Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics
Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were invest...
Saved in:
Published in | Chemosphere (Oxford) Vol. 215; pp. 25 - 32 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics−polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.
[Display omitted]
•Biodegradable microplastics sorbed/desorbed more PHEN than conventional ones.•Sorption/desorption capacities depended on the content of rubbery subfraction.•Plastic additives didn't alter the microplastics adsorption process.•High salinity and low DOM strengthen the sorption of PHEN onto microplastics. |
---|---|
AbstractList | Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics−polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.
[Display omitted]
•Biodegradable microplastics sorbed/desorbed more PHEN than conventional ones.•Sorption/desorption capacities depended on the content of rubbery subfraction.•Plastic additives didn't alter the microplastics adsorption process.•High salinity and low DOM strengthen the sorption of PHEN onto microplastics. Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic-poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics-polyethylene (PE and PE ) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PE were higher than PE and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect. Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics−polyethylene (PEc and PEᵥ) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEᵥ and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu²⁺ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect. Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic-poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics-polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic-poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics-polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect. |
Author | Li, Heng-Xiang Sun, Yu-Xin Zhang, Zong-Yao Lin, Lang Diao, Zeng-Hui Xu, Xiang-Rong Zuo, Lin-Zi Liu, Shan |
Author_xml | – sequence: 1 givenname: Lin-Zi surname: Zuo fullname: Zuo, Lin-Zi organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China – sequence: 2 givenname: Heng-Xiang surname: Li fullname: Li, Heng-Xiang organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China – sequence: 3 givenname: Lang surname: Lin fullname: Lin, Lang organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China – sequence: 4 givenname: Yu-Xin orcidid: 0000-0003-0674-8709 surname: Sun fullname: Sun, Yu-Xin organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China – sequence: 5 givenname: Zeng-Hui surname: Diao fullname: Diao, Zeng-Hui organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China – sequence: 6 givenname: Shan surname: Liu fullname: Liu, Shan organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China – sequence: 7 givenname: Zong-Yao surname: Zhang fullname: Zhang, Zong-Yao organization: State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China – sequence: 8 givenname: Xiang-Rong surname: Xu fullname: Xu, Xiang-Rong email: xuxr@scsio.ac.cn organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30300808$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrGzEUhUVJaZy0f6FMd-liJnrM6LEqxfQFgSyarIVGuq5lNKOpJAf87yvjpJSuvLrcq-8cru65QhdznAGhDwR3BBN-u-vsFqaYly0k6CgmssOqI4K9QisihWoJVfICrTDuh5YPbLhEVznvMK7iQb1BlwwzjCWWKzT9jGkpPs6NmV3jIL-0cdNU-9nMZZtghqaORh8d_ErGmTFAs8RwuBn35RCOz8b5xRRobGxLXWrZFhNq_7GZvE1xCSYXb_Nb9HpjQoZ3z_UaPX798rD-3t7df_ux_nzX2l7w0ipiiR0ocQowCG6p6MGCUEpJGAdFLWBGAAgIwrijzlE-wKh6MdKNUVyya3Rz8l1S_L2HXPTks4UQzAxxnzUlgrNeSk7PQImQlFEpKvr-Gd2PEzi9JD-ZdNAv16yAOgH1yzkn2PxFCNbH5PRO_5OcPiansdI1uar99J_W-mKOUZRkfDjLYX1ygHrZJw9JZ-thtuB8Alu0i_4Mlz-rx78H |
CitedBy_id | crossref_primary_10_3390_jmse9040445 crossref_primary_10_1016_j_chemosphere_2023_138130 crossref_primary_10_1016_j_eti_2022_102408 crossref_primary_10_3390_molecules26041164 crossref_primary_10_1017_plc_2024_26 crossref_primary_10_3390_w15234126 crossref_primary_10_1016_j_envpol_2024_125108 crossref_primary_10_1016_j_jhazmat_2020_124857 crossref_primary_10_1080_10643389_2020_1856594 crossref_primary_10_1016_j_scitotenv_2021_146528 crossref_primary_10_1016_j_gsd_2022_100852 crossref_primary_10_1016_j_chemosphere_2023_138256 crossref_primary_10_1016_j_jconhyd_2024_104486 crossref_primary_10_1016_j_chemosphere_2024_143211 crossref_primary_10_1007_s11356_022_23027_3 crossref_primary_10_1016_j_envpol_2022_119591 crossref_primary_10_1016_j_envint_2022_107711 crossref_primary_10_1016_j_cclet_2024_109861 crossref_primary_10_1007_s11368_022_03193_0 crossref_primary_10_1016_j_scitotenv_2020_142427 crossref_primary_10_1016_j_chemosphere_2019_124593 crossref_primary_10_1016_j_chemosphere_2022_134865 crossref_primary_10_1016_j_chemosphere_2023_138920 crossref_primary_10_1016_j_scitotenv_2019_134139 crossref_primary_10_1016_j_chemosphere_2020_128708 crossref_primary_10_1016_j_envpol_2020_114347 crossref_primary_10_1007_s11368_021_03071_1 crossref_primary_10_1016_j_chemosphere_2023_139360 crossref_primary_10_1016_j_hazadv_2023_100298 crossref_primary_10_1016_j_watres_2022_118068 crossref_primary_10_1016_j_envpol_2020_114469 crossref_primary_10_3390_w13121713 crossref_primary_10_1016_j_scitotenv_2023_168539 crossref_primary_10_1016_j_marenvres_2024_106381 crossref_primary_10_1021_acs_est_0c02838 crossref_primary_10_1016_j_jhazmat_2022_130169 crossref_primary_10_1007_s11356_022_22897_x crossref_primary_10_1007_s10311_024_01703_9 crossref_primary_10_1016_j_scitotenv_2023_168400 crossref_primary_10_1016_j_coche_2021_100695 crossref_primary_10_1007_s11356_023_30720_4 crossref_primary_10_1111_gwmr_12633 crossref_primary_10_1016_j_ijbiomac_2024_136014 crossref_primary_10_1016_j_watres_2020_116118 crossref_primary_10_2166_ws_2022_189 crossref_primary_10_1080_10643389_2024_2363511 crossref_primary_10_1016_j_aquatox_2023_106693 crossref_primary_10_1021_acs_est_9b01853 crossref_primary_10_1021_acs_est_4c14716 crossref_primary_10_1007_s10311_024_01730_6 crossref_primary_10_1016_j_envpol_2021_117537 crossref_primary_10_3390_su17020516 crossref_primary_10_1016_j_envpol_2021_116449 crossref_primary_10_1016_j_jhazmat_2019_121574 crossref_primary_10_1016_j_envpol_2021_118503 crossref_primary_10_1016_j_scitotenv_2023_167430 crossref_primary_10_3390_w15112133 crossref_primary_10_1002_pen_25734 crossref_primary_10_1007_s10311_023_01601_6 crossref_primary_10_1016_j_scitotenv_2024_172455 crossref_primary_10_1016_j_carbpol_2022_120181 crossref_primary_10_1016_j_scitotenv_2024_174512 crossref_primary_10_1016_j_scitotenv_2020_137729 crossref_primary_10_1016_j_scitotenv_2021_152049 crossref_primary_10_1016_j_jcoa_2021_100001 crossref_primary_10_1016_j_scitotenv_2024_177589 crossref_primary_10_1016_j_scitotenv_2022_160866 crossref_primary_10_1007_s11368_022_03218_8 crossref_primary_10_1016_j_jhazmat_2023_131070 crossref_primary_10_1016_j_marpolbul_2020_111820 crossref_primary_10_1016_j_jece_2022_108832 crossref_primary_10_1021_acsenvironau_2c00047 crossref_primary_10_1016_j_scitotenv_2020_139472 crossref_primary_10_1016_j_scitotenv_2023_166855 crossref_primary_10_1021_acs_est_9b02834 crossref_primary_10_1007_s44169_023_00035_z crossref_primary_10_1007_s44169_023_00057_7 crossref_primary_10_1016_j_envpol_2019_07_095 crossref_primary_10_1007_s11356_023_26390_x crossref_primary_10_1016_j_watres_2023_119939 crossref_primary_10_3390_toxics11060474 crossref_primary_10_1016_j_ecoenv_2022_114260 crossref_primary_10_1016_j_scitotenv_2024_175735 crossref_primary_10_1007_s00244_021_00856_w crossref_primary_10_1016_j_jes_2024_05_018 crossref_primary_10_1016_j_aquatox_2021_106037 crossref_primary_10_1016_j_watres_2021_117123 crossref_primary_10_1016_j_scitotenv_2021_145403 crossref_primary_10_1021_acs_est_3c01128 crossref_primary_10_1016_j_jhazmat_2019_121193 crossref_primary_10_1016_j_envpol_2024_124616 crossref_primary_10_1016_j_chemosphere_2022_137374 crossref_primary_10_1039_D3NJ03950A crossref_primary_10_2139_ssrn_4094661 crossref_primary_10_1016_j_chemosphere_2022_137014 crossref_primary_10_1016_j_emcon_2025_100504 crossref_primary_10_1016_j_jhazmat_2023_132737 crossref_primary_10_1007_s11356_024_34743_3 crossref_primary_10_1080_03067319_2022_2128791 crossref_primary_10_1016_j_chemosphere_2023_139042 crossref_primary_10_1016_j_jhazmat_2020_124312 crossref_primary_10_1016_j_envpol_2019_06_030 crossref_primary_10_1016_j_jece_2024_114974 crossref_primary_10_1016_j_scitotenv_2023_166828 crossref_primary_10_1016_j_scitotenv_2020_143875 crossref_primary_10_1016_j_jhazmat_2023_130761 crossref_primary_10_1016_j_envpol_2023_121877 crossref_primary_10_3390_su141912872 crossref_primary_10_1016_j_chemosphere_2024_141773 crossref_primary_10_1016_j_scitotenv_2021_147289 crossref_primary_10_1016_j_marpolbul_2025_117832 crossref_primary_10_1016_j_jhazmat_2025_137641 crossref_primary_10_1016_j_envres_2024_118960 crossref_primary_10_1016_j_scitotenv_2019_06_241 crossref_primary_10_1016_j_envint_2024_108625 crossref_primary_10_1016_j_scitotenv_2022_157010 crossref_primary_10_3390_toxics12120922 crossref_primary_10_1016_j_envpol_2022_120357 crossref_primary_10_1021_acs_est_4c10835 crossref_primary_10_1007_s00128_022_03486_7 crossref_primary_10_1016_j_envpol_2022_119258 crossref_primary_10_1016_j_envpol_2022_120919 crossref_primary_10_1007_s10653_024_02076_2 crossref_primary_10_1016_j_chemosphere_2024_141300 crossref_primary_10_1016_j_chemosphere_2024_142630 crossref_primary_10_1016_j_jenvman_2024_121777 crossref_primary_10_1016_j_jhazmat_2020_123363 crossref_primary_10_1016_j_scitotenv_2024_175643 crossref_primary_10_1016_j_marpolbul_2023_114852 crossref_primary_10_1016_j_marpolbul_2022_113806 crossref_primary_10_1007_s11783_021_1517_0 crossref_primary_10_1016_j_jece_2024_111887 crossref_primary_10_1039_D4EN01197J crossref_primary_10_1016_j_scitotenv_2019_135978 crossref_primary_10_1016_j_scitotenv_2023_164359 crossref_primary_10_3390_molecules29020333 crossref_primary_10_1016_j_scitotenv_2022_153609 crossref_primary_10_1016_j_scitotenv_2023_163261 crossref_primary_10_1007_s10661_024_12721_z crossref_primary_10_1016_j_marpolbul_2021_113086 crossref_primary_10_3390_app132312835 crossref_primary_10_1016_j_eti_2022_102495 crossref_primary_10_1002_lob_10597 crossref_primary_10_1016_j_chemosphere_2019_03_162 crossref_primary_10_1007_s11356_023_30229_w crossref_primary_10_1016_j_chemosphere_2020_128553 crossref_primary_10_1016_j_scitotenv_2023_161867 crossref_primary_10_1016_j_scitotenv_2024_172380 crossref_primary_10_1016_j_arr_2024_102405 crossref_primary_10_1088_1748_9326_ac548d crossref_primary_10_1016_j_marpolbul_2019_05_050 crossref_primary_10_1039_D4EM00062E crossref_primary_10_3390_foods13213511 crossref_primary_10_1016_j_jhazmat_2023_131603 crossref_primary_10_1016_j_envpol_2023_123061 crossref_primary_10_1016_j_scitotenv_2024_170299 crossref_primary_10_1016_j_marpolbul_2020_111765 crossref_primary_10_3390_w16030499 crossref_primary_10_1590_0104_1428_20230009 crossref_primary_10_1016_j_chemosphere_2020_128541 crossref_primary_10_1007_s10750_022_04999_2 crossref_primary_10_1016_j_colsurfa_2020_125800 crossref_primary_10_1007_s10311_025_01823_w crossref_primary_10_1016_j_eti_2020_100971 crossref_primary_10_1016_j_chemosphere_2020_127206 crossref_primary_10_1016_j_chemosphere_2019_125628 crossref_primary_10_1016_j_envres_2023_117897 crossref_primary_10_1007_s11356_023_27906_1 crossref_primary_10_1016_j_wasman_2020_06_011 crossref_primary_10_1016_j_jenvman_2021_113041 crossref_primary_10_1016_j_jksus_2022_102111 crossref_primary_10_1016_j_molliq_2022_119819 crossref_primary_10_1016_j_cej_2021_129085 crossref_primary_10_1021_envhealth_3c00174 crossref_primary_10_1007_s11270_023_06847_y crossref_primary_10_1007_s11274_024_04021_y crossref_primary_10_1007_s11356_022_20723_y crossref_primary_10_1016_j_chemosphere_2021_131670 crossref_primary_10_1002_etc_4902 crossref_primary_10_1016_j_envint_2022_107244 crossref_primary_10_1016_j_scitotenv_2021_150141 crossref_primary_10_1016_j_chemosphere_2020_126064 crossref_primary_10_1021_acssuschemeng_1c00801 crossref_primary_10_1016_j_jes_2024_09_028 crossref_primary_10_1016_j_jclepro_2024_144044 crossref_primary_10_1016_j_scitotenv_2020_140975 crossref_primary_10_1016_j_eti_2024_103662 crossref_primary_10_1186_s40645_020_00405_4 crossref_primary_10_3390_w14203288 crossref_primary_10_1016_j_envpol_2025_126073 crossref_primary_10_1080_10934529_2023_2177458 crossref_primary_10_1016_j_trac_2023_117294 crossref_primary_10_1016_j_jclepro_2021_127816 crossref_primary_10_1080_09593330_2022_2077133 crossref_primary_10_1080_10643389_2019_1694822 crossref_primary_10_1016_j_marpolbul_2020_111774 crossref_primary_10_1021_acsapm_4c00403 crossref_primary_10_3389_fenvs_2021_678574 crossref_primary_10_1016_j_jhazmat_2021_127079 crossref_primary_10_1111_1365_2664_14777 crossref_primary_10_1016_j_scitotenv_2024_174913 crossref_primary_10_1016_j_etap_2022_104013 crossref_primary_10_1016_j_envpol_2024_123809 crossref_primary_10_1016_j_envpol_2022_119434 crossref_primary_10_1016_j_trac_2023_117391 crossref_primary_10_1016_j_scitotenv_2021_145254 crossref_primary_10_1007_s10661_023_11890_7 crossref_primary_10_3390_ijerph19159610 crossref_primary_10_1016_j_envpol_2023_122573 crossref_primary_10_1016_j_envpol_2022_120865 crossref_primary_10_1021_acs_langmuir_3c01536 crossref_primary_10_1007_s11270_023_06201_2 crossref_primary_10_1016_j_clet_2022_100404 crossref_primary_10_1007_s11356_024_33929_z crossref_primary_10_1016_j_envpol_2023_121910 crossref_primary_10_1016_j_jhazmat_2024_134809 crossref_primary_10_1016_j_watres_2023_120185 crossref_primary_10_1080_03067319_2022_2148528 crossref_primary_10_1016_j_envpol_2020_113988 crossref_primary_10_1016_j_trac_2023_117381 crossref_primary_10_1002_gch2_202100026 crossref_primary_10_1016_j_envres_2021_112122 crossref_primary_10_1016_j_apsoil_2022_104667 crossref_primary_10_59440_ceer_186048 crossref_primary_10_1039_D1VA00012H crossref_primary_10_1021_acsagscitech_0c00005 crossref_primary_10_1016_j_scitotenv_2023_164008 crossref_primary_10_1016_j_chemosphere_2022_135697 crossref_primary_10_1016_j_rsma_2021_101845 crossref_primary_10_1016_j_chemosphere_2020_126706 crossref_primary_10_1016_j_jhazmat_2022_129652 crossref_primary_10_1007_s11356_021_16435_4 crossref_primary_10_1016_j_envpol_2020_115496 crossref_primary_10_1039_D1EM00443C |
Cites_doi | 10.1021/es0010498 10.1021/es0350381 10.1016/j.envpol.2010.06.025 10.1016/j.envpol.2018.01.114 10.3390/ijms10093722 10.1021/es960995e 10.2175/106143010X12681059116536 10.1016/j.chemosphere.2011.09.039 10.1021/acs.est.7b03574 10.1016/j.marpolbul.2016.05.036 10.1016/j.chemosphere.2013.10.071 10.1021/acs.est.7b04051 10.1016/j.marpolbul.2009.06.014 10.1021/acs.est.6b04496 10.1016/j.ecss.2014.01.004 10.1016/j.cej.2013.03.069 10.1177/0734242X16683272 10.1016/j.envpol.2015.10.010 10.1021/es050191b 10.1016/j.marpolbul.2010.07.014 10.1021/es048406p 10.1016/S0048-9697(03)00076-7 10.1002/etc.524 10.1021/es301386z 10.1016/j.watres.2018.04.003 10.1016/j.envpol.2016.05.043 10.1016/j.cej.2018.01.091 10.1021/es0718117 10.1016/j.envpol.2011.08.052 10.1016/j.marpolbul.2015.08.002 10.2134/jeq2004.1322 10.1016/j.scitotenv.2018.02.146 10.1016/j.polymdegradstab.2010.07.018 10.1021/es062113+ 10.1016/j.ecoenv.2017.09.029 10.1016/j.envpol.2013.10.007 10.1016/j.marpolbul.2011.06.004 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2018.09.173 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 32 |
ExternalDocumentID | 30300808 10_1016_j_chemosphere_2018_09_173 S0045653518318393 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c476t-91c1c521d9e0e76c274ece79998eb592ce031ee1e7136d2dd265eb947b2fa9683 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Aug 01 03:40:20 EDT 2025 Fri Jul 11 02:18:09 EDT 2025 Wed Feb 19 02:33:17 EST 2025 Tue Jul 01 02:33:31 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 Fri Feb 23 02:48:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sorption PBAT Phenanthrene Desorption Biodegradable microplastics Vector |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-91c1c521d9e0e76c274ece79998eb592ce031ee1e7136d2dd265eb947b2fa9683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0674-8709 |
PMID | 30300808 |
PQID | 2117823287 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2176348862 proquest_miscellaneous_2117823287 pubmed_primary_30300808 crossref_primary_10_1016_j_chemosphere_2018_09_173 crossref_citationtrail_10_1016_j_chemosphere_2018_09_173 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_09_173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 2019-Jan 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Wong, Chen, Lu, Wang, Zeng (bib30) 2018; 139 Ashton, Holmes, Turner (bib2) 2010; 60 Chen, Zhu, Sun (bib5) 2007; 41 Huang, Weber (bib14) 1997; 31 Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib1) 2014; 99 Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bib18) 2001; 35 Zhang, Lin, Wang, Gan (bib35) 2010; 158 Kijchavengkul, Auras, Rubino, Selke, Ngouajio, Fernandez (bib15) 2010; 95 Zhang, He (bib34) 2011; 83 Wang, Wang (bib29) 2018; 147 Qu, Wang, Zhu (bib21) 2007; 41 Bakir, Rowland, Thompson (bib4) 2014; 140 He, Zhang, Chen, Dong (bib11) 2007 Shi, Fu, Li, Mao, Zheng, Zhu (bib23) 2011; 30 Van, Rochman, Flores, Hill, Vargas, Vargas, Hoh (bib28) 2012; 86 Wang, Chen, Zhang, Wang, Yu, Zheng, Zheng (bib31) 2018 Zhang, Ma, Zhang, Wang, Wang, Wang, Ma (bib36) 2015; 99 León, García, González, Samper, Fernández-González, Muniategui-Lorenzo (bib17) 2018; 236 Ogata, Takada, Mizukawa, Hirai, Iwasa, Endo, Mato, Saha, Okuda, Nakashima, Murakami, Zurcher, Booyatumanondo, Zakaria, Dung, Gordon, Miguez, Suzuki, Moore, Karapanagioti, Weerts, McClurg, Burres, Smith, Van Velkenburg, Lang, Lang, Laursen, Danner, Stewardson, Thompson (bib19) 2009; 58 Rujnic-Sokele, Pilipovic (bib22) 2017; 35 Holmes, Turner, Thompson (bib13) 2012; 160 Green, Boots, O'Connor, Thompson (bib9) 2017; 51 Yang, Huang, Xiao, Yu, Peng, Fu, Sheng (bib32) 2004; 38 Hirai, Takada, Ogata, Yamashita, Mizukawa, Saha, Kwan, Moore, Gray, Laursen, Zettler, Farrington, Reddy, Peacock, Ward (bib12) 2011; 62 Oh, Wang, Shin, Song (bib20) 2013; 225 Tokiwa, Calabia, Ugwu, Aiba (bib26) 2009; 10 Zhu, Herbert, Schlautman, Carraway, Hur (bib38) 2004; 33 Green, Boots, Sigwart, Jiang, Rocha (bib8) 2016; 208 Zhan, Wang, Peng, Xie, Huang, Gao (bib33) 2016; 110 Bakir, Rowland, Thompson (bib3) 2014; 185 Kubowicz, Booth (bib16) 2017; 51 Ter Laak, Durjava, Struijs, Hermens (bib24) 2005; 39 Turner (bib27) 2003; 314 Zhou, Wu, Su, Xin, Chai (bib37) 2018; 345 Guo, Wang, Zhou, Kong, Tao, Xing (bib10) 2012; 46 Green (bib7) 2016; 216 Ziajahromi, Kumar, Neale, Leusch (bib39) 2017; 51 Cornelissen, Gustafsson, Bucheli, Jonker, Koelmans, Van Noort (bib6) 2005; 39 Cornelissen (10.1016/j.chemosphere.2018.09.173_bib6) 2005; 39 Chen (10.1016/j.chemosphere.2018.09.173_bib5) 2007; 41 Green (10.1016/j.chemosphere.2018.09.173_bib9) 2017; 51 Guo (10.1016/j.chemosphere.2018.09.173_bib10) 2012; 46 Zhang (10.1016/j.chemosphere.2018.09.173_bib34) 2011; 83 Ogata (10.1016/j.chemosphere.2018.09.173_bib19) 2009; 58 Van (10.1016/j.chemosphere.2018.09.173_bib28) 2012; 86 Bakir (10.1016/j.chemosphere.2018.09.173_bib3) 2014; 185 Green (10.1016/j.chemosphere.2018.09.173_bib8) 2016; 208 Zhou (10.1016/j.chemosphere.2018.09.173_bib37) 2018; 345 Ahmad (10.1016/j.chemosphere.2018.09.173_bib1) 2014; 99 Kubowicz (10.1016/j.chemosphere.2018.09.173_bib16) 2017; 51 Qu (10.1016/j.chemosphere.2018.09.173_bib21) 2007; 41 Yang (10.1016/j.chemosphere.2018.09.173_bib32) 2004; 38 He (10.1016/j.chemosphere.2018.09.173_bib11) 2007 Huang (10.1016/j.chemosphere.2018.09.173_bib14) 1997; 31 León (10.1016/j.chemosphere.2018.09.173_bib17) 2018; 236 Hirai (10.1016/j.chemosphere.2018.09.173_bib12) 2011; 62 Green (10.1016/j.chemosphere.2018.09.173_bib7) 2016; 216 Wang (10.1016/j.chemosphere.2018.09.173_bib29) 2018; 147 Ziajahromi (10.1016/j.chemosphere.2018.09.173_bib39) 2017; 51 Zhu (10.1016/j.chemosphere.2018.09.173_bib38) 2004; 33 Bakir (10.1016/j.chemosphere.2018.09.173_bib4) 2014; 140 Ashton (10.1016/j.chemosphere.2018.09.173_bib2) 2010; 60 Tokiwa (10.1016/j.chemosphere.2018.09.173_bib26) 2009; 10 Turner (10.1016/j.chemosphere.2018.09.173_bib27) 2003; 314 Ter Laak (10.1016/j.chemosphere.2018.09.173_bib24) 2005; 39 Mato (10.1016/j.chemosphere.2018.09.173_bib18) 2001; 35 Zhang (10.1016/j.chemosphere.2018.09.173_bib36) 2015; 99 Rujnic-Sokele (10.1016/j.chemosphere.2018.09.173_bib22) 2017; 35 Wang (10.1016/j.chemosphere.2018.09.173_bib31) 2018 Oh (10.1016/j.chemosphere.2018.09.173_bib20) 2013; 225 Shi (10.1016/j.chemosphere.2018.09.173_bib23) 2011; 30 Holmes (10.1016/j.chemosphere.2018.09.173_bib13) 2012; 160 Kijchavengkul (10.1016/j.chemosphere.2018.09.173_bib15) 2010; 95 Zhan (10.1016/j.chemosphere.2018.09.173_bib33) 2016; 110 Zhang (10.1016/j.chemosphere.2018.09.173_bib35) 2010; 158 Wang (10.1016/j.chemosphere.2018.09.173_bib30) 2018; 139 |
References_xml | – volume: 216 start-page: 95 year: 2016 end-page: 103 ident: bib7 article-title: Effects of microplastics on European flat oysters, publication-title: Environ. Pollut. – volume: 95 start-page: 2641 year: 2010 end-page: 2647 ident: bib15 article-title: Biodegradation and hydrolysis rate of aliphatic aromatic polyester publication-title: Polym. Degrad. Stabil. – volume: 33 start-page: 1322 year: 2004 end-page: 1330 ident: bib38 article-title: Cation-π bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces publication-title: J. Environ. Qual. – volume: 86 start-page: 258 year: 2012 end-page: 263 ident: bib28 article-title: Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California publication-title: Chemosphere – volume: 58 start-page: 1437 year: 2009 end-page: 1446 ident: bib19 article-title: International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs publication-title: Mar. Pollut. Bull. – volume: 160 start-page: 42 year: 2012 end-page: 48 ident: bib13 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. – volume: 46 start-page: 7252 year: 2012 end-page: 7259 ident: bib10 article-title: Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition publication-title: Environ. Sci. Technol. – volume: 110 start-page: 559 year: 2016 end-page: 563 ident: bib33 article-title: Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: a case study of polypropylene publication-title: Mar. Pollut. Bull. – volume: 39 start-page: 6881 year: 2005 end-page: 6895 ident: bib6 article-title: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation publication-title: Environ. Sci. Technol. – start-page: 140 year: 2007 ident: bib11 article-title: Playmer Physics – volume: 35 start-page: 132 year: 2017 end-page: 140 ident: bib22 article-title: Challenges and opportunities of biodegradable plastics: a mini review publication-title: Waste Manag. Res. – volume: 30 start-page: 1310 year: 2011 end-page: 1319 ident: bib23 article-title: Impact of coal structural heterogeneity on the nonideal sorption of organic contaminants publication-title: Environ. Toxicol. Chem. – volume: 35 start-page: 318 year: 2001 end-page: 324 ident: bib18 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. – start-page: 1617 year: 2018 end-page: 1626 ident: bib31 article-title: Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China publication-title: Sci. Total Environ. – volume: 208 start-page: 426 year: 2016 end-page: 434 ident: bib8 article-title: Effects of conventional and biodegradable microplastics on a marine ecosystem engineer ( publication-title: Environ. Pollut. – volume: 158 start-page: 2821 year: 2010 end-page: 2825 ident: bib35 article-title: Effect of publication-title: Environ. Pollut. – volume: 51 start-page: 13397 year: 2017 end-page: 13406 ident: bib39 article-title: Impact of microplastic beads and fibers on waterflea ( publication-title: Environ. Sci. Technol. – volume: 185 start-page: 16 year: 2014 end-page: 23 ident: bib3 article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions publication-title: Environ. Pollut. – volume: 31 start-page: 2562 year: 1997 end-page: 2569 ident: bib14 article-title: A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains publication-title: Environ. Sci. Technol. – volume: 139 start-page: 208 year: 2018 end-page: 219 ident: bib30 article-title: Interaction of toxic chemicals with microplastics: a critical review publication-title: Water Res. – volume: 41 start-page: 2536 year: 2007 end-page: 2541 ident: bib5 article-title: Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal publication-title: Environ. Sci. Technol. – volume: 10 start-page: 3722 year: 2009 ident: bib26 article-title: Biodegradability of plastics publication-title: Int. J. Mol. Sci. – volume: 236 start-page: 442 year: 2018 end-page: 453 ident: bib17 article-title: Potential transfer of organic pollutants from littoral plastics debris to the marine environment publication-title: Environ. Pollut. – volume: 99 start-page: 28 year: 2015 end-page: 34 ident: bib36 article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China publication-title: Mar. Pollut. Bull. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: bib1 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 38 start-page: 4396 year: 2004 end-page: 4408 ident: bib32 article-title: Intercorrelations among degree of geochemical alterations, physicochemical properties, and organic sorption equilibria of kerogen publication-title: Environ. Sci. Technol. – volume: 62 start-page: 1683 year: 2011 end-page: 1692 ident: bib12 article-title: Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches publication-title: Mar. Pollut. Bull. – volume: 51 start-page: 68 year: 2017 end-page: 77 ident: bib9 article-title: Microplastics affect the ecological functioning of an important biogenic habitat publication-title: Environ. Sci. Technol. – volume: 140 start-page: 14 year: 2014 end-page: 21 ident: bib4 article-title: Transport of persistent organic pollutants by microplastics in estuarine conditions publication-title: Estuar. Coast Shelf Sci. – volume: 41 start-page: 8321 year: 2007 end-page: 8327 ident: bib21 article-title: The partitioning of PAHs to egg phospholipids facilitated by copper and proton binding via cation-pi interactions publication-title: Environ. Sci. Technol. – volume: 51 start-page: 12058 year: 2017 end-page: 12060 ident: bib16 article-title: Biodegradability of plastics: challenges and misconceptions publication-title: Environ. Sci. Technol. – volume: 147 start-page: 648 year: 2018 end-page: 655 ident: bib29 article-title: Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: microplastics in comparison to natural sediment publication-title: Ecotoxicol. Environ. Saf. – volume: 60 start-page: 2050 year: 2010 end-page: 2055 ident: bib2 article-title: Association of metals with plastic production pellets in the marine environment publication-title: Mar. Pollut. Bull. – volume: 83 start-page: 15 year: 2011 end-page: 22 ident: bib34 article-title: Effect of surfactants on sorption and desorption of phenanthrene onto black carbon publication-title: Water Environ. Res. – volume: 39 start-page: 3736 year: 2005 end-page: 3742 ident: bib24 article-title: Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes publication-title: Environ. Sci. Technol. – volume: 345 start-page: 640 year: 2018 end-page: 647 ident: bib37 article-title: Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger publication-title: Chem. Eng. J. – volume: 225 start-page: 84 year: 2013 end-page: 92 ident: bib20 article-title: Effect of salting out on the desorption-resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment publication-title: Chem. Eng. J. – volume: 314 start-page: 599 year: 2003 end-page: 612 ident: bib27 article-title: Salting out of chemicals in estuaries: implications for contaminant partitioning and modelling publication-title: Sci. Total Environ. – volume: 35 start-page: 318 issue: 2 year: 2001 ident: 10.1016/j.chemosphere.2018.09.173_bib18 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. doi: 10.1021/es0010498 – volume: 38 start-page: 4396 issue: 16 year: 2004 ident: 10.1016/j.chemosphere.2018.09.173_bib32 article-title: Intercorrelations among degree of geochemical alterations, physicochemical properties, and organic sorption equilibria of kerogen publication-title: Environ. Sci. Technol. doi: 10.1021/es0350381 – volume: 158 start-page: 2821 issue: 9 year: 2010 ident: 10.1016/j.chemosphere.2018.09.173_bib35 article-title: Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.06.025 – volume: 236 start-page: 442 year: 2018 ident: 10.1016/j.chemosphere.2018.09.173_bib17 article-title: Potential transfer of organic pollutants from littoral plastics debris to the marine environment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.114 – volume: 10 start-page: 3722 issue: 9 year: 2009 ident: 10.1016/j.chemosphere.2018.09.173_bib26 article-title: Biodegradability of plastics publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10093722 – volume: 31 start-page: 2562 issue: 9 year: 1997 ident: 10.1016/j.chemosphere.2018.09.173_bib14 article-title: A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains publication-title: Environ. Sci. Technol. doi: 10.1021/es960995e – volume: 83 start-page: 15 issue: 1 year: 2011 ident: 10.1016/j.chemosphere.2018.09.173_bib34 article-title: Effect of surfactants on sorption and desorption of phenanthrene onto black carbon publication-title: Water Environ. Res. doi: 10.2175/106143010X12681059116536 – volume: 86 start-page: 258 issue: 3 year: 2012 ident: 10.1016/j.chemosphere.2018.09.173_bib28 article-title: Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.09.039 – volume: 51 start-page: 13397 issue: 22 year: 2017 ident: 10.1016/j.chemosphere.2018.09.173_bib39 article-title: Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03574 – volume: 110 start-page: 559 issue: 1 year: 2016 ident: 10.1016/j.chemosphere.2018.09.173_bib33 article-title: Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: a case study of polypropylene publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.05.036 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.chemosphere.2018.09.173_bib1 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 51 start-page: 12058 issue: 21 year: 2017 ident: 10.1016/j.chemosphere.2018.09.173_bib16 article-title: Biodegradability of plastics: challenges and misconceptions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04051 – volume: 58 start-page: 1437 issue: 10 year: 2009 ident: 10.1016/j.chemosphere.2018.09.173_bib19 article-title: International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2009.06.014 – volume: 51 start-page: 68 issue: 1 year: 2017 ident: 10.1016/j.chemosphere.2018.09.173_bib9 article-title: Microplastics affect the ecological functioning of an important biogenic habitat publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04496 – volume: 140 start-page: 14 year: 2014 ident: 10.1016/j.chemosphere.2018.09.173_bib4 article-title: Transport of persistent organic pollutants by microplastics in estuarine conditions publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/j.ecss.2014.01.004 – volume: 225 start-page: 84 year: 2013 ident: 10.1016/j.chemosphere.2018.09.173_bib20 article-title: Effect of salting out on the desorption-resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.03.069 – volume: 35 start-page: 132 issue: 2 year: 2017 ident: 10.1016/j.chemosphere.2018.09.173_bib22 article-title: Challenges and opportunities of biodegradable plastics: a mini review publication-title: Waste Manag. Res. doi: 10.1177/0734242X16683272 – volume: 208 start-page: 426 year: 2016 ident: 10.1016/j.chemosphere.2018.09.173_bib8 article-title: Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.10.010 – volume: 39 start-page: 6881 issue: 18 year: 2005 ident: 10.1016/j.chemosphere.2018.09.173_bib6 article-title: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation publication-title: Environ. Sci. Technol. doi: 10.1021/es050191b – volume: 60 start-page: 2050 issue: 11 year: 2010 ident: 10.1016/j.chemosphere.2018.09.173_bib2 article-title: Association of metals with plastic production pellets in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2010.07.014 – volume: 39 start-page: 3736 issue: 10 year: 2005 ident: 10.1016/j.chemosphere.2018.09.173_bib24 article-title: Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes publication-title: Environ. Sci. Technol. doi: 10.1021/es048406p – volume: 314 start-page: 599 year: 2003 ident: 10.1016/j.chemosphere.2018.09.173_bib27 article-title: Salting out of chemicals in estuaries: implications for contaminant partitioning and modelling publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(03)00076-7 – volume: 30 start-page: 1310 issue: 6 year: 2011 ident: 10.1016/j.chemosphere.2018.09.173_bib23 article-title: Impact of coal structural heterogeneity on the nonideal sorption of organic contaminants publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.524 – volume: 46 start-page: 7252 issue: 13 year: 2012 ident: 10.1016/j.chemosphere.2018.09.173_bib10 article-title: Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition publication-title: Environ. Sci. Technol. doi: 10.1021/es301386z – volume: 139 start-page: 208 year: 2018 ident: 10.1016/j.chemosphere.2018.09.173_bib30 article-title: Interaction of toxic chemicals with microplastics: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.04.003 – volume: 216 start-page: 95 year: 2016 ident: 10.1016/j.chemosphere.2018.09.173_bib7 article-title: Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.05.043 – volume: 345 start-page: 640 year: 2018 ident: 10.1016/j.chemosphere.2018.09.173_bib37 article-title: Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.091 – volume: 41 start-page: 8321 issue: 24 year: 2007 ident: 10.1016/j.chemosphere.2018.09.173_bib21 article-title: The partitioning of PAHs to egg phospholipids facilitated by copper and proton binding via cation-pi interactions publication-title: Environ. Sci. Technol. doi: 10.1021/es0718117 – volume: 160 start-page: 42 year: 2012 ident: 10.1016/j.chemosphere.2018.09.173_bib13 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.08.052 – volume: 99 start-page: 28 issue: 1–2 year: 2015 ident: 10.1016/j.chemosphere.2018.09.173_bib36 article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.08.002 – volume: 33 start-page: 1322 issue: 4 year: 2004 ident: 10.1016/j.chemosphere.2018.09.173_bib38 article-title: Cation-π bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces publication-title: J. Environ. Qual. doi: 10.2134/jeq2004.1322 – start-page: 1617 issue: 628–629 year: 2018 ident: 10.1016/j.chemosphere.2018.09.173_bib31 article-title: Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.146 – volume: 95 start-page: 2641 issue: 12 year: 2010 ident: 10.1016/j.chemosphere.2018.09.173_bib15 article-title: Biodegradation and hydrolysis rate of aliphatic aromatic polyester publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2010.07.018 – volume: 41 start-page: 2536 issue: 7 year: 2007 ident: 10.1016/j.chemosphere.2018.09.173_bib5 article-title: Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal publication-title: Environ. Sci. Technol. doi: 10.1021/es062113+ – volume: 147 start-page: 648 year: 2018 ident: 10.1016/j.chemosphere.2018.09.173_bib29 article-title: Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: microplastics in comparison to natural sediment publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.09.029 – volume: 185 start-page: 16 year: 2014 ident: 10.1016/j.chemosphere.2018.09.173_bib3 article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.10.007 – start-page: 140 year: 2007 ident: 10.1016/j.chemosphere.2018.09.173_bib11 – volume: 62 start-page: 1683 issue: 8 year: 2011 ident: 10.1016/j.chemosphere.2018.09.173_bib12 article-title: Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.06.004 |
SSID | ssj0001659 |
Score | 2.6594012 |
Snippet | Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25 |
SubjectTerms | Adsorption biodegradability Biodegradable microplastics copper crystallization Desorption hydrochemistry microplastics organic matter PBAT Phenanthrene phenanthrenes Phenanthrenes - chemistry Phenanthrenes - isolation & purification Plastics - chemistry pollutants Polyesters - chemistry polystyrenes salinity Sorption surface area Vector Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - isolation & purification |
Title | Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics |
URI | https://dx.doi.org/10.1016/j.chemosphere.2018.09.173 https://www.ncbi.nlm.nih.gov/pubmed/30300808 https://www.proquest.com/docview/2117823287 https://www.proquest.com/docview/2176348862 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC5EcfUivh1ftODBPUQnSaeTgBcZlFFZL6vgrUm6K-wsM0lwZg5z8bdblYePgyJ4S3e6oamqVH2VrgfAsQrRT1WknNRm0pGuoScTBo41AaF943WD6irmz53qP8ibx-BxDnptLgyHVTa6v9bplbZuZs4aap6VgwHn-DIa8QMSSjbzXPFTypCl_PT5LczDVUENgWXg8OpfcPQW40V0GRVjzt_nipluxCVP3dD_zEZ9hkErW3S1CisNiBQX9TnXYA7zdVjqtb3b1mHxsipGPduA0d_iqdIKIsmtsDhuh0UmOLwr4UYJpO8ETaWDwnLtCMvpVKIshrOTdDqZDfl1Yjn2GoUpHOIElv8ItNP4txhxRF9JGJzrPW_Cw9Xlfa_vNC0WHEOkmpCqM64hC25j7GKoDPmoaDAk1BhhStzibmIuoovkyyrrWeupANNYhqmXJbGK_C2Yz4scd0Aocstlxl1ys1hKP4oyH9E3xpKN5LvLDkQtUbVp6o9zG4yhbgPN_ut3_NDMD92NNfGjA97r1rIuwvGdTect5_QHidJkLL6z_ajltibm8TVKkmMxHWtymQlW-eRqfrWG9DbpRuV1YLsWldeTE2hgnB7t_uyAe7BMo7j-HbQP85OnKR4QQJqkh9UXcAgLF9e3_bsX5EMTHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUEsviEJLtwVqpB7oIbCJHSeRuKAVaKHApSBxsxJ7oi7aTSJ297CX_vbO5AHtAYTELX5Jlj975pt4PAPwXUcoMx1rL3O58pRv6ctGoedsSGzfBv2wvoq5vNLDG3V-G94uwaB7C8Nula3sb2R6La3bmsN2NQ-r0Yjf-DIbkSFtSlbz8g2sKDq-nMbg4M-jn4evw4YDq9Dj7u9g79HJixZmUk75AT-HzPRjjnnqR_IpJfUUCa2V0ek6rLUsUhw3E_0AS1hswOqgS962AW9P6mjUi02Y_Crva7Eg0sIJh9OuWOaC_btSzpRAAk9QVTYqHQePcPyeSlTleLGfzWeLMTenjp2vUdjSIyiw-k2snco_xIRd-ioi4Rzw-SPcnJ5cD4Zem2PBsyrSM5J11rekwl2CfYy0JSMVLUZEG2PMCC5OJ-Yj-kjGrHaBc4EOMUtUlAV5muhYfoLloizwMwhNdrnKOU1unigl4ziXiNJaR0qSLy97EHeLamwbgJzzYIxN52l2Z_7BwzAepp8YwqMHwcPQqonC8ZJBRx1y5r8tZUhbvGT4Xoe2IfD4HiUtsJxPDdnMxKsk2ZrP9SHBTcJRBz3YarbKw8yJNTBRj7-8boLfYHV4fXlhLs6ufn6F99SSNP-GtmF5dj_HHWJLs2y3Pg1_AQQ6FKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sorption+and+desorption+of+phenanthrene+on+biodegradable+poly%28butylene+adipate+co-terephtalate%29+microplastics&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Zuo%2C+Lin-Zi&rft.au=Li%2C+Heng-Xiang&rft.au=Lin%2C+Lang&rft.au=Sun%2C+Yu-Xin&rft.date=2019-01-01&rft.issn=0045-6535&rft.volume=215&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.09.173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2018_09_173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |