Effect of peroxydisulfate on the degradation of phenol under dielectric barrier discharge plasma treatment

The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 232; pp. 462 - 470
Main Authors Wang, Xiaojing, Zhang, Guangshan, Liu, Xiaomeng, Hu, Limin, Wang, Qiao, Wang, Peng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L−1 to 4.75 mg L−1 (by 52.5%), whereas the addition of 1770 mg L−1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment. [Display omitted] •Addition of PDS in discharge plasma can improve phenol degradation and TOC removal.•Enhanced phenol removal was attributed to increment of •OH and SO4•-.•Phenol removal was simultaneously attributed to •OH, SO4•- and other chemical and physical effects.•The activation of PDS by UV generated with discharge plasma likely occurred.
AbstractList The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L-1 to 4.75 mg L-1 (by 52.5%), whereas the addition of 1770 mg L-1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment.The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L-1 to 4.75 mg L-1 (by 52.5%), whereas the addition of 1770 mg L-1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment.
The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L⁻¹ to 4.75 mg L⁻¹ (by 52.5%), whereas the addition of 1770 mg L⁻¹ PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO₄•⁻ and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment.
The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L to 4.75 mg L (by 52.5%), whereas the addition of 1770 mg L PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment.
The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol removal. The results indicated that PDS addition exhibited a significantly promoting effect on phenol removal and mineralization. In the reaction lacking PDS, phenol in aqueous solution was removed from the initial 10 mg L−1 to 4.75 mg L−1 (by 52.5%), whereas the addition of 1770 mg L−1 PDS increased the overall removal to 78.7%, as indicated by a one-fold increase in the pseudo-first-order kinetic constant. In addition, the corresponding total organic carbon (TOC) removal was increased from 27.5% to 48.4%. Furthermore, an increased input voltage was favourable for increases in phenol removal, the kinetic constant and PDS utilization, which were also influenced by the PDS dose, initial solution pH and water matrix. In addition, through the analysis of radical quenching experiments, the enhancement could be mainly attributed to the production of SO4•- and •OH by PDS activation by discharge plasma. The DBD system coupled with PDS exhibited a high removal efficiency for phenol, and thus, the overall findings could provide new insight into wastewater treatment. [Display omitted] •Addition of PDS in discharge plasma can improve phenol degradation and TOC removal.•Enhanced phenol removal was attributed to increment of •OH and SO4•-.•Phenol removal was simultaneously attributed to •OH, SO4•- and other chemical and physical effects.•The activation of PDS by UV generated with discharge plasma likely occurred.
Author Zhang, Guangshan
Wang, Qiao
Wang, Peng
Hu, Limin
Wang, Xiaojing
Liu, Xiaomeng
Author_xml – sequence: 1
  givenname: Xiaojing
  surname: Wang
  fullname: Wang, Xiaojing
– sequence: 2
  givenname: Guangshan
  orcidid: 0000-0002-7190-415X
  surname: Zhang
  fullname: Zhang, Guangshan
  email: gszhanghit@gmail.com
– sequence: 3
  givenname: Xiaomeng
  surname: Liu
  fullname: Liu, Xiaomeng
– sequence: 4
  givenname: Limin
  surname: Hu
  fullname: Hu, Limin
– sequence: 5
  givenname: Qiao
  surname: Wang
  fullname: Wang, Qiao
– sequence: 6
  givenname: Peng
  orcidid: 0000-0002-1700-6834
  surname: Wang
  fullname: Wang, Peng
  email: pwang73@vip.sina.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31158641$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u3CAYRVGVqpmkfYWK7rqxA7bBsKqqUfojReqmXSMMHzEj27iAq-bty2TSqspqVgh07hW65wpdLGEBhN5RUlNC-c2hNiPMIa0jRKgbQmVNWN3Q7gXaUdHLijZSXKAdIR2rOGvZJbpK6UBICTP5Cl22lDLBO7pDh1vnwGQcHF4hht8P1qdtcjoDDgvOI2AL91FbnX25H6kRljDhbbEQsfUwlXT0Bg86Rv_4lMyo4z3gddJp1jhH0HmGJb9GL52eErx5Oq_Rj0-33_dfqrtvn7_uP95Vput5roSglIO2TAzgDHcCBkE6p2XDjeutpU4Dl1TwgTAp-dAxMFy7HtrWDWbo22v0_tS7xvBzg5TVXP4E06QXCFtSTdOXNO_EOWjLCJekaQv69gndhhmsWqOfdXxQf6csgDwBJoaUIrh_CCXqqE0d1H_a1FGbIkwVbSX74VnW-Pw4eY7aT2c17E8NUJb9VUSoZDwsBqyPxZCywZ_R8gfBdL6C
CitedBy_id crossref_primary_10_1016_j_cej_2020_127577
crossref_primary_10_1016_j_cej_2025_160480
crossref_primary_10_1016_j_cej_2023_146157
crossref_primary_10_1016_j_apcatb_2020_119604
crossref_primary_10_1016_j_envres_2022_113287
crossref_primary_10_1016_j_cej_2019_123935
crossref_primary_10_1109_TPS_2022_3147544
crossref_primary_10_1016_j_elstat_2020_103502
crossref_primary_10_1016_j_jwpe_2024_106273
crossref_primary_10_1088_2058_6272_ab568d
crossref_primary_10_1016_j_jtice_2019_09_007
crossref_primary_10_1016_j_chemosphere_2022_133839
crossref_primary_10_1016_j_jece_2021_105160
crossref_primary_10_1007_s11356_023_25524_5
crossref_primary_10_1016_j_chemosphere_2023_138998
crossref_primary_10_1016_j_cej_2023_144094
crossref_primary_10_1080_09593330_2024_2428444
crossref_primary_10_1007_s11356_020_11222_z
crossref_primary_10_1016_j_chemosphere_2021_131265
crossref_primary_10_1016_j_jhazmat_2020_124087
crossref_primary_10_1016_j_dwt_2025_100993
crossref_primary_10_1016_j_jclepro_2023_139221
crossref_primary_10_1016_j_jwpe_2022_103371
crossref_primary_10_1088_1361_6463_abecb1
crossref_primary_10_1016_j_rineng_2024_102597
crossref_primary_10_1039_D4EN00859F
crossref_primary_10_1016_j_jwpe_2024_106541
crossref_primary_10_1002_ppap_202400013
crossref_primary_10_1007_s41614_022_00077_1
crossref_primary_10_1016_j_jenvman_2020_111539
Cites_doi 10.1016/j.jhazmat.2017.10.044
10.1016/j.apcatb.2017.03.074
10.1016/j.cej.2016.07.006
10.1021/ie050981u
10.1016/j.jiec.2018.07.012
10.1016/j.cej.2018.03.169
10.1039/a807808d
10.1016/j.radphyschem.2005.09.009
10.1021/ja00810a035
10.1021/es404118q
10.1016/j.cej.2017.11.059
10.1002/kin.550210802
10.1016/0304-3894(94)00099-3
10.1016/j.physrep.2016.03.003
10.1016/j.cej.2010.05.041
10.1021/ja00443a030
10.1021/es00104a009
10.1021/es506362e
10.1016/S0584-8547(01)00406-2
10.1016/j.apcatb.2018.03.110
10.1021/ie9002848
10.1016/j.apcatb.2014.02.012
10.1016/j.scitotenv.2018.08.003
10.1016/j.cej.2018.07.142
10.1021/acs.est.6b05090
10.1016/S0045-6535(02)00067-X
10.1016/j.envpol.2017.02.038
10.1021/es00157a001
10.1016/j.jhazmat.2011.08.060
10.1016/j.chemosphere.2018.08.065
10.1016/j.watres.2014.05.042
10.1016/j.cej.2013.09.090
10.1021/es062237m
10.1016/j.watres.2018.03.069
10.1016/j.cej.2017.03.085
10.1016/j.seppur.2018.02.055
10.1016/j.cej.2018.01.016
10.1016/j.cej.2017.05.168
10.1016/j.jclepro.2018.05.207
10.1016/j.apcatb.2018.09.049
10.1016/j.apcatb.2017.09.047
10.1016/j.cej.2017.02.133
10.1021/es1000243
10.1541/ieejfms.134.591
10.1016/j.jhazmat.2018.06.012
10.1021/acs.est.6b05477
10.1021/es502056d
10.1016/j.cej.2017.03.103
10.1002/etc.5620190605
10.1088/0022-3727/42/5/053001
10.1016/j.jhazmat.2016.04.033
10.1016/j.jhazmat.2018.07.018
10.1021/es1013714
10.1016/j.apcatb.2015.07.024
10.1016/j.cej.2012.08.082
10.1016/j.jhazmat.2015.11.043
10.1016/j.cej.2016.03.006
10.1016/j.envpol.2016.04.088
10.1016/j.cej.2013.06.018
10.1016/j.cej.2015.09.001
10.1016/S1001-0742(11)60844-9
10.1021/acs.est.6b05392
10.1016/j.apcatb.2004.05.025
10.1016/j.cej.2017.12.117
10.1021/acs.est.5b03595
10.1016/j.cej.2016.11.103
10.1016/j.cej.2014.02.047
10.1021/es00172a003
10.1088/0963-0252/23/1/015019
10.1016/j.cej.2012.11.007
10.1016/j.cej.2014.12.065
10.1016/j.chemosphere.2011.04.062
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2019.05.214
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 470
ExternalDocumentID 31158641
10_1016_j_chemosphere_2019_05_214
S004565351931135X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c476t-88116ead58befc6f8eb804fa926cf7dd1fae69186b05996b45ec6af7e33fbcb73
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Mon Jul 21 10:29:04 EDT 2025
Fri Jul 11 05:14:23 EDT 2025
Thu Apr 03 07:02:51 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 02:33:45 EDT 2025
Fri Feb 23 02:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Peroxydisulfate activation
Sulfate radical
Phenol degradation
Dielectric barrier discharge plasma
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-88116ead58befc6f8eb804fa926cf7dd1fae69186b05996b45ec6af7e33fbcb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7190-415X
0000-0002-1700-6834
PMID 31158641
PQID 2235069023
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2271866487
proquest_miscellaneous_2235069023
pubmed_primary_31158641
crossref_primary_10_1016_j_chemosphere_2019_05_214
crossref_citationtrail_10_1016_j_chemosphere_2019_05_214
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2019_05_214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wei, Villamena, Weavers (bib66) 2017; 51
Jiang, Zheng, Qiu, Wu, Zhang, Yan, Xue (bib32) 2014; 236
Manz, Adams, Carter (bib46) 2018; 353
Wang, Liang, Liu, Hu, Cui (bib67) 2018; 344
Hu, Zhang, Liu, Wang, Wang (bib23) 2018; 338
Gupta (bib20) 2007
Locke, Sato, Sunka, Hoffmann, Chang (bib36) 2006; 45
Zhu, Zhu, Dionysiou, Zhou, Fang, Gao (bib75) 2018; 139
Vandenbroucke, Morent, Geyter, Leys (bib61) 2011; 195
Huang, Mabury (bib29) 2000; 19
Shao, Wang, Ren, Hu, Wen, Tan, Xiong, Asiri, Marwani (bib53) 2018; 67
Antoniou, de la Cruz, Dionysiou (bib2) 2010; 44
Tugba, Idil (bib60) 2013; 224
Wang, Wang (bib63) 2018; 334
Yang, Yang, Zhang, Ou, Liu, Zheng, Yang, Ying, Luo (bib70) 2017; 321
Staehelin, Hoigné (bib57) 1982; 16
Dhaka, Kumar, Khan, Paeng, Kurade, Kim, Jeon (bib15) 2017; 321
Joshi, Locke, Arce, Finney (bib30) 1995; 41
Glaze (bib18) 1987; 21
Rehman, Sayed, Khan, Shah, Khan, Dionysiou (bib52) 2018; 357
Buxton, Bydder, Salmon (bib6) 1999; 1
Chen, Zuo, Zhou, Huang, Yang, Cai, Ding (bib11) 2018; 345
Duan, Jiang, Lu, Shang, Li, Wu (bib14) 2018; 221
Liu, Bruton, Doyle, Sedlak (bib40) 2014; 48
Snook, Hamilton (bib55) 1974; 96
Chen, Li, Shao, Ren, Wang (bib8) 2012; 210
Huie, Clifton (bib26) 1989; 21
Furman, Teel, Watts (bib17) 2010; 44
Kang, Lee, Yoon (bib35) 2002; 47
Tang, Yuan, Rao, Li, Qi, Cheng, Sun, Gu, Huang (bib59) 2018; 337
Zhou, Jiang, Gao, Ma, Pang, Li, Lu, Yuan (bib74) 2015; 49
Ghauch, Baakbajum, Amasha, El Asmar, Tantawi (bib19) 2017; 317
Acero, Benítez, Real, Rodríguez (bib1) 2018; 201
Li, Zhang, Wang, Zheng, Zheng (bib39) 2016; 294
Shang, Wang, Li, Wang, Lu, Jiang, Wu (bib56) 2017; 311
Wang, Peng, Xie, Deng, Deng (bib65) 2017; 51
Anipsitakis, Dionysiou (bib3) 2004; 54
Nie, Yang, Zhang, Yan, Wang, Li, Dong (bib49) 2014; 246
Dulova, Kattel, Trapido (bib13) 2017; 318
Xiong, Sun, Zhang, Gao, Shen, Li, Guan (bib68) 2014; 62
Miyazaki, Katsumura, Lin, Muroya, Kudo, Taguchi, Asano, Yoshida (bib48) 2006; 75
Hu, Long (bib28) 2016; 181
Peyton, Glaze (bib51) 1988; 22
Wang, Yao, Wang, Xia, Chu, Jiang (bib62) 2017; 224
Xie, Zhang, Huang, Huang (bib69) 2012; 24
Yang, Jiang, Lu, Ma, Liu (bib72) 2015; 49
Zeng, Zou, Li, Arowo, Sun, Chen, Chu, Shao (bib76) 2013; 229
Hu, Zhang, Liu, Wang, Dong, Wang (bib24) 2019; 647
Jiang, Wang, Lei, Liu, Zhang (bib33) 2019; 241
Yuan, Guan, Wu, Jiang, Li, Chen, Zeng (bib71) 2018; 217
Chen, Carroll (bib10) 2016; 215
Hu, Zhang, Wang, Sun, Liu, Wang (bib21) 2017; 326
Kitagawa, Kosugi, Takeuchi, Yasuoka (bib34) 2014; 134
Sun, Kwan, Suvorova, Ang, Tadé, Wang (bib58) 2014; 154–155
Yang, Pignatello, Ma, Mitch (bib73) 2014; 48
Cheng, Zeng, Huang, Lai, Xu, Zhang, Liu (bib9) 2016; 284
Lee, Lee, Jeong, Lee, Park, Lee (bib41) 2015; 266
Liang, Su (bib44) 2009; 48
Bogaerts, Neyts, Gijbels, van der Mullen (bib4) 2002; 57
Waldemer, Tratnyek, Johnson, Nurmi (bib64) 2007; 41
Neta, Madhavan, Zemel, Fessenden (bib50) 1977; 99
Boukhatem, Khalaf, Djouadi, Gonzalez, Navarro, Santaballa, Canle (bib7) 2017; 211
Liu, You, Tan, Ren (bib38) 2017; 51
Liu, He, Fu, Dionysiou (bib43) 2016; 305
Choea, Byuna, Kim, Kim (bib12) 2018; 233
Ji, Kong, Lu, Jin, Kang, Yin, Zhou (bib31) 2016; 313
Lukes, Dolezalova, Sisrova, Clupek (bib42) 2014; 23
Fernandes, Makoś, Boczkaj (bib16) 2018; 195
Leal, Lourenco, Brandão, da Silva, de Souza, de Souza (bib45) 2018; 359
Huang, Chen, Wang, Yan (bib27) 2010; 162
Hu, Zhang, Liu, Wang, Wang (bib22) 2018; 212
Mora, Rosso, Mártire, Gonzalez (bib47) 2011; 84
Bruggeman, Leys (bib5) 2009; 42
Lu, Naidis, Laroussi, Reuter, Graves, Ostrikov (bib37) 2016; 630
Manz (10.1016/j.chemosphere.2019.05.214_bib46) 2018; 353
Antoniou (10.1016/j.chemosphere.2019.05.214_bib2) 2010; 44
Chen (10.1016/j.chemosphere.2019.05.214_bib11) 2018; 345
Bogaerts (10.1016/j.chemosphere.2019.05.214_bib4) 2002; 57
Anipsitakis (10.1016/j.chemosphere.2019.05.214_bib3) 2004; 54
Furman (10.1016/j.chemosphere.2019.05.214_bib17) 2010; 44
Shao (10.1016/j.chemosphere.2019.05.214_bib53) 2018; 67
Hu (10.1016/j.chemosphere.2019.05.214_bib21) 2017; 326
Xiong (10.1016/j.chemosphere.2019.05.214_bib68) 2014; 62
Buxton (10.1016/j.chemosphere.2019.05.214_bib6) 1999; 1
Liu (10.1016/j.chemosphere.2019.05.214_bib38) 2017; 51
Chen (10.1016/j.chemosphere.2019.05.214_bib8) 2012; 210
Locke (10.1016/j.chemosphere.2019.05.214_bib36) 2006; 45
Joshi (10.1016/j.chemosphere.2019.05.214_bib30) 1995; 41
Peyton (10.1016/j.chemosphere.2019.05.214_bib51) 1988; 22
Shang (10.1016/j.chemosphere.2019.05.214_bib56) 2017; 311
Liu (10.1016/j.chemosphere.2019.05.214_bib43) 2016; 305
Nie (10.1016/j.chemosphere.2019.05.214_bib49) 2014; 246
Jiang (10.1016/j.chemosphere.2019.05.214_bib32) 2014; 236
Kang (10.1016/j.chemosphere.2019.05.214_bib35) 2002; 47
Duan (10.1016/j.chemosphere.2019.05.214_bib14) 2018; 221
Lu (10.1016/j.chemosphere.2019.05.214_bib37) 2016; 630
Leal (10.1016/j.chemosphere.2019.05.214_bib45) 2018; 359
Tugba (10.1016/j.chemosphere.2019.05.214_bib60) 2013; 224
Ghauch (10.1016/j.chemosphere.2019.05.214_bib19) 2017; 317
Xie (10.1016/j.chemosphere.2019.05.214_bib69) 2012; 24
Li (10.1016/j.chemosphere.2019.05.214_bib39) 2016; 294
Wang (10.1016/j.chemosphere.2019.05.214_bib63) 2018; 334
Wang (10.1016/j.chemosphere.2019.05.214_bib67) 2018; 344
Cheng (10.1016/j.chemosphere.2019.05.214_bib9) 2016; 284
Dhaka (10.1016/j.chemosphere.2019.05.214_bib15) 2017; 321
Wei (10.1016/j.chemosphere.2019.05.214_bib66) 2017; 51
Rehman (10.1016/j.chemosphere.2019.05.214_bib52) 2018; 357
Bruggeman (10.1016/j.chemosphere.2019.05.214_bib5) 2009; 42
Hu (10.1016/j.chemosphere.2019.05.214_bib24) 2019; 647
Snook (10.1016/j.chemosphere.2019.05.214_bib55) 1974; 96
Hu (10.1016/j.chemosphere.2019.05.214_bib28) 2016; 181
Lukes (10.1016/j.chemosphere.2019.05.214_bib42) 2014; 23
Lee (10.1016/j.chemosphere.2019.05.214_bib41) 2015; 266
Wang (10.1016/j.chemosphere.2019.05.214_bib65) 2017; 51
Vandenbroucke (10.1016/j.chemosphere.2019.05.214_bib61) 2011; 195
Hu (10.1016/j.chemosphere.2019.05.214_bib22) 2018; 212
Dulova (10.1016/j.chemosphere.2019.05.214_bib13) 2017; 318
Gupta (10.1016/j.chemosphere.2019.05.214_bib20) 2007
Neta (10.1016/j.chemosphere.2019.05.214_bib50) 1977; 99
Yang (10.1016/j.chemosphere.2019.05.214_bib72) 2015; 49
Miyazaki (10.1016/j.chemosphere.2019.05.214_bib48) 2006; 75
Mora (10.1016/j.chemosphere.2019.05.214_bib47) 2011; 84
Yuan (10.1016/j.chemosphere.2019.05.214_bib71) 2018; 217
Tang (10.1016/j.chemosphere.2019.05.214_bib59) 2018; 337
Yang (10.1016/j.chemosphere.2019.05.214_bib70) 2017; 321
Huang (10.1016/j.chemosphere.2019.05.214_bib29) 2000; 19
Chen (10.1016/j.chemosphere.2019.05.214_bib10) 2016; 215
Huang (10.1016/j.chemosphere.2019.05.214_bib27) 2010; 162
Ji (10.1016/j.chemosphere.2019.05.214_bib31) 2016; 313
Sun (10.1016/j.chemosphere.2019.05.214_bib58) 2014; 154–155
Yang (10.1016/j.chemosphere.2019.05.214_bib73) 2014; 48
Glaze (10.1016/j.chemosphere.2019.05.214_bib18) 1987; 21
Kitagawa (10.1016/j.chemosphere.2019.05.214_bib34) 2014; 134
Wang (10.1016/j.chemosphere.2019.05.214_bib62) 2017; 224
Zeng (10.1016/j.chemosphere.2019.05.214_bib76) 2013; 229
Zhou (10.1016/j.chemosphere.2019.05.214_bib74) 2015; 49
Staehelin (10.1016/j.chemosphere.2019.05.214_bib57) 1982; 16
Acero (10.1016/j.chemosphere.2019.05.214_bib1) 2018; 201
Liu (10.1016/j.chemosphere.2019.05.214_bib40) 2014; 48
Choea (10.1016/j.chemosphere.2019.05.214_bib12) 2018; 233
Fernandes (10.1016/j.chemosphere.2019.05.214_bib16) 2018; 195
Boukhatem (10.1016/j.chemosphere.2019.05.214_bib7) 2017; 211
Huie (10.1016/j.chemosphere.2019.05.214_bib26) 1989; 21
Waldemer (10.1016/j.chemosphere.2019.05.214_bib64) 2007; 41
Zhu (10.1016/j.chemosphere.2019.05.214_bib75) 2018; 139
Jiang (10.1016/j.chemosphere.2019.05.214_bib33) 2019; 241
Hu (10.1016/j.chemosphere.2019.05.214_bib23) 2018; 338
Liang (10.1016/j.chemosphere.2019.05.214_bib44) 2009; 48
References_xml – year: 2007
  ident: bib20
  article-title: Investigation of a Physical Disinfection Process Based on Pulsed Underwater Corona Discharges
– volume: 62
  start-page: 53
  year: 2014
  end-page: 62
  ident: bib68
  article-title: Activating persulfate by Fe
  publication-title: Water Res.
– volume: 48
  start-page: 5558
  year: 2009
  end-page: 5562
  ident: bib44
  article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate
  publication-title: Ind. Eng. Chem. Res.
– volume: 22
  start-page: 761
  year: 1988
  end-page: 767
  ident: bib51
  article-title: Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone
  publication-title: Environ. Sci. Technol.
– volume: 321
  start-page: 113
  year: 2017
  end-page: 122
  ident: bib70
  article-title: Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate
  publication-title: Chem. Eng. J.
– volume: 233
  start-page: 272
  year: 2018
  end-page: 280
  ident: bib12
  article-title: Fe
  publication-title: Appl. Catal. B Environ.
– volume: 221
  start-page: 521
  year: 2018
  end-page: 529
  ident: bib14
  article-title: Synergetic effect of TiO
  publication-title: Appl. Catal. B Environ.
– volume: 326
  start-page: 1095
  year: 2017
  end-page: 1104
  ident: bib21
  article-title: Facile synthesis of novel Co
  publication-title: Chem. Eng. J.
– volume: 42
  year: 2009
  ident: bib5
  article-title: Non-thermal plasmas in and in contact with liquids
  publication-title: J. Phys. D Appl. Phys.
– volume: 24
  start-page: 821
  year: 2012
  end-page: 826
  ident: bib69
  article-title: Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation
  publication-title: J. Environ. Sci.
– volume: 211
  start-page: 114
  year: 2017
  end-page: 125
  ident: bib7
  article-title: Photocatalytic activity of mont-La (6%)-Cu
  publication-title: Appl. Catal. B Environ.
– volume: 16
  start-page: 676
  year: 1982
  end-page: 681
  ident: bib57
  article-title: Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide
  publication-title: Environ. Sci. Technol.
– volume: 154–155
  start-page: 134
  year: 2014
  end-page: 141
  ident: bib58
  article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals
  publication-title: Appl. Catal. B Environ.
– volume: 45
  start-page: 882
  year: 2006
  end-page: 905
  ident: bib36
  article-title: Electrohydraulic discharge and nonthermal plasma for water treatment
  publication-title: Ind. Eng. Chem. Res.
– volume: 96
  start-page: 860
  year: 1974
  end-page: 869
  ident: bib55
  article-title: Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent
  publication-title: J. Am. Chem. Soc.
– volume: 246
  start-page: 373
  year: 2014
  end-page: 382
  ident: bib49
  article-title: Degradation of chloramphenicol by thermally activated persulfate in aqueous solution
  publication-title: Chem. Eng. J.
– volume: 217
  start-page: 411
  year: 2018
  end-page: 415
  ident: bib71
  article-title: Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe
  publication-title: J. Environ. Manag.
– volume: 139
  start-page: 66
  year: 2018
  end-page: 73
  ident: bib75
  article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process
  publication-title: Water Res.
– volume: 41
  start-page: 3
  year: 1995
  end-page: 30
  ident: bib30
  article-title: Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution
  publication-title: J. Hazard Mater.
– volume: 99
  start-page: 163
  year: 1977
  end-page: 164
  ident: bib50
  article-title: Rate constants and mechanism of reaction of SO
  publication-title: J. Am. Chem. Soc.
– volume: 215
  start-page: 96
  year: 2016
  end-page: 102
  ident: bib10
  article-title: Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene
  publication-title: Environ. Pollut.
– volume: 647
  start-page: 352
  year: 2019
  end-page: 361
  ident: bib24
  article-title: Application of nickel foam-supported Co
  publication-title: Sci. Total Environ.
– volume: 210
  start-page: 475
  year: 2012
  end-page: 481
  ident: bib8
  article-title: Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 3410
  year: 2017
  end-page: 3417
  ident: bib66
  article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 7330
  year: 2015
  end-page: 7339
  ident: bib72
  article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process
  publication-title: Environ. Sci. Technol.
– volume: 23
  year: 2014
  ident: bib42
  article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H
  publication-title: Plasma Sources Sci. Technol.
– volume: 359
  start-page: 96
  year: 2018
  end-page: 103
  ident: bib45
  article-title: Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton
  publication-title: J. Hazard Mater.
– volume: 353
  start-page: 727
  year: 2018
  end-page: 735
  ident: bib46
  article-title: Furfural degradation through heat-activated persulfate: impacts of simulated brine and elevated pressures
  publication-title: Chem. Eng. J.
– volume: 311
  start-page: 378
  year: 2017
  end-page: 384
  ident: bib56
  article-title: Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate
  publication-title: Chem. Eng. J.
– volume: 241
  start-page: 367
  year: 2019
  end-page: 374
  ident: bib33
  article-title: Photo-Fenton degradation of phenol by CdS/rGO/Fe
  publication-title: Appl. Catal. B Environ.
– volume: 236
  start-page: 348
  year: 2014
  end-page: 368
  ident: bib32
  article-title: Review on electrical discharge plasma technology for wastewater remediation
  publication-title: Chem. Eng. J.
– volume: 344
  start-page: 369
  year: 2018
  end-page: 380
  ident: bib67
  article-title: Highly ordered TiO
  publication-title: J. Hazard Mater.
– volume: 57
  start-page: 609
  year: 2002
  end-page: 658
  ident: bib4
  article-title: Gas discharge plasmas and their applications
  publication-title: Spectrochim. Acta B
– volume: 44
  start-page: 6423
  year: 2010
  end-page: 6428
  ident: bib17
  article-title: Mechanism of base activation of persulfate
  publication-title: Environ. Sci. Technol.
– volume: 338
  start-page: 300
  year: 2018
  end-page: 310
  ident: bib23
  article-title: Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co
  publication-title: Chem. Eng. J.
– volume: 41
  start-page: 1010
  year: 2007
  end-page: 1015
  ident: bib64
  article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products
  publication-title: Environ. Sci. Technol.
– volume: 284
  start-page: 582
  year: 2016
  end-page: 598
  ident: bib9
  article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review
  publication-title: Chem. Eng. J.
– volume: 334
  start-page: 1502
  year: 2018
  end-page: 1517
  ident: bib63
  article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 1501
  year: 2000
  end-page: 1507
  ident: bib29
  article-title: A new method for measuring carbonate radical reactivity toward pesticides
  publication-title: Environ. Toxicol. Chem.
– volume: 266
  start-page: 28
  year: 2015
  end-page: 33
  ident: bib41
  article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism
  publication-title: Chem. Eng. J.
– volume: 44
  start-page: 7238
  year: 2010
  end-page: 7244
  ident: bib2
  article-title: Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 2344
  year: 2014
  end-page: 2351
  ident: bib73
  article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 224
  year: 1987
  end-page: 230
  ident: bib18
  article-title: Drinking-water treatment with ozone
  publication-title: Environ. Sci. Technol.
– volume: 134
  start-page: 591
  year: 2014
  end-page: 597
  ident: bib34
  article-title: Decomposition of perfluoro compounds in water using plasma and persulfate treatments
  publication-title: IEEJ Trans. Fundam. Mater.
– volume: 224
  start-page: 10
  year: 2013
  end-page: 16
  ident: bib60
  article-title: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol
  publication-title: Chem. Eng. J.
– volume: 195
  start-page: 374
  year: 2018
  end-page: 384
  ident: bib16
  article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions
  publication-title: J. Clean. Prod.
– volume: 630
  start-page: 1
  year: 2016
  end-page: 84
  ident: bib37
  article-title: Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects
  publication-title: Phys. Rep.
– volume: 224
  start-page: 552
  year: 2017
  end-page: 558
  ident: bib62
  article-title: Preparation of immobilized coating Fenton-like catalyst for high efficient degradation of phenol
  publication-title: Environ. Pollut.
– volume: 181
  start-page: 103
  year: 2016
  end-page: 117
  ident: bib28
  article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications
  publication-title: Appl. Catal. B Environ.
– volume: 1
  start-page: 269
  year: 1999
  end-page: 273
  ident: bib6
  article-title: The reactivity of chlorine atoms in aqueous solution- Part II. The equilibrium SO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 337
  start-page: 446
  year: 2018
  end-page: 454
  ident: bib59
  article-title: Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 10330
  year: 2014
  end-page: 10336
  ident: bib40
  article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials
  publication-title: Environ. Sci. Technol.
– volume: 195
  start-page: 30
  year: 2011
  end-page: 54
  ident: bib61
  article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement
  publication-title: J. Hazard Mater.
– volume: 313
  start-page: 229
  year: 2016
  end-page: 237
  ident: bib31
  article-title: Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: kinetics, reaction pathways, and formation of brominated by-products
  publication-title: J. Hazard Mater.
– volume: 201
  start-page: 41
  year: 2018
  end-page: 50
  ident: bib1
  article-title: Degradation of selected emerging contaminants by UV-activated persulfate: kinetics and influence of matrix constituents
  publication-title: Separ. Purif. Technol.
– volume: 21
  start-page: 611
  year: 1989
  end-page: 619
  ident: bib26
  article-title: Rate constants for hydrogen abstraction reactions of the sulfate radical, SO
  publication-title: Int. J. Chem. Kinet.
– volume: 67
  start-page: 380
  year: 2018
  end-page: 387
  ident: bib53
  article-title: Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption
  publication-title: J. Ind. Eng. Chem.
– volume: 317
  start-page: 1012
  year: 2017
  end-page: 1025
  ident: bib19
  article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 7055
  year: 2017
  end-page: 7064
  ident: bib65
  article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 2339
  year: 2017
  end-page: 2346
  ident: bib38
  article-title: In situ photochemical activation of sulfate for enhanced degradation of organic pollutants in water
  publication-title: Environ. Sci. Technol.
– volume: 318
  start-page: 254
  year: 2017
  end-page: 263
  ident: bib13
  article-title: Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: the effect of citric acid addition
  publication-title: Chem. Eng. J.
– volume: 345
  start-page: 364
  year: 2018
  end-page: 374
  ident: bib11
  article-title: Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: kinetics and mechanism
  publication-title: Chem. Eng. J.
– volume: 84
  start-page: 1270
  year: 2011
  end-page: 1275
  ident: bib47
  article-title: Phenol depletion by thermally activated peroxydisulfate at 70 °C
  publication-title: Chemosphere
– volume: 294
  start-page: 371
  year: 2016
  end-page: 379
  ident: bib39
  article-title: Microwave-enhanced Mn-Fenton process for the removal of BPA in water
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 155
  year: 2004
  end-page: 163
  ident: bib3
  article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination
  publication-title: Appl. Catal. B Environ.
– volume: 212
  start-page: 152
  year: 2018
  end-page: 161
  ident: bib22
  article-title: Optimization of the catalytic activity of a ZnCo
  publication-title: Chemosphere
– volume: 47
  start-page: 915
  year: 2002
  end-page: 924
  ident: bib35
  article-title: Kinetic modeling of Fenton oxidation of phenol and monochlorophenols
  publication-title: Chemosphere
– volume: 162
  start-page: 250
  year: 2010
  end-page: 256
  ident: bib27
  article-title: Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma
  publication-title: Chem. Eng. J.
– volume: 357
  start-page: 506
  year: 2018
  end-page: 514
  ident: bib52
  article-title: Oxidative removal of brilliant green by UV/S
  publication-title: J. Hazard Mater.
– volume: 321
  start-page: 11
  year: 2017
  end-page: 19
  ident: bib15
  article-title: Aqueous phase degradation of methyl paraben using UV-activated persulfate method
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 12941
  year: 2015
  end-page: 12950
  ident: bib74
  article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process
  publication-title: Environ. Sci. Technol.
– volume: 305
  start-page: 229
  year: 2016
  end-page: 239
  ident: bib43
  article-title: Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate
  publication-title: J. Hazard Mater.
– volume: 75
  start-page: 408
  year: 2006
  end-page: 415
  ident: bib48
  article-title: Radiolysis of phenol in aqueous solution at elevated temperatures
  publication-title: Radiat. Phys. Chem.
– volume: 229
  start-page: 404
  year: 2013
  end-page: 414
  ident: bib76
  article-title: Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed
  publication-title: Chem. Eng. J.
– volume: 344
  start-page: 369
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib67
  article-title: Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.10.044
– volume: 211
  start-page: 114
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib7
  article-title: Photocatalytic activity of mont-La (6%)-Cu0.6Cd0.4S catalyst for phenol degradation under near UV visible light irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.03.074
– volume: 318
  start-page: 254
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib13
  article-title: Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: the effect of citric acid addition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.07.006
– volume: 45
  start-page: 882
  year: 2006
  ident: 10.1016/j.chemosphere.2019.05.214_bib36
  article-title: Electrohydraulic discharge and nonthermal plasma for water treatment
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050981u
– volume: 67
  start-page: 380
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib53
  article-title: Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.07.012
– volume: 345
  start-page: 364
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib11
  article-title: Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: kinetics and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.169
– volume: 1
  start-page: 269
  year: 1999
  ident: 10.1016/j.chemosphere.2019.05.214_bib6
  article-title: The reactivity of chlorine atoms in aqueous solution- Part II. The equilibrium SO4.-+Cl-ClNsbd.+SO42-
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a807808d
– volume: 75
  start-page: 408
  year: 2006
  ident: 10.1016/j.chemosphere.2019.05.214_bib48
  article-title: Radiolysis of phenol in aqueous solution at elevated temperatures
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2005.09.009
– volume: 96
  start-page: 860
  year: 1974
  ident: 10.1016/j.chemosphere.2019.05.214_bib55
  article-title: Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00810a035
– volume: 48
  start-page: 2344
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib73
  article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404118q
– volume: 334
  start-page: 1502
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib63
  article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.059
– volume: 21
  start-page: 611
  year: 1989
  ident: 10.1016/j.chemosphere.2019.05.214_bib26
  article-title: Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-. alkanes and ethers
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550210802
– volume: 41
  start-page: 3
  year: 1995
  ident: 10.1016/j.chemosphere.2019.05.214_bib30
  article-title: Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution
  publication-title: J. Hazard Mater.
  doi: 10.1016/0304-3894(94)00099-3
– volume: 630
  start-page: 1
  year: 2016
  ident: 10.1016/j.chemosphere.2019.05.214_bib37
  article-title: Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.03.003
– volume: 217
  start-page: 411
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib71
  article-title: Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe2+
  publication-title: J. Environ. Manag.
– volume: 162
  start-page: 250
  year: 2010
  ident: 10.1016/j.chemosphere.2019.05.214_bib27
  article-title: Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.05.041
– volume: 99
  start-page: 163
  year: 1977
  ident: 10.1016/j.chemosphere.2019.05.214_bib50
  article-title: Rate constants and mechanism of reaction of SO4•- with aromatic compounds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00443a030
– year: 2007
  ident: 10.1016/j.chemosphere.2019.05.214_bib20
– volume: 16
  start-page: 676
  year: 1982
  ident: 10.1016/j.chemosphere.2019.05.214_bib57
  article-title: Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00104a009
– volume: 49
  start-page: 7330
  year: 2015
  ident: 10.1016/j.chemosphere.2019.05.214_bib72
  article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es506362e
– volume: 57
  start-page: 609
  year: 2002
  ident: 10.1016/j.chemosphere.2019.05.214_bib4
  article-title: Gas discharge plasmas and their applications
  publication-title: Spectrochim. Acta B
  doi: 10.1016/S0584-8547(01)00406-2
– volume: 233
  start-page: 272
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib12
  article-title: Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.03.110
– volume: 48
  start-page: 5558
  year: 2009
  ident: 10.1016/j.chemosphere.2019.05.214_bib44
  article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9002848
– volume: 154–155
  start-page: 134
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib58
  article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.02.012
– volume: 647
  start-page: 352
  year: 2019
  ident: 10.1016/j.chemosphere.2019.05.214_bib24
  article-title: Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.003
– volume: 353
  start-page: 727
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib46
  article-title: Furfural degradation through heat-activated persulfate: impacts of simulated brine and elevated pressures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.142
– volume: 51
  start-page: 2339
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib38
  article-title: In situ photochemical activation of sulfate for enhanced degradation of organic pollutants in water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05090
– volume: 47
  start-page: 915
  year: 2002
  ident: 10.1016/j.chemosphere.2019.05.214_bib35
  article-title: Kinetic modeling of Fenton oxidation of phenol and monochlorophenols
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00067-X
– volume: 224
  start-page: 552
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib62
  article-title: Preparation of immobilized coating Fenton-like catalyst for high efficient degradation of phenol
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.02.038
– volume: 21
  start-page: 224
  year: 1987
  ident: 10.1016/j.chemosphere.2019.05.214_bib18
  article-title: Drinking-water treatment with ozone
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00157a001
– volume: 195
  start-page: 30
  year: 2011
  ident: 10.1016/j.chemosphere.2019.05.214_bib61
  article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2011.08.060
– volume: 212
  start-page: 152
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib22
  article-title: Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.065
– volume: 62
  start-page: 53
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib68
  article-title: Activating persulfate by Fe0 coupling with weak magnetic field: performance and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.05.042
– volume: 236
  start-page: 348
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib32
  article-title: Review on electrical discharge plasma technology for wastewater remediation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.090
– volume: 41
  start-page: 1010
  year: 2007
  ident: 10.1016/j.chemosphere.2019.05.214_bib64
  article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062237m
– volume: 139
  start-page: 66
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib75
  article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.069
– volume: 321
  start-page: 11
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib15
  article-title: Aqueous phase degradation of methyl paraben using UV-activated persulfate method
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.085
– volume: 201
  start-page: 41
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib1
  article-title: Degradation of selected emerging contaminants by UV-activated persulfate: kinetics and influence of matrix constituents
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2018.02.055
– volume: 338
  start-page: 300
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib23
  article-title: Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.016
– volume: 326
  start-page: 1095
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib21
  article-title: Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.168
– volume: 195
  start-page: 374
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib16
  article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.05.207
– volume: 241
  start-page: 367
  year: 2019
  ident: 10.1016/j.chemosphere.2019.05.214_bib33
  article-title: Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.049
– volume: 221
  start-page: 521
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib14
  article-title: Synergetic effect of TiO2 and Fe3+ as co-catalysts for enhanced phenol degradation in pulsed discharge system
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.09.047
– volume: 317
  start-page: 1012
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib19
  article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.133
– volume: 44
  start-page: 7238
  year: 2010
  ident: 10.1016/j.chemosphere.2019.05.214_bib2
  article-title: Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1000243
– volume: 134
  start-page: 591
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib34
  article-title: Decomposition of perfluoro compounds in water using plasma and persulfate treatments
  publication-title: IEEJ Trans. Fundam. Mater.
  doi: 10.1541/ieejfms.134.591
– volume: 357
  start-page: 506
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib52
  article-title: Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: a comparative study
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.06.012
– volume: 51
  start-page: 7055
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib65
  article-title: Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05477
– volume: 48
  start-page: 10330
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib40
  article-title: In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es502056d
– volume: 321
  start-page: 113
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib70
  article-title: Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.103
– volume: 19
  start-page: 1501
  year: 2000
  ident: 10.1016/j.chemosphere.2019.05.214_bib29
  article-title: A new method for measuring carbonate radical reactivity toward pesticides
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620190605
– volume: 42
  year: 2009
  ident: 10.1016/j.chemosphere.2019.05.214_bib5
  article-title: Non-thermal plasmas in and in contact with liquids
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/42/5/053001
– volume: 313
  start-page: 229
  year: 2016
  ident: 10.1016/j.chemosphere.2019.05.214_bib31
  article-title: Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: kinetics, reaction pathways, and formation of brominated by-products
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.04.033
– volume: 359
  start-page: 96
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib45
  article-title: Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.07.018
– volume: 44
  start-page: 6423
  year: 2010
  ident: 10.1016/j.chemosphere.2019.05.214_bib17
  article-title: Mechanism of base activation of persulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1013714
– volume: 181
  start-page: 103
  year: 2016
  ident: 10.1016/j.chemosphere.2019.05.214_bib28
  article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.07.024
– volume: 210
  start-page: 475
  year: 2012
  ident: 10.1016/j.chemosphere.2019.05.214_bib8
  article-title: Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.08.082
– volume: 305
  start-page: 229
  year: 2016
  ident: 10.1016/j.chemosphere.2019.05.214_bib43
  article-title: Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.11.043
– volume: 294
  start-page: 371
  year: 2016
  ident: 10.1016/j.chemosphere.2019.05.214_bib39
  article-title: Microwave-enhanced Mn-Fenton process for the removal of BPA in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.006
– volume: 215
  start-page: 96
  year: 2016
  ident: 10.1016/j.chemosphere.2019.05.214_bib10
  article-title: Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.04.088
– volume: 229
  start-page: 404
  year: 2013
  ident: 10.1016/j.chemosphere.2019.05.214_bib76
  article-title: Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.06.018
– volume: 284
  start-page: 582
  year: 2016
  ident: 10.1016/j.chemosphere.2019.05.214_bib9
  article-title: Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.09.001
– volume: 24
  start-page: 821
  year: 2012
  ident: 10.1016/j.chemosphere.2019.05.214_bib69
  article-title: Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(11)60844-9
– volume: 51
  start-page: 3410
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib66
  article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05392
– volume: 54
  start-page: 155
  year: 2004
  ident: 10.1016/j.chemosphere.2019.05.214_bib3
  article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2004.05.025
– volume: 337
  start-page: 446
  year: 2018
  ident: 10.1016/j.chemosphere.2019.05.214_bib59
  article-title: Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.117
– volume: 49
  start-page: 12941
  year: 2015
  ident: 10.1016/j.chemosphere.2019.05.214_bib74
  article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03595
– volume: 311
  start-page: 378
  year: 2017
  ident: 10.1016/j.chemosphere.2019.05.214_bib56
  article-title: Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.103
– volume: 246
  start-page: 373
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib49
  article-title: Degradation of chloramphenicol by thermally activated persulfate in aqueous solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.02.047
– volume: 22
  start-page: 761
  year: 1988
  ident: 10.1016/j.chemosphere.2019.05.214_bib51
  article-title: Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00172a003
– volume: 23
  year: 2014
  ident: 10.1016/j.chemosphere.2019.05.214_bib42
  article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/23/1/015019
– volume: 224
  start-page: 10
  year: 2013
  ident: 10.1016/j.chemosphere.2019.05.214_bib60
  article-title: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.11.007
– volume: 266
  start-page: 28
  year: 2015
  ident: 10.1016/j.chemosphere.2019.05.214_bib41
  article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.12.065
– volume: 84
  start-page: 1270
  year: 2011
  ident: 10.1016/j.chemosphere.2019.05.214_bib47
  article-title: Phenol depletion by thermally activated peroxydisulfate at 70 °C
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.04.062
SSID ssj0001659
Score 2.4736304
Snippet The activation of peroxydisulfate (PDS) by gas/liquid dielectric barrier discharge (DBD) plasma in a flat plate configuration was assessed through phenol...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 462
SubjectTerms aqueous solutions
Dielectric barrier discharge plasma
electric potential difference
hydroxyl radicals
liquids
mineralization
Peroxydisulfate activation
phenol
Phenol degradation
Sulfate radical
total organic carbon
wastewater treatment
Title Effect of peroxydisulfate on the degradation of phenol under dielectric barrier discharge plasma treatment
URI https://dx.doi.org/10.1016/j.chemosphere.2019.05.214
https://www.ncbi.nlm.nih.gov/pubmed/31158641
https://www.proquest.com/docview/2235069023
https://www.proquest.com/docview/2271866487
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSh-X0qZtun0EBXp1Y1kvG3oJS8K2pTk1sDchWRJ12NjLPqC59LdXY9mb9pAS6NFGMmJmkD7b33wfwAdZORVRsspU4DzjvFaZpbnNhHOVl9Q4Y_E75LcLObvkX-ZivgfTsRcGaZXD3p_29H63Hu6cDNE8WTYN9vgiGkGDOUYpE3PsYOcKq_zjr1uaB5UiQWAuMhz9CI5vOV4xLtfdGvv3UTGTVijiWVB-1xl1Fwbtz6LzZ_B0AJHkNK3zOez59gAeT0fvtgN4eNaLUd-8gKskT0y6QFAS_OeNa9bbRYgIk3QtieiPOJSLSM5K_agfvu0WBHvLVsQ1ySanqYk1KzS3I9jGi-pKniwj8L42ZEdVfwmX52ffp7Ns8FfI6hinTVaWlMpYSaK0PtQylN6WOQ-mKmQdlHM0GC8rWkrbi7hYLnwtTVCesWBrq9gr2G-71r8GwpilMjfxedRx5K8VdS59fAYTwdJCTaAcI6rrQXwcPTAWemSZXek_kqExGToXOiZjAsVu6jIpcNxn0qcxbfqvctLxpLjP9OMx1TpmDv-hmNZ327WOaEqguHPB_jVGoYxgfBWcwGGqk93KUdyolJy--b8FvoUneJVYhe9gf7Pa-vcRHW3sUV_-R_Dg9PPX2cVvMm8S-Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qRVA2CAq0U16uxDY0TvxIpG7QqNUAbVetNDvLjm2RapqM5iHRDd-Ob5xMYVFUiW1iW5avHyfxuecAfBKllQEly0R6xhLGKpkYmpqEW1s6QbXVBv9Dnl-IyRX7NuXTLRgPuTBIq-z3_rind7t1_-SoH82jeV1jji-iETSYyynN-fQRPGZh-aKNwedfdzwPKnjEwIwnWPwpHN6RvMLA3LRLTOBHyUxaoopnRtl9h9R9ILQ7jE5fwPMeRZIvsaMvYcs1u7AzHszbduHJSadGffsKrqM-MWk9QU3wn7e2Xq5nPkBM0jYkwD9iUS8iWit1pX64pp0RTC5bEFtHn5y6IkYv0N2OYB4vyis5Mg_I-0aTDVf9NVydnlyOJ0lvsJBUTIpVUhSUijCVeGGcr4QvnClS5nWZicpLa6nXTpS0EKZTcTGMu0poL12ee1MZmb-B7aZt3D6QPDdUpDq0Ry1DAltWpcKFNnLuDc3kCIphRFXVq4-jCcZMDTSza_VHMBQGQ6VchWCMINtUnUcJjodUOh7Cpv6aTyocFQ-pfjiEWoXI4SWKbly7XqoApziqO2f5v8pI1BEM34Ij2IvzZNNzVDcqBKMH_9fBj7AzuTw_U2dfL76_hWf4JlIM38H2arF27wNUWpkP3VL4DVF-FIc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+peroxydisulfate+on+the+degradation+of+phenol+under+dielectric+barrier+discharge+plasma+treatment&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Wang%2C+Xiaojing&rft.au=Zhang%2C+Guangshan&rft.au=Liu%2C+Xiaomeng&rft.au=Hu%2C+Limin&rft.date=2019-10-01&rft.eissn=1879-1298&rft.volume=232&rft.spage=462&rft_id=info:doi/10.1016%2Fj.chemosphere.2019.05.214&rft_id=info%3Apmid%2F31158641&rft.externalDocID=31158641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon