Liver microRNA transcriptome reveals miR-182 as link between type 2 diabetes and fatty liver disease in obesity
The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent r...
Saved in:
Published in | eLife Vol. 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
22.07.2024
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2050-084X 2050-084X |
DOI | 10.7554/eLife.92075 |
Cover
Abstract | The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing.
Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice.
Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182-5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene
was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182-5 p overexpression. Weight loss in obese mice decreased hepatic miR-182-5 p and restored
expression and other miR-182-5 p target genes. Hepatic overexpression of miR-182-5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days.
By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of
by miR-182-5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182-5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis.
This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G). |
---|---|
AbstractList | Background: The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing. Methods: Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice. Results: Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182–5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182–5 p overexpression. Weight loss in obese mice decreased hepatic miR-182–5 p and restored Lrp6 expression and other miR-182–5 p target genes. Hepatic overexpression of miR-182–5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days. Conclusions: By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182–5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182–5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis. Funding: This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G). The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing. Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice. Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182-5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182-5 p overexpression. Weight loss in obese mice decreased hepatic miR-182-5 p and restored expression and other miR-182-5 p target genes. Hepatic overexpression of miR-182-5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days. By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of by miR-182-5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182-5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis. This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G). The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing.BackgroundThe development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing.Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice.MethodsLiver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice.Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182-5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182-5 p overexpression. Weight loss in obese mice decreased hepatic miR-182-5 p and restored Lrp6 expression and other miR-182-5 p target genes. Hepatic overexpression of miR-182-5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days.ResultsHere, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182-5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182-5 p overexpression. Weight loss in obese mice decreased hepatic miR-182-5 p and restored Lrp6 expression and other miR-182-5 p target genes. Hepatic overexpression of miR-182-5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days.By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182-5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182-5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis.ConclusionsBy mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182-5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182-5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis.This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).FundingThis work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G). |
Author | Mann, Oliver Cascorbi, Ingolf Geißler, Cathleen Judycka, Anna Wagner, Jonas Bernecker, Miriam Krause, Christin Molenaar, Anna Schriever, Sonja C Lopez-Alcantara, Nuria Kaehler, Meike Wolter, Stefan Pfluger, Paul Britsemmer, Jan H Kirchner, Henriette Taege, Natalie Iben, Katharina Stemmer, Kerstin Lehnert, Hendrik |
Author_xml | – sequence: 1 givenname: Christin orcidid: 0000-0001-8703-0023 surname: Krause fullname: Krause, Christin – sequence: 2 givenname: Jan H surname: Britsemmer fullname: Britsemmer, Jan H – sequence: 3 givenname: Miriam orcidid: 0009-0004-8324-7515 surname: Bernecker fullname: Bernecker, Miriam – sequence: 4 givenname: Anna surname: Molenaar fullname: Molenaar, Anna – sequence: 5 givenname: Natalie surname: Taege fullname: Taege, Natalie – sequence: 6 givenname: Nuria surname: Lopez-Alcantara fullname: Lopez-Alcantara, Nuria – sequence: 7 givenname: Cathleen surname: Geißler fullname: Geißler, Cathleen – sequence: 8 givenname: Meike surname: Kaehler fullname: Kaehler, Meike – sequence: 9 givenname: Katharina surname: Iben fullname: Iben, Katharina – sequence: 10 givenname: Anna surname: Judycka fullname: Judycka, Anna – sequence: 11 givenname: Jonas surname: Wagner fullname: Wagner, Jonas – sequence: 12 givenname: Stefan surname: Wolter fullname: Wolter, Stefan – sequence: 13 givenname: Oliver surname: Mann fullname: Mann, Oliver – sequence: 14 givenname: Paul surname: Pfluger fullname: Pfluger, Paul – sequence: 15 givenname: Ingolf orcidid: 0000-0002-2182-9534 surname: Cascorbi fullname: Cascorbi, Ingolf – sequence: 16 givenname: Hendrik surname: Lehnert fullname: Lehnert, Hendrik – sequence: 17 givenname: Kerstin surname: Stemmer fullname: Stemmer, Kerstin – sequence: 18 givenname: Sonja C orcidid: 0000-0001-5461-3214 surname: Schriever fullname: Schriever, Sonja C – sequence: 19 givenname: Henriette orcidid: 0000-0002-7887-247X surname: Kirchner fullname: Kirchner, Henriette |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39037913$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1rFDEUhoNUbK298l4C3ggyNclkksyVlOJHYVEoCt6FTHKmZp1N1iS7sv_ezG4tbTE3Cec8eXnPx3N0FGIAhF5Sci67jr-DhR_hvGdEdk_QCSMdaYjiP47uvY_RWc5LUo_kStH-GTpue9LKnrYnKC78FhJeeZvi9ZcLXJIJ2Sa_LnEFOMEWzJRr-rqhimGT8eTDLzxA-QMQcNmtATPsvKkRyNgEh0dTyq5is6zzGUwG7AOOA2Rfdi_Q07EqwtntfYq-f_zw7fJzs_j66eryYtFYLkVplAXeGcqdUNxSKymVzrKBdkSAASk6RaUarahlCDeO0nFHRdsK6SRzdmDtKbo66Lpolnqd_MqknY7G630gphttUvF2Ai2oEZ1UREhpuePUjC3vac8lY2NPOlO13h-01pthBc5CqF2aHog-zAT_U9_EraaUCSb72c2bW4UUf28gF73y2cI0mQBxk3VLVPVOhKAVff0IXcZNCrVXMyVk31JOKvXqvqU7L_8GW4G3B6DONecE4x1CiZ43R-83R-83p9L0EW19McXHuR4__ffPX3YixaM |
CitedBy_id | crossref_primary_10_1016_j_jpbao_2025_100057 crossref_primary_10_1177_11795514241307180 crossref_primary_10_1016_j_psj_2025_105058 crossref_primary_10_1016_j_tox_2024_153974 |
Cites_doi | 10.1038/srep13729 10.1038/nature04303 10.1038/s41586-021-04234-3 10.3892/mmr.2018.9268 10.1002/dmrr.3042 10.1093/nar/gkx1141 10.1101/gr.082701.108 10.3390/ijms17030280 10.3390/nu7064453 10.1007/s00125-020-05212-6 10.1038/nature11793 10.1002/mnfr.201500107 10.1073/pnas.1102281108 10.1038/nrd.2016.151 10.2337/dc06-2544 10.1186/s12885-017-3737-z 10.1074/jbc.M111.295287 10.1126/scisignal.2001249 10.1002/hep.21651 10.2147/DMSO.S286081 10.1074/jbc.M110.152090 10.1016/j.trsl.2015.04.014 10.1002/oby.21950 10.2217/epi-2018-0159 10.1016/j.molcel.2007.06.017 10.2337/diabetes.49.12.2094 10.1126/science.1136370 10.1002/hep.25912 10.1016/s0092-8674(01)00616-x 10.1016/j.cmet.2013.01.009 10.1038/s41580-021-00354-w 10.1038/onc.2010.523 10.1074/jbc.M109.060319 10.3390/ijms21186827 10.3389/fgene.2014.00023 10.1016/j.dib.2016.11.081 10.1093/nar/gkx1067 10.1093/nar/gkv703 10.1136/gutjnl-2016-312869 10.3389/fgene.2021.702410 10.1038/s12276-018-0194-y 10.1111/j.1530-0277.2009.01007.x 10.1096/fj.15-271171 10.1016/j.cell.2009.01.002 10.2337/db09-1003 10.1038/35035117 10.1038/s41574-019-0176-8 10.1194/jlr.M800509-JLR200 10.1038/nature10112 10.1073/pnas.1019443108 10.1002/ddr.21264 10.1016/j.cmet.2013.11.023 |
ContentType | Journal Article |
Copyright | 2023, Krause et al. 2023, Krause et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Krause et al 2023 Krause et al |
Copyright_xml | – notice: 2023, Krause et al. – notice: 2023, Krause et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Krause et al 2023 Krause et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.92075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_61a65780677c4d41af349194722f905a PMC11262792 39037913 10_7554_eLife_92075 |
Genre | Journal Article |
GeographicLocations | United States--US Germany |
GeographicLocations_xml | – name: United States--US – name: Germany |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: KI 1887/2-2 – fundername: Deutsche Forschungsgemeinschaft grantid: GRK-1957 – fundername: Deutsche Forschungsgemeinschaft grantid: KI 1887/3-1 – fundername: Deutsche Forschungsgemeinschaft grantid: KI 1887/2-1 – fundername: European Research Council grantid: 101002247 – fundername: Deutsches Zentrum für Diabetesforschung grantid: 82DZD09D1G – fundername: Deutsche Forschungsgemeinschaft grantid: CRC-TR296 – fundername: ; grantid: KI 1887/2-2 – fundername: ; grantid: KI 1887/2-1 – fundername: ; grantid: 101002247 – fundername: ; grantid: GRK-1957 – fundername: ; grantid: 82DZD09D1G – fundername: ; grantid: CRC-TR296 – fundername: ; grantid: KI 1887/3-1 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c476t-8ce45a14d684c1c7117dc2b1506eae7658178fc60376dff7d4d163367d72dcb23 |
IEDL.DBID | 7X7 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:34:37 EDT 2025 Thu Aug 21 18:32:51 EDT 2025 Fri Sep 05 00:49:43 EDT 2025 Fri Jul 25 11:55:38 EDT 2025 Mon Jul 21 05:46:20 EDT 2025 Tue Jul 01 04:08:41 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mouse type 2 diabetes liver microRNA medicine human obesity |
Language | English |
License | 2023, Krause et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-8ce45a14d684c1c7117dc2b1506eae7658178fc60376dff7d4d163367d72dcb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0004-8324-7515 0000-0001-5461-3214 0000-0002-7887-247X 0000-0001-8703-0023 0000-0002-2182-9534 |
OpenAccessLink | https://www.proquest.com/docview/3086793140?pq-origsite=%requestingapplication% |
PMID | 39037913 |
PQID | 3086793140 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61a65780677c4d41af349194722f905a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11262792 proquest_miscellaneous_3083670661 proquest_journals_3086793140 pubmed_primary_39037913 crossref_primary_10_7554_eLife_92075 crossref_citationtrail_10_7554_eLife_92075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-22 |
PublicationDateYYYYMMDD | 2024-07-22 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2024 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Narayan (bib37) 2007; 30 Nie (bib38) 2018; 18 Go (bib16) 2014; 19 Krause (bib29) 2020; 63 Jones (bib24) 2017; 25 Ling (bib34) 2009; 58 Yang (bib50) 2012; 56 Thompson (bib44) 2007; 45 Yang (bib52) 2016; 9 Karagkouni (bib25) 2018; 46 Ambros (bib2) 2001; 107 Endzeliņš (bib12) 2017; 17 Weale (bib48) 2021; 12 Krause (bib28) 2019; 11 Leti (bib32) 2015; 166 Blüher (bib4) 2019; 15 Dambal (bib8) 2015; 43 Singh (bib41) 2013; 17 Szilágyi (bib42) 2020; 21 Chobot (bib6) 2018; 34 Trajkovski (bib45) 2011; 474 Agbu (bib1) 2021; 22 Liu (bib35) 2011; 4 Bartel (bib3) 2009; 136 Hayes (bib21) 2016; 17 Wang (bib46) 2015; 29 Tamai (bib43) 2000; 407 Yang (bib51) 2015; 59 Huynh (bib22) 2011; 30 Mani (bib36) 2007; 315 Krützfeldt (bib31) 2005; 438 Ye (bib53) 2012; 287 Dávalos (bib9) 2011; 108 Keramati (bib26) 2011; 108 Go (bib17) 2015; 7 Friedman (bib13) 2009; 19 Chou (bib7) 2018; 46 Ding (bib10) 2015; 5 Weyer (bib49) 2000; 49 Krause (bib30) 2024 Bommer (bib5) 2010; 285 Grimson (bib18) 2007; 27 Rines (bib40) 2016; 15 Garcia-Martin (bib14) 2022; 601 Peterson (bib39) 2014; 5 Jiménez-Lucena (bib23) 2018; 50 Dolganiuc (bib11) 2009; 33 Hanin (bib20) 2018; 67 Gurwitz (bib19) 2015; 76 Li (bib33) 2009; 50 Kornfeld (bib27) 2013; 494 Weale (bib47) 2020; 13 Gerin (bib15) 2010; 285 |
References_xml | – volume: 5 year: 2015 ident: bib10 article-title: Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease publication-title: Scientific Reports doi: 10.1038/srep13729 – volume: 438 start-page: 685 year: 2005 ident: bib31 article-title: Silencing of microRNAs in vivo with “antagomirs.” publication-title: Nature doi: 10.1038/nature04303 – volume: 601 start-page: 446 year: 2022 ident: bib14 article-title: MicroRNA sequence codes for small extracellular vesicle release and cellular retention publication-title: Nature doi: 10.1038/s41586-021-04234-3 – volume: 18 start-page: 2669 year: 2018 ident: bib38 article-title: Analysis of non‑alcoholic fatty liver disease microRNA expression spectra in rat liver tissues publication-title: Molecular Medicine Reports doi: 10.3892/mmr.2018.9268 – volume: 34 year: 2018 ident: bib6 article-title: Obesity and diabetes-Not only a simple link between two epidemics publication-title: Diabetes/Metabolism Research and Reviews doi: 10.1002/dmrr.3042 – volume: 46 start-page: D239 year: 2018 ident: bib25 article-title: DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx1141 – volume: 19 start-page: 92 year: 2009 ident: bib13 article-title: Most mammalian mRNAs are conserved targets of microRNAs publication-title: Genome Research doi: 10.1101/gr.082701.108 – volume: 17 year: 2016 ident: bib21 article-title: MicroRNAs as biomarkers for liver disease and hepatocellular carcinoma publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms17030280 – volume: 7 start-page: 4453 year: 2015 ident: bib17 article-title: Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis publication-title: Nutrients doi: 10.3390/nu7064453 – volume: 63 start-page: 2182 year: 2020 ident: bib29 article-title: Multi-layered epigenetic regulation of IRS2 expression in the liver of obese individuals with type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-020-05212-6 – volume: 494 start-page: 111 year: 2013 ident: bib27 article-title: Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b publication-title: Nature doi: 10.1038/nature11793 – volume: 59 start-page: 2303 year: 2015 ident: bib51 article-title: Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes publication-title: Molecular Nutrition & Food Research doi: 10.1002/mnfr.201500107 – volume: 108 start-page: 9232 year: 2011 ident: bib9 article-title: miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling publication-title: PNAS doi: 10.1073/pnas.1102281108 – volume: 15 start-page: 786 year: 2016 ident: bib40 article-title: Targeting hepatic glucose metabolism in the treatment of type 2 diabetes publication-title: Nature Reviews. Drug Discovery doi: 10.1038/nrd.2016.151 – volume: 30 start-page: 1562 year: 2007 ident: bib37 article-title: Effect of BMI on lifetime risk for diabetes in the U.S publication-title: Diabetes Care doi: 10.2337/dc06-2544 – volume: 17 year: 2017 ident: bib12 article-title: Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients publication-title: BMC Cancer doi: 10.1186/s12885-017-3737-z – volume: 287 start-page: 1335 year: 2012 ident: bib53 article-title: LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M111.295287 – volume: 4 year: 2011 ident: bib35 article-title: Wnt signaling regulates hepatic metabolism publication-title: Science Signaling doi: 10.1126/scisignal.2001249 – volume: 45 start-page: 1298 year: 2007 ident: bib44 article-title: WNT/beta-catenin signaling in liver health and disease publication-title: Hepatology doi: 10.1002/hep.21651 – volume: 13 start-page: 5037 year: 2020 ident: bib47 article-title: Circulating miR-30a-5p and miR-182-5p in prediabetes and screen-detected diabetes mellitus publication-title: Diabetes, Metabolic Syndrome and Obesity doi: 10.2147/DMSO.S286081 – volume: 285 start-page: 33652 year: 2010 ident: bib15 article-title: Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M110.152090 – volume: 166 start-page: 304 year: 2015 ident: bib32 article-title: High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis publication-title: Translational Research doi: 10.1016/j.trsl.2015.04.014 – volume: 25 start-page: 1734 year: 2017 ident: bib24 article-title: miRNA signatures of insulin resistance in obesity publication-title: Obesity doi: 10.1002/oby.21950 – volume: 11 start-page: 885 year: 2019 ident: bib28 article-title: Critical evaluation of the DNA-methylation markers ABCG1 and SREBF1 for Type 2 diabetes stratification publication-title: Epigenomics doi: 10.2217/epi-2018-0159 – volume: 27 start-page: 91 year: 2007 ident: bib18 article-title: MicroRNA targeting specificity in mammals: determinants beyond seed pairing publication-title: Molecular Cell doi: 10.1016/j.molcel.2007.06.017 – volume: 49 start-page: 2094 year: 2000 ident: bib49 article-title: A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for A pathogenic role of relative hyperinsulinemia publication-title: Diabetes doi: 10.2337/diabetes.49.12.2094 – volume: 315 start-page: 1278 year: 2007 ident: bib36 article-title: LRP6 mutation in a family with early coronary disease and metabolic risk factors publication-title: Science doi: 10.1126/science.1136370 – volume: 56 start-page: 2209 year: 2012 ident: bib50 article-title: Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid publication-title: Hepatology doi: 10.1002/hep.25912 – volume: 107 start-page: 823 year: 2001 ident: bib2 article-title: microRNAs: tiny regulators with great potential publication-title: Cell doi: 10.1016/s0092-8674(01)00616-x – volume: 17 start-page: 197 year: 2013 ident: bib41 article-title: LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans publication-title: Cell Metabolism doi: 10.1016/j.cmet.2013.01.009 – volume: 22 start-page: 425 year: 2021 ident: bib1 article-title: MicroRNA-mediated regulation of glucose and lipid metabolism publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/s41580-021-00354-w – volume: 30 start-page: 1481 year: 2011 ident: bib22 article-title: Efficient in vivo microRNA targeting of liver metastasis publication-title: Oncogene doi: 10.1038/onc.2010.523 – volume: 285 start-page: 1928 year: 2010 ident: bib5 article-title: IRS1 regulation by Wnt/beta-catenin signaling and varied contribution of IRS1 to the neoplastic phenotype publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M109.060319 – volume: 21 year: 2020 ident: bib42 article-title: Circulating cell-free nucleic acids: main characteristics and clinical application publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms21186827 – volume: 5 year: 2014 ident: bib39 article-title: Common features of microRNA target prediction tools publication-title: Frontiers in Genetics doi: 10.3389/fgene.2014.00023 – volume-title: Software Heritage year: 2024 ident: bib30 article-title: microRNA network visualizer (miRNA NVis) – volume: 9 start-page: 1155 year: 2016 ident: bib52 article-title: MicroRNA expression analysis in the liver of high fat diet-induced obese mice publication-title: Data in Brief doi: 10.1016/j.dib.2016.11.081 – volume: 46 start-page: D296 year: 2018 ident: bib7 article-title: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx1067 – volume: 43 start-page: 7173 year: 2015 ident: bib8 article-title: The microRNA-183 cluster: the family that plays together stays together publication-title: Nucleic Acids Research doi: 10.1093/nar/gkv703 – volume: 67 start-page: 1124 year: 2018 ident: bib20 article-title: miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression publication-title: Gut doi: 10.1136/gutjnl-2016-312869 – volume: 12 year: 2021 ident: bib48 article-title: Expression profiles of circulating microRNAs in South African Type 2 diabetic individuals on treatment publication-title: Frontiers in Genetics doi: 10.3389/fgene.2021.702410 – volume: 50 start-page: 1 year: 2018 ident: bib23 article-title: A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: from the CORDIOPREV study publication-title: Experimental & Molecular Medicine doi: 10.1038/s12276-018-0194-y – volume: 33 start-page: 1704 year: 2009 ident: bib11 article-title: MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice publication-title: Alcoholism, Clinical and Experimental Research doi: 10.1111/j.1530-0277.2009.01007.x – volume: 29 start-page: 3436 year: 2015 ident: bib46 article-title: Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a publication-title: FASEB Journal doi: 10.1096/fj.15-271171 – volume: 136 start-page: 215 year: 2009 ident: bib3 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 58 start-page: 2718 year: 2009 ident: bib34 article-title: Epigenetics: A molecular link between environmental factors and type 2 diabetes publication-title: Diabetes doi: 10.2337/db09-1003 – volume: 407 start-page: 530 year: 2000 ident: bib43 article-title: LDL-receptor-related proteins in Wnt signal transduction publication-title: Nature doi: 10.1038/35035117 – volume: 15 start-page: 288 year: 2019 ident: bib4 article-title: Obesity: global epidemiology and pathogenesis publication-title: Nature Reviews. Endocrinology doi: 10.1038/s41574-019-0176-8 – volume: 50 start-page: 1756 year: 2009 ident: bib33 article-title: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status publication-title: Journal of Lipid Research doi: 10.1194/jlr.M800509-JLR200 – volume: 474 start-page: 649 year: 2011 ident: bib45 article-title: MicroRNAs 103 and 107 regulate insulin sensitivity publication-title: Nature doi: 10.1038/nature10112 – volume: 108 start-page: 1914 year: 2011 ident: bib26 article-title: Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation publication-title: PNAS doi: 10.1073/pnas.1019443108 – volume: 76 start-page: 259 year: 2015 ident: bib19 article-title: Exosomal microRNAs in tissue crosstalk publication-title: Drug Development Research doi: 10.1002/ddr.21264 – volume: 19 start-page: 209 year: 2014 ident: bib16 article-title: The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue publication-title: Cell Metabolism doi: 10.1016/j.cmet.2013.11.023 |
SSID | ssj0000748819 |
Score | 2.4163013 |
Snippet | The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual... Background:The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in... Background: The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Antidiabetics Biopsy Body fat Body weight loss Comorbidity Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - genetics Diabetes Mellitus, Type 2 - metabolism Diet DNA microarrays Epigenetics Fatty liver Fatty Liver - genetics Fatty Liver - metabolism Female Gastrointestinal surgery Gene expression Gene Expression Profiling Gene mapping Glucose Glucose metabolism Hepatocytes Homeostasis human Humans Insulin resistance Lipid metabolism Lipogenesis Liver Liver - metabolism Liver diseases LRP6 protein Male Medicine Metabolism Mice Mice, Inbred C57BL microRNA MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism Middle Aged miRNA Obesity Obesity - genetics Obesity - metabolism Peptide mapping Signal transduction Steatosis Therapeutic targets Transcriptome Transcriptomes Triglycerides type 2 diabetes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSxxBEC2CEPASTGLiGA0teApMnP6Y6ZmjiiIiHiSCt6E_cSHOiDse_PdW9cwuu0HIxet2MfR2ve5-1V39CuBQWVsiq425URwDFHomYwQ6RJVe2NJK0qyibIvr6uJWXd6VdyulvignbJQHHgfuqOKmQlSR0JlTXnETpWow8tZCxKYoEzUqmmIlmEprsEZg8mZ8kKdxyzwKV7MYfjeioIzClS0oKfW_RS__zZJc2XbOt-DTxBfZ8djPz_AhdF_g41hB8uUr9FeUV8EeKK3u5vqYDbT1pIWgfwiM5JkQXth8kyPDZ2bO6MKWTclZjM5fmWCL81dmOs-iGYYXNKPPTrc3bNaxfiwgsA2352d_Ti_yqYZC7pSuhrx2QZWGK1_VynGnOdfeCUu6gsEEjfyD6zq6qsCFxseovfLI0GSlvRbeWSG_wUbXd2EHGFX-rqO0RnkSgbPGYXBSchel5FKrkMGvxbC2bhIYpzoXf1sMNMgHbfJBm3yQweHS-HHU1Xjb7IT8szQhMez0A0KknSDS_g8iGewtvNtOM3TeyoKkBiXGlxkcLJtxbtGFielC_5xsSN8OKUwG30cwLHsiGxyyhssM6jWYrHV1vaWb3Sf9bnq1RbqNu-_x537ApkCeRcfNQuzBxvD0HPaRJw32Z5oSr9hGDnk priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qRfBF_G60ygp9EnLefiSbPEkVS5Hah-JB38J-6kGb6DUF7793ZpMcXjl8zU7CZmd25ze7s78BOFLWFohqY24UxwCFrskYgQpRhRe2sJI4qyjb4rw8Xaivl8XlHkzFOMcBvNkZ2lE9qcXqavbn9_ojTnjErzON3vBDOFvGMKsFer97cB9dUklR2LcR56clWaOd8nq4n3f3nS2PlIj7d6HNu0mT_3ihk8fwaISP7HjQ9xPYC-1TeDAUlFw_g-6M0izYNWXZXZwfs548UVoXuuvAiK0J_xqbL3IE_MzcMDq_ZWOuFqPtWCbYtB3LTOtZNH2_RjH67HiYw5Yt64Z6As9hcfLl--fTfCypkDulyz6vXFCF4cqXlXLcac61d8ISzWAwQSMc4bqKrpzjuuNj1F55BGyy1F4L76yQL2C_7dpwAIwKgVdRWqM8ccJZ4zBWKbiLUnKpVcjg_TSsjRv5xqnsxVWDcQfpoEk6aJIOMjjaCP8aaDZ2i30i_WxEiBs7PehWP5pxqjUlNyWuQ0SN55RX3ESpal4TK2as54XJ4HDSbjPZWyPnxDwoMdzM4N2mGacanZ-YNnS3SYbo7hDRZPByMIZNT2SNQ1ZzmUG1ZSZbXd1uaZc_E503XeIiGsdX_-_Xa3goEFDRvrIQh7Dfr27DGwREvX2bjP0v9pUKLw priority: 102 providerName: Scholars Portal |
Title | Liver microRNA transcriptome reveals miR-182 as link between type 2 diabetes and fatty liver disease in obesity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39037913 https://www.proquest.com/docview/3086793140 https://www.proquest.com/docview/3083670661 https://pubmed.ncbi.nlm.nih.gov/PMC11262792 https://doaj.org/article/61a65780677c4d41af349194722f905a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahEIvpe-6TRcVciq4WT1s2aeSlIRQ0qUsDezNyHo0C42dZp1D_n1nZO02W0IvPliDEZ7RzKfR6BuAfdW2BaLakBvFcYNC12SMQIWowom2aCVxVlG1xaw8PVdfF8UiJdxWqaxy7ROjo3a9pRz5gZwSNZzE_cDnq985dY2i09XUQuMh7EbqMrRnvdCbHAuGxwoj3ngtT2PgPPBny-A_1WJKdYV3AlHk678PZP5bK3kn-Jw8hScJNbLDUc3P4IHvnsOjsY_k7Qvoz6i6gl1Scd18dsgGCkDRHfSXnhFJExoZDs9zxPnMrBgd27JUosUoC8sEW2dhmekcC2YYblGMPpvOcNiyY_3YRuAlnJ8c__hymqdOCrlVuhzyynpVGK5cWSnLreZcOytaYhf0xmtEIVxXwZZTdDcuBO2UQ5wmS-20cLYV8hXsdH3n3wCj_t9VkK1RjqjgWmNxi1JwG6TkUiufwcf1b21sohmnbhe_GtxukA6aqIMm6iCD_Y3w1ciucb_YEelnI0KU2PFFf_2zSSusKbkp0f0QI55VTnETpKp5TWSYoZ4WJoO9tXabtE5XzV-ryuDDZhhXGB2bmM73N1GGWO4QyGTwejSGzUxkjb-s5jKDastMtqa6PdItLyKLN93dIvbGt_-f1zt4LBBHUTpZiD3YGa5v_HvEQUM7icY-gd2j49n3-SRmE_D5TVV_AKK1CxY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC7CBtEX8c7EqC3EF2HM9jHXg0iiCRuzLrIkkLexpw9dMDNJdoLsn_I3WjXHmpXgW16ni6Hpqq6rq74C2FZFEaFX60OtOAYo1CajBTJERVYUUSEJs4qqLSbx6ER9Po1O1-B33wtDZZW9TmwUta0M5ch35JCg4STGAx_OL0KaGkWvq_0IjVYsjtziF4Zs8_eHn5C_b4Q42D_-OAq7qQKhUUlch6lxKtJc2ThVhpuE88QaURDSntMuQYvMk9SbeIhXz3qfWGXRZ5FxYhNhTUFAB6jy1xV1tA5gfW9_8nW6zOqgQU7RxraNgAma6h03nnn3LhNDqmS8ZvqaCQE3ubX_VmdeM3cHD-B-56ey3VawHsKaKx_BnXZy5eIxVGOq52BnVM43neyymkxeo4CqM8cIFgrFGpenIUYWTM8ZPRSzriiMUd6XCdbnfZkuLfO6rhdIRr_tXo3YrGRVO7jgCZzcyik_hUFZlW4DGE0cT70stLIEPldog0FRxI2XkstEuQDe9seamw7YnOZr_MwxwCEe5A0P8oYHAWwvic9bPI-byfaIP0sSAuFuPlSX3_PuTucx1zEqPMLgM8oqrr1UGc8IftNnw0gHsNVzN-80wzz_K8cBvF4u452mhxpduuqqoSFcPXSdAnjWCsNyJzLDI8u4DCBdEZOVra6ulLMfDW44dYsRXuTm__f1Cu6Ojr-M8_Hh5Og53BPoxVEyW4gtGNSXV-4FemF18bITfQbfbvu2_QEMQkV6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5CRPEivjMatYV4EcZsP2Z65iASjUtilkWCgb2NPf3QBTMTsxNk_5q_zqp5rFkJ3nKdLoam611d_RXAjirLBKPaEBvFMUGhZzJGIENU4kSZlJIwq6jbYpoenKhPs2S2Ab-HtzDUVjnYxNZQu9pSjXxXjggaTmI-sBv6tojP--N3Zz9jmiBFN63DOI1ORI788hemb4u3h_vI61dCjD9--XAQ9xMGYqt02sSZ9SoxXLk0U5Zbzbl2VpSEuueN1-iduc6CTUeohi4E7ZTD-EWm2mnhbEmgB2j-b2iJURXqkp7pVX0HXXOG3rZ7EqjRae_6yTz4N7kYUU_jJSfYzgq4KsD9t0_zkuMb34U7fcTK9joRuwcbvroPN7sZlssHUE-os4OdUmPf8XSPNeT8WlNUn3pGAFEo4Lh8HGOOwcyC0ZUx69vDGFWAmWBDBZiZyrFgmmaJZPTb_v6IzStWdyMMHsLJtZzxI9is6spvAaPZ41mQpVGOYOhKYzE9SrgNUnKplY_g9XCshe0hzmnSxo8CUx3iQdHyoGh5EMHOivisQ_a4muw98WdFQnDc7Yf6_FvRa3eRcpOi6SM0Pquc4iZIlfOcgDhDPkpMBNsDd4veRiyKvxIdwcvVMmo3XdmYytcXLQ0h7GEQFcHjThhWO5E5HlnOZQTZmpisbXV9pZp_bxHE6d0YIUc--f--XsAt1LFicjg9egq3BYZzVNUWYhs2m_ML_wzDsaZ83so9g6_XrWh_AGpaSEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+microRNA+transcriptome+reveals+miR-182+as+link+between+type+2+diabetes+and+fatty+liver+disease+in+obesity&rft.jtitle=eLife&rft.au=Krause%2C+Christin&rft.au=Britsemmer%2C+Jan+H&rft.au=Bernecker%2C+Miriam&rft.au=Molenaar%2C+Anna&rft.date=2024-07-22&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.92075&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |