Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics

Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were invest...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 215; pp. 25 - 32
Main Authors Zuo, Lin-Zi, Li, Heng-Xiang, Lin, Lang, Sun, Yu-Xin, Diao, Zeng-Hui, Liu, Shan, Zhang, Zong-Yao, Xu, Xiang-Rong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics−polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect. [Display omitted] •Biodegradable microplastics sorbed/desorbed more PHEN than conventional ones.•Sorption/desorption capacities depended on the content of rubbery subfraction.•Plastic additives didn't alter the microplastics adsorption process.•High salinity and low DOM strengthen the sorption of PHEN onto microplastics.
AbstractList Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics−polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect. [Display omitted] •Biodegradable microplastics sorbed/desorbed more PHEN than conventional ones.•Sorption/desorption capacities depended on the content of rubbery subfraction.•Plastic additives didn't alter the microplastics adsorption process.•High salinity and low DOM strengthen the sorption of PHEN onto microplastics.
Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic-poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics-polyethylene (PE and PE ) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PE were higher than PE and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.
Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic−poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics−polyethylene (PEc and PEᵥ) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEᵥ and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu²⁺ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.
Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic-poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics-polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic-poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics-polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.
Author Li, Heng-Xiang
Sun, Yu-Xin
Zhang, Zong-Yao
Lin, Lang
Diao, Zeng-Hui
Xu, Xiang-Rong
Zuo, Lin-Zi
Liu, Shan
Author_xml – sequence: 1
  givenname: Lin-Zi
  surname: Zuo
  fullname: Zuo, Lin-Zi
  organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
– sequence: 2
  givenname: Heng-Xiang
  surname: Li
  fullname: Li, Heng-Xiang
  organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
– sequence: 3
  givenname: Lang
  surname: Lin
  fullname: Lin, Lang
  organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
– sequence: 4
  givenname: Yu-Xin
  orcidid: 0000-0003-0674-8709
  surname: Sun
  fullname: Sun, Yu-Xin
  organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
– sequence: 5
  givenname: Zeng-Hui
  surname: Diao
  fullname: Diao, Zeng-Hui
  organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
– sequence: 6
  givenname: Shan
  surname: Liu
  fullname: Liu, Shan
  organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
– sequence: 7
  givenname: Zong-Yao
  surname: Zhang
  fullname: Zhang, Zong-Yao
  organization: State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
– sequence: 8
  givenname: Xiang-Rong
  surname: Xu
  fullname: Xu, Xiang-Rong
  email: xuxr@scsio.ac.cn
  organization: CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30300808$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrGzEUhUVJaZy0f6FMd-liJnrM6LEqxfQFgSyarIVGuq5lNKOpJAf87yvjpJSuvLrcq-8cru65QhdznAGhDwR3BBN-u-vsFqaYly0k6CgmssOqI4K9QisihWoJVfICrTDuh5YPbLhEVznvMK7iQb1BlwwzjCWWKzT9jGkpPs6NmV3jIL-0cdNU-9nMZZtghqaORh8d_ErGmTFAs8RwuBn35RCOz8b5xRRobGxLXWrZFhNq_7GZvE1xCSYXb_Nb9HpjQoZ3z_UaPX798rD-3t7df_ux_nzX2l7w0ipiiR0ocQowCG6p6MGCUEpJGAdFLWBGAAgIwrijzlE-wKh6MdKNUVyya3Rz8l1S_L2HXPTks4UQzAxxnzUlgrNeSk7PQImQlFEpKvr-Gd2PEzi9JD-ZdNAv16yAOgH1yzkn2PxFCNbH5PRO_5OcPiansdI1uar99J_W-mKOUZRkfDjLYX1ygHrZJw9JZ-thtuB8Alu0i_4Mlz-rx78H
CitedBy_id crossref_primary_10_3390_jmse9040445
crossref_primary_10_1016_j_chemosphere_2023_138130
crossref_primary_10_1016_j_eti_2022_102408
crossref_primary_10_3390_molecules26041164
crossref_primary_10_1017_plc_2024_26
crossref_primary_10_3390_w15234126
crossref_primary_10_1016_j_envpol_2024_125108
crossref_primary_10_1016_j_jhazmat_2020_124857
crossref_primary_10_1080_10643389_2020_1856594
crossref_primary_10_1016_j_scitotenv_2021_146528
crossref_primary_10_1016_j_gsd_2022_100852
crossref_primary_10_1016_j_chemosphere_2023_138256
crossref_primary_10_1016_j_jconhyd_2024_104486
crossref_primary_10_1016_j_chemosphere_2024_143211
crossref_primary_10_1007_s11356_022_23027_3
crossref_primary_10_1016_j_envpol_2022_119591
crossref_primary_10_1016_j_envint_2022_107711
crossref_primary_10_1016_j_cclet_2024_109861
crossref_primary_10_1007_s11368_022_03193_0
crossref_primary_10_1016_j_scitotenv_2020_142427
crossref_primary_10_1016_j_chemosphere_2019_124593
crossref_primary_10_1016_j_chemosphere_2022_134865
crossref_primary_10_1016_j_chemosphere_2023_138920
crossref_primary_10_1016_j_scitotenv_2019_134139
crossref_primary_10_1016_j_chemosphere_2020_128708
crossref_primary_10_1016_j_envpol_2020_114347
crossref_primary_10_1007_s11368_021_03071_1
crossref_primary_10_1016_j_chemosphere_2023_139360
crossref_primary_10_1016_j_hazadv_2023_100298
crossref_primary_10_1016_j_watres_2022_118068
crossref_primary_10_1016_j_envpol_2020_114469
crossref_primary_10_3390_w13121713
crossref_primary_10_1016_j_scitotenv_2023_168539
crossref_primary_10_1016_j_marenvres_2024_106381
crossref_primary_10_1021_acs_est_0c02838
crossref_primary_10_1016_j_jhazmat_2022_130169
crossref_primary_10_1007_s11356_022_22897_x
crossref_primary_10_1007_s10311_024_01703_9
crossref_primary_10_1016_j_scitotenv_2023_168400
crossref_primary_10_1016_j_coche_2021_100695
crossref_primary_10_1007_s11356_023_30720_4
crossref_primary_10_1111_gwmr_12633
crossref_primary_10_1016_j_ijbiomac_2024_136014
crossref_primary_10_1016_j_watres_2020_116118
crossref_primary_10_2166_ws_2022_189
crossref_primary_10_1080_10643389_2024_2363511
crossref_primary_10_1016_j_aquatox_2023_106693
crossref_primary_10_1021_acs_est_9b01853
crossref_primary_10_1021_acs_est_4c14716
crossref_primary_10_1007_s10311_024_01730_6
crossref_primary_10_1016_j_envpol_2021_117537
crossref_primary_10_3390_su17020516
crossref_primary_10_1016_j_envpol_2021_116449
crossref_primary_10_1016_j_jhazmat_2019_121574
crossref_primary_10_1016_j_envpol_2021_118503
crossref_primary_10_1016_j_scitotenv_2023_167430
crossref_primary_10_3390_w15112133
crossref_primary_10_1002_pen_25734
crossref_primary_10_1007_s10311_023_01601_6
crossref_primary_10_1016_j_scitotenv_2024_172455
crossref_primary_10_1016_j_carbpol_2022_120181
crossref_primary_10_1016_j_scitotenv_2024_174512
crossref_primary_10_1016_j_scitotenv_2020_137729
crossref_primary_10_1016_j_scitotenv_2021_152049
crossref_primary_10_1016_j_jcoa_2021_100001
crossref_primary_10_1016_j_scitotenv_2024_177589
crossref_primary_10_1016_j_scitotenv_2022_160866
crossref_primary_10_1007_s11368_022_03218_8
crossref_primary_10_1016_j_jhazmat_2023_131070
crossref_primary_10_1016_j_marpolbul_2020_111820
crossref_primary_10_1016_j_jece_2022_108832
crossref_primary_10_1021_acsenvironau_2c00047
crossref_primary_10_1016_j_scitotenv_2020_139472
crossref_primary_10_1016_j_scitotenv_2023_166855
crossref_primary_10_1021_acs_est_9b02834
crossref_primary_10_1007_s44169_023_00035_z
crossref_primary_10_1007_s44169_023_00057_7
crossref_primary_10_1016_j_envpol_2019_07_095
crossref_primary_10_1007_s11356_023_26390_x
crossref_primary_10_1016_j_watres_2023_119939
crossref_primary_10_3390_toxics11060474
crossref_primary_10_1016_j_ecoenv_2022_114260
crossref_primary_10_1016_j_scitotenv_2024_175735
crossref_primary_10_1007_s00244_021_00856_w
crossref_primary_10_1016_j_jes_2024_05_018
crossref_primary_10_1016_j_aquatox_2021_106037
crossref_primary_10_1016_j_watres_2021_117123
crossref_primary_10_1016_j_scitotenv_2021_145403
crossref_primary_10_1021_acs_est_3c01128
crossref_primary_10_1016_j_jhazmat_2019_121193
crossref_primary_10_1016_j_envpol_2024_124616
crossref_primary_10_1016_j_chemosphere_2022_137374
crossref_primary_10_1039_D3NJ03950A
crossref_primary_10_2139_ssrn_4094661
crossref_primary_10_1016_j_chemosphere_2022_137014
crossref_primary_10_1016_j_emcon_2025_100504
crossref_primary_10_1016_j_jhazmat_2023_132737
crossref_primary_10_1007_s11356_024_34743_3
crossref_primary_10_1080_03067319_2022_2128791
crossref_primary_10_1016_j_chemosphere_2023_139042
crossref_primary_10_1016_j_jhazmat_2020_124312
crossref_primary_10_1016_j_envpol_2019_06_030
crossref_primary_10_1016_j_jece_2024_114974
crossref_primary_10_1016_j_scitotenv_2023_166828
crossref_primary_10_1016_j_scitotenv_2020_143875
crossref_primary_10_1016_j_jhazmat_2023_130761
crossref_primary_10_1016_j_envpol_2023_121877
crossref_primary_10_3390_su141912872
crossref_primary_10_1016_j_chemosphere_2024_141773
crossref_primary_10_1016_j_scitotenv_2021_147289
crossref_primary_10_1016_j_marpolbul_2025_117832
crossref_primary_10_1016_j_jhazmat_2025_137641
crossref_primary_10_1016_j_envres_2024_118960
crossref_primary_10_1016_j_scitotenv_2019_06_241
crossref_primary_10_1016_j_envint_2024_108625
crossref_primary_10_1016_j_scitotenv_2022_157010
crossref_primary_10_3390_toxics12120922
crossref_primary_10_1016_j_envpol_2022_120357
crossref_primary_10_1021_acs_est_4c10835
crossref_primary_10_1007_s00128_022_03486_7
crossref_primary_10_1016_j_envpol_2022_119258
crossref_primary_10_1016_j_envpol_2022_120919
crossref_primary_10_1007_s10653_024_02076_2
crossref_primary_10_1016_j_chemosphere_2024_141300
crossref_primary_10_1016_j_chemosphere_2024_142630
crossref_primary_10_1016_j_jenvman_2024_121777
crossref_primary_10_1016_j_jhazmat_2020_123363
crossref_primary_10_1016_j_scitotenv_2024_175643
crossref_primary_10_1016_j_marpolbul_2023_114852
crossref_primary_10_1016_j_marpolbul_2022_113806
crossref_primary_10_1007_s11783_021_1517_0
crossref_primary_10_1016_j_jece_2024_111887
crossref_primary_10_1039_D4EN01197J
crossref_primary_10_1016_j_scitotenv_2019_135978
crossref_primary_10_1016_j_scitotenv_2023_164359
crossref_primary_10_3390_molecules29020333
crossref_primary_10_1016_j_scitotenv_2022_153609
crossref_primary_10_1016_j_scitotenv_2023_163261
crossref_primary_10_1007_s10661_024_12721_z
crossref_primary_10_1016_j_marpolbul_2021_113086
crossref_primary_10_3390_app132312835
crossref_primary_10_1016_j_eti_2022_102495
crossref_primary_10_1002_lob_10597
crossref_primary_10_1016_j_chemosphere_2019_03_162
crossref_primary_10_1007_s11356_023_30229_w
crossref_primary_10_1016_j_chemosphere_2020_128553
crossref_primary_10_1016_j_scitotenv_2023_161867
crossref_primary_10_1016_j_scitotenv_2024_172380
crossref_primary_10_1016_j_arr_2024_102405
crossref_primary_10_1088_1748_9326_ac548d
crossref_primary_10_1016_j_marpolbul_2019_05_050
crossref_primary_10_1039_D4EM00062E
crossref_primary_10_3390_foods13213511
crossref_primary_10_1016_j_jhazmat_2023_131603
crossref_primary_10_1016_j_envpol_2023_123061
crossref_primary_10_1016_j_scitotenv_2024_170299
crossref_primary_10_1016_j_marpolbul_2020_111765
crossref_primary_10_3390_w16030499
crossref_primary_10_1590_0104_1428_20230009
crossref_primary_10_1016_j_chemosphere_2020_128541
crossref_primary_10_1007_s10750_022_04999_2
crossref_primary_10_1016_j_colsurfa_2020_125800
crossref_primary_10_1007_s10311_025_01823_w
crossref_primary_10_1016_j_eti_2020_100971
crossref_primary_10_1016_j_chemosphere_2020_127206
crossref_primary_10_1016_j_chemosphere_2019_125628
crossref_primary_10_1016_j_envres_2023_117897
crossref_primary_10_1007_s11356_023_27906_1
crossref_primary_10_1016_j_wasman_2020_06_011
crossref_primary_10_1016_j_jenvman_2021_113041
crossref_primary_10_1016_j_jksus_2022_102111
crossref_primary_10_1016_j_molliq_2022_119819
crossref_primary_10_1016_j_cej_2021_129085
crossref_primary_10_1021_envhealth_3c00174
crossref_primary_10_1007_s11270_023_06847_y
crossref_primary_10_1007_s11274_024_04021_y
crossref_primary_10_1007_s11356_022_20723_y
crossref_primary_10_1016_j_chemosphere_2021_131670
crossref_primary_10_1002_etc_4902
crossref_primary_10_1016_j_envint_2022_107244
crossref_primary_10_1016_j_scitotenv_2021_150141
crossref_primary_10_1016_j_chemosphere_2020_126064
crossref_primary_10_1021_acssuschemeng_1c00801
crossref_primary_10_1016_j_jes_2024_09_028
crossref_primary_10_1016_j_jclepro_2024_144044
crossref_primary_10_1016_j_scitotenv_2020_140975
crossref_primary_10_1016_j_eti_2024_103662
crossref_primary_10_1186_s40645_020_00405_4
crossref_primary_10_3390_w14203288
crossref_primary_10_1016_j_envpol_2025_126073
crossref_primary_10_1080_10934529_2023_2177458
crossref_primary_10_1016_j_trac_2023_117294
crossref_primary_10_1016_j_jclepro_2021_127816
crossref_primary_10_1080_09593330_2022_2077133
crossref_primary_10_1080_10643389_2019_1694822
crossref_primary_10_1016_j_marpolbul_2020_111774
crossref_primary_10_1021_acsapm_4c00403
crossref_primary_10_3389_fenvs_2021_678574
crossref_primary_10_1016_j_jhazmat_2021_127079
crossref_primary_10_1111_1365_2664_14777
crossref_primary_10_1016_j_scitotenv_2024_174913
crossref_primary_10_1016_j_etap_2022_104013
crossref_primary_10_1016_j_envpol_2024_123809
crossref_primary_10_1016_j_envpol_2022_119434
crossref_primary_10_1016_j_trac_2023_117391
crossref_primary_10_1016_j_scitotenv_2021_145254
crossref_primary_10_1007_s10661_023_11890_7
crossref_primary_10_3390_ijerph19159610
crossref_primary_10_1016_j_envpol_2023_122573
crossref_primary_10_1016_j_envpol_2022_120865
crossref_primary_10_1021_acs_langmuir_3c01536
crossref_primary_10_1007_s11270_023_06201_2
crossref_primary_10_1016_j_clet_2022_100404
crossref_primary_10_1007_s11356_024_33929_z
crossref_primary_10_1016_j_envpol_2023_121910
crossref_primary_10_1016_j_jhazmat_2024_134809
crossref_primary_10_1016_j_watres_2023_120185
crossref_primary_10_1080_03067319_2022_2148528
crossref_primary_10_1016_j_envpol_2020_113988
crossref_primary_10_1016_j_trac_2023_117381
crossref_primary_10_1002_gch2_202100026
crossref_primary_10_1016_j_envres_2021_112122
crossref_primary_10_1016_j_apsoil_2022_104667
crossref_primary_10_59440_ceer_186048
crossref_primary_10_1039_D1VA00012H
crossref_primary_10_1021_acsagscitech_0c00005
crossref_primary_10_1016_j_scitotenv_2023_164008
crossref_primary_10_1016_j_chemosphere_2022_135697
crossref_primary_10_1016_j_rsma_2021_101845
crossref_primary_10_1016_j_chemosphere_2020_126706
crossref_primary_10_1016_j_jhazmat_2022_129652
crossref_primary_10_1007_s11356_021_16435_4
crossref_primary_10_1016_j_envpol_2020_115496
crossref_primary_10_1039_D1EM00443C
Cites_doi 10.1021/es0010498
10.1021/es0350381
10.1016/j.envpol.2010.06.025
10.1016/j.envpol.2018.01.114
10.3390/ijms10093722
10.1021/es960995e
10.2175/106143010X12681059116536
10.1016/j.chemosphere.2011.09.039
10.1021/acs.est.7b03574
10.1016/j.marpolbul.2016.05.036
10.1016/j.chemosphere.2013.10.071
10.1021/acs.est.7b04051
10.1016/j.marpolbul.2009.06.014
10.1021/acs.est.6b04496
10.1016/j.ecss.2014.01.004
10.1016/j.cej.2013.03.069
10.1177/0734242X16683272
10.1016/j.envpol.2015.10.010
10.1021/es050191b
10.1016/j.marpolbul.2010.07.014
10.1021/es048406p
10.1016/S0048-9697(03)00076-7
10.1002/etc.524
10.1021/es301386z
10.1016/j.watres.2018.04.003
10.1016/j.envpol.2016.05.043
10.1016/j.cej.2018.01.091
10.1021/es0718117
10.1016/j.envpol.2011.08.052
10.1016/j.marpolbul.2015.08.002
10.2134/jeq2004.1322
10.1016/j.scitotenv.2018.02.146
10.1016/j.polymdegradstab.2010.07.018
10.1021/es062113+
10.1016/j.ecoenv.2017.09.029
10.1016/j.envpol.2013.10.007
10.1016/j.marpolbul.2011.06.004
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2018.09.173
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 32
ExternalDocumentID 30300808
10_1016_j_chemosphere_2018_09_173
S0045653518318393
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c476t-91c1c521d9e0e76c274ece79998eb592ce031ee1e7136d2dd265eb947b2fa9683
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Aug 01 03:40:20 EDT 2025
Fri Jul 11 02:18:09 EDT 2025
Wed Feb 19 02:33:17 EST 2025
Tue Jul 01 02:33:31 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
Fri Feb 23 02:48:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sorption
PBAT
Phenanthrene
Desorption
Biodegradable microplastics
Vector
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-91c1c521d9e0e76c274ece79998eb592ce031ee1e7136d2dd265eb947b2fa9683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0674-8709
PMID 30300808
PQID 2117823287
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2176348862
proquest_miscellaneous_2117823287
pubmed_primary_30300808
crossref_primary_10_1016_j_chemosphere_2018_09_173
crossref_citationtrail_10_1016_j_chemosphere_2018_09_173
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_09_173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Wong, Chen, Lu, Wang, Zeng (bib30) 2018; 139
Ashton, Holmes, Turner (bib2) 2010; 60
Chen, Zhu, Sun (bib5) 2007; 41
Huang, Weber (bib14) 1997; 31
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib1) 2014; 99
Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bib18) 2001; 35
Zhang, Lin, Wang, Gan (bib35) 2010; 158
Kijchavengkul, Auras, Rubino, Selke, Ngouajio, Fernandez (bib15) 2010; 95
Zhang, He (bib34) 2011; 83
Wang, Wang (bib29) 2018; 147
Qu, Wang, Zhu (bib21) 2007; 41
Bakir, Rowland, Thompson (bib4) 2014; 140
He, Zhang, Chen, Dong (bib11) 2007
Shi, Fu, Li, Mao, Zheng, Zhu (bib23) 2011; 30
Van, Rochman, Flores, Hill, Vargas, Vargas, Hoh (bib28) 2012; 86
Wang, Chen, Zhang, Wang, Yu, Zheng, Zheng (bib31) 2018
Zhang, Ma, Zhang, Wang, Wang, Wang, Ma (bib36) 2015; 99
León, García, González, Samper, Fernández-González, Muniategui-Lorenzo (bib17) 2018; 236
Ogata, Takada, Mizukawa, Hirai, Iwasa, Endo, Mato, Saha, Okuda, Nakashima, Murakami, Zurcher, Booyatumanondo, Zakaria, Dung, Gordon, Miguez, Suzuki, Moore, Karapanagioti, Weerts, McClurg, Burres, Smith, Van Velkenburg, Lang, Lang, Laursen, Danner, Stewardson, Thompson (bib19) 2009; 58
Rujnic-Sokele, Pilipovic (bib22) 2017; 35
Holmes, Turner, Thompson (bib13) 2012; 160
Green, Boots, O'Connor, Thompson (bib9) 2017; 51
Yang, Huang, Xiao, Yu, Peng, Fu, Sheng (bib32) 2004; 38
Hirai, Takada, Ogata, Yamashita, Mizukawa, Saha, Kwan, Moore, Gray, Laursen, Zettler, Farrington, Reddy, Peacock, Ward (bib12) 2011; 62
Oh, Wang, Shin, Song (bib20) 2013; 225
Tokiwa, Calabia, Ugwu, Aiba (bib26) 2009; 10
Zhu, Herbert, Schlautman, Carraway, Hur (bib38) 2004; 33
Green, Boots, Sigwart, Jiang, Rocha (bib8) 2016; 208
Zhan, Wang, Peng, Xie, Huang, Gao (bib33) 2016; 110
Bakir, Rowland, Thompson (bib3) 2014; 185
Kubowicz, Booth (bib16) 2017; 51
Ter Laak, Durjava, Struijs, Hermens (bib24) 2005; 39
Turner (bib27) 2003; 314
Zhou, Wu, Su, Xin, Chai (bib37) 2018; 345
Guo, Wang, Zhou, Kong, Tao, Xing (bib10) 2012; 46
Green (bib7) 2016; 216
Ziajahromi, Kumar, Neale, Leusch (bib39) 2017; 51
Cornelissen, Gustafsson, Bucheli, Jonker, Koelmans, Van Noort (bib6) 2005; 39
Cornelissen (10.1016/j.chemosphere.2018.09.173_bib6) 2005; 39
Chen (10.1016/j.chemosphere.2018.09.173_bib5) 2007; 41
Green (10.1016/j.chemosphere.2018.09.173_bib9) 2017; 51
Guo (10.1016/j.chemosphere.2018.09.173_bib10) 2012; 46
Zhang (10.1016/j.chemosphere.2018.09.173_bib34) 2011; 83
Ogata (10.1016/j.chemosphere.2018.09.173_bib19) 2009; 58
Van (10.1016/j.chemosphere.2018.09.173_bib28) 2012; 86
Bakir (10.1016/j.chemosphere.2018.09.173_bib3) 2014; 185
Green (10.1016/j.chemosphere.2018.09.173_bib8) 2016; 208
Zhou (10.1016/j.chemosphere.2018.09.173_bib37) 2018; 345
Ahmad (10.1016/j.chemosphere.2018.09.173_bib1) 2014; 99
Kubowicz (10.1016/j.chemosphere.2018.09.173_bib16) 2017; 51
Qu (10.1016/j.chemosphere.2018.09.173_bib21) 2007; 41
Yang (10.1016/j.chemosphere.2018.09.173_bib32) 2004; 38
He (10.1016/j.chemosphere.2018.09.173_bib11) 2007
Huang (10.1016/j.chemosphere.2018.09.173_bib14) 1997; 31
León (10.1016/j.chemosphere.2018.09.173_bib17) 2018; 236
Hirai (10.1016/j.chemosphere.2018.09.173_bib12) 2011; 62
Green (10.1016/j.chemosphere.2018.09.173_bib7) 2016; 216
Wang (10.1016/j.chemosphere.2018.09.173_bib29) 2018; 147
Ziajahromi (10.1016/j.chemosphere.2018.09.173_bib39) 2017; 51
Zhu (10.1016/j.chemosphere.2018.09.173_bib38) 2004; 33
Bakir (10.1016/j.chemosphere.2018.09.173_bib4) 2014; 140
Ashton (10.1016/j.chemosphere.2018.09.173_bib2) 2010; 60
Tokiwa (10.1016/j.chemosphere.2018.09.173_bib26) 2009; 10
Turner (10.1016/j.chemosphere.2018.09.173_bib27) 2003; 314
Ter Laak (10.1016/j.chemosphere.2018.09.173_bib24) 2005; 39
Mato (10.1016/j.chemosphere.2018.09.173_bib18) 2001; 35
Zhang (10.1016/j.chemosphere.2018.09.173_bib36) 2015; 99
Rujnic-Sokele (10.1016/j.chemosphere.2018.09.173_bib22) 2017; 35
Wang (10.1016/j.chemosphere.2018.09.173_bib31) 2018
Oh (10.1016/j.chemosphere.2018.09.173_bib20) 2013; 225
Shi (10.1016/j.chemosphere.2018.09.173_bib23) 2011; 30
Holmes (10.1016/j.chemosphere.2018.09.173_bib13) 2012; 160
Kijchavengkul (10.1016/j.chemosphere.2018.09.173_bib15) 2010; 95
Zhan (10.1016/j.chemosphere.2018.09.173_bib33) 2016; 110
Zhang (10.1016/j.chemosphere.2018.09.173_bib35) 2010; 158
Wang (10.1016/j.chemosphere.2018.09.173_bib30) 2018; 139
References_xml – volume: 216
  start-page: 95
  year: 2016
  end-page: 103
  ident: bib7
  article-title: Effects of microplastics on European flat oysters,
  publication-title: Environ. Pollut.
– volume: 95
  start-page: 2641
  year: 2010
  end-page: 2647
  ident: bib15
  article-title: Biodegradation and hydrolysis rate of aliphatic aromatic polyester
  publication-title: Polym. Degrad. Stabil.
– volume: 33
  start-page: 1322
  year: 2004
  end-page: 1330
  ident: bib38
  article-title: Cation-π bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces
  publication-title: J. Environ. Qual.
– volume: 86
  start-page: 258
  year: 2012
  end-page: 263
  ident: bib28
  article-title: Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California
  publication-title: Chemosphere
– volume: 58
  start-page: 1437
  year: 2009
  end-page: 1446
  ident: bib19
  article-title: International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs
  publication-title: Mar. Pollut. Bull.
– volume: 160
  start-page: 42
  year: 2012
  end-page: 48
  ident: bib13
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
– volume: 46
  start-page: 7252
  year: 2012
  end-page: 7259
  ident: bib10
  article-title: Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition
  publication-title: Environ. Sci. Technol.
– volume: 110
  start-page: 559
  year: 2016
  end-page: 563
  ident: bib33
  article-title: Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: a case study of polypropylene
  publication-title: Mar. Pollut. Bull.
– volume: 39
  start-page: 6881
  year: 2005
  end-page: 6895
  ident: bib6
  article-title: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation
  publication-title: Environ. Sci. Technol.
– start-page: 140
  year: 2007
  ident: bib11
  article-title: Playmer Physics
– volume: 35
  start-page: 132
  year: 2017
  end-page: 140
  ident: bib22
  article-title: Challenges and opportunities of biodegradable plastics: a mini review
  publication-title: Waste Manag. Res.
– volume: 30
  start-page: 1310
  year: 2011
  end-page: 1319
  ident: bib23
  article-title: Impact of coal structural heterogeneity on the nonideal sorption of organic contaminants
  publication-title: Environ. Toxicol. Chem.
– volume: 35
  start-page: 318
  year: 2001
  end-page: 324
  ident: bib18
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
– start-page: 1617
  year: 2018
  end-page: 1626
  ident: bib31
  article-title: Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China
  publication-title: Sci. Total Environ.
– volume: 208
  start-page: 426
  year: 2016
  end-page: 434
  ident: bib8
  article-title: Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (
  publication-title: Environ. Pollut.
– volume: 158
  start-page: 2821
  year: 2010
  end-page: 2825
  ident: bib35
  article-title: Effect of
  publication-title: Environ. Pollut.
– volume: 51
  start-page: 13397
  year: 2017
  end-page: 13406
  ident: bib39
  article-title: Impact of microplastic beads and fibers on waterflea (
  publication-title: Environ. Sci. Technol.
– volume: 185
  start-page: 16
  year: 2014
  end-page: 23
  ident: bib3
  article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions
  publication-title: Environ. Pollut.
– volume: 31
  start-page: 2562
  year: 1997
  end-page: 2569
  ident: bib14
  article-title: A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains
  publication-title: Environ. Sci. Technol.
– volume: 139
  start-page: 208
  year: 2018
  end-page: 219
  ident: bib30
  article-title: Interaction of toxic chemicals with microplastics: a critical review
  publication-title: Water Res.
– volume: 41
  start-page: 2536
  year: 2007
  end-page: 2541
  ident: bib5
  article-title: Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 3722
  year: 2009
  ident: bib26
  article-title: Biodegradability of plastics
  publication-title: Int. J. Mol. Sci.
– volume: 236
  start-page: 442
  year: 2018
  end-page: 453
  ident: bib17
  article-title: Potential transfer of organic pollutants from littoral plastics debris to the marine environment
  publication-title: Environ. Pollut.
– volume: 99
  start-page: 28
  year: 2015
  end-page: 34
  ident: bib36
  article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China
  publication-title: Mar. Pollut. Bull.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bib1
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 38
  start-page: 4396
  year: 2004
  end-page: 4408
  ident: bib32
  article-title: Intercorrelations among degree of geochemical alterations, physicochemical properties, and organic sorption equilibria of kerogen
  publication-title: Environ. Sci. Technol.
– volume: 62
  start-page: 1683
  year: 2011
  end-page: 1692
  ident: bib12
  article-title: Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches
  publication-title: Mar. Pollut. Bull.
– volume: 51
  start-page: 68
  year: 2017
  end-page: 77
  ident: bib9
  article-title: Microplastics affect the ecological functioning of an important biogenic habitat
  publication-title: Environ. Sci. Technol.
– volume: 140
  start-page: 14
  year: 2014
  end-page: 21
  ident: bib4
  article-title: Transport of persistent organic pollutants by microplastics in estuarine conditions
  publication-title: Estuar. Coast Shelf Sci.
– volume: 41
  start-page: 8321
  year: 2007
  end-page: 8327
  ident: bib21
  article-title: The partitioning of PAHs to egg phospholipids facilitated by copper and proton binding via cation-pi interactions
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 12058
  year: 2017
  end-page: 12060
  ident: bib16
  article-title: Biodegradability of plastics: challenges and misconceptions
  publication-title: Environ. Sci. Technol.
– volume: 147
  start-page: 648
  year: 2018
  end-page: 655
  ident: bib29
  article-title: Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: microplastics in comparison to natural sediment
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 60
  start-page: 2050
  year: 2010
  end-page: 2055
  ident: bib2
  article-title: Association of metals with plastic production pellets in the marine environment
  publication-title: Mar. Pollut. Bull.
– volume: 83
  start-page: 15
  year: 2011
  end-page: 22
  ident: bib34
  article-title: Effect of surfactants on sorption and desorption of phenanthrene onto black carbon
  publication-title: Water Environ. Res.
– volume: 39
  start-page: 3736
  year: 2005
  end-page: 3742
  ident: bib24
  article-title: Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes
  publication-title: Environ. Sci. Technol.
– volume: 345
  start-page: 640
  year: 2018
  end-page: 647
  ident: bib37
  article-title: Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger
  publication-title: Chem. Eng. J.
– volume: 225
  start-page: 84
  year: 2013
  end-page: 92
  ident: bib20
  article-title: Effect of salting out on the desorption-resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment
  publication-title: Chem. Eng. J.
– volume: 314
  start-page: 599
  year: 2003
  end-page: 612
  ident: bib27
  article-title: Salting out of chemicals in estuaries: implications for contaminant partitioning and modelling
  publication-title: Sci. Total Environ.
– volume: 35
  start-page: 318
  issue: 2
  year: 2001
  ident: 10.1016/j.chemosphere.2018.09.173_bib18
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0010498
– volume: 38
  start-page: 4396
  issue: 16
  year: 2004
  ident: 10.1016/j.chemosphere.2018.09.173_bib32
  article-title: Intercorrelations among degree of geochemical alterations, physicochemical properties, and organic sorption equilibria of kerogen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0350381
– volume: 158
  start-page: 2821
  issue: 9
  year: 2010
  ident: 10.1016/j.chemosphere.2018.09.173_bib35
  article-title: Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.06.025
– volume: 236
  start-page: 442
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.173_bib17
  article-title: Potential transfer of organic pollutants from littoral plastics debris to the marine environment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.114
– volume: 10
  start-page: 3722
  issue: 9
  year: 2009
  ident: 10.1016/j.chemosphere.2018.09.173_bib26
  article-title: Biodegradability of plastics
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10093722
– volume: 31
  start-page: 2562
  issue: 9
  year: 1997
  ident: 10.1016/j.chemosphere.2018.09.173_bib14
  article-title: A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960995e
– volume: 83
  start-page: 15
  issue: 1
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.173_bib34
  article-title: Effect of surfactants on sorption and desorption of phenanthrene onto black carbon
  publication-title: Water Environ. Res.
  doi: 10.2175/106143010X12681059116536
– volume: 86
  start-page: 258
  issue: 3
  year: 2012
  ident: 10.1016/j.chemosphere.2018.09.173_bib28
  article-title: Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.09.039
– volume: 51
  start-page: 13397
  issue: 22
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.173_bib39
  article-title: Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03574
– volume: 110
  start-page: 559
  issue: 1
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.173_bib33
  article-title: Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: a case study of polypropylene
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.05.036
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.173_bib1
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 51
  start-page: 12058
  issue: 21
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.173_bib16
  article-title: Biodegradability of plastics: challenges and misconceptions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04051
– volume: 58
  start-page: 1437
  issue: 10
  year: 2009
  ident: 10.1016/j.chemosphere.2018.09.173_bib19
  article-title: International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2009.06.014
– volume: 51
  start-page: 68
  issue: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.173_bib9
  article-title: Microplastics affect the ecological functioning of an important biogenic habitat
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04496
– volume: 140
  start-page: 14
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.173_bib4
  article-title: Transport of persistent organic pollutants by microplastics in estuarine conditions
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/j.ecss.2014.01.004
– volume: 225
  start-page: 84
  year: 2013
  ident: 10.1016/j.chemosphere.2018.09.173_bib20
  article-title: Effect of salting out on the desorption-resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.03.069
– volume: 35
  start-page: 132
  issue: 2
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.173_bib22
  article-title: Challenges and opportunities of biodegradable plastics: a mini review
  publication-title: Waste Manag. Res.
  doi: 10.1177/0734242X16683272
– volume: 208
  start-page: 426
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.173_bib8
  article-title: Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.10.010
– volume: 39
  start-page: 6881
  issue: 18
  year: 2005
  ident: 10.1016/j.chemosphere.2018.09.173_bib6
  article-title: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050191b
– volume: 60
  start-page: 2050
  issue: 11
  year: 2010
  ident: 10.1016/j.chemosphere.2018.09.173_bib2
  article-title: Association of metals with plastic production pellets in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2010.07.014
– volume: 39
  start-page: 3736
  issue: 10
  year: 2005
  ident: 10.1016/j.chemosphere.2018.09.173_bib24
  article-title: Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048406p
– volume: 314
  start-page: 599
  year: 2003
  ident: 10.1016/j.chemosphere.2018.09.173_bib27
  article-title: Salting out of chemicals in estuaries: implications for contaminant partitioning and modelling
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(03)00076-7
– volume: 30
  start-page: 1310
  issue: 6
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.173_bib23
  article-title: Impact of coal structural heterogeneity on the nonideal sorption of organic contaminants
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.524
– volume: 46
  start-page: 7252
  issue: 13
  year: 2012
  ident: 10.1016/j.chemosphere.2018.09.173_bib10
  article-title: Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301386z
– volume: 139
  start-page: 208
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.173_bib30
  article-title: Interaction of toxic chemicals with microplastics: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.04.003
– volume: 216
  start-page: 95
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.173_bib7
  article-title: Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.05.043
– volume: 345
  start-page: 640
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.173_bib37
  article-title: Enhanced phosphate removal using nanostructured hydrated ferric-zirconium binary oxide confined in a polymeric anion exchanger
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.091
– volume: 41
  start-page: 8321
  issue: 24
  year: 2007
  ident: 10.1016/j.chemosphere.2018.09.173_bib21
  article-title: The partitioning of PAHs to egg phospholipids facilitated by copper and proton binding via cation-pi interactions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0718117
– volume: 160
  start-page: 42
  year: 2012
  ident: 10.1016/j.chemosphere.2018.09.173_bib13
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.08.052
– volume: 99
  start-page: 28
  issue: 1–2
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.173_bib36
  article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.08.002
– volume: 33
  start-page: 1322
  issue: 4
  year: 2004
  ident: 10.1016/j.chemosphere.2018.09.173_bib38
  article-title: Cation-π bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.1322
– start-page: 1617
  issue: 628–629
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.173_bib31
  article-title: Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.146
– volume: 95
  start-page: 2641
  issue: 12
  year: 2010
  ident: 10.1016/j.chemosphere.2018.09.173_bib15
  article-title: Biodegradation and hydrolysis rate of aliphatic aromatic polyester
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2010.07.018
– volume: 41
  start-page: 2536
  issue: 7
  year: 2007
  ident: 10.1016/j.chemosphere.2018.09.173_bib5
  article-title: Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062113+
– volume: 147
  start-page: 648
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.173_bib29
  article-title: Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: microplastics in comparison to natural sediment
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.09.029
– volume: 185
  start-page: 16
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.173_bib3
  article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.10.007
– start-page: 140
  year: 2007
  ident: 10.1016/j.chemosphere.2018.09.173_bib11
– volume: 62
  start-page: 1683
  issue: 8
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.173_bib12
  article-title: Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.06.004
SSID ssj0001659
Score 2.6594012
Snippet Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms Adsorption
biodegradability
Biodegradable microplastics
copper
crystallization
Desorption
hydrochemistry
microplastics
organic matter
PBAT
Phenanthrene
phenanthrenes
Phenanthrenes - chemistry
Phenanthrenes - isolation & purification
Plastics - chemistry
pollutants
Polyesters - chemistry
polystyrenes
salinity
Sorption
surface area
Vector
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - isolation & purification
Title Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics
URI https://dx.doi.org/10.1016/j.chemosphere.2018.09.173
https://www.ncbi.nlm.nih.gov/pubmed/30300808
https://www.proquest.com/docview/2117823287
https://www.proquest.com/docview/2176348862
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC5EcfUivh1ftODBPUQnSaeTgBcZlFFZL6vgrUm6K-wsM0lwZg5z8bdblYePgyJ4S3e6oamqVH2VrgfAsQrRT1WknNRm0pGuoScTBo41AaF943WD6irmz53qP8ibx-BxDnptLgyHVTa6v9bplbZuZs4aap6VgwHn-DIa8QMSSjbzXPFTypCl_PT5LczDVUENgWXg8OpfcPQW40V0GRVjzt_nipluxCVP3dD_zEZ9hkErW3S1CisNiBQX9TnXYA7zdVjqtb3b1mHxsipGPduA0d_iqdIKIsmtsDhuh0UmOLwr4UYJpO8ETaWDwnLtCMvpVKIshrOTdDqZDfl1Yjn2GoUpHOIElv8ItNP4txhxRF9JGJzrPW_Cw9Xlfa_vNC0WHEOkmpCqM64hC25j7GKoDPmoaDAk1BhhStzibmIuoovkyyrrWeupANNYhqmXJbGK_C2Yz4scd0Aocstlxl1ys1hKP4oyH9E3xpKN5LvLDkQtUbVp6o9zG4yhbgPN_ut3_NDMD92NNfGjA97r1rIuwvGdTect5_QHidJkLL6z_ajltibm8TVKkmMxHWtymQlW-eRqfrWG9DbpRuV1YLsWldeTE2hgnB7t_uyAe7BMo7j-HbQP85OnKR4QQJqkh9UXcAgLF9e3_bsX5EMTHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RUEsviEJLtwVqpB7oIbCJHSeRuKAVaKHApSBxsxJ7oi7aTSJ297CX_vbO5AHtAYTELX5Jlj975pt4PAPwXUcoMx1rL3O58pRv6ctGoedsSGzfBv2wvoq5vNLDG3V-G94uwaB7C8Nula3sb2R6La3bmsN2NQ-r0Yjf-DIbkSFtSlbz8g2sKDq-nMbg4M-jn4evw4YDq9Dj7u9g79HJixZmUk75AT-HzPRjjnnqR_IpJfUUCa2V0ek6rLUsUhw3E_0AS1hswOqgS962AW9P6mjUi02Y_Crva7Eg0sIJh9OuWOaC_btSzpRAAk9QVTYqHQePcPyeSlTleLGfzWeLMTenjp2vUdjSIyiw-k2snco_xIRd-ioi4Rzw-SPcnJ5cD4Zem2PBsyrSM5J11rekwl2CfYy0JSMVLUZEG2PMCC5OJ-Yj-kjGrHaBc4EOMUtUlAV5muhYfoLloizwMwhNdrnKOU1unigl4ziXiNJaR0qSLy97EHeLamwbgJzzYIxN52l2Z_7BwzAepp8YwqMHwcPQqonC8ZJBRx1y5r8tZUhbvGT4Xoe2IfD4HiUtsJxPDdnMxKsk2ZrP9SHBTcJRBz3YarbKw8yJNTBRj7-8boLfYHV4fXlhLs6ufn6F99SSNP-GtmF5dj_HHWJLs2y3Pg1_AQQ6FKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sorption+and+desorption+of+phenanthrene+on+biodegradable+poly%28butylene+adipate+co-terephtalate%29+microplastics&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Zuo%2C+Lin-Zi&rft.au=Li%2C+Heng-Xiang&rft.au=Lin%2C+Lang&rft.au=Sun%2C+Yu-Xin&rft.date=2019-01-01&rft.issn=0045-6535&rft.volume=215&rft.spage=25&rft.epage=32&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.09.173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2018_09_173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon