary_10_1051_0004_6361_201219701
crossref_primary_10_1088_0004_637X_718_2_695
crossref_primary_10_3847_1538_4357_abdf65
crossref_primary_10_1093_mnras_stz2518
crossref_primary_10_1111_j_1365_2966_2010_17661_x
crossref_primary_10_1088_1361_6382_aab99e
crossref_primary_10_1103_PhysRevD_78_084030
crossref_primary_10_1088_0004_637X_742_2_85
crossref_primary_10_1088_1475_7516_2016_07_049
crossref_primary_10_1111_j_1365_2966_2011_18512_x
crossref_primary_10_1007_s41114_022_00041_y
crossref_primary_10_1103_PhysRevD_85_024037
crossref_primary_10_1111_j_1365_2966_2009_15816_x
crossref_primary_10_1088_0004_637X_701_2_L83
crossref_primary_10_1086_592039
crossref_primary_10_1088_1475_7516_2017_08_014
crossref_primary_10_1093_mnras_stw420
crossref_primary_10_3847_1538_4357_aaad63
crossref_primary_10_3847_1538_4357_ab505b
crossref_primary_10_1103_PhysRevD_81_104016
crossref_primary_10_1016_j_newar_2017_07_001
crossref_primary_10_1002_asna_200710902
crossref_primary_10_3847_1538_4357_acba11
crossref_primary_10_1093_mnrasl_slz080
crossref_primary_10_1086_520844
crossref_primary_10_1086_518883
crossref_primary_10_1093_mnras_stt1138
crossref_primary_10_1103_PhysRevD_88_064022
crossref_primary_10_1093_mnras_staa1399
crossref_primary_10_1093_mnras_stt2227
crossref_primary_10_1051_0004_6361_201016245
crossref_primary_10_1086_518769
crossref_primary_10_1088_0004_637X_787_1_52
crossref_primary_10_1103_PhysRevD_105_064062
crossref_primary_10_1002_asna_201612321
crossref_primary_10_1007_s11467_013_0310_3
crossref_primary_10_3847_1538_4357_ab35df
crossref_primary_10_1002_asna_201612324
crossref_primary_10_1088_0004_6256_149_2_82
crossref_primary_10_1093_mnras_stab1194
crossref_primary_10_1051_0004_6361_200809590
crossref_primary_10_1007_s10714_018_2419_8
crossref_primary_10_1007_s00159_009_0017_1
crossref_primary_10_1088_0004_637X_768_2_146
crossref_primary_10_1086_527346
crossref_primary_10_3847_1538_4357_acbe9c
crossref_primary_10_1086_527344
crossref_primary_10_1103_PhysRevD_82_124045
crossref_primary_10_1134_S1063773714040021
crossref_primary_10_1038_nature08007
crossref_primary_10_1111_j_1745_3933_2011_01143_x
crossref_primary_10_1111_j_1365_2966_2009_15976_x
crossref_primary_10_1088_0004_637X_736_2_103
crossref_primary_10_3389_fspas_2024_1324796
crossref_primary_10_1088_1475_7516_2015_04_024
crossref_primary_10_1088_0004_637X_746_1_2
crossref_primary_10_1111_j_1745_3933_2009_00675_x
crossref_primary_10_1088_0264_9381_33_12_124001
crossref_primary_10_1103_PhysRevD_97_064017
crossref_primary_10_1088_0004_637X_706_1_60
crossref_primary_10_1103_PhysRevLett_121_131102
crossref_primary_10_1093_mnras_stt1675
crossref_primary_10_1093_mnras_stt1677
crossref_primary_10_1093_mnras_sty893
crossref_primary_10_1103_PhysRevD_101_064006
crossref_primary_10_1016_j_jheap_2020_03_001
crossref_primary_10_1016_j_asr_2010_01_010
crossref_primary_10_1017_S1743921310015590
crossref_primary_10_3847_1538_4357_ab7afc
crossref_primary_10_3847_1538_4357_abc826
crossref_primary_10_1088_0264_9381_33_6_064001
crossref_primary_10_1103_PhysRevD_103_103023
crossref_primary_10_1088_0004_637X_697_1_900
crossref_primary_10_1093_mnras_stu1358
crossref_primary_10_1111_j_1365_2966_2011_20097_x
crossref_primary_10_1016_j_newast_2018_04_004
crossref_primary_10_1007_JHEP07_2015_078
crossref_primary_10_1088_0004_637X_795_2_147
crossref_primary_10_3847_0004_637X_823_2_159
crossref_primary_10_1093_mnras_stw585
crossref_primary_10_3847_1538_4357_abe2a3
crossref_primary_10_1093_mnras_stu045
crossref_primary_10_1093_mnras_stw466
crossref_primary_10_1007_JHEP10_2015_093
crossref_primary_10_1111_j_1745_3933_2009_00676_x
crossref_primary_10_1103_PhysRevD_107_124057
crossref_primary_10_1093_mnras_stw2042
crossref_primary_10_1103_PhysRevD_102_104041
crossref_primary_10_3847_1538_4357_aaf39c
crossref_primary_10_1093_mnras_stx2080
crossref_primary_10_1093_mnras_staa1591
crossref_primary_10_1093_mnras_staa2566
crossref_primary_10_1093_mnras_staa2684
crossref_primary_10_1093_mnras_stt2424
crossref_primary_10_1088_2041_8205_793_2_L29
crossref_primary_10_1111_j_1365_2966_2012_21123_x
crossref_primary_10_1103_PhysRevD_103_044050
crossref_primary_10_3847_1538_4357_aba625
crossref_primary_10_1093_mnrasl_sls018
crossref_primary_10_1007_s10509_024_04281_y
crossref_primary_10_1093_mnras_stu2222
crossref_primary_10_1111_j_1365_2966_2007_11436_x
crossref_primary_10_1088_2041_8205_747_2_L35
crossref_primary_10_3847_1538_4357_abc2da
crossref_primary_10_1088_0004_637X_773_1_57
crossref_primary_10_1093_mnras_stt2433
crossref_primary_10_1111_j_1365_2966_2012_21868_x
crossref_primary_10_1111_j_1365_2966_2010_16754_x
crossref_primary_10_1093_mnras_stu2108
crossref_primary_10_1111_j_1365_2966_2009_16062_x
crossref_primary_10_1103_PhysRevD_102_104035
crossref_primary_10_3847_1538_4357_ab8869
crossref_primary_10_1111_j_1365_2966_2012_21591_x
crossref_primary_10_1086_590379
crossref_primary_10_1088_0004_637X_789_1_56
crossref_primary_10_3847_1538_4357_ab7893
crossref_primary_10_1111_j_1365_2966_2008_12844_x
crossref_primary_10_1093_mnras_staa628
crossref_primary_10_1088_0004_637X_716_1_187
crossref_primary_10_1093_mnras_stab1147
crossref_primary_10_1142_S0217732307024322
crossref_primary_10_1209_0295_5075_125_30002
crossref_primary_10_1103_PhysRevD_104_065014
crossref_primary_10_1103_PhysRevD_88_104020
crossref_primary_10_1051_0004_6361_200911941
crossref_primary_10_1103_PhysRevD_99_104031
crossref_primary_10_1088_0004_637X_734_2_112
crossref_primary_10_1103_PhysRevD_87_084039
crossref_primary_10_1093_mnras_stab945
crossref_primary_10_1103_PhysRevD_86_064026
crossref_primary_10_1111_j_1365_2966_2010_16797_x
crossref_primary_10_3847_1538_4357_aadbaa
crossref_primary_10_1103_PhysRevD_101_064030
crossref_primary_10_1016_j_physrep_2014_09_003
crossref_primary_10_1088_2041_8205_708_1_L1
crossref_primary_10_1093_mnras_stad2936
crossref_primary_10_1088_2041_8205_713_1_L11
crossref_primary_10_3847_1538_4357_acedff
crossref_primary_10_1093_mnras_staa401
crossref_primary_10_1007_s41114_017_0003_2
crossref_primary_10_3367_UFNr_0180_201012b_1241
crossref_primary_10_1093_mnras_stz408
crossref_primary_10_1088_0004_637X_782_2_76
crossref_primary_10_1088_0004_637X_710_2_1228
crossref_primary_10_1111_j_1365_2966_2008_12735_x
crossref_primary_10_1093_mnras_stu2423
crossref_primary_10_1111_j_1365_2966_2008_12943_x
crossref_primary_10_1093_mnras_staa2656
crossref_primary_10_12942_lrr_2008_9
crossref_primary_10_1093_mnras_stw363
crossref_primary_10_1051_0004_6361_201424740
crossref_primary_10_1088_0264_9381_30_24_244004
crossref_primary_10_1088_0004_637X_715_2_1006
crossref_primary_10_1088_0004_637X_745_1_1
crossref_primary_10_1093_mnrasl_slu125
crossref_primary_10_1103_PhysRevD_101_043010
crossref_primary_10_1103_RevModPhys_89_025001
crossref_primary_10_1093_mnras_sts710
crossref_primary_10_3847_1538_4357_acc1c8
crossref_primary_10_3847_1538_4357_abbcd6
crossref_primary_10_3847_1538_4357_aba2ec
crossref_primary_10_1051_0004_6361_20066713
crossref_primary_10_12942_lrr_2012_11
crossref_primary_10_1093_mnras_stad3933
crossref_primary_10_1088_0004_637X_703_2_2171
crossref_primary_10_4006_0836_1398_33_4_400
crossref_primary_10_1111_j_1365_2966_2011_19055_x
crossref_primary_10_1088_1475_7516_2021_07_002
crossref_primary_10_3847_0004_637X_821_2_105
crossref_primary_10_3847_1538_4357_ab917a
crossref_primary_10_1088_0004_637X_791_2_74
crossref_primary_10_3847_0004_637X_821_2_104
crossref_primary_10_1093_mnras_stu1750
crossref_primary_10_1103_PhysRevD_90_064002
crossref_primary_10_3847_1538_4357_ab1d48
crossref_primary_10_1086_524936
crossref_primary_10_3847_1538_4357_aa74c0
crossref_primary_10_1038_s41550_018_0665_z
crossref_primary_10_1111_j_1365_2966_2011_19089_x
crossref_primary_10_1103_PhysRevD_102_103009
crossref_primary_10_1093_mnras_stv2882
crossref_primary_10_1111_j_1365_2966_2011_19043_x
crossref_primary_10_3847_1538_4357_ab0e7e
crossref_primary_10_1088_0004_637X_695_2_1199
crossref_primary_10_1093_mnras_stac1369
crossref_primary_10_1088_0004_637X_744_2_186
crossref_primary_10_3847_1538_4357_ab7dc0
crossref_primary_10_3847_0004_637X_821_2_132
crossref_primary_10_1111_j_1468_4004_2009_50318_x
crossref_primary_10_1088_0264_9381_28_11_114009
crossref_primary_10_1111_j_1365_2966_2010_17393_x
crossref_primary_10_1093_mnras_stw1359
crossref_primary_10_1088_1475_7516_2022_01_019
crossref_primary_10_1086_521330
crossref_primary_10_1093_mnras_stad2627
crossref_primary_10_3847_0004_637X_827_2_134
crossref_primary_10_1103_PhysRevD_102_044041
crossref_primary_10_1111_j_1365_2966_2012_22128_x
crossref_primary_10_3847_1538_4357_abf6c5
crossref_primary_10_1093_mnras_staa2618
crossref_primary_10_3847_1538_4357_ac83ae
crossref_primary_10_1088_0004_637X_701_1_635
crossref_primary_10_1134_S1063772921100024
crossref_primary_10_1088_0004_637X_788_1_76
crossref_primary_10_1111_j_1365_2966_2007_12331_x
crossref_primary_10_1111_j_1365_2966_2012_21308_x
crossref_primary_10_1007_JHEP12_2014_012
crossref_primary_10_3847_2041_8213_ab6ddc
crossref_primary_10_3847_1538_4357_ab06c6
crossref_primary_10_1111_j_1365_2966_2008_12911_x
crossref_primary_10_3847_2041_8213_ad17ca
crossref_primary_10_1140_epjc_s10052_022_10263_7
crossref_primary_10_1063_1_2774097
crossref_primary_10_1111_j_1365_2966_2012_20577_x
crossref_primary_10_12942_lrr_2014_2
crossref_primary_10_1002_asna_201011496
crossref_primary_10_1017_S1743921315007437
crossref_primary_10_1103_PhysRevD_95_104043
crossref_primary_10_3847_0004_637X_831_1_2
crossref_primary_10_1103_PhysRevD_90_064045
crossref_primary_10_1155_2012_805402
crossref_primary_10_1088_2041_8205_747_1_L11
crossref_primary_10_1093_mnras_stac990
crossref_primary_10_1146_annurev_astro_45_051806_110555
crossref_primary_10_1016_j_asr_2013_09_003
crossref_primary_10_1086_524976
crossref_primary_10_1103_PhysRevD_95_104035
crossref_primary_10_3847_1538_4357_abccbd
crossref_primary_10_1111_j_1365_2966_2011_18452_x
crossref_primary_10_1111_j_1365_2966_2012_20809_x
crossref_primary_10_1103_PhysRevD_108_124043
crossref_primary_10_1007_s41114_022_00037_8
crossref_primary_10_1093_mnras_stz3022
crossref_primary_10_1051_0004_6361_201935817
crossref_primary_10_1111_j_1365_2966_2008_13710_x
crossref_primary_10_1038_494432a
crossref_primary_10_1134_S0021364017220088
crossref_primary_10_1088_0004_637X_763_1_48
crossref_primary_10_1088_0004_637X_728_2_98
crossref_primary_10_1103_PhysRevD_94_104062
crossref_primary_10_1088_0004_637X_709_2_725
crossref_primary_10_1051_0004_6361_201732377
crossref_primary_10_3847_2041_8213_aaa5fb
crossref_primary_10_1086_589446
crossref_primary_10_1051_0004_6361_201423925
crossref_primary_10_3847_0004_637X_826_2_103
crossref_primary_10_1103_PhysRevD_98_083006
crossref_primary_10_1086_590324
crossref_primary_10_1088_1674_4527_16_4_055
crossref_primary_10_1093_mnras_stac416
crossref_primary_10_1111_j_1365_2966_2012_21057_x
crossref_primary_10_1103_PhysRevD_79_124045
crossref_primary_10_1103_PhysRevLett_120_051101
crossref_primary_10_1111_j_1365_2966_2009_14451_x
crossref_primary_10_1016_j_newast_2007_01_004
crossref_primary_10_1038_nature13209
crossref_primary_10_1051_0004_6361_201628576
Cites_doi 10.1016/S0370-1573(02)00584-7
10.1093/mnras/242.4.660
10.1038/375659a0
10.1046/j.1365-8711.2000.03835.x
10.1086/166905
10.1093/mnras/282.4.L53
10.1093/mnras/238.3.729
10.1111/j.1365-2966.2005.09431.x
10.1093/mnras/288.1.L11
10.1086/421115
10.1086/152991
10.1086/308697
10.1046/j.1365-8711.2002.05740.x
10.1086/425961
10.1086/375640
10.1093/mnras/285.2.439
10.1051/0004-6361:20020435
10.1086/432607
10.1086/170257
10.1046/j.1365-8711.1999.02999.x
10.1086/340992
10.1086/427932
10.1046/j.1365-8711.2001.05066.x
10.1086/428875
10.1111/j.1365-2966.2003.07127.x
10.1086/154033
10.1046/j.1365-8711.2003.06533.x
10.1086/308177
10.1111/j.1365-2966.2005.08992.x
10.1086/312508
10.1086/304703
10.1086/308712
10.1093/mnras/179.3.433
10.1046/j.1365-8711.1998.02058.x
10.1086/342504
10.1093/mnras/286.3.513
10.1111/j.1365-2966.2004.07611.x
10.1111/j.1365-2966.2004.07596.x
10.1093/mnras/249.2.352
10.1046/j.1365-8711.2003.06611.x
10.1111/j.1365-2966.2004.07456.x
10.1111/j.1365-2966.2004.07955.x
10.1111/j.1365-2966.2005.08797.x
10.1016/0010-4655(95)00067-P
10.1093/mnras/236.1.39P
10.1093/mnras/282.3.1038
10.1086/169209
10.1086/377575
10.1093/mnras/233.2.475
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
DOI 10.1086/508146
DatabaseName Pascal-Francis
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
EndPage 1043
ExternalDocumentID 10_1086_508146
18364679
GroupedDBID 123
1JI
23N
2WC
4.4
85S
8RP
AAGCD
AAJIO
AALHV
ABFLS
ABPTK
ACGFS
ACNCT
AEFHF
AENEX
AFDAS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CS3
DZ
EBS
EJD
F5P
G8K
IOP
KOT
MVM
N5L
O3W
O43
OHT
OK1
RIN
RNS
RPA
SJN
SY9
T37
TN5
WH7
X
ZY4
-DZ
-~X
08R
2FS
41~
6J9
6TJ
6TS
9M8
AAFWJ
ABTAH
ACBEA
ACHIP
ADACN
ADIYS
AETEA
AFPKN
AI.
CRLBU
FA8
FRP
GROUPED_DOAJ
IJHAN
IQODW
M~E
PJBAE
RNP
ROL
TR2
VH1
VOH
WHG
XFK
XOL
XSW
YYP
ZCG
ZKB
AAYXX
ABHWH
AKPSB
CITATION
7TG
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-c476t-95eb0d60f11d475dcf21bf42dfd1ed1059963bbcbe60374f07c7509fb73739853
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Fri Aug 16 04:07:10 EDT 2024
Fri Aug 16 23:02:07 EDT 2024
Thu Sep 26 19:23:10 EDT 2024
Sun Oct 29 17:07:27 EDT 2023
Tue Nov 10 14:16:44 EST 2020
Mon May 13 15:57:10 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords galaxies: Seyfert
X-ray galaxies
Black holes
accretion, accretion disks
X-rays: galaxies
Cosmic x-ray sources
galaxies: individual (MCG -6-30-15)
X-ray spectroscopy
Accretion disks
Seyfert galaxies
black hole physics
Galaxy nuclei
Cosmology
galaxies: nuclei
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-95eb0d60f11d475dcf21bf42dfd1ed1059963bbcbe60374f07c7509fb73739853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://iopscience.iop.org/article/10.1086/508146/pdf
PQID 19491363
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_19491363
crossref_primary_10_1086_508146
pascalfrancis_primary_18364679
proquest_miscellaneous_743144607
iop_primary_10_1086_508146
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Chicago, IL
PublicationPlace_xml – name: Chicago, IL
PublicationTitle The Astrophysical journal
PublicationYear 2006
Publisher IOP Publishing
University of Chicago Press
Publisher_xml – name: IOP Publishing
– name: University of Chicago Press
References rf40_1056
rf2_1018
rf57_1073
rf47_1063
rf18_1034
rf9_1025
rf28_1044
Blandford R. D. (rf6_1022) 1977; 179
rf31_1047
Nandra K. (rf35_1051) 1989; 236
Chen X. (rf8_1024) 1997; 285
rf48_1064
rf38_1054
rf21_1037
George I. M. (rf17_1033) 1991; 249
rf29_1045
rf50_1066
rf3_1019
rf11_1027
Martocchia A. (rf30_1046) 1996; 282
rf36_1052
Reynolds C. S. (rf39_1055) 1997; 286
Reynolds C. S. (rf42_1058) 1995; 276
Guainazzi M. (rf19_1035) 1999; 341
rf12_1028
rf41_1057
rf52_1068
rf27_1043
Dabrowski Y. (rf10_1026) 1997; 288
rf24_1040
rf56_1072
Nandra K. (rf34_1050) 1990; 242
rf32_1048
rf15_1031
rf43_1059
rf44_1060
rf33_1049
rf54_1070
rf25_1041
Abramowicz M. A. (rf1_1017) 1990; 239
rf45_1061
Guilbert P. W. (rf20_1036) 1988; 233
rf5_1021
Fabian A. C. (rf14_1030) 1989; 238
rf55_1071
rf53_1069
rf16_1032
Kallman T. (rf23_1039) 2005; 206
Iwasawa K. (rf22_1038) 1996; 282
rf26_1042
rf51_1067
Fabian A. C. (rf13_1029) 1995; 277
rf46_1062
rf49_1065
rf7_1023
rf4_1020
rf37_1053
References_xml – ident: rf43_1059
  doi: 10.1016/S0370-1573(02)00584-7
– volume: 242
  start-page: 660
  year: 1990
  ident: rf34_1050
  publication-title: MNRAS
  doi: 10.1093/mnras/242.4.660
  contributor:
    fullname: Nandra K.
– ident: rf49_1065
  doi: 10.1038/375659a0
– ident: rf27_1043
  doi: 10.1046/j.1365-8711.2000.03835.x
– ident: rf29_1045
  doi: 10.1086/166905
– volume: 282
  start-page: L53
  year: 1996
  ident: rf30_1046
  publication-title: MNRAS
  doi: 10.1093/mnras/282.4.L53
  contributor:
    fullname: Martocchia A.
– ident: rf36_1052
– volume: 238
  start-page: 729
  year: 1989
  ident: rf14_1030
  publication-title: MNRAS
  doi: 10.1093/mnras/238.3.729
  contributor:
    fullname: Fabian A. C.
– ident: rf7_1023
  doi: 10.1111/j.1365-2966.2005.09431.x
– volume: 288
  start-page: L11
  year: 1997
  ident: rf10_1026
  publication-title: MNRAS
  doi: 10.1093/mnras/288.1.L11
  contributor:
    fullname: Dabrowski Y.
– ident: rf12_1028
  doi: 10.1086/421115
– ident: rf50_1066
  doi: 10.1086/152991
– ident: rf40_1056
  doi: 10.1086/308697
– ident: rf15_1031
  doi: 10.1046/j.1365-8711.2002.05740.x
– ident: rf52_1068
  doi: 10.1086/425961
– ident: rf11_1027
  doi: 10.1086/375640
– volume: 285
  start-page: 439
  year: 1997
  ident: rf8_1024
  publication-title: MNRAS
  doi: 10.1093/mnras/285.2.439
  contributor:
    fullname: Chen X.
– ident: rf18_1034
  doi: 10.1051/0004-6361:20020435
– ident: rf21_1037
– ident: rf56_1072
  doi: 10.1086/432607
– ident: rf25_1041
  doi: 10.1086/170257
– ident: rf26_1042
  doi: 10.1046/j.1365-8711.1999.02999.x
– ident: rf28_1044
  doi: 10.1086/340992
– ident: rf24_1040
  doi: 10.1086/427932
– ident: rf55_1071
  doi: 10.1046/j.1365-8711.2001.05066.x
– ident: rf16_1032
  doi: 10.1086/428875
– ident: rf51_1067
  doi: 10.1111/j.1365-2966.2003.07127.x
– ident: rf9_1025
  doi: 10.1086/154033
– ident: rf4_1020
  doi: 10.1046/j.1365-8711.2003.06533.x
– ident: rf2_1018
  doi: 10.1086/308177
– ident: rf32_1048
  doi: 10.1111/j.1365-2966.2005.08992.x
– volume: 277
  start-page: L11
  year: 1995
  ident: rf13_1029
  publication-title: MNRAS
  contributor:
    fullname: Fabian A. C.
– volume: 239
  start-page: 399
  year: 1990
  ident: rf1_1017
  publication-title: A&A
  contributor:
    fullname: Abramowicz M. A.
– ident: rf37_1053
  doi: 10.1086/312508
– ident: rf41_1057
  doi: 10.1086/304703
– ident: rf44_1060
  doi: 10.1086/308712
– volume: 179
  start-page: 433
  year: 1977
  ident: rf6_1022
  publication-title: MNRAS
  doi: 10.1093/mnras/179.3.433
  contributor:
    fullname: Blandford R. D.
– ident: rf57_1073
  doi: 10.1046/j.1365-8711.1998.02058.x
– ident: rf3_1019
– ident: rf53_1069
  doi: 10.1086/342504
– volume: 286
  start-page: 513
  year: 1997
  ident: rf39_1055
  publication-title: MNRAS
  doi: 10.1093/mnras/286.3.513
  contributor:
    fullname: Reynolds C. S.
– volume: 206
  start-page: 3124
  year: 2005
  ident: rf23_1039
  publication-title: BAAS
  contributor:
    fullname: Kallman T.
– ident: rf33_1049
  doi: 10.1111/j.1365-2966.2004.07611.x
– ident: rf45_1061
  doi: 10.1111/j.1365-2966.2004.07596.x
– volume: 249
  start-page: 352
  year: 1991
  ident: rf17_1033
  publication-title: MNRAS
  doi: 10.1093/mnras/249.2.352
  contributor:
    fullname: George I. M.
– ident: rf38_1054
  doi: 10.1046/j.1365-8711.2003.06611.x
– ident: rf54_1070
  doi: 10.1111/j.1365-2966.2004.07456.x
– ident: rf5_1021
  doi: 10.1111/j.1365-2966.2004.07955.x
– ident: rf46_1062
  doi: 10.1111/j.1365-2966.2005.08797.x
– ident: rf48_1064
  doi: 10.1016/0010-4655(95)00067-P
– volume: 236
  start-page: P39
  year: 1989
  ident: rf35_1051
  publication-title: MNRAS
  doi: 10.1093/mnras/236.1.39P
  contributor:
    fullname: Nandra K.
– volume: 282
  start-page: 1038
  year: 1996
  ident: rf22_1038
  publication-title: MNRAS
  doi: 10.1093/mnras/282.3.1038
  contributor:
    fullname: Iwasawa K.
– ident: rf31_1047
  doi: 10.1086/169209
– volume: 276
  start-page: 1311
  year: 1995
  ident: rf42_1058
  publication-title: MNRAS
  contributor:
    fullname: Reynolds C. S.
– ident: rf47_1063
  doi: 10.1086/377575
– volume: 233
  start-page: 475
  year: 1988
  ident: rf20_1036
  publication-title: MNRAS
  doi: 10.1093/mnras/233.2.475
  contributor:
    fullname: Guilbert P. W.
– volume: 341
  start-page: L27
  year: 1999
  ident: rf19_1035
  publication-title: A&A
  contributor:
    fullname: Guainazzi M.
SSID ssj0004299
Score 2.4933896
Snippet We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert 1.2 galaxy...
SourceID proquest
crossref
pascalfrancis
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1028
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
Title Constraining Black Hole Spin via X-Ray Spectroscopy
URI http://iopscience.iop.org/0004-637X/652/2/1028
https://search.proquest.com/docview/19491363
https://search.proquest.com/docview/743144607
Volume 652
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED5R0KS9TINtorB1fkB7C_WPxMaPCIHKpA3EhuibZce2VAmSiJZJ_e_xJSntNm1vJ8VJrLuT7_OdfR_AkdRSJU9C-vaizHIrbKYpLbOgqFUe-_xIvI387buc3OZfp8V0vVGc1U2_8h8nsa3kI-rIpFDTsSz4mI8xIg5ghytZoBdfibv1PUiue7jbvbHBJZRwSAtyN4LPIP0Bj0LaedJG7Ggs_lqR2zBz8Rbe9PiQnHYG3YWtUO3B_ukcM9b1w5J8Ia3cJSTme_DqupPegUDuzRXjA2kTc2RS3wfyo5lV5NfMkml2Y5cEGecX2MOybpbv4fbi_OfZJOspEbIyV3KR6SI46iWNjPlcFb6MnLmYcx89C561zVaEc6ULEhvLRKpKhATRKaGETqH5A2xXdRX2gaSwFAvtCm2jzUXJXWQxDz7SUtAgnBrC55WuTNN1vjBtxfpEmk6bQzhKKnx5iGo3qHaTDGW4QUOZxschHGwO-_Mbo98MsB52ImRaxHWaxsoiJnk-ljNsFeqnuWE610xIMQTyjxGIjtJ2l6qD_03hEF7zno2Iso-wvXh8Cp8S0li4EQwur65HrZM9A1w9y2Y
link.rule.ids 315,786,790,1564,27659,27955,27956,53939,53965
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61RSAuFApVt5TWh4pbFid-1ceqZbXlUVZA0d4sO7alCkgiNou0_HrsOOkLgcTNUiaJM-N4Pr--D-CQSy5CS4ry7azMqCY6kxiXmRNYCxt5fng8jfz-nE8v6Js5m68BuzoLUzd91z8OxUQUnFz4apAFCpAiyrQ01q_DPUYkiY357MPs-jhkIXvUSzNOxPyGpFC691YOWg_viTsi9SI4xSc1iz865i7bTDbhy1DPtMnk63jZmnH56w6F439_yGN41ONPdJyMnsCaq7Zg53gRZ8Tr7yv0EnXlNOGx2IL7s1R6CiRqew6KEqib-EPT-ptDn5rLCv281GiefdQrFBXt28iRWTerZ3Axef35ZJr1kgtZSQVvM8mcwZZjn-eWCmZLX-TG08J6mzubd2QuxJjSOB6JazwWZYQc3ggiiAypfxs2qrpyO4BC2vNMGia115SUhfG5p856XBLsiBEjOBiCoJrErKG6FfEjrpJnRnAYXHd1McZTxXgqzgpVqAiNVHDeCHZvmt19xv6tyF6bHREekoQM1RhCrcKfFZdLdOXq5ULlksqccDIC9BeLiL7CcBqL3X9V4QAezE4n6t3Z-dvn8LDohY9wvgcb7Y-lexFATWv2uyb8G2C27qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+Black+Hole+Spin+via+X-Ray+Spectroscopy&rft.jtitle=The+Astrophysical+journal&rft.au=Brenneman%2C+L+W&rft.au=Reynolds%2C+C+S&rft.date=2006-12-01&rft.issn=0004-637X&rft.volume=652&rft.issue=2&rft.spage=1028&rft.epage=1043&rft_id=info:doi/10.1086%2F508146&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon