DCNN-FuzzyWOA: Artificial Intelligence Solution for Automatic Detection of COVID-19 Using X-Ray Images

Artificial intelligence (AI) techniques have been considered effective technologies in diagnosing and breaking the transmission chain of COVID-19 disease. Recent research uses the deep convolution neural network (DCNN) as the discoverer or classifier of COVID-19 X-ray images. The most challenging pa...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 11
Main Authors Saffari, Abbas, Khishe, Mohammad, Mohammadi, Mokhtar, Hussein Mohammed, Adil, Rashidi, Shima
Format Journal Article
LanguageEnglish
Published United States Hindawi 09.08.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) techniques have been considered effective technologies in diagnosing and breaking the transmission chain of COVID-19 disease. Recent research uses the deep convolution neural network (DCNN) as the discoverer or classifier of COVID-19 X-ray images. The most challenging part of neural networks is the subject of their training. Descent-based (GDB) algorithms have long been used to train fullymconnected layer (FCL) at DCNN. Despite the ability of GDBs to run and converge quickly in some applications, their disadvantage is the manual adjustment of many parameters. Therefore, it is not easy to parallelize them with graphics processing units (GPUs). Therefore, in this paper, the whale optimization algorithm (WOA) evolved by a fuzzy system called FuzzyWOA is proposed for DCNN training. With accurate and appropriate tuning of WOA’s control parameters, the fuzzy system defines the boundary between the exploration and extraction phases in the search space. It causes the development and upgrade of WOA. To evaluate the performance and capability of the proposed DCNN-FuzzyWOA model, a publicly available database called COVID-Xray-5k is used. DCNN-PSO, DCNN-GA, and LeNet-5 benchmark models are used for fair comparisons. Comparative parameters include accuracy, processing time, standard deviation (STD), curves of ROC and precision-recall, and F1-Score. The results showed that the FuzzyWOA training algorithm with 20 epochs was able to achieve 100% accuracy, at a processing time of 880.44 s with an F1-Score equal to 100%. Structurally, the i-6c-2s-12c-2s model achieved better results than the i-8c-2s-16c-2s model. However, the results of using FuzzyWOA for both models have been very encouraging compared to particle swarm optimization, genetic algorithm, and LeNet-5 methods.
AbstractList Artificial intelligence (AI) techniques have been considered effective technologies in diagnosing and breaking the transmission chain of COVID-19 disease. Recent research uses the deep convolution neural network (DCNN) as the discoverer or classifier of COVID-19 X-ray images. The most challenging part of neural networks is the subject of their training. Descent-based (GDB) algorithms have long been used to train fullymconnected layer (FCL) at DCNN. Despite the ability of GDBs to run and converge quickly in some applications, their disadvantage is the manual adjustment of many parameters. Therefore, it is not easy to parallelize them with graphics processing units (GPUs). Therefore, in this paper, the whale optimization algorithm (WOA) evolved by a fuzzy system called FuzzyWOA is proposed for DCNN training. With accurate and appropriate tuning of WOA's control parameters, the fuzzy system defines the boundary between the exploration and extraction phases in the search space. It causes the development and upgrade of WOA. To evaluate the performance and capability of the proposed DCNN-FuzzyWOA model, a publicly available database called COVID-Xray-5k is used. DCNN-PSO, DCNN-GA, and LeNet-5 benchmark models are used for fair comparisons. Comparative parameters include accuracy, processing time, standard deviation (STD), curves of ROC and precision-recall, and F1-Score. The results showed that the FuzzyWOA training algorithm with 20 epochs was able to achieve 100% accuracy, at a processing time of 880.44 s with an F1-Score equal to 100%. Structurally, the i-6c-2s-12c-2s model achieved better results than the i-8c-2s-16c-2s model. However, the results of using FuzzyWOA for both models have been very encouraging compared to particle swarm optimization, genetic algorithm, and LeNet-5 methods.
Artificial intelligence (AI) techniques have been considered effective technologies in diagnosing and breaking the transmission chain of COVID-19 disease. Recent research uses the deep convolution neural network (DCNN) as the discoverer or classifier of COVID-19 X-ray images. The most challenging part of neural networks is the subject of their training. Descent-based (GDB) algorithms have long been used to train fullymconnected layer (FCL) at DCNN. Despite the ability of GDBs to run and converge quickly in some applications, their disadvantage is the manual adjustment of many parameters. Therefore, it is not easy to parallelize them with graphics processing units (GPUs). Therefore, in this paper, the whale optimization algorithm (WOA) evolved by a fuzzy system called FuzzyWOA is proposed for DCNN training. With accurate and appropriate tuning of WOA's control parameters, the fuzzy system defines the boundary between the exploration and extraction phases in the search space. It causes the development and upgrade of WOA. To evaluate the performance and capability of the proposed DCNN-FuzzyWOA model, a publicly available database called COVID-Xray-5k is used. DCNN-PSO, DCNN-GA, and LeNet-5 benchmark models are used for fair comparisons. Comparative parameters include accuracy, processing time, standard deviation (STD), curves of ROC and precision-recall, and F1-Score. The results showed that the FuzzyWOA training algorithm with 20 epochs was able to achieve 100% accuracy, at a processing time of 880.44 s with an F1-Score equal to 100%. Structurally, the i-6c-2s-12c-2s model achieved better results than the i-8c-2s-16c-2s model. However, the results of using FuzzyWOA for both models have been very encouraging compared to particle swarm optimization, genetic algorithm, and LeNet-5 methods.Artificial intelligence (AI) techniques have been considered effective technologies in diagnosing and breaking the transmission chain of COVID-19 disease. Recent research uses the deep convolution neural network (DCNN) as the discoverer or classifier of COVID-19 X-ray images. The most challenging part of neural networks is the subject of their training. Descent-based (GDB) algorithms have long been used to train fullymconnected layer (FCL) at DCNN. Despite the ability of GDBs to run and converge quickly in some applications, their disadvantage is the manual adjustment of many parameters. Therefore, it is not easy to parallelize them with graphics processing units (GPUs). Therefore, in this paper, the whale optimization algorithm (WOA) evolved by a fuzzy system called FuzzyWOA is proposed for DCNN training. With accurate and appropriate tuning of WOA's control parameters, the fuzzy system defines the boundary between the exploration and extraction phases in the search space. It causes the development and upgrade of WOA. To evaluate the performance and capability of the proposed DCNN-FuzzyWOA model, a publicly available database called COVID-Xray-5k is used. DCNN-PSO, DCNN-GA, and LeNet-5 benchmark models are used for fair comparisons. Comparative parameters include accuracy, processing time, standard deviation (STD), curves of ROC and precision-recall, and F1-Score. The results showed that the FuzzyWOA training algorithm with 20 epochs was able to achieve 100% accuracy, at a processing time of 880.44 s with an F1-Score equal to 100%. Structurally, the i-6c-2s-12c-2s model achieved better results than the i-8c-2s-16c-2s model. However, the results of using FuzzyWOA for both models have been very encouraging compared to particle swarm optimization, genetic algorithm, and LeNet-5 methods.
Audience Academic
Author Khishe, Mohammad
Rashidi, Shima
Saffari, Abbas
Hussein Mohammed, Adil
Mohammadi, Mokhtar
AuthorAffiliation 4 Department of Computer Science, College of Science and Technology, University of Human Development, Sulaymaniyah, Kurdistan Region, Iraq
1 Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
2 Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
3 Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
AuthorAffiliation_xml – name: 1 Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
– name: 4 Department of Computer Science, College of Science and Technology, University of Human Development, Sulaymaniyah, Kurdistan Region, Iraq
– name: 2 Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
– name: 3 Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
Author_xml – sequence: 1
  givenname: Abbas
  orcidid: 0000-0001-6679-7225
  surname: Saffari
  fullname: Saffari, Abbas
  organization: Department of Electrical EngineeringImam Khomeini Marine Science UniversityNowshahrIran
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-1024-8822
  surname: Khishe
  fullname: Khishe, Mohammad
  organization: Department of Electrical EngineeringImam Khomeini Marine Science UniversityNowshahrIran
– sequence: 3
  givenname: Mokhtar
  orcidid: 0000-0002-1393-5062
  surname: Mohammadi
  fullname: Mohammadi, Mokhtar
  organization: Department of Information TechnologyCollege of Engineering and Computer ScienceLebanese French UniversityErbilKurdistan RegionIraqlfu.edu.krd
– sequence: 4
  givenname: Adil
  orcidid: 0000-0002-6531-2051
  surname: Hussein Mohammed
  fullname: Hussein Mohammed, Adil
  organization: Department of Communication and Computer EngineeringFaculty of EngineeringCihan University-ErbilErbilKurdistan RegionIraqcihanuniversity.edu.iq
– sequence: 5
  givenname: Shima
  orcidid: 0000-0002-6862-750X
  surname: Rashidi
  fullname: Rashidi, Shima
  organization: Department of Computer ScienceCollege of Science and TechnologyUniversity of Human DevelopmentSulaymaniyahKurdistan RegionIraquhd.edu.iq
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35965746$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB-wY40isUGCUD9iO2aBFM1QGKnqSECBneU4duoqsUvsgKa_noQZBqgEK1v2d8899j3H4MAHbwB4jOBLhCg9xRDjU8o4FwzdA0eIlTynmJOD_Z7RQ3Ac4zWElFOIH4BDQgWjvGBHwC4XFxf52Xh7u_m8rl5l1ZCcddqpLlv5ZLrOtcZrk30I3Zhc8JkNQ1aNKfQqOZ0tTTL653mw2WL9abXMkcguo_Nt9iV_rzbZqletiQ_Bfau6aB7t1hNwefbm4-Jdfr5-u1pU57kuOEt5WTcUGtqIUrC6aKxQphRYYcYKzjUSliCojcBWNZCpuiltQa3QFNekbLCB5AS83urejHVvGm18GlQnbwbXq2Ejg3Ly7xvvrmQbvklBGBGETwLPdgJD-DqamGTvop7-QXkTxigxh7goGaZoQp_eQa_DOPjpeTNVcCpKgn9TreqMdN6Gqa-eRWXFUUEFwXT2_eRP33vDvwY1AS-2gB5CjIOxewRBOedAzjmQuxxMOL6Da5fUPKipu-v-VfR8W3TlfKO-u_-3-AH0-b9f
CitedBy_id crossref_primary_10_1007_s11036_024_02301_3
crossref_primary_10_1016_j_heliyon_2023_e21965
crossref_primary_10_1186_s13638_023_02257_0
crossref_primary_10_1007_s12530_024_09579_4
crossref_primary_10_1016_j_bspc_2023_105492
crossref_primary_10_1007_s40866_024_00240_2
crossref_primary_10_4108_eetpht_9_3349
crossref_primary_10_1038_s41598_024_63739_9
crossref_primary_10_1016_j_engappai_2024_108337
crossref_primary_10_1007_s12530_023_09509_w
crossref_primary_10_1016_j_bspc_2023_105419
crossref_primary_10_1016_j_bspc_2024_105999
crossref_primary_10_1038_s41598_024_82022_5
crossref_primary_10_1016_j_eswa_2023_121300
crossref_primary_10_1016_j_knosys_2024_112322
Cites_doi 10.3390/ijerph18063056
10.3390/healthcare9050522
10.1016/j.imu.2020.100427
10.1145/3243316
10.24425/aoa.2019.126360
10.1016/j.dsx.2020.04.012
10.24425/aoa.2020.135281
10.1109/TCYB.2020.2983860
10.1109/ACCESS.2020.2989273
10.1080/0952813x.2021.1960639
10.1007/s10470-018-1366-3
10.1016/j.advengsoft.2016.01.008
10.1016/j.oceaneng.2019.04.013
10.1109/oceans.2018.8604847
10.1148/radiol.2020200642
10.1007/978-3-319-25751-8
10.1016/j.scs.2020.102589
10.21203/rs.3.rs-122787/v1
10.1609/aaai.v33i01.3301590
10.1007/s11277-019-06520-w
10.1016/j.eswa.2020.113338
10.1155/2020/8889023
10.1007/s40430-017-0927-1
10.1007/s10462-020-09825-6
10.1109/CEC48606.2020.9185541
10.1016/j.media.2020.101794
10.1155/2020/8856801
10.1007/s10470-022-02014-1
ContentType Journal Article
Copyright Copyright © 2022 Abbas Saffari et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Abbas Saffari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Abbas Saffari et al. 2022
Copyright_xml – notice: Copyright © 2022 Abbas Saffari et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Abbas Saffari et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Abbas Saffari et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2022/5677961
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Ewees, Ahmed A.
Editor_xml – sequence: 1
  givenname: Ahmed A.
  surname: Ewees
  fullname: Ewees, Ahmed A.
EndPage 11
ExternalDocumentID PMC9363937
A714593250
35965746
10_1155_2022_5677961
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAYXX
ACCMX
ACUHS
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
2UF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1A
CGR
CUY
CVF
ECM
EIF
EJD
IL9
NPM
PJZUB
PPXIY
PQGLB
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
COVID
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c476t-8bd50e5d9896b4df9ae892a266477c19f310ce92fad06abd8f45f9c52b38d2e03
IEDL.DBID 7X7
ISSN 1687-5265
1687-5273
IngestDate Thu Aug 21 13:59:52 EDT 2025
Fri Jul 11 03:01:59 EDT 2025
Fri Jul 25 09:33:52 EDT 2025
Tue Jun 17 22:02:43 EDT 2025
Mon Jul 21 06:04:29 EDT 2025
Tue Jul 01 01:39:09 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Sun Jun 02 18:52:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Abbas Saffari et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-8bd50e5d9896b4df9ae892a266477c19f310ce92fad06abd8f45f9c52b38d2e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Ahmed A. Ewees
ORCID 0000-0002-1393-5062
0000-0001-6679-7225
0000-0002-6531-2051
0000-0002-1024-8822
0000-0002-6862-750X
OpenAccessLink https://www.proquest.com/docview/2704759832?pq-origsite=%requestingapplication%
PMID 35965746
PQID 2704759832
PQPubID 237303
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9363937
proquest_miscellaneous_2702486251
proquest_journals_2704759832
gale_infotracmisc_A714593250
pubmed_primary_35965746
crossref_primary_10_1155_2022_5677961
crossref_citationtrail_10_1155_2022_5677961
hindawi_primary_10_1155_2022_5677961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-09
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
P. S. Optimization (24)
25
26
27
28
29
J. P. Cohen (34) 2019
A. J. Holden (11) 2006
T. First (4)
D. Povey (9) 2015
31
32
33
12
13
35
14
36
37
16
17
18
19
M. Xin (30) 2019
Q. V Le (8) 2011
1
2
3
5
6
7
J. Martens (10) 2010
Y. Zhining (15) 2015; 8
20
21
References_xml – ident: 17
  doi: 10.3390/ijerph18063056
– ident: 18
  doi: 10.3390/healthcare9050522
– year: 2011
  ident: 8
  article-title: On Optimization Methods for Deep Learning
– ident: 1
  doi: 10.1016/j.imu.2020.100427
– year: 2019
  ident: 30
  article-title: Research on image classification model based on deep convolution neural network
– start-page: 1
  year: 2019
  ident: 34
  article-title: COVID-19 Image Data Collection: Prospective Predictions Are the Future
– ident: 19
  doi: 10.1145/3243316
– ident: 23
  doi: 10.24425/aoa.2019.126360
– ident: 5
  doi: 10.1016/j.dsx.2020.04.012
– volume: 8
  start-page: 317
  issue: 11
  year: 2015
  ident: 15
  publication-title: The Genetic Convolutional Neural Network Model Based on Random Sample
– ident: 21
  doi: 10.24425/aoa.2020.135281
– ident: 20
  doi: 10.1109/TCYB.2020.2983860
– volume-title: Algorithms for Neural Networks
  ident: 24
  article-title: Comparison of particle swarm optimization and backpropagation as training
– ident: 6
  doi: 10.1109/ACCESS.2020.2989273
– ident: 14
  doi: 10.1080/0952813x.2021.1960639
– volume-title: Deep Learning via Hessian-free Optimization
  year: 2010
  ident: 10
– ident: 25
  doi: 10.1007/s10470-018-1366-3
– ident: 28
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 22
  doi: 10.1016/j.oceaneng.2019.04.013
– ident: 36
  doi: 10.1109/oceans.2018.8604847
– ident: 2
  doi: 10.1148/radiol.2020200642
– ident: 16
  doi: 10.1007/978-3-319-25751-8
– ident: 7
  doi: 10.1016/j.scs.2020.102589
– ident: 29
  doi: 10.21203/rs.3.rs-122787/v1
– ident: 35
  doi: 10.1609/aaai.v33i01.3301590
– ident: 26
  doi: 10.1007/s11277-019-06520-w
– ident: 12
  doi: 10.1016/j.eswa.2020.113338
– ident: 3
  doi: 10.1155/2020/8889023
– year: 2015
  ident: 9
  article-title: Krylov Subspace Descent for Deep Learning
– ident: 4
  article-title: Handbook of COVID-19 Prevention and Treatment
– start-page: 504
  year: 2006
  ident: 11
  article-title: Reducing the Dimensionality of
– ident: 13
  doi: 10.1007/s40430-017-0927-1
– ident: 32
  doi: 10.1007/s10462-020-09825-6
– ident: 37
  doi: 10.1109/CEC48606.2020.9185541
– ident: 33
  doi: 10.1016/j.media.2020.101794
– ident: 31
  doi: 10.1155/2020/8856801
– ident: 27
  doi: 10.1007/s10470-022-02014-1
SSID ssj0057502
Score 2.377254
Snippet Artificial intelligence (AI) techniques have been considered effective technologies in diagnosing and breaking the transmission chain of COVID-19 disease....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
Disease transmission
Fuzzy control
Fuzzy logic
Genetic algorithms
Graphics processing units
Humans
Mathematical models
Medical research
Medicine, Experimental
Methods
Neural networks
Neural Networks, Computer
Optimization algorithms
Parameters
Particle swarm optimization
Swarm intelligence
Whales & whaling
X-Rays
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxNBFB60IPgiar2sVhmh-iKDm9m57Pi2JA2JYApiNW_LXGmh3YhJkPTXe2Z2NzRtpT4uc-bMsmfO5Zs9fIPQIXVUeC5KUiihCHPKEy3A8YwsSivyQjkTjwa-zsTkhH2Z83lHkrS8-Qsfsl2E5_QTF1KqCHPuwwaLoHwy7wMuFBxta6EAf4ls731_-7W5O5mni78PTiPy_XN2W315vU3ySt4ZP0aPuoIRV62Fn6B7vnmK9qsGwPLFBn_AqYUznY3vozAazmZkvL683Pw8rj6nSS1DBJ5eod7E_VkYhooVV2vQFHlb8civUmNWgxcBD49_TEdkoHBqKsBz8k1v8PQCws_yGToZH30fTkh3kQKxTIoVKY3juedOlUoY5oLSvlRUQ25mUtqBClDjWa9o0C4X2rgyMB6U5dQUpaM-L56jvWbR-JcIUyZyGwCFBasB2QUjae6MLQutVYBaKEMf-49c245lPF52cV4ntMF5HU1SdybJ0Put9K-WXeMfcgfRXnV0OtBmwQVsXckB41B-8jxDh50d79LSG7nuPHVZU5lHykMIbBl6tx2OC8Tus8Yv1kmGMoB-HFS8aPfEdqGCK8ElExmSO7tlKxD5u3dHmrPTxOOtChHpCF_939u_Rg_jY2o-VAdob_V77d9AQbQyb5M7_AVkQAAM
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxQxEA-lIvhFrPWxtkqE6hdZ3cvmsRFEljuPntAriKf3bcmTFto9be_Q61_vJPugV6p-zuxkNzOTzC87_AahA2IJd4wXaS65TKmVLlUcAk-LvDA8y6XV4WrgaMoPZ_TznM23UNdttF3Ay1uhXegnNbs4e_v75_ojBPyHGPCMBfxO3jEuhAw46A6cSSKE6BHt_ydATtJUH3IIqUAI35XA33h643Bqt-i7JwEc_zq9LQW9WUl57WgaP0D325wSl40T7KAtVz9Eu2UNePp8jV_jWOUZr893kR8Np9N0vLq6Wn8_Lt_HhxoSCTy5xs6Ju-syDEktLlegKVC74pFbxtqtGi88Hh5_m4zSgcSx7gDP0y9qjSfnsENdPkKz8aevw8O07bWQGir4Mi20ZZljVhaSa2q9VK6QRMHxTYUwA-khDTROEq9sxpW2hafMS8OIzgtLXJY_Rtv1onZPESaUZ8YDUPNGAfjzWpDMalPkSkkP6VKC3nSLXJmWiDz0wzirIiBhrAomqVqTJOhVL_2jIeD4i9x-sFcVPAW0GYgSU5ViQBlkqCxL0EFrx_9p6Yxcdb5YEZEFVkTY-xL0sh8OE4QCtdotVlGGUECHDFQ8aXyinyhnkjNBeYLEhrf0AoHie3OkPj2JVN8y54Gx8Nm_X2sP3QsfEesS5T7aXl6s3HPIlZb6RQyDP0nMDAk
  priority: 102
  providerName: Scholars Portal
Title DCNN-FuzzyWOA: Artificial Intelligence Solution for Automatic Detection of COVID-19 Using X-Ray Images
URI https://dx.doi.org/10.1155/2022/5677961
https://www.ncbi.nlm.nih.gov/pubmed/35965746
https://www.proquest.com/docview/2704759832
https://www.proquest.com/docview/2702486251
https://pubmed.ncbi.nlm.nih.gov/PMC9363937
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Zb9QwELagFRIvCChHoFRGKrygqInjI-YFhd1ud5G6RSsKeYsSH2olmm27u0LbX8_YOegijhdLkSd2kvHYM5NP3yC0TzThhvE0TCSXIdXShCUHw6tEkioeJVJXLjVwPOXjU_opZ3mbcFu0sMpuT_QbtZ4rlyM_ICJy1HSwAD9cXoWuapT7u9qW0LiLth11mYN0ibwPuMATaTCHHAzJ0cB3wHfGXMxPDhgXQvJ440hqN-Z7Zy4k_nH-J8fzd_zkrQNp9BA9aD1JnDWqf4TumPox2slqiKIv1vgt9thOnzTfQXY4mE7D0ermZv3tJHvvb2qoI_DkFicn7pJkGFxZnK1gJEfoiodm6RFbNZ5bPDj5OhmGscQebYDzcFau8eQC9qXFE3Q6OvwyGIdthYVQUcGXYVppFhmmZSp5RbWVpUklKeHQpkKoWFpw_pSRxJY64mWlU0uZlYqRKkk1MVHyFG3V89o8R5hQHikL4ZlVJYR8thIk0pVKk7KUFpykAL3rPnKhWvpxVwXje-HDEMYKp5KiVUmA3vTSlw3txl_kdp2-CmeNMJoC21BFJmLKwC9lUYD2Wz3-b5ROyUVrwovi14IL0Ou-203gYGm1ma-8DKEQEzIY4lmzJvqJEiY5E5QHSGysll7AEXtv9tTnZ57gWybc8RS--PdjvUT33Ut4NKLcRVvL65V5BR7SstrzZgBtOjraQ9sfD6efZ3B1lMfQHtMU2tk4_wnN5A-o
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD4amxC8cBuXwAAjbbygbKkT2zESD1VLadnWSWhjfQuJL9oESxFNNbV_hb_Cj-M4l7JOXJ4m8WznOHG-c3yO8-UzwCbVlBvGYz-UXPqRlsZPOTpeJsJY8SCUOnNbA_tD3j-K3o_YaAW-N__COFplExPLQK3Hyu2R71AROGk6BGDNoNw1s3OszyZvBl18mVuU9t4edvp-fYSAryLBCz_ONAsM0zKWPIu0lamJJU1xVYqEUC1pMbtRRlKb6oCnmY5txKxUjGZhrKkJQrR7DdawqmDoPmud4-67fhPoMdGpKI0c_dSpzDe8esbclgLdYVwIyVtLK14d96-fuIr7_PR3ee1leuaF9a53G340M1XRXD5vT4tsW80viUj-p1N5B27VeTZpV45xF1ZMfg_W23lajM9m5CUpma_lJ4V1sN3OcOj3pvP57Pig_bq8qBLWIIMLiqWk2UIkmOiT9hQtOblb0jVFyWfLydiSzsHHQddvSVJyMcjI_5DOyOAMo_bkPhxdyRM_gNV8nJtHQGjEA2WxeLUqxYLYZoIGOlNxmKbSYgrpwasGI4mqxdndGSFfkrJIYyxxiEpqRHmwtej9tRIl-UO_DQe3xMUqtKYwcqikLVoRw6ydBR5s1jD8l5UGRkkd4CbJLwx58GLR7AZwpL3cjKdlHxphxczQxMMK0ouBQiY5ExH3QCyBfdHByZ4vt-SnJ6X8uQy5U3F8_Pfbeg43-of7e8neYLj7BG66Byp5m3IDVotvU_MUc8kie1b7NIFPV439n4lRfYs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ZbtNAFL0qqUB9YSvQQIFBanlBbpzxLB4khKKYkFBIEWpp3ow9i1pBnUIcVcmn8Sv8DDNeQlOxPPWBZ4-vl5y7jU_OBdjCCjNNWegFggmPKKG9hFnHS3kQSuYHQqVua-DdkPUPyJsRHa3A9_q_MI5WWcfEIlCrsXR75C3MfSdNZwHYMhUt4n3Ue3n61XMTpNyX1nqcRgmRXT07s-3b5MUgsr_1Nsa9V_vdvldNGPAk4Sz3wlRRX1MlQsFSooxIdChwYpMW4Vy2hbHFj9QCm0T5LElVaAg1QlKcBqHC2g-s3Suw6qY6kQasdg-j1_06D9g6qGQ8MuvGToS-pt1T6nYccIsyzgVrLyXEKi1cPXIN-dnx78rei-zNc-mwdwN-1C-yZMF83pnm6Y6cX9CY_D_f9E24XlXpqFO61S1Y0dltWO9kST4-maGnqODNFh8k1sFE3eHQ603n89nhXud5cVIpy4EG5_ROUb0BiWybgDpTa8mJ5aJI5wUbLkNjg7p7HweR1xaoYHKgkfchmaHBiY35kztwcClPfBca2TjTG4AwYb40tvU1MrHttEk59lUqwyBJhLEFaBOe1RCKZSXt7iaMfImLFo_S2AEurgDXhO3F6tNS0uQP6zYdGmMX6aw1aeOOjDu8Tait-anfhK0Kpf-yUqMsrsLjJP4FsSY8WRx2F3CUv0yPp8UaTGy_Ta2JeyXiFxcKqGCUE9YEvuQLiwVONH35SHZ8VIini4A5Dcj7f7-tx3DNYj5-OxjuPoA19zwF6VNsQiP_NtUPbSGap48qj0fw6bKh_xP5_5Vb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCNN-FuzzyWOA%3A+Artificial+Intelligence+Solution+for+Automatic+Detection+of+COVID-19+Using+X-Ray+Images&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Saffari%2C+Abbas&rft.au=Khishe%2C+Mohammad&rft.au=Mohammadi%2C+Mokhtar&rft.au=Adil+Hussein+Mohammed&rft.date=2022-08-09&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F5677961&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon