Effect of peroxydisulfate on the degradation of phenol under dielectric barrier discharge plasma treatment
The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction...
Saved in:
Published in | Chemosphere (Oxford) Vol. 232; pp. 462 - 470 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L−1 to 4.75 mg L−1 (by 52.5%), whereas the addition of 1770 mg L−1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment.
[Display omitted]
•Addition of PDS in discharge plasma can improve phenol degradation and TOC removal.•Enhanced phenol removal was attributed to increment of •OH and SO4•-.•Phenol removal was simultaneously attributed to •OH, SO4•- and other chemical and physical effects.•The activation of PDS by UV generated with discharge plasma likely occurred. |
---|---|
AbstractList | The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L-1 to 4.75 mg L-1 (by 52.5%), whereas the addition of 1770 mg L-1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment.The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L-1 to 4.75 mg L-1 (by 52.5%), whereas the addition of 1770 mg L-1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment. The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L⁻¹ to 4.75 mg L⁻¹ (by 52.5%), whereas the addition of 1770 mg L⁻¹ PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO₄•⁻ and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment. The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L to 4.75 mg L (by 52.5%), whereas the addition of 1770 mg L PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment. The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L−1 to 4.75 mg L−1 (by 52.5%), whereas the addition of 1770 mg L−1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment. [Display omitted] •Addition of PDS in discharge plasma can improve phenol degradation and TOC removal.•Enhanced phenol removal was attributed to increment of •OH and SO4•-.•Phenol removal was simultaneously attributed to •OH, SO4•- and other chemical and physical effects.•The activation of PDS by UV generated with discharge plasma likely occurred. |
Author | Zhang, Guangshan Wang, Qiao Wang, Peng Hu, Limin Wang, Xiaojing Liu, Xiaomeng |
Author_xml | – sequence: 1 givenname: Xiaojing surname: Wang fullname: Wang, Xiaojing – sequence: 2 givenname: Guangshan orcidid: 0000-0002-7190-415X surname: Zhang fullname: Zhang, Guangshan email: gszhanghit@gmail.com – sequence: 3 givenname: Xiaomeng surname: Liu fullname: Liu, Xiaomeng – sequence: 4 givenname: Limin surname: Hu fullname: Hu, Limin – sequence: 5 givenname: Qiao surname: Wang fullname: Wang, Qiao – sequence: 6 givenname: Peng orcidid: 0000-0002-1700-6834 surname: Wang fullname: Wang, Peng email: pwang73@vip.sina.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31158641$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u3CAYRVGVqpmkfYWK7rqxA7bBsKqqUfojReqmXSMMHzEj27iAq-bty2TSqspqVgh07hW65wpdLGEBhN5RUlNC-c2hNiPMIa0jRKgbQmVNWN3Q7gXaUdHLijZSXKAdIR2rOGvZJbpK6UBICTP5Cl22lDLBO7pDh1vnwGQcHF4hht8P1qdtcjoDDgvOI2AL91FbnX25H6kRljDhbbEQsfUwlXT0Bg86Rv_4lMyo4z3gddJp1jhH0HmGJb9GL52eErx5Oq_Rj0-33_dfqrtvn7_uP95Vput5roSglIO2TAzgDHcCBkE6p2XDjeutpU4Dl1TwgTAp-dAxMFy7HtrWDWbo22v0_tS7xvBzg5TVXP4E06QXCFtSTdOXNO_EOWjLCJekaQv69gndhhmsWqOfdXxQf6csgDwBJoaUIrh_CCXqqE0d1H_a1FGbIkwVbSX74VnW-Pw4eY7aT2c17E8NUJb9VUSoZDwsBqyPxZCywZ_R8gfBdL6C |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_127577 crossref_primary_10_1016_j_cej_2025_160480 crossref_primary_10_1016_j_cej_2023_146157 crossref_primary_10_1016_j_apcatb_2020_119604 crossref_primary_10_1016_j_envres_2022_113287 crossref_primary_10_1016_j_cej_2019_123935 crossref_primary_10_1109_TPS_2022_3147544 crossref_primary_10_1016_j_elstat_2020_103502 crossref_primary_10_1016_j_jwpe_2024_106273 crossref_primary_10_1088_2058_6272_ab568d crossref_primary_10_1016_j_jtice_2019_09_007 crossref_primary_10_1016_j_chemosphere_2022_133839 crossref_primary_10_1016_j_jece_2021_105160 crossref_primary_10_1007_s11356_023_25524_5 crossref_primary_10_1016_j_chemosphere_2023_138998 crossref_primary_10_1016_j_cej_2023_144094 crossref_primary_10_1080_09593330_2024_2428444 crossref_primary_10_1007_s11356_020_11222_z crossref_primary_10_1016_j_chemosphere_2021_131265 crossref_primary_10_1016_j_jhazmat_2020_124087 crossref_primary_10_1016_j_dwt_2025_100993 crossref_primary_10_1016_j_jclepro_2023_139221 crossref_primary_10_1016_j_jwpe_2022_103371 crossref_primary_10_1088_1361_6463_abecb1 crossref_primary_10_1016_j_rineng_2024_102597 crossref_primary_10_1039_D4EN00859F crossref_primary_10_1016_j_jwpe_2024_106541 crossref_primary_10_1002_ppap_202400013 crossref_primary_10_1007_s41614_022_00077_1 crossref_primary_10_1016_j_jenvman_2020_111539 |
Cites_doi | 10.1016/j.jhazmat.2017.10.044 10.1016/j.apcatb.2017.03.074 10.1016/j.cej.2016.07.006 10.1021/ie050981u 10.1016/j.jiec.2018.07.012 10.1016/j.cej.2018.03.169 10.1039/a807808d 10.1016/j.radphyschem.2005.09.009 10.1021/ja00810a035 10.1021/es404118q 10.1016/j.cej.2017.11.059 10.1002/kin.550210802 10.1016/0304-3894(94)00099-3 10.1016/j.physrep.2016.03.003 10.1016/j.cej.2010.05.041 10.1021/ja00443a030 10.1021/es00104a009 10.1021/es506362e 10.1016/S0584-8547(01)00406-2 10.1016/j.apcatb.2018.03.110 10.1021/ie9002848 10.1016/j.apcatb.2014.02.012 10.1016/j.scitotenv.2018.08.003 10.1016/j.cej.2018.07.142 10.1021/acs.est.6b05090 10.1016/S0045-6535(02)00067-X 10.1016/j.envpol.2017.02.038 10.1021/es00157a001 10.1016/j.jhazmat.2011.08.060 10.1016/j.chemosphere.2018.08.065 10.1016/j.watres.2014.05.042 10.1016/j.cej.2013.09.090 10.1021/es062237m 10.1016/j.watres.2018.03.069 10.1016/j.cej.2017.03.085 10.1016/j.seppur.2018.02.055 10.1016/j.cej.2018.01.016 10.1016/j.cej.2017.05.168 10.1016/j.jclepro.2018.05.207 10.1016/j.apcatb.2018.09.049 10.1016/j.apcatb.2017.09.047 10.1016/j.cej.2017.02.133 10.1021/es1000243 10.1541/ieejfms.134.591 10.1016/j.jhazmat.2018.06.012 10.1021/acs.est.6b05477 10.1021/es502056d 10.1016/j.cej.2017.03.103 10.1002/etc.5620190605 10.1088/0022-3727/42/5/053001 10.1016/j.jhazmat.2016.04.033 10.1016/j.jhazmat.2018.07.018 10.1021/es1013714 10.1016/j.apcatb.2015.07.024 10.1016/j.cej.2012.08.082 10.1016/j.jhazmat.2015.11.043 10.1016/j.cej.2016.03.006 10.1016/j.envpol.2016.04.088 10.1016/j.cej.2013.06.018 10.1016/j.cej.2015.09.001 10.1016/S1001-0742(11)60844-9 10.1021/acs.est.6b05392 10.1016/j.apcatb.2004.05.025 10.1016/j.cej.2017.12.117 10.1021/acs.est.5b03595 10.1016/j.cej.2016.11.103 10.1016/j.cej.2014.02.047 10.1021/es00172a003 10.1088/0963-0252/23/1/015019 10.1016/j.cej.2012.11.007 10.1016/j.cej.2014.12.065 10.1016/j.chemosphere.2011.04.062 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2019.05.214 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 470 |
ExternalDocumentID | 31158641 10_1016_j_chemosphere_2019_05_214 S004565351931135X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c476t-88116ead58befc6f8eb804fa926cf7dd1fae69186b05996b45ec6af7e33fbcb73 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Mon Jul 21 10:29:04 EDT 2025 Fri Jul 11 05:14:23 EDT 2025 Thu Apr 03 07:02:51 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 02:33:45 EDT 2025 Fri Feb 23 02:48:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Peroxydisulfate activation Sulfate radical Phenol degradation Dielectric barrier discharge plasma |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-88116ead58befc6f8eb804fa926cf7dd1fae69186b05996b45ec6af7e33fbcb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7190-415X 0000-0002-1700-6834 |
PMID | 31158641 |
PQID | 2235069023 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2271866487 proquest_miscellaneous_2235069023 pubmed_primary_31158641 crossref_primary_10_1016_j_chemosphere_2019_05_214 crossref_citationtrail_10_1016_j_chemosphere_2019_05_214 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2019_05_214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wei, Villamena, Weavers (bib66) 2017; 51 Jiang, Zheng, Qiu, Wu, Zhang, Yan, Xue (bib32) 2014; 236 Manz, Adams, Carter (bib46) 2018; 353 Wang, Liang, Liu, Hu, Cui (bib67) 2018; 344 Hu, Zhang, Liu, Wang, Wang (bib23) 2018; 338 Gupta (bib20) 2007 Locke, Sato, Sunka, Hoffmann, Chang (bib36) 2006; 45 Zhu, Zhu, Dionysiou, Zhou, Fang, Gao (bib75) 2018; 139 Vandenbroucke, Morent, Geyter, Leys (bib61) 2011; 195 Huang, Mabury (bib29) 2000; 19 Shao, Wang, Ren, Hu, Wen, Tan, Xiong, Asiri, Marwani (bib53) 2018; 67 Antoniou, de la Cruz, Dionysiou (bib2) 2010; 44 Tugba, Idil (bib60) 2013; 224 Wang, Wang (bib63) 2018; 334 Yang, Yang, Zhang, Ou, Liu, Zheng, Yang, Ying, Luo (bib70) 2017; 321 Staehelin, Hoigné (bib57) 1982; 16 Dhaka, Kumar, Khan, Paeng, Kurade, Kim, Jeon (bib15) 2017; 321 Joshi, Locke, Arce, Finney (bib30) 1995; 41 Glaze (bib18) 1987; 21 Rehman, Sayed, Khan, Shah, Khan, Dionysiou (bib52) 2018; 357 Buxton, Bydder, Salmon (bib6) 1999; 1 Chen, Zuo, Zhou, Huang, Yang, Cai, Ding (bib11) 2018; 345 Duan, Jiang, Lu, Shang, Li, Wu (bib14) 2018; 221 Liu, Bruton, Doyle, Sedlak (bib40) 2014; 48 Snook, Hamilton (bib55) 1974; 96 Chen, Li, Shao, Ren, Wang (bib8) 2012; 210 Huie, Clifton (bib26) 1989; 21 Furman, Teel, Watts (bib17) 2010; 44 Kang, Lee, Yoon (bib35) 2002; 47 Tang, Yuan, Rao, Li, Qi, Cheng, Sun, Gu, Huang (bib59) 2018; 337 Zhou, Jiang, Gao, Ma, Pang, Li, Lu, Yuan (bib74) 2015; 49 Ghauch, Baakbajum, Amasha, El Asmar, Tantawi (bib19) 2017; 317 Acero, Benítez, Real, Rodríguez (bib1) 2018; 201 Li, Zhang, Wang, Zheng, Zheng (bib39) 2016; 294 Shang, Wang, Li, Wang, Lu, Jiang, Wu (bib56) 2017; 311 Wang, Peng, Xie, Deng, Deng (bib65) 2017; 51 Anipsitakis, Dionysiou (bib3) 2004; 54 Nie, Yang, Zhang, Yan, Wang, Li, Dong (bib49) 2014; 246 Dulova, Kattel, Trapido (bib13) 2017; 318 Xiong, Sun, Zhang, Gao, Shen, Li, Guan (bib68) 2014; 62 Miyazaki, Katsumura, Lin, Muroya, Kudo, Taguchi, Asano, Yoshida (bib48) 2006; 75 Hu, Long (bib28) 2016; 181 Peyton, Glaze (bib51) 1988; 22 Wang, Yao, Wang, Xia, Chu, Jiang (bib62) 2017; 224 Xie, Zhang, Huang, Huang (bib69) 2012; 24 Yang, Jiang, Lu, Ma, Liu (bib72) 2015; 49 Zeng, Zou, Li, Arowo, Sun, Chen, Chu, Shao (bib76) 2013; 229 Hu, Zhang, Liu, Wang, Dong, Wang (bib24) 2019; 647 Jiang, Wang, Lei, Liu, Zhang (bib33) 2019; 241 Yuan, Guan, Wu, Jiang, Li, Chen, Zeng (bib71) 2018; 217 Chen, Carroll (bib10) 2016; 215 Hu, Zhang, Wang, Sun, Liu, Wang (bib21) 2017; 326 Kitagawa, Kosugi, Takeuchi, Yasuoka (bib34) 2014; 134 Sun, Kwan, Suvorova, Ang, Tadé, Wang (bib58) 2014; 154–155 Yang, Pignatello, Ma, Mitch (bib73) 2014; 48 Cheng, Zeng, Huang, Lai, Xu, Zhang, Liu (bib9) 2016; 284 Lee, Lee, Jeong, Lee, Park, Lee (bib41) 2015; 266 Liang, Su (bib44) 2009; 48 Bogaerts, Neyts, Gijbels, van der Mullen (bib4) 2002; 57 Waldemer, Tratnyek, Johnson, Nurmi (bib64) 2007; 41 Neta, Madhavan, Zemel, Fessenden (bib50) 1977; 99 Boukhatem, Khalaf, Djouadi, Gonzalez, Navarro, Santaballa, Canle (bib7) 2017; 211 Liu, You, Tan, Ren (bib38) 2017; 51 Liu, He, Fu, Dionysiou (bib43) 2016; 305 Choea, Byuna, Kim, Kim (bib12) 2018; 233 Ji, Kong, Lu, Jin, Kang, Yin, Zhou (bib31) 2016; 313 Lukes, Dolezalova, Sisrova, Clupek (bib42) 2014; 23 Fernandes, Makoś, Boczkaj (bib16) 2018; 195 Leal, Lourenco, Brandão, da Silva, de Souza, de Souza (bib45) 2018; 359 Huang, Chen, Wang, Yan (bib27) 2010; 162 Hu, Zhang, Liu, Wang, Wang (bib22) 2018; 212 Mora, Rosso, Mártire, Gonzalez (bib47) 2011; 84 Bruggeman, Leys (bib5) 2009; 42 Lu, Naidis, Laroussi, Reuter, Graves, Ostrikov (bib37) 2016; 630 Manz (10.1016/j.chemosphere.2019.05.214_bib46) 2018; 353 Antoniou (10.1016/j.chemosphere.2019.05.214_bib2) 2010; 44 Chen (10.1016/j.chemosphere.2019.05.214_bib11) 2018; 345 Bogaerts (10.1016/j.chemosphere.2019.05.214_bib4) 2002; 57 Anipsitakis (10.1016/j.chemosphere.2019.05.214_bib3) 2004; 54 Furman (10.1016/j.chemosphere.2019.05.214_bib17) 2010; 44 Shao (10.1016/j.chemosphere.2019.05.214_bib53) 2018; 67 Hu (10.1016/j.chemosphere.2019.05.214_bib21) 2017; 326 Xiong (10.1016/j.chemosphere.2019.05.214_bib68) 2014; 62 Buxton (10.1016/j.chemosphere.2019.05.214_bib6) 1999; 1 Liu (10.1016/j.chemosphere.2019.05.214_bib38) 2017; 51 Chen (10.1016/j.chemosphere.2019.05.214_bib8) 2012; 210 Locke (10.1016/j.chemosphere.2019.05.214_bib36) 2006; 45 Joshi (10.1016/j.chemosphere.2019.05.214_bib30) 1995; 41 Peyton (10.1016/j.chemosphere.2019.05.214_bib51) 1988; 22 Shang (10.1016/j.chemosphere.2019.05.214_bib56) 2017; 311 Liu (10.1016/j.chemosphere.2019.05.214_bib43) 2016; 305 Nie (10.1016/j.chemosphere.2019.05.214_bib49) 2014; 246 Jiang (10.1016/j.chemosphere.2019.05.214_bib32) 2014; 236 Kang (10.1016/j.chemosphere.2019.05.214_bib35) 2002; 47 Duan (10.1016/j.chemosphere.2019.05.214_bib14) 2018; 221 Lu (10.1016/j.chemosphere.2019.05.214_bib37) 2016; 630 Leal (10.1016/j.chemosphere.2019.05.214_bib45) 2018; 359 Tugba (10.1016/j.chemosphere.2019.05.214_bib60) 2013; 224 Ghauch (10.1016/j.chemosphere.2019.05.214_bib19) 2017; 317 Xie (10.1016/j.chemosphere.2019.05.214_bib69) 2012; 24 Li (10.1016/j.chemosphere.2019.05.214_bib39) 2016; 294 Wang (10.1016/j.chemosphere.2019.05.214_bib63) 2018; 334 Wang (10.1016/j.chemosphere.2019.05.214_bib67) 2018; 344 Cheng (10.1016/j.chemosphere.2019.05.214_bib9) 2016; 284 Dhaka (10.1016/j.chemosphere.2019.05.214_bib15) 2017; 321 Wei (10.1016/j.chemosphere.2019.05.214_bib66) 2017; 51 Rehman (10.1016/j.chemosphere.2019.05.214_bib52) 2018; 357 Bruggeman (10.1016/j.chemosphere.2019.05.214_bib5) 2009; 42 Hu (10.1016/j.chemosphere.2019.05.214_bib24) 2019; 647 Snook (10.1016/j.chemosphere.2019.05.214_bib55) 1974; 96 Hu (10.1016/j.chemosphere.2019.05.214_bib28) 2016; 181 Lukes (10.1016/j.chemosphere.2019.05.214_bib42) 2014; 23 Lee (10.1016/j.chemosphere.2019.05.214_bib41) 2015; 266 Wang (10.1016/j.chemosphere.2019.05.214_bib65) 2017; 51 Vandenbroucke (10.1016/j.chemosphere.2019.05.214_bib61) 2011; 195 Hu (10.1016/j.chemosphere.2019.05.214_bib22) 2018; 212 Dulova (10.1016/j.chemosphere.2019.05.214_bib13) 2017; 318 Gupta (10.1016/j.chemosphere.2019.05.214_bib20) 2007 Neta (10.1016/j.chemosphere.2019.05.214_bib50) 1977; 99 Yang (10.1016/j.chemosphere.2019.05.214_bib72) 2015; 49 Miyazaki (10.1016/j.chemosphere.2019.05.214_bib48) 2006; 75 Mora (10.1016/j.chemosphere.2019.05.214_bib47) 2011; 84 Yuan (10.1016/j.chemosphere.2019.05.214_bib71) 2018; 217 Tang (10.1016/j.chemosphere.2019.05.214_bib59) 2018; 337 Yang (10.1016/j.chemosphere.2019.05.214_bib70) 2017; 321 Huang (10.1016/j.chemosphere.2019.05.214_bib29) 2000; 19 Chen (10.1016/j.chemosphere.2019.05.214_bib10) 2016; 215 Huang (10.1016/j.chemosphere.2019.05.214_bib27) 2010; 162 Ji (10.1016/j.chemosphere.2019.05.214_bib31) 2016; 313 Sun (10.1016/j.chemosphere.2019.05.214_bib58) 2014; 154–155 Yang (10.1016/j.chemosphere.2019.05.214_bib73) 2014; 48 Glaze (10.1016/j.chemosphere.2019.05.214_bib18) 1987; 21 Kitagawa (10.1016/j.chemosphere.2019.05.214_bib34) 2014; 134 Wang (10.1016/j.chemosphere.2019.05.214_bib62) 2017; 224 Zeng (10.1016/j.chemosphere.2019.05.214_bib76) 2013; 229 Zhou (10.1016/j.chemosphere.2019.05.214_bib74) 2015; 49 Staehelin (10.1016/j.chemosphere.2019.05.214_bib57) 1982; 16 Acero (10.1016/j.chemosphere.2019.05.214_bib1) 2018; 201 Liu (10.1016/j.chemosphere.2019.05.214_bib40) 2014; 48 Choea (10.1016/j.chemosphere.2019.05.214_bib12) 2018; 233 Fernandes (10.1016/j.chemosphere.2019.05.214_bib16) 2018; 195 Boukhatem (10.1016/j.chemosphere.2019.05.214_bib7) 2017; 211 Huie (10.1016/j.chemosphere.2019.05.214_bib26) 1989; 21 Waldemer (10.1016/j.chemosphere.2019.05.214_bib64) 2007; 41 Zhu (10.1016/j.chemosphere.2019.05.214_bib75) 2018; 139 Jiang (10.1016/j.chemosphere.2019.05.214_bib33) 2019; 241 Hu (10.1016/j.chemosphere.2019.05.214_bib23) 2018; 338 Liang (10.1016/j.chemosphere.2019.05.214_bib44) 2009; 48 |
References_xml | – year: 2007 ident: bib20 article-title: Investigation of a Physical Disinfection Process Based on Pulsed Underwater Corona Discharges – volume: 62 start-page: 53 year: 2014 end-page: 62 ident: bib68 article-title: Activating persulfate by Fe publication-title: Water Res. – volume: 48 start-page: 5558 year: 2009 end-page: 5562 ident: bib44 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 761 year: 1988 end-page: 767 ident: bib51 article-title: Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone publication-title: Environ. Sci. Technol. – volume: 321 start-page: 113 year: 2017 end-page: 122 ident: bib70 article-title: Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate publication-title: Chem. Eng. J. – volume: 233 start-page: 272 year: 2018 end-page: 280 ident: bib12 article-title: Fe publication-title: Appl. Catal. B Environ. – volume: 221 start-page: 521 year: 2018 end-page: 529 ident: bib14 article-title: Synergetic effect of TiO publication-title: Appl. Catal. B Environ. – volume: 326 start-page: 1095 year: 2017 end-page: 1104 ident: bib21 article-title: Facile synthesis of novel Co publication-title: Chem. Eng. J. – volume: 42 year: 2009 ident: bib5 article-title: Non-thermal plasmas in and in contact with liquids publication-title: J. Phys. D Appl. Phys. – volume: 24 start-page: 821 year: 2012 end-page: 826 ident: bib69 article-title: Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation publication-title: J. Environ. Sci. – volume: 211 start-page: 114 year: 2017 end-page: 125 ident: bib7 article-title: Photocatalytic activity of mont-La (6%)-Cu publication-title: Appl. Catal. B Environ. – volume: 16 start-page: 676 year: 1982 end-page: 681 ident: bib57 article-title: Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide publication-title: Environ. Sci. Technol. – volume: 154–155 start-page: 134 year: 2014 end-page: 141 ident: bib58 article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals publication-title: Appl. Catal. B Environ. – volume: 45 start-page: 882 year: 2006 end-page: 905 ident: bib36 article-title: Electrohydraulic discharge and nonthermal plasma for water treatment publication-title: Ind. Eng. Chem. Res. – volume: 96 start-page: 860 year: 1974 end-page: 869 ident: bib55 article-title: Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent publication-title: J. Am. Chem. Soc. – volume: 246 start-page: 373 year: 2014 end-page: 382 ident: bib49 article-title: Degradation of chloramphenicol by thermally activated persulfate in aqueous solution publication-title: Chem. Eng. J. – volume: 217 start-page: 411 year: 2018 end-page: 415 ident: bib71 article-title: Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe publication-title: J. Environ. Manag. – volume: 139 start-page: 66 year: 2018 end-page: 73 ident: bib75 article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process publication-title: Water Res. – volume: 41 start-page: 3 year: 1995 end-page: 30 ident: bib30 article-title: Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution publication-title: J. Hazard Mater. – volume: 99 start-page: 163 year: 1977 end-page: 164 ident: bib50 article-title: Rate constants and mechanism of reaction of SO publication-title: J. Am. Chem. Soc. – volume: 215 start-page: 96 year: 2016 end-page: 102 ident: bib10 article-title: Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene publication-title: Environ. Pollut. – volume: 647 start-page: 352 year: 2019 end-page: 361 ident: bib24 article-title: Application of nickel foam-supported Co publication-title: Sci. Total Environ. – volume: 210 start-page: 475 year: 2012 end-page: 481 ident: bib8 article-title: Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution publication-title: Chem. Eng. J. – volume: 51 start-page: 3410 year: 2017 end-page: 3417 ident: bib66 article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study publication-title: Environ. Sci. Technol. – volume: 49 start-page: 7330 year: 2015 end-page: 7339 ident: bib72 article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process publication-title: Environ. Sci. Technol. – volume: 23 year: 2014 ident: bib42 article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H publication-title: Plasma Sources Sci. Technol. – volume: 359 start-page: 96 year: 2018 end-page: 103 ident: bib45 article-title: Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton publication-title: J. Hazard Mater. – volume: 353 start-page: 727 year: 2018 end-page: 735 ident: bib46 article-title: Furfural degradation through heat-activated persulfate: impacts of simulated brine and elevated pressures publication-title: Chem. Eng. J. – volume: 311 start-page: 378 year: 2017 end-page: 384 ident: bib56 article-title: Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate publication-title: Chem. Eng. J. – volume: 241 start-page: 367 year: 2019 end-page: 374 ident: bib33 article-title: Photo-Fenton degradation of phenol by CdS/rGO/Fe publication-title: Appl. Catal. B Environ. – volume: 236 start-page: 348 year: 2014 end-page: 368 ident: bib32 article-title: Review on electrical discharge plasma technology for wastewater remediation publication-title: Chem. Eng. J. – volume: 344 start-page: 369 year: 2018 end-page: 380 ident: bib67 article-title: Highly ordered TiO publication-title: J. Hazard Mater. – volume: 57 start-page: 609 year: 2002 end-page: 658 ident: bib4 article-title: Gas discharge plasmas and their applications publication-title: Spectrochim. Acta B – volume: 44 start-page: 6423 year: 2010 end-page: 6428 ident: bib17 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. – volume: 338 start-page: 300 year: 2018 end-page: 310 ident: bib23 article-title: Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co publication-title: Chem. Eng. J. – volume: 41 start-page: 1010 year: 2007 end-page: 1015 ident: bib64 article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products publication-title: Environ. Sci. Technol. – volume: 284 start-page: 582 year: 2016 end-page: 598 ident: bib9 article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review publication-title: Chem. Eng. J. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: bib63 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 19 start-page: 1501 year: 2000 end-page: 1507 ident: bib29 article-title: A new method for measuring carbonate radical reactivity toward pesticides publication-title: Environ. Toxicol. Chem. – volume: 266 start-page: 28 year: 2015 end-page: 33 ident: bib41 article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism publication-title: Chem. Eng. J. – volume: 44 start-page: 7238 year: 2010 end-page: 7244 ident: bib2 article-title: Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals publication-title: Environ. Sci. Technol. – volume: 48 start-page: 2344 year: 2014 end-page: 2351 ident: bib73 article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) publication-title: Environ. Sci. Technol. – volume: 21 start-page: 224 year: 1987 end-page: 230 ident: bib18 article-title: Drinking-water treatment with ozone publication-title: Environ. Sci. Technol. – volume: 134 start-page: 591 year: 2014 end-page: 597 ident: bib34 article-title: Decomposition of perfluoro compounds in water using plasma and persulfate treatments publication-title: IEEJ Trans. Fundam. Mater. – volume: 224 start-page: 10 year: 2013 end-page: 16 ident: bib60 article-title: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol publication-title: Chem. Eng. J. – volume: 195 start-page: 374 year: 2018 end-page: 384 ident: bib16 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Clean. Prod. – volume: 630 start-page: 1 year: 2016 end-page: 84 ident: bib37 article-title: Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects publication-title: Phys. Rep. – volume: 224 start-page: 552 year: 2017 end-page: 558 ident: bib62 article-title: Preparation of immobilized coating Fenton-like catalyst for high efficient degradation of phenol publication-title: Environ. Pollut. – volume: 181 start-page: 103 year: 2016 end-page: 117 ident: bib28 article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications publication-title: Appl. Catal. B Environ. – volume: 1 start-page: 269 year: 1999 end-page: 273 ident: bib6 article-title: The reactivity of chlorine atoms in aqueous solution- Part II. The equilibrium SO publication-title: Phys. Chem. Chem. Phys. – volume: 337 start-page: 446 year: 2018 end-page: 454 ident: bib59 article-title: Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water publication-title: Chem. Eng. J. – volume: 48 start-page: 10330 year: 2014 end-page: 10336 ident: bib40 article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials publication-title: Environ. Sci. Technol. – volume: 195 start-page: 30 year: 2011 end-page: 54 ident: bib61 article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement publication-title: J. Hazard Mater. – volume: 313 start-page: 229 year: 2016 end-page: 237 ident: bib31 article-title: Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: kinetics, reaction pathways, and formation of brominated by-products publication-title: J. Hazard Mater. – volume: 201 start-page: 41 year: 2018 end-page: 50 ident: bib1 article-title: Degradation of selected emerging contaminants by UV-activated persulfate: kinetics and influence of matrix constituents publication-title: Separ. Purif. Technol. – volume: 21 start-page: 611 year: 1989 end-page: 619 ident: bib26 article-title: Rate constants for hydrogen abstraction reactions of the sulfate radical, SO publication-title: Int. J. Chem. Kinet. – volume: 67 start-page: 380 year: 2018 end-page: 387 ident: bib53 article-title: Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption publication-title: J. Ind. Eng. Chem. – volume: 317 start-page: 1012 year: 2017 end-page: 1025 ident: bib19 article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water publication-title: Chem. Eng. J. – volume: 51 start-page: 7055 year: 2017 end-page: 7064 ident: bib65 article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation publication-title: Environ. Sci. Technol. – volume: 51 start-page: 2339 year: 2017 end-page: 2346 ident: bib38 article-title: In situ photochemical activation of sulfate for enhanced degradation of organic pollutants in water publication-title: Environ. Sci. Technol. – volume: 318 start-page: 254 year: 2017 end-page: 263 ident: bib13 article-title: Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: the effect of citric acid addition publication-title: Chem. Eng. J. – volume: 345 start-page: 364 year: 2018 end-page: 374 ident: bib11 article-title: Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: kinetics and mechanism publication-title: Chem. Eng. J. – volume: 84 start-page: 1270 year: 2011 end-page: 1275 ident: bib47 article-title: Phenol depletion by thermally activated peroxydisulfate at 70 °C publication-title: Chemosphere – volume: 294 start-page: 371 year: 2016 end-page: 379 ident: bib39 article-title: Microwave-enhanced Mn-Fenton process for the removal of BPA in water publication-title: Chem. Eng. J. – volume: 54 start-page: 155 year: 2004 end-page: 163 ident: bib3 article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination publication-title: Appl. Catal. B Environ. – volume: 212 start-page: 152 year: 2018 end-page: 161 ident: bib22 article-title: Optimization of the catalytic activity of a ZnCo publication-title: Chemosphere – volume: 47 start-page: 915 year: 2002 end-page: 924 ident: bib35 article-title: Kinetic modeling of Fenton oxidation of phenol and monochlorophenols publication-title: Chemosphere – volume: 162 start-page: 250 year: 2010 end-page: 256 ident: bib27 article-title: Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma publication-title: Chem. Eng. J. – volume: 357 start-page: 506 year: 2018 end-page: 514 ident: bib52 article-title: Oxidative removal of brilliant green by UV/S publication-title: J. Hazard Mater. – volume: 321 start-page: 11 year: 2017 end-page: 19 ident: bib15 article-title: Aqueous phase degradation of methyl paraben using UV-activated persulfate method publication-title: Chem. Eng. J. – volume: 49 start-page: 12941 year: 2015 end-page: 12950 ident: bib74 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. – volume: 305 start-page: 229 year: 2016 end-page: 239 ident: bib43 article-title: Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate publication-title: J. Hazard Mater. – volume: 75 start-page: 408 year: 2006 end-page: 415 ident: bib48 article-title: Radiolysis of phenol in aqueous solution at elevated temperatures publication-title: Radiat. Phys. Chem. – volume: 229 start-page: 404 year: 2013 end-page: 414 ident: bib76 article-title: Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed publication-title: Chem. Eng. J. – volume: 344 start-page: 369 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib67 article-title: Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.10.044 – volume: 211 start-page: 114 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib7 article-title: Photocatalytic activity of mont-La (6%)-Cu0.6Cd0.4S catalyst for phenol degradation under near UV visible light irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.03.074 – volume: 318 start-page: 254 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib13 article-title: Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: the effect of citric acid addition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.07.006 – volume: 45 start-page: 882 year: 2006 ident: 10.1016/j.chemosphere.2019.05.214_bib36 article-title: Electrohydraulic discharge and nonthermal plasma for water treatment publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050981u – volume: 67 start-page: 380 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib53 article-title: Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.07.012 – volume: 345 start-page: 364 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib11 article-title: Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: kinetics and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.169 – volume: 1 start-page: 269 year: 1999 ident: 10.1016/j.chemosphere.2019.05.214_bib6 article-title: The reactivity of chlorine atoms in aqueous solution- Part II. The equilibrium SO4.-+Cl-ClNsbd.+SO42- publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a807808d – volume: 75 start-page: 408 year: 2006 ident: 10.1016/j.chemosphere.2019.05.214_bib48 article-title: Radiolysis of phenol in aqueous solution at elevated temperatures publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2005.09.009 – volume: 96 start-page: 860 year: 1974 ident: 10.1016/j.chemosphere.2019.05.214_bib55 article-title: Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00810a035 – volume: 48 start-page: 2344 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib73 article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) publication-title: Environ. Sci. Technol. doi: 10.1021/es404118q – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib63 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 21 start-page: 611 year: 1989 ident: 10.1016/j.chemosphere.2019.05.214_bib26 article-title: Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-. alkanes and ethers publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.550210802 – volume: 41 start-page: 3 year: 1995 ident: 10.1016/j.chemosphere.2019.05.214_bib30 article-title: Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution publication-title: J. Hazard Mater. doi: 10.1016/0304-3894(94)00099-3 – volume: 630 start-page: 1 year: 2016 ident: 10.1016/j.chemosphere.2019.05.214_bib37 article-title: Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects publication-title: Phys. Rep. doi: 10.1016/j.physrep.2016.03.003 – volume: 217 start-page: 411 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib71 article-title: Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe2+ publication-title: J. Environ. Manag. – volume: 162 start-page: 250 year: 2010 ident: 10.1016/j.chemosphere.2019.05.214_bib27 article-title: Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.05.041 – volume: 99 start-page: 163 year: 1977 ident: 10.1016/j.chemosphere.2019.05.214_bib50 article-title: Rate constants and mechanism of reaction of SO4•- with aromatic compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00443a030 – year: 2007 ident: 10.1016/j.chemosphere.2019.05.214_bib20 – volume: 16 start-page: 676 year: 1982 ident: 10.1016/j.chemosphere.2019.05.214_bib57 article-title: Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide publication-title: Environ. Sci. Technol. doi: 10.1021/es00104a009 – volume: 49 start-page: 7330 year: 2015 ident: 10.1016/j.chemosphere.2019.05.214_bib72 article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/es506362e – volume: 57 start-page: 609 year: 2002 ident: 10.1016/j.chemosphere.2019.05.214_bib4 article-title: Gas discharge plasmas and their applications publication-title: Spectrochim. Acta B doi: 10.1016/S0584-8547(01)00406-2 – volume: 233 start-page: 272 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib12 article-title: Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.03.110 – volume: 48 start-page: 5558 year: 2009 ident: 10.1016/j.chemosphere.2019.05.214_bib44 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9002848 – volume: 154–155 start-page: 134 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib58 article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.02.012 – volume: 647 start-page: 352 year: 2019 ident: 10.1016/j.chemosphere.2019.05.214_bib24 article-title: Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.003 – volume: 353 start-page: 727 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib46 article-title: Furfural degradation through heat-activated persulfate: impacts of simulated brine and elevated pressures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.142 – volume: 51 start-page: 2339 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib38 article-title: In situ photochemical activation of sulfate for enhanced degradation of organic pollutants in water publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05090 – volume: 47 start-page: 915 year: 2002 ident: 10.1016/j.chemosphere.2019.05.214_bib35 article-title: Kinetic modeling of Fenton oxidation of phenol and monochlorophenols publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00067-X – volume: 224 start-page: 552 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib62 article-title: Preparation of immobilized coating Fenton-like catalyst for high efficient degradation of phenol publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.02.038 – volume: 21 start-page: 224 year: 1987 ident: 10.1016/j.chemosphere.2019.05.214_bib18 article-title: Drinking-water treatment with ozone publication-title: Environ. Sci. Technol. doi: 10.1021/es00157a001 – volume: 195 start-page: 30 year: 2011 ident: 10.1016/j.chemosphere.2019.05.214_bib61 article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2011.08.060 – volume: 212 start-page: 152 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib22 article-title: Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.065 – volume: 62 start-page: 53 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib68 article-title: Activating persulfate by Fe0 coupling with weak magnetic field: performance and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2014.05.042 – volume: 236 start-page: 348 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib32 article-title: Review on electrical discharge plasma technology for wastewater remediation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.090 – volume: 41 start-page: 1010 year: 2007 ident: 10.1016/j.chemosphere.2019.05.214_bib64 article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products publication-title: Environ. Sci. Technol. doi: 10.1021/es062237m – volume: 139 start-page: 66 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib75 article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process publication-title: Water Res. doi: 10.1016/j.watres.2018.03.069 – volume: 321 start-page: 11 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib15 article-title: Aqueous phase degradation of methyl paraben using UV-activated persulfate method publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.085 – volume: 201 start-page: 41 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib1 article-title: Degradation of selected emerging contaminants by UV-activated persulfate: kinetics and influence of matrix constituents publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2018.02.055 – volume: 338 start-page: 300 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib23 article-title: Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.016 – volume: 326 start-page: 1095 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib21 article-title: Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.168 – volume: 195 start-page: 374 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib16 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.05.207 – volume: 241 start-page: 367 year: 2019 ident: 10.1016/j.chemosphere.2019.05.214_bib33 article-title: Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.049 – volume: 221 start-page: 521 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib14 article-title: Synergetic effect of TiO2 and Fe3+ as co-catalysts for enhanced phenol degradation in pulsed discharge system publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.09.047 – volume: 317 start-page: 1012 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib19 article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.133 – volume: 44 start-page: 7238 year: 2010 ident: 10.1016/j.chemosphere.2019.05.214_bib2 article-title: Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals publication-title: Environ. Sci. Technol. doi: 10.1021/es1000243 – volume: 134 start-page: 591 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib34 article-title: Decomposition of perfluoro compounds in water using plasma and persulfate treatments publication-title: IEEJ Trans. Fundam. Mater. doi: 10.1541/ieejfms.134.591 – volume: 357 start-page: 506 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib52 article-title: Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: a comparative study publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.06.012 – volume: 51 start-page: 7055 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib65 article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05477 – volume: 48 start-page: 10330 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib40 article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials publication-title: Environ. Sci. Technol. doi: 10.1021/es502056d – volume: 321 start-page: 113 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib70 article-title: Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.103 – volume: 19 start-page: 1501 year: 2000 ident: 10.1016/j.chemosphere.2019.05.214_bib29 article-title: A new method for measuring carbonate radical reactivity toward pesticides publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620190605 – volume: 42 year: 2009 ident: 10.1016/j.chemosphere.2019.05.214_bib5 article-title: Non-thermal plasmas in and in contact with liquids publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/5/053001 – volume: 313 start-page: 229 year: 2016 ident: 10.1016/j.chemosphere.2019.05.214_bib31 article-title: Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: kinetics, reaction pathways, and formation of brominated by-products publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.04.033 – volume: 359 start-page: 96 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib45 article-title: Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.07.018 – volume: 44 start-page: 6423 year: 2010 ident: 10.1016/j.chemosphere.2019.05.214_bib17 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es1013714 – volume: 181 start-page: 103 year: 2016 ident: 10.1016/j.chemosphere.2019.05.214_bib28 article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.07.024 – volume: 210 start-page: 475 year: 2012 ident: 10.1016/j.chemosphere.2019.05.214_bib8 article-title: Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.08.082 – volume: 305 start-page: 229 year: 2016 ident: 10.1016/j.chemosphere.2019.05.214_bib43 article-title: Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.11.043 – volume: 294 start-page: 371 year: 2016 ident: 10.1016/j.chemosphere.2019.05.214_bib39 article-title: Microwave-enhanced Mn-Fenton process for the removal of BPA in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.006 – volume: 215 start-page: 96 year: 2016 ident: 10.1016/j.chemosphere.2019.05.214_bib10 article-title: Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.04.088 – volume: 229 start-page: 404 year: 2013 ident: 10.1016/j.chemosphere.2019.05.214_bib76 article-title: Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.06.018 – volume: 284 start-page: 582 year: 2016 ident: 10.1016/j.chemosphere.2019.05.214_bib9 article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.001 – volume: 24 start-page: 821 year: 2012 ident: 10.1016/j.chemosphere.2019.05.214_bib69 article-title: Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(11)60844-9 – volume: 51 start-page: 3410 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib66 article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05392 – volume: 54 start-page: 155 year: 2004 ident: 10.1016/j.chemosphere.2019.05.214_bib3 article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2004.05.025 – volume: 337 start-page: 446 year: 2018 ident: 10.1016/j.chemosphere.2019.05.214_bib59 article-title: Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.117 – volume: 49 start-page: 12941 year: 2015 ident: 10.1016/j.chemosphere.2019.05.214_bib74 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03595 – volume: 311 start-page: 378 year: 2017 ident: 10.1016/j.chemosphere.2019.05.214_bib56 article-title: Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.103 – volume: 246 start-page: 373 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib49 article-title: Degradation of chloramphenicol by thermally activated persulfate in aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.02.047 – volume: 22 start-page: 761 year: 1988 ident: 10.1016/j.chemosphere.2019.05.214_bib51 article-title: Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone publication-title: Environ. Sci. Technol. doi: 10.1021/es00172a003 – volume: 23 year: 2014 ident: 10.1016/j.chemosphere.2019.05.214_bib42 article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/23/1/015019 – volume: 224 start-page: 10 year: 2013 ident: 10.1016/j.chemosphere.2019.05.214_bib60 article-title: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.007 – volume: 266 start-page: 28 year: 2015 ident: 10.1016/j.chemosphere.2019.05.214_bib41 article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.12.065 – volume: 84 start-page: 1270 year: 2011 ident: 10.1016/j.chemosphere.2019.05.214_bib47 article-title: Phenol depletion by thermally activated peroxydisulfate at 70 °C publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.04.062 |
SSID | ssj0001659 |
Score | 2.4736304 |
Snippet | The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 462 |
SubjectTerms | aqueous solutions Dielectric barrier discharge plasma electric potential difference hydroxyl radicals liquids mineralization Peroxydisulfate activation phenol Phenol degradation Sulfate radical total organic carbon wastewater treatment |
Title | Effect of peroxydisulfate on the degradation of phenol under dielectric barrier discharge plasma treatment |
URI | https://dx.doi.org/10.1016/j.chemosphere.2019.05.214 https://www.ncbi.nlm.nih.gov/pubmed/31158641 https://www.proquest.com/docview/2235069023 https://www.proquest.com/docview/2271866487 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSh-X0qZtun0EBXp1Y1kvG3oJS8K2pTk1sDchWRJ12NjLPqC59LdXY9mb9pAS6NFGMmJmkD7b33wfwAdZORVRsspU4DzjvFaZpbnNhHOVl9Q4Y_E75LcLObvkX-ZivgfTsRcGaZXD3p_29H63Hu6cDNE8WTYN9vgiGkGDOUYpE3PsYOcKq_zjr1uaB5UiQWAuMhz9CI5vOV4xLtfdGvv3UTGTVijiWVB-1xl1Fwbtz6LzZ_B0AJHkNK3zOez59gAeT0fvtgN4eNaLUd-8gKskT0y6QFAS_OeNa9bbRYgIk3QtieiPOJSLSM5K_agfvu0WBHvLVsQ1ySanqYk1KzS3I9jGi-pKniwj8L42ZEdVfwmX52ffp7Ns8FfI6hinTVaWlMpYSaK0PtQylN6WOQ-mKmQdlHM0GC8rWkrbi7hYLnwtTVCesWBrq9gr2G-71r8GwpilMjfxedRx5K8VdS59fAYTwdJCTaAcI6rrQXwcPTAWemSZXek_kqExGToXOiZjAsVu6jIpcNxn0qcxbfqvctLxpLjP9OMx1TpmDv-hmNZ327WOaEqguHPB_jVGoYxgfBWcwGGqk93KUdyolJy--b8FvoUneJVYhe9gf7Pa-vcRHW3sUV_-R_Dg9PPX2cVvMm8S-Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qRVA2CAq0U16uxDY0TvxIpG7QqNUAbVetNDvLjm2RapqM5iHRDd-Ob5xMYVFUiW1iW5avHyfxuecAfBKllQEly0R6xhLGKpkYmpqEW1s6QbXVBv9Dnl-IyRX7NuXTLRgPuTBIq-z3_rind7t1_-SoH82jeV1jji-iETSYyynN-fQRPGZh-aKNwedfdzwPKnjEwIwnWPwpHN6RvMLA3LRLTOBHyUxaoopnRtl9h9R9ILQ7jE5fwPMeRZIvsaMvYcs1u7AzHszbduHJSadGffsKrqM-MWk9QU3wn7e2Xq5nPkBM0jYkwD9iUS8iWit1pX64pp0RTC5bEFtHn5y6IkYv0N2OYB4vyis5Mg_I-0aTDVf9NVydnlyOJ0lvsJBUTIpVUhSUijCVeGGcr4QvnClS5nWZicpLa6nXTpS0EKZTcTGMu0poL12ee1MZmb-B7aZt3D6QPDdUpDq0Ry1DAltWpcKFNnLuDc3kCIphRFXVq4-jCcZMDTSza_VHMBQGQ6VchWCMINtUnUcJjodUOh7Cpv6aTyocFQ-pfjiEWoXI4SWKbly7XqoApziqO2f5v8pI1BEM34Ij2IvzZNNzVDcqBKMH_9fBj7AzuTw_U2dfL76_hWf4JlIM38H2arF27wNUWpkP3VL4DVF-FIc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+peroxydisulfate+on+the+degradation+of+phenol+under+dielectric+barrier+discharge+plasma+treatment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Wang%2C+Xiaojing&rft.au=Zhang%2C+Guangshan&rft.au=Liu%2C+Xiaomeng&rft.au=Hu%2C+Limin&rft.date=2019-10-01&rft.eissn=1879-1298&rft.volume=232&rft.spage=462&rft_id=info:doi/10.1016%2Fj.chemosphere.2019.05.214&rft_id=info%3Apmid%2F31158641&rft.externalDocID=31158641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |