ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance

[Display omitted] ► ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route. ► The ZnO/GO nanocomposite exhibited remarkably enhanced visible-light-driven photocatalytic performance. ► The mechanism for photocatalytic degradation of methylene blue (MB) under...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 377; no. 1; pp. 114 - 121
Main Authors Li, Benxia, Liu, Tongxuan, Wang, Yanfen, Wang, Zhoufeng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.07.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route. ► The ZnO/GO nanocomposite exhibited remarkably enhanced visible-light-driven photocatalytic performance. ► The mechanism for photocatalytic degradation of methylene blue (MB) under visible light was discussed. In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller N2 adsorption–desorption analysis, and UV–Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N2 atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.
AbstractList In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller N₂ adsorption–desorption analysis, and UV–Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N₂ atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.
[Display omitted] ► ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route. ► The ZnO/GO nanocomposite exhibited remarkably enhanced visible-light-driven photocatalytic performance. ► The mechanism for photocatalytic degradation of methylene blue (MB) under visible light was discussed. In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller N2 adsorption–desorption analysis, and UV–Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N2 atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.
In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller N(2) adsorption-desorption analysis, and UV-Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N(2) atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller N(2) adsorption-desorption analysis, and UV-Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N(2) atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.
In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, BrunaueraEmmettaTeller N2 adsorption-desorption analysis, and UV-Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N2 atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.
In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller N(2) adsorption-desorption analysis, and UV-Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N(2) atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.
Author Wang, Yanfen
Li, Benxia
Wang, Zhoufeng
Liu, Tongxuan
Author_xml – sequence: 1
  givenname: Benxia
  surname: Li
  fullname: Li, Benxia
  email: libx@mail.ustc.edu.cn
– sequence: 2
  givenname: Tongxuan
  surname: Liu
  fullname: Liu, Tongxuan
– sequence: 3
  givenname: Yanfen
  surname: Wang
  fullname: Wang, Yanfen
– sequence: 4
  givenname: Zhoufeng
  surname: Wang
  fullname: Wang, Zhoufeng
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26016715$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22498370$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFL8ABckHiku3YTuxY4lJV_JMq9QC9cLEcZ7LrJRsH27uw3x5HuxUSh8JpDvN786Q374KcjX5EQl5SWFKg4mqz3FgXlwwoWwJfgoAnZEFB1aWkwM_IAoDRUkklz8lFjBsASutaPSPnjFWq4RIWxH0b765WwUxrHLH0v1yHxWhGb_128tElLH66tC4Cbk34btrhUOC4NqPFrti76NoBy8Gt1qnsgtvjWExrn7w1yQyH5GwxYeh92M6C5-Rpb4aIL07zktx_eP_15lN5e_fx8831bWkrKVIpla1YrypDe6kYctEYamhbqb7rmQDsG8Zp3ULX1k3V0tqqSiqlalqzikpJ-SV5e7w7Bf9jhzHprYsWh8GM6HdR0wY4FSyb_RsF3rCKN4L_B0q5FJIryOirE7prt9jpKbgc3kE_hJ6BNyfARGuGPuR4XPzDifxcSevMNUfOBh9jwF5bl0xyfkzBuCF7zrZCb_TcAz33QAPXuQdZyv6SPlx_VPT6KOqN12YV8vr-SwYEAEgpqjnbd0cC8wP3DoOO1uHcBhfQJt1595jBb7g41Cc
CODEN JCISA5
CitedBy_id crossref_primary_10_1016_S1872_2067_23_64502_4
crossref_primary_10_1007_s10853_014_8284_2
crossref_primary_10_1088_0031_8949_90_2_025806
crossref_primary_10_1016_j_ceramint_2016_10_079
crossref_primary_10_1016_j_ceramint_2017_10_117
crossref_primary_10_1016_j_cap_2012_12_031
crossref_primary_10_1039_C6RA08697G
crossref_primary_10_1016_j_seppur_2024_128824
crossref_primary_10_1016_j_apsusc_2018_04_045
crossref_primary_10_3390_molecules29163765
crossref_primary_10_1039_C9TB02119A
crossref_primary_10_1246_cl_160487
crossref_primary_10_1080_1536383X_2015_1013187
crossref_primary_10_1016_j_wri_2024_100241
crossref_primary_10_1016_j_catcom_2016_09_024
crossref_primary_10_1016_j_ijbiomac_2017_11_028
crossref_primary_10_1016_j_mssp_2018_05_023
crossref_primary_10_1111_ijac_13584
crossref_primary_10_1039_C3RA45013A
crossref_primary_10_1016_j_chemosphere_2021_131837
crossref_primary_10_1016_j_jddst_2023_105221
crossref_primary_10_1080_00914037_2019_1706513
crossref_primary_10_1039_C9RA06273D
crossref_primary_10_1016_j_arabjc_2020_09_011
crossref_primary_10_1016_j_apcatb_2015_12_007
crossref_primary_10_1016_j_envres_2020_110499
crossref_primary_10_1021_ie5021987
crossref_primary_10_4028_www_scientific_net_KEM_900_188
crossref_primary_10_1007_s11051_019_4493_6
crossref_primary_10_1016_j_matpr_2016_06_012
crossref_primary_10_1016_j_jece_2020_103749
crossref_primary_10_1007_s11696_021_01654_3
crossref_primary_10_1007_s13369_021_05421_0
crossref_primary_10_1002_aoc_5084
crossref_primary_10_1016_j_ijbiomac_2019_05_218
crossref_primary_10_1016_j_cej_2012_11_077
crossref_primary_10_1038_s41598_023_50114_3
crossref_primary_10_3390_catal14070420
crossref_primary_10_1007_s12034_015_0900_5
crossref_primary_10_1016_j_apcatb_2013_07_043
crossref_primary_10_1016_j_memsci_2016_11_018
crossref_primary_10_1016_j_apcatb_2016_06_001
crossref_primary_10_1016_j_apt_2018_05_009
crossref_primary_10_1016_j_jallcom_2022_166147
crossref_primary_10_1016_j_vacuum_2018_08_009
crossref_primary_10_1016_j_cattod_2019_05_049
crossref_primary_10_1016_j_ijleo_2016_08_126
crossref_primary_10_1590_0104_6632_20190363s20180540
crossref_primary_10_1016_j_jhazmat_2012_11_032
crossref_primary_10_1016_j_jece_2020_104992
crossref_primary_10_1016_j_matchemphys_2017_10_062
crossref_primary_10_1016_j_ceramint_2016_03_083
crossref_primary_10_1016_j_ijhydene_2015_01_049
crossref_primary_10_1039_C9NJ04127C
crossref_primary_10_1016_j_envres_2023_115602
crossref_primary_10_1038_s41598_020_71139_y
crossref_primary_10_1016_j_apsusc_2013_03_035
crossref_primary_10_1177_0892705715598365
crossref_primary_10_1016_j_jpcs_2020_109689
crossref_primary_10_1016_j_jece_2018_09_064
crossref_primary_10_1016_j_inoche_2022_110242
crossref_primary_10_1039_C4RA09260K
crossref_primary_10_1053_j_ackd_2013_08_005
crossref_primary_10_1016_j_poly_2023_116664
crossref_primary_10_1007_s11581_018_2571_x
crossref_primary_10_1007_s12039_016_1206_x
crossref_primary_10_1371_journal_pone_0080944
crossref_primary_10_1016_j_apsusc_2015_08_070
crossref_primary_10_1179_1433075X14Y_0000000251
crossref_primary_10_1016_j_apsusc_2015_08_075
crossref_primary_10_1007_s10854_018_0444_8
crossref_primary_10_1016_j_mssp_2020_105584
crossref_primary_10_9713_kcer_2016_54_1_127
crossref_primary_10_1080_03602559_2017_1326135
crossref_primary_10_1039_C4CP02189D
crossref_primary_10_1080_10584587_2015_1033607
crossref_primary_10_1007_s11082_019_2132_1
crossref_primary_10_1039_c3cp53325e
crossref_primary_10_1016_j_ijbiomac_2020_05_065
crossref_primary_10_1016_j_powtec_2015_03_004
crossref_primary_10_1016_j_ceramint_2016_08_067
crossref_primary_10_1016_j_apsusc_2019_144223
crossref_primary_10_1016_j_carbpol_2018_08_068
crossref_primary_10_1016_j_matpr_2020_05_821
crossref_primary_10_1016_j_jece_2023_110065
crossref_primary_10_1002_slct_201800987
crossref_primary_10_1039_c3ra46417b
crossref_primary_10_1039_C8NJ02052C
crossref_primary_10_1007_s11164_013_1442_3
crossref_primary_10_1016_j_catcom_2023_106799
crossref_primary_10_1016_j_mssp_2015_05_020
crossref_primary_10_1016_j_talanta_2018_01_078
crossref_primary_10_1021_acsomega_1c04431
crossref_primary_10_1016_j_apsusc_2017_11_234
crossref_primary_10_1016_j_apsusc_2022_154019
crossref_primary_10_1016_j_ceramint_2015_01_044
crossref_primary_10_1039_C4TA04947K
crossref_primary_10_1080_10408436_2021_1886041
crossref_primary_10_3934_matersci_2016_4_1410
crossref_primary_10_1007_s00339_016_0166_9
crossref_primary_10_1016_j_chphi_2024_100605
crossref_primary_10_1007_s00339_014_8476_2
crossref_primary_10_1039_D0RA01741H
crossref_primary_10_1007_s10854_017_6367_y
crossref_primary_10_1016_j_jiec_2016_12_014
crossref_primary_10_1021_acsaenm_4c00276
crossref_primary_10_1080_21622515_2016_1264489
crossref_primary_10_1016_j_talanta_2013_04_029
crossref_primary_10_1016_j_jpcs_2019_109199
crossref_primary_10_1016_j_matchemphys_2021_125020
crossref_primary_10_1088_1361_6528_ac328c
crossref_primary_10_1016_j_ceramint_2016_11_026
crossref_primary_10_1016_j_molstruc_2019_07_046
crossref_primary_10_1016_j_memsci_2013_10_021
crossref_primary_10_1016_j_vacuum_2015_02_031
crossref_primary_10_1016_j_cis_2020_102250
crossref_primary_10_1016_j_inoche_2021_108630
crossref_primary_10_1039_C9EN00753A
crossref_primary_10_1016_j_jcis_2020_01_093
crossref_primary_10_1016_j_apsusc_2018_09_264
crossref_primary_10_1007_s10904_019_01224_x
crossref_primary_10_1016_j_ceramint_2015_01_022
crossref_primary_10_1039_D1RA06731A
crossref_primary_10_1039_D4CY01334D
crossref_primary_10_1016_j_ceramint_2017_05_020
crossref_primary_10_1016_j_cej_2013_06_063
crossref_primary_10_1021_jp408400c
crossref_primary_10_1016_j_apsusc_2016_12_212
crossref_primary_10_1016_j_cattod_2019_04_070
crossref_primary_10_1016_j_mseb_2025_118090
crossref_primary_10_1039_D1QI00968K
crossref_primary_10_1007_s11164_024_05418_y
crossref_primary_10_1088_1361_6528_ab7532
crossref_primary_10_1002_adfm_201203547
crossref_primary_10_1039_C8NJ01053F
crossref_primary_10_1080_25740881_2021_1905842
crossref_primary_10_1016_j_envint_2018_12_062
crossref_primary_10_20964_2018_04_38
crossref_primary_10_1016_j_molcata_2016_07_039
crossref_primary_10_1016_j_nanoen_2015_02_013
crossref_primary_10_1016_j_seppur_2019_115803
crossref_primary_10_1016_j_jwpe_2022_102714
crossref_primary_10_1016_j_chemosphere_2019_125068
crossref_primary_10_3390_nano10081473
crossref_primary_10_1016_j_mset_2019_04_007
crossref_primary_10_1016_j_optmat_2020_110138
crossref_primary_10_1007_s10854_015_4258_7
crossref_primary_10_1016_j_jcis_2013_12_042
crossref_primary_10_1016_j_jhazmat_2018_07_103
crossref_primary_10_1016_j_jpap_2022_100131
crossref_primary_10_2139_ssrn_4091217
crossref_primary_10_1016_j_jelechem_2012_07_032
crossref_primary_10_1016_j_apmt_2016_04_001
crossref_primary_10_1007_s41779_018_00298_z
crossref_primary_10_2494_photopolymer_32_27
crossref_primary_10_1088_1757_899X_274_1_012157
crossref_primary_10_1016_j_apcatb_2014_05_035
crossref_primary_10_1039_C8RA03296C
crossref_primary_10_1016_j_jece_2018_07_049
crossref_primary_10_1134_S1070427216120144
crossref_primary_10_1002_slct_202303022
crossref_primary_10_1016_j_materresbull_2022_111800
crossref_primary_10_1007_s00339_021_04528_3
crossref_primary_10_14233_ajchem_2020_22483
crossref_primary_10_1016_j_jmrt_2019_09_029
crossref_primary_10_1039_C6AY00424E
crossref_primary_10_1039_C5NR03338A
crossref_primary_10_1016_j_apcata_2014_10_055
crossref_primary_10_1016_j_ultsonch_2018_05_034
crossref_primary_10_1039_C6RA19622E
crossref_primary_10_20964_2017_06_06
crossref_primary_10_1039_D4RA08347D
crossref_primary_10_1002_wer_1623
crossref_primary_10_1088_1361_6528_ad33e8
crossref_primary_10_1016_j_jpcs_2017_10_032
crossref_primary_10_1021_acs_jpcc_5b02318
crossref_primary_10_1016_j_electacta_2013_12_063
crossref_primary_10_1002_crat_201400300
crossref_primary_10_1002_cssc_201300990
crossref_primary_10_1007_s11706_019_0453_4
crossref_primary_10_1039_c3ra44047h
crossref_primary_10_1016_j_optlastec_2021_107801
crossref_primary_10_1039_C5RA11873E
crossref_primary_10_1016_j_cattod_2021_04_022
crossref_primary_10_1021_acsomega_8b03587
crossref_primary_10_5004_dwt_2017_20304
crossref_primary_10_1016_j_materresbull_2012_11_048
crossref_primary_10_1016_j_optmat_2020_110203
crossref_primary_10_1016_j_ccr_2020_213180
crossref_primary_10_1051_e3sconf_202126102029
crossref_primary_10_1016_j_jcis_2018_04_040
crossref_primary_10_1016_j_cap_2014_12_025
crossref_primary_10_1016_j_saa_2022_122296
crossref_primary_10_1016_j_seppur_2021_119219
crossref_primary_10_1515_revic_2015_0015
crossref_primary_10_1007_s00289_021_03666_1
crossref_primary_10_1016_j_jhazmat_2017_12_034
crossref_primary_10_1016_j_jece_2020_104930
crossref_primary_10_1016_j_jhazmat_2022_128793
crossref_primary_10_1080_19443994_2015_1079262
crossref_primary_10_1007_s00339_021_05237_7
crossref_primary_10_1007_s11814_015_0145_4
crossref_primary_10_1016_j_cej_2021_128914
crossref_primary_10_1016_j_apsusc_2016_05_102
crossref_primary_10_1016_j_jtice_2024_105586
crossref_primary_10_1002_aoc_5560
crossref_primary_10_1109_LPT_2024_3520207
crossref_primary_10_1109_LSENS_2023_3301846
crossref_primary_10_1016_j_watres_2015_09_045
crossref_primary_10_1088_2053_1591_aaa81d
crossref_primary_10_1080_19443994_2014_903207
crossref_primary_10_1088_2053_1591_ab61ae
crossref_primary_10_1039_D1NJ04584A
crossref_primary_10_1016_j_snb_2013_10_096
crossref_primary_10_2139_ssrn_4048688
crossref_primary_10_1016_j_jphotochem_2017_09_038
crossref_primary_10_5004_dwt_2018_22758
crossref_primary_10_1016_j_jcis_2020_06_088
crossref_primary_10_5004_dwt_2019_23386
crossref_primary_10_1016_j_optmat_2021_111591
crossref_primary_10_1002_adfm_201301951
crossref_primary_10_1080_03067319_2020_1826461
crossref_primary_10_1016_j_jece_2020_104030
crossref_primary_10_1088_2053_1591_aab6ec
crossref_primary_10_1016_j_cej_2013_07_006
crossref_primary_10_1016_j_rser_2017_08_020
crossref_primary_10_1016_S1872_5805_13_60090_6
crossref_primary_10_1088_1674_1056_24_4_047205
crossref_primary_10_1016_j_jallcom_2021_161169
crossref_primary_10_1016_j_msec_2016_03_115
crossref_primary_10_1016_j_jallcom_2017_08_142
crossref_primary_10_2139_ssrn_4166711
crossref_primary_10_3390_cryst14070611
crossref_primary_10_1016_j_ceramint_2014_10_069
crossref_primary_10_3390_catal12070709
crossref_primary_10_1007_s10854_022_09153_1
crossref_primary_10_1016_j_synthmet_2018_06_001
crossref_primary_10_1016_j_mseb_2020_114516
crossref_primary_10_1016_j_mseb_2023_116555
crossref_primary_10_1016_j_jcis_2014_06_008
crossref_primary_10_1021_nl5018089
crossref_primary_10_1007_s00339_015_9580_7
crossref_primary_10_3390_nano11061576
crossref_primary_10_1002_poc_4117
crossref_primary_10_5004_dwt_2019_24497
crossref_primary_10_2166_wst_2017_194
crossref_primary_10_1007_s10854_018_0382_5
crossref_primary_10_1039_C6QM00274A
crossref_primary_10_1016_j_porgcoat_2015_09_022
crossref_primary_10_1016_j_desal_2020_114558
crossref_primary_10_1155_2015_934587
crossref_primary_10_1088_1755_1315_170_3_032074
crossref_primary_10_1371_journal_pone_0135055
crossref_primary_10_3390_catal13010069
crossref_primary_10_1007_s00604_014_1436_x
crossref_primary_10_1016_j_materresbull_2023_112207
crossref_primary_10_1016_j_cplett_2016_08_020
crossref_primary_10_1149_1945_7111_acb08c
crossref_primary_10_1016_j_hazadv_2024_100588
crossref_primary_10_1016_j_surfin_2024_104482
crossref_primary_10_3390_membranes13100810
crossref_primary_10_1016_j_apsusc_2016_02_222
crossref_primary_10_1039_C9CC04951G
crossref_primary_10_1039_C5CP01318F
crossref_primary_10_1007_s11356_022_25108_9
crossref_primary_10_1016_j_envpol_2019_03_071
crossref_primary_10_5004_dwt_2020_25646
crossref_primary_10_1016_j_ceramint_2015_11_124
crossref_primary_10_1016_j_energy_2018_10_082
crossref_primary_10_5012_bkcs_2013_34_12_3586
crossref_primary_10_1007_s11696_020_01388_8
crossref_primary_10_1080_10584587_2014_903757
crossref_primary_10_1016_j_apsusc_2019_143835
crossref_primary_10_3390_ma14102481
crossref_primary_10_1007_s11665_020_04579_2
crossref_primary_10_1007_s10311_018_0755_2
crossref_primary_10_1016_j_jcis_2012_11_047
crossref_primary_10_1088_1361_6463_aba973
crossref_primary_10_1016_j_colsurfa_2020_125652
crossref_primary_10_1016_j_jcis_2016_03_061
crossref_primary_10_1007_s00339_013_8198_x
crossref_primary_10_3390_catal14120897
crossref_primary_10_3390_molecules25225380
crossref_primary_10_1186_s11671_019_3167_8
crossref_primary_10_1016_j_spmi_2015_01_024
crossref_primary_10_1088_1361_6528_ab3ced
crossref_primary_10_1016_j_jece_2020_104097
crossref_primary_10_1007_s11356_021_14511_3
crossref_primary_10_1016_j_envres_2022_112833
crossref_primary_10_1080_23311916_2018_1476017
crossref_primary_10_1039_C5TA02240A
crossref_primary_10_1016_j_optmat_2024_116308
crossref_primary_10_1016_j_jphotochem_2017_08_005
crossref_primary_10_1007_s00339_020_04269_9
crossref_primary_10_1016_j_electacta_2019_04_174
crossref_primary_10_1007_s10854_016_5309_4
crossref_primary_10_1016_j_inoche_2024_112202
crossref_primary_10_1002_jctb_4347
crossref_primary_10_1007_s11696_024_03510_6
crossref_primary_10_1021_sc5000732
crossref_primary_10_1016_j_seppur_2018_10_026
crossref_primary_10_1016_j_susmat_2022_e00406
crossref_primary_10_1016_S1872_2067_15_60985_8
crossref_primary_10_1089_pho_2012_3339
crossref_primary_10_1002_wnan_1940
crossref_primary_10_1063_1_4881176
crossref_primary_10_1021_am403149g
crossref_primary_10_1007_s42247_020_00142_w
crossref_primary_10_1016_j_jmrt_2021_09_086
crossref_primary_10_1021_acsomega_9b01680
crossref_primary_10_1016_j_cis_2019_102009
crossref_primary_10_1016_j_seppur_2019_116430
crossref_primary_10_1016_j_materresbull_2021_111290
crossref_primary_10_1007_s10854_018_8889_3
crossref_primary_10_1007_s11665_024_09866_w
crossref_primary_10_1016_j_jphotochem_2017_03_016
crossref_primary_10_1016_S1452_3981_23_11206_5
crossref_primary_10_1016_j_carbon_2016_06_030
crossref_primary_10_1007_s11270_025_07836_z
crossref_primary_10_1063_1_4874877
crossref_primary_10_3390_ma12142295
crossref_primary_10_1016_j_matpr_2019_05_440
crossref_primary_10_1007_s11664_018_6223_8
crossref_primary_10_1021_acssuschemeng_5b00182
crossref_primary_10_1016_j_mtchem_2021_100748
crossref_primary_10_5004_dwt_2019_24765
crossref_primary_10_4028_p_XE2oSC
crossref_primary_10_1186_s12917_022_03483_2
crossref_primary_10_1016_j_colsurfa_2020_125247
crossref_primary_10_1016_j_jece_2017_08_026
crossref_primary_10_1080_15422119_2017_1383918
crossref_primary_10_1016_j_apsusc_2015_09_072
crossref_primary_10_3389_fenvs_2023_1158399
crossref_primary_10_1016_j_surfin_2019_100367
crossref_primary_10_3390_nano13010214
crossref_primary_10_1007_s13369_015_1621_1
crossref_primary_10_35208_ert_1110373
crossref_primary_10_1016_j_jcis_2022_11_040
crossref_primary_10_1016_j_jallcom_2014_05_195
crossref_primary_10_1016_j_ceramint_2015_08_008
crossref_primary_10_1016_j_psep_2018_03_015
crossref_primary_10_20964_2017_11_13
crossref_primary_10_1016_j_inoche_2023_110601
crossref_primary_10_1016_j_jece_2015_04_013
crossref_primary_10_4028_www_scientific_net_AMR_668_105
crossref_primary_10_1007_s00339_019_2518_8
crossref_primary_10_1016_j_powtec_2020_04_046
crossref_primary_10_1016_j_ceramint_2019_03_113
crossref_primary_10_1016_j_jphotochem_2018_10_007
crossref_primary_10_1039_C8RA02237B
crossref_primary_10_1016_j_bios_2012_10_029
crossref_primary_10_1016_j_jhazmat_2020_124011
crossref_primary_10_1016_j_mtchem_2025_102542
crossref_primary_10_1088_2053_1591_ab071b
crossref_primary_10_1021_la303554z
crossref_primary_10_1016_j_matpr_2017_10_164
crossref_primary_10_1016_j_matpr_2016_01_123
crossref_primary_10_1016_j_ceramint_2013_10_157
crossref_primary_10_1142_S1793292018500121
crossref_primary_10_1016_j_colsurfa_2016_09_041
crossref_primary_10_1088_2053_1591_ab529d
crossref_primary_10_1016_j_jechem_2016_09_015
crossref_primary_10_1007_s10904_018_0844_5
crossref_primary_10_1016_j_jece_2014_03_011
crossref_primary_10_1007_s11051_018_4392_2
crossref_primary_10_1016_j_jcis_2016_11_042
crossref_primary_10_1007_s40201_022_00820_3
crossref_primary_10_1016_j_jmrt_2020_12_062
crossref_primary_10_1002_pc_23808
crossref_primary_10_1016_j_cclet_2019_10_002
crossref_primary_10_1007_s10854_017_6873_y
crossref_primary_10_1088_0957_4484_24_30_305401
crossref_primary_10_1016_j_jallcom_2020_154614
crossref_primary_10_1155_2021_6629180
crossref_primary_10_1016_j_bios_2016_02_067
crossref_primary_10_1016_j_cep_2023_109302
crossref_primary_10_3390_pr10112266
crossref_primary_10_3390_catal10080921
crossref_primary_10_1039_C3CE41423J
crossref_primary_10_1016_j_jtice_2017_07_038
crossref_primary_10_1016_j_jphotochem_2017_01_021
crossref_primary_10_1016_j_apt_2022_103691
crossref_primary_10_1016_j_ijleo_2019_164131
crossref_primary_10_1016_j_physb_2022_414228
crossref_primary_10_1016_j_ceramint_2014_05_133
crossref_primary_10_1002_pc_29015
crossref_primary_10_1021_ie5027088
crossref_primary_10_1016_j_jwpe_2014_02_003
crossref_primary_10_1007_s10853_024_09965_y
crossref_primary_10_1007_s11665_023_08182_z
crossref_primary_10_1002_bab_2702
crossref_primary_10_1039_C4RA13299H
crossref_primary_10_1016_j_materresbull_2019_03_024
crossref_primary_10_1016_j_physe_2013_09_020
crossref_primary_10_1007_s11468_019_01086_6
crossref_primary_10_1016_j_jallcom_2014_10_078
crossref_primary_10_1016_j_apsusc_2018_11_130
crossref_primary_10_1016_j_chemosphere_2021_130142
Cites_doi 10.1039/c002783a
10.1039/b9nr00414a
10.1002/anie.200803630
10.1016/j.jcis.2011.07.058
10.1002/chem.201101610
10.1016/j.watres.2010.02.039
10.1021/jp075799g
10.1038/nature07919
10.1016/j.apsusc.2011.05.070
10.1016/j.jenvman.2008.11.017
10.1038/nmat1849
10.1021/cm00030a014
10.1021/cg070343+
10.1016/j.carbon.2011.02.059
10.1021/am101171a
10.1021/nn1006368
10.1016/j.micromeso.2004.12.012
10.1039/c0cc01259a
10.1007/s12274-010-1037-x
10.1021/cr00035a013
10.1016/j.micromeso.2010.05.015
10.1016/j.surfrep.2008.10.001
10.1038/nature04969
10.1039/b921692h
10.1021/cr00033a004
10.1021/jp910500c
10.1016/j.jcis.2011.07.005
10.1021/jp909478q
10.1021/cr00017a013
10.1021/ja049705h
10.1039/c1jm11798j
10.1021/es071770e
10.1061/(ASCE)0733-9372(2000)126:10(903)
10.1021/ja01269a023
10.1080/10643380590917932
10.1016/j.apcatb.2010.10.007
10.1016/j.jssc.2011.03.006
10.1021/jp109597n
10.1021/jp2038653
10.1016/S1010-6030(02)00039-4
10.1126/science.1157996
10.1021/am200655h
10.1038/nmat3087
10.1021/am200561k
10.1016/j.envint.2004.02.001
10.1021/cr900070d
10.1021/nn901660v
10.1021/jp903821n
10.1021/nn901221k
10.1016/j.jhazmat.2011.07.013
10.1016/S0960-8524(00)00080-8
10.1002/adma.200802738
10.1021/jp110075j
10.1021/jz100978u
10.1016/j.watres.2006.01.019
10.1039/C0JM03253K
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
NPM
7X8
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.jcis.2012.03.060
DatabaseName AGRIS
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
Technology Research Database
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 121
ExternalDocumentID 22498370
26016715
10_1016_j_jcis_2012_03_060
US201600077641
S002197971200358X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
ABDPE
ABWVN
ACRPL
ADFGL
ADNMO
ADVLN
AEIPS
AFFNX
AFJKZ
AI.
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
COF
D-I
EJD
FBQ
FEDTE
FGOYB
G-2
HLY
HVGLF
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
08R
ABPIF
ABPTK
G8K
IQODW
XFK
EFKBS
NPM
7X8
7U5
8FD
L7M
7S9
L.6
ID FETCH-LOGICAL-c476t-79c42f94a1f792e368a1a1b49fdf260ef82315b0db584b15c9479995152417713
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 04:27:25 EDT 2025
Tue Aug 05 09:07:53 EDT 2025
Tue Aug 05 11:10:56 EDT 2025
Mon Jul 21 05:20:01 EDT 2025
Mon Oct 30 05:51:05 EDT 2023
Tue Jul 01 01:18:07 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Thu Apr 03 09:45:03 EDT 2025
Fri Feb 23 02:28:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Visible light
ZnO
Graphene oxide
Nanocomposite
Synthesis
Photocatalysis
Water
Binary compound
Nanoparticle
Oxides
X ray
Particle
Efficiency
Photoelectron spectrometry
Diffusion
Photochemical degradation
Scanning electron microscopy
Oxygen
Annealing
Organic dye
Transition element compounds
Electron injection
Desorption
X ray diffraction
Mass transfer
Transmission electron microscopy
Adsorption
Atmosphere
Chemical deposition
Porosity
Surface area
By product
Reflectance
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-79c42f94a1f792e368a1a1b49fdf260ef82315b0db584b15c9479995152417713
Notes http://dx.doi.org/10.1016/j.jcis.2012.03.060
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22498370
PQID 1013767390
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1803162476
proquest_miscellaneous_1038243863
proquest_miscellaneous_1013767390
pubmed_primary_22498370
pascalfrancis_primary_26016715
crossref_citationtrail_10_1016_j_jcis_2012_03_060
crossref_primary_10_1016_j_jcis_2012_03_060
fao_agris_US201600077641
elsevier_sciencedirect_doi_10_1016_j_jcis_2012_03_060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hou, Wang, Jiao, Zhu (b0050) 2011; 192
Chiou, Ray, Tsai, Pao, Chien, Pong, Tseng, Wu, Tsai, Chen, Lin, Lee, Guo (b0100) 2011; 115
Liu, Chen, Hu, Li, Richards (b0090) 2010; 114
Umar, Chauhan, Chauhan, Kumar, Kumar, Al-Sayari, Hwang, Al-Hajry (b0065) 2011; 363
Yang, Ren, Zhang, Huang, Liu (b0170) 2011; 3
Xu, Zhang, Cheng, Zhu (b0250) 2011; 101
Yang, Zhai, Wang, Chen, Jiang (b0195) 2010; 4
Onyiriuka (b0225) 1993; 5
Woan, Pyrgiotakis, Sigmund (b0115) 2009; 21
Allen, Tung, Kaner (b0145) 2010; 110
Paci, Belytschko, Schatz (b0210) 2007; 111
Keis, Bauer, Boschloo, Hagfeldt, Westermark, Rensmo, Siegbahn (b0085) 2002; 148
Wang, He, Tao, He, Zhang, Niu, Yan (b0075) 2010; 46
Chen, Hu, Chang, Wang, Zhang, Yang, Wu (b0165) 2011; 115
Fujishima, Zhang, Tryk (b0255) 2008; 63
Becker, Raghupathi, Pierre, Zhao, Koodali (b0070) 2011; 115
Liang, Li, Wang, Zhou, Wang, Regier, Dai (b0150) 2011; 10
Jiao, Zhang, Wang, Diankov, Dai (b0140) 2009; 458
Rai, Bhattacharyya, Singh, Bansal, Vats, Banerjee (b0020) 2005; 35
Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach, Piner, Nguyen, Ruoff (b0205) 2006; 442
Zhang, Lv, Li, Wang, Li (b0125) 2010; 4
Jiang, Lin, Chen, Zhu, Chang, Wang, Wei, Tang (b0175) 2011; 49
Kamat (b0260) 1993; 93
Arslan, Balcioglu, Tuhkanen, Bahnemann (b0005) 2000; 126
Ng, Iwase, Kudo, Amal (b0180) 2010; 1
Linsebigler, Lu, Yates (b0055) 1995; 95
Zhu, Gu, Zhou, Cao, Cao (b0080) 2011; 21
Brunauer, Emmett, Teller (b0245) 1938; 60
Zhao, Chen, Wang, Ma, Zhao, Rajh, Zang (b0275) 2008; 42
Chong, Jin, Chow, Saint (b0045) 2010; 44
Chen, Ma, Zhao (b0040) 2010; 39
Li, Cao (b0185) 2011; 21
Sun, Zhao, Song, Shan, Zhang, Li, Shen (b0095) 2011; 363
Gupta, Suhas (b0025) 2009; 90
Wang, Gao, Li, Wang, Yan, Liu, Mann, Zhang, Jiang (b0160) 2011; 184
Li, Wang (b0060) 2010; 114
Vinu, Sawant, Ariga, Hartmann, Halligudi (b0235) 2005; 80
Geim, Novoselov (b0130) 2007; 6
Xiong, Zhang, Zhao (b0190) 2011; 17
Marcano, Kosynkin, Berlin, Sinitskii, Sun, Slesarev, Alemany, Lu, Tour (b0200) 2010; 4
Pekakis, Xekoukoulotakis, Mantzavinos (b0035) 2006; 40
Zhou, Huang, Qi, Wu, Xue, Boey, Yan, Chen, Zhang (b0230) 2009; 113
Mu, Shao, Guo, Zhang, Zhang, Zhang, Chen, Liu (b0120) 2011; 3
Zhang, Chen, Ma, Zhao (b0270) 2008; 47
Shen, Shi, Li, Yan, Ma, Hu, Ye (b0215) 2010; 3
Hoffmann, Martin, Choi, Bahnemannt (b0030) 1995; 95
Yang, Liu (b0220) 2011; 257
Li, Liu, Huang, Li (b0240) 2007; 7
Lee, Wei, Kysar, Hone (b0135) 2008; 321
Xiong, Zhang, Ma, Zhao (b0280) 2010; 46
Forgacs, Cserhati, Oros (b0015) 2004; 30
Robinson, Mcmullan, Marchant, Nigam (b0010) 2001; 77
Clifford, Palomares, Nazeeruddin, Thampi, Gratzel, Durrant (b0265) 2004; 126
Qin, Li, Xia, He (b0110) 2011; 3
Yu, Yuan, Shi, Zhao, Fang (b0105) 2010; 134
Zhu, Zeng, Nie, Xu, Chen, Han, Wang (b0155) 2010; 2
Woan (10.1016/j.jcis.2012.03.060_b0115) 2009; 21
Liang (10.1016/j.jcis.2012.03.060_b0150) 2011; 10
Chen (10.1016/j.jcis.2012.03.060_b0165) 2011; 115
Zhao (10.1016/j.jcis.2012.03.060_b0275) 2008; 42
Yang (10.1016/j.jcis.2012.03.060_b0170) 2011; 3
Pekakis (10.1016/j.jcis.2012.03.060_b0035) 2006; 40
Zhu (10.1016/j.jcis.2012.03.060_b0155) 2010; 2
Zhou (10.1016/j.jcis.2012.03.060_b0230) 2009; 113
Li (10.1016/j.jcis.2012.03.060_b0240) 2007; 7
Hoffmann (10.1016/j.jcis.2012.03.060_b0030) 1995; 95
Qin (10.1016/j.jcis.2012.03.060_b0110) 2011; 3
Sun (10.1016/j.jcis.2012.03.060_b0095) 2011; 363
Zhang (10.1016/j.jcis.2012.03.060_b0125) 2010; 4
Brunauer (10.1016/j.jcis.2012.03.060_b0245) 1938; 60
Chong (10.1016/j.jcis.2012.03.060_b0045) 2010; 44
Chiou (10.1016/j.jcis.2012.03.060_b0100) 2011; 115
Xiong (10.1016/j.jcis.2012.03.060_b0280) 2010; 46
Ng (10.1016/j.jcis.2012.03.060_b0180) 2010; 1
Geim (10.1016/j.jcis.2012.03.060_b0130) 2007; 6
Yang (10.1016/j.jcis.2012.03.060_b0195) 2010; 4
Jiang (10.1016/j.jcis.2012.03.060_b0175) 2011; 49
Shen (10.1016/j.jcis.2012.03.060_b0215) 2010; 3
Li (10.1016/j.jcis.2012.03.060_b0185) 2011; 21
Keis (10.1016/j.jcis.2012.03.060_b0085) 2002; 148
Mu (10.1016/j.jcis.2012.03.060_b0120) 2011; 3
Xu (10.1016/j.jcis.2012.03.060_b0250) 2011; 101
Paci (10.1016/j.jcis.2012.03.060_b0210) 2007; 111
Forgacs (10.1016/j.jcis.2012.03.060_b0015) 2004; 30
Li (10.1016/j.jcis.2012.03.060_b0060) 2010; 114
Arslan (10.1016/j.jcis.2012.03.060_b0005) 2000; 126
Zhu (10.1016/j.jcis.2012.03.060_b0080) 2011; 21
Umar (10.1016/j.jcis.2012.03.060_b0065) 2011; 363
Jiao (10.1016/j.jcis.2012.03.060_b0140) 2009; 458
Marcano (10.1016/j.jcis.2012.03.060_b0200) 2010; 4
Wang (10.1016/j.jcis.2012.03.060_b0075) 2010; 46
Wang (10.1016/j.jcis.2012.03.060_b0160) 2011; 184
Linsebigler (10.1016/j.jcis.2012.03.060_b0055) 1995; 95
Chen (10.1016/j.jcis.2012.03.060_b0040) 2010; 39
Clifford (10.1016/j.jcis.2012.03.060_b0265) 2004; 126
Gupta (10.1016/j.jcis.2012.03.060_b0025) 2009; 90
Allen (10.1016/j.jcis.2012.03.060_b0145) 2010; 110
Vinu (10.1016/j.jcis.2012.03.060_b0235) 2005; 80
Zhang (10.1016/j.jcis.2012.03.060_b0270) 2008; 47
Rai (10.1016/j.jcis.2012.03.060_b0020) 2005; 35
Becker (10.1016/j.jcis.2012.03.060_b0070) 2011; 115
Lee (10.1016/j.jcis.2012.03.060_b0135) 2008; 321
Onyiriuka (10.1016/j.jcis.2012.03.060_b0225) 1993; 5
Fujishima (10.1016/j.jcis.2012.03.060_b0255) 2008; 63
Kamat (10.1016/j.jcis.2012.03.060_b0260) 1993; 93
Yu (10.1016/j.jcis.2012.03.060_b0105) 2010; 134
Liu (10.1016/j.jcis.2012.03.060_b0090) 2010; 114
Xiong (10.1016/j.jcis.2012.03.060_b0190) 2011; 17
Hou (10.1016/j.jcis.2012.03.060_b0050) 2011; 192
Stankovich (10.1016/j.jcis.2012.03.060_b0205) 2006; 442
Yang (10.1016/j.jcis.2012.03.060_b0220) 2011; 257
Robinson (10.1016/j.jcis.2012.03.060_b0010) 2001; 77
References_xml – volume: 46
  start-page: 6099
  year: 2010
  end-page: 6101
  ident: b0280
  publication-title: Chem. Commun.
– volume: 44
  start-page: 2997
  year: 2010
  end-page: 3027
  ident: b0045
  publication-title: Water Res.
– volume: 21
  start-page: 12503
  year: 2011
  end-page: 12510
  ident: b0080
  publication-title: J. Mater. Chem.
– volume: 40
  start-page: 1276
  year: 2006
  end-page: 1286
  ident: b0035
  publication-title: Water Res.
– volume: 77
  start-page: 247
  year: 2001
  end-page: 255
  ident: b0010
  publication-title: Bioresour. Technol.
– volume: 110
  start-page: 132
  year: 2010
  end-page: 145
  ident: b0145
  publication-title: Chem. Rev.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: b0245
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 5670
  year: 2004
  end-page: 5671
  ident: b0265
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 988
  year: 2010
  end-page: 994
  ident: b0155
  publication-title: Nanoscale
– volume: 95
  start-page: 735
  year: 1995
  end-page: 758
  ident: b0055
  publication-title: Chem. Rev.
– volume: 442
  start-page: 282
  year: 2006
  end-page: 286
  ident: b0205
  publication-title: Nature
– volume: 3
  start-page: 339
  year: 2010
  end-page: 349
  ident: b0215
  publication-title: Nano Res.
– volume: 7
  start-page: 1350
  year: 2007
  end-page: 1355
  ident: b0240
  publication-title: Cryst. Growth Des.
– volume: 21
  start-page: 2233
  year: 2009
  end-page: 2239
  ident: b0115
  publication-title: Adv. Mater.
– volume: 21
  start-page: 3346
  year: 2011
  end-page: 3349
  ident: b0185
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 798
  year: 1993
  end-page: 801
  ident: b0225
  publication-title: Chem. Mater.
– volume: 111
  start-page: 18099
  year: 2007
  end-page: 18111
  ident: b0210
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 780
  year: 2011
  end-page: 786
  ident: b0150
  publication-title: Nat. Mater.
– volume: 192
  start-page: 1772
  year: 2011
  end-page: 1779
  ident: b0050
  publication-title: J. Hazard. Mater
– volume: 47
  start-page: 9730
  year: 2008
  end-page: 9733
  ident: b0270
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 887
  year: 2010
  end-page: 894
  ident: b0195
  publication-title: ACS Nano
– volume: 90
  start-page: 2313
  year: 2009
  end-page: 2342
  ident: b0025
  publication-title: J. Environ. Manage.
– volume: 95
  start-page: 69
  year: 1995
  end-page: 96
  ident: b0030
  publication-title: Chem. Rev.
– volume: 4
  start-page: 380
  year: 2010
  end-page: 386
  ident: b0125
  publication-title: ACS Nano
– volume: 3
  start-page: 2779
  year: 2011
  end-page: 2785
  ident: b0170
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: b0130
  publication-title: Nat. Mater.
– volume: 42
  start-page: 308
  year: 2008
  end-page: 314
  ident: b0275
  publication-title: Environ. Sci. Technol.
– volume: 257
  start-page: 8950
  year: 2011
  end-page: 8954
  ident: b0220
  publication-title: Appl. Surf. Sci.
– volume: 148
  start-page: 57
  year: 2002
  end-page: 64
  ident: b0085
  publication-title: J. Photochem. Photobiol., A
– volume: 115
  start-page: 2650
  year: 2011
  end-page: 2655
  ident: b0100
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 4806
  year: 2010
  end-page: 4814
  ident: b0200
  publication-title: ACS Nano
– volume: 101
  start-page: 382
  year: 2011
  end-page: 387
  ident: b0250
  publication-title: Appl. Catal., B
– volume: 114
  start-page: 1641
  year: 2010
  end-page: 1645
  ident: b0090
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 3152
  year: 2011
  end-page: 3156
  ident: b0110
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 2607
  year: 2010
  end-page: 2612
  ident: b0180
  publication-title: J. Phys. Chem. Lett.
– volume: 114
  start-page: 890
  year: 2010
  end-page: 896
  ident: b0060
  publication-title: J. Phys. Chem. C
– volume: 35
  start-page: 219
  year: 2005
  end-page: 238
  ident: b0020
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 113
  start-page: 10842
  year: 2009
  end-page: 10846
  ident: b0230
  publication-title: J. Phys. Chem. C
– volume: 80
  start-page: 195
  year: 2005
  end-page: 203
  ident: b0235
  publication-title: Microporous Mesoporous Mater.
– volume: 115
  start-page: 13844
  year: 2011
  end-page: 13850
  ident: b0070
  publication-title: J. Phys. Chem. C
– volume: 49
  start-page: 2693
  year: 2011
  end-page: 2701
  ident: b0175
  publication-title: Carbon
– volume: 17
  start-page: 2428
  year: 2011
  end-page: 2434
  ident: b0190
  publication-title: Chem. Eur. J.
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: b0135
  publication-title: Science
– volume: 93
  start-page: 267
  year: 1993
  end-page: 300
  ident: b0260
  publication-title: Chem. Rev.
– volume: 30
  start-page: 953
  year: 2004
  end-page: 971
  ident: b0015
  publication-title: Environ. Int.
– volume: 363
  start-page: 175
  year: 2011
  end-page: 181
  ident: b0095
  publication-title: J. Colloid Interface Sci.
– volume: 115
  start-page: 2563
  year: 2011
  end-page: 2571
  ident: b0165
  publication-title: J. Phys. Chem. C
– volume: 184
  start-page: 1421
  year: 2011
  end-page: 1427
  ident: b0160
  publication-title: J. Solid State Chem.
– volume: 46
  start-page: 5250
  year: 2010
  end-page: 5252
  ident: b0075
  publication-title: Chem. Commun.
– volume: 3
  start-page: 590
  year: 2011
  end-page: 596
  ident: b0120
  publication-title: ACS Appl. Mater. Interfaces
– volume: 63
  start-page: 515
  year: 2008
  end-page: 582
  ident: b0255
  publication-title: Surf. Sci. Rep.
– volume: 458
  start-page: 877
  year: 2009
  end-page: 880
  ident: b0140
  publication-title: Nature
– volume: 126
  start-page: 903
  year: 2000
  end-page: 911
  ident: b0005
  publication-title: J. Environ. Eng.
– volume: 39
  start-page: 4206
  year: 2010
  end-page: 4219
  ident: b0040
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 108
  year: 2010
  end-page: 114
  ident: b0105
  publication-title: Microporous Mesoporous Mater.
– volume: 363
  start-page: 521
  year: 2011
  end-page: 528
  ident: b0065
  publication-title: J. Colloid Interface Sci.
– volume: 46
  start-page: 5250
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0075
  publication-title: Chem. Commun.
  doi: 10.1039/c002783a
– volume: 2
  start-page: 988
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0155
  publication-title: Nanoscale
  doi: 10.1039/b9nr00414a
– volume: 47
  start-page: 9730
  year: 2008
  ident: 10.1016/j.jcis.2012.03.060_b0270
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803630
– volume: 363
  start-page: 521
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0065
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.07.058
– volume: 17
  start-page: 2428
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0190
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201101610
– volume: 44
  start-page: 2997
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0045
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.02.039
– volume: 111
  start-page: 18099
  year: 2007
  ident: 10.1016/j.jcis.2012.03.060_b0210
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp075799g
– volume: 458
  start-page: 877
  year: 2009
  ident: 10.1016/j.jcis.2012.03.060_b0140
  publication-title: Nature
  doi: 10.1038/nature07919
– volume: 257
  start-page: 8950
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0220
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.05.070
– volume: 90
  start-page: 2313
  year: 2009
  ident: 10.1016/j.jcis.2012.03.060_b0025
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2008.11.017
– volume: 6
  start-page: 183
  year: 2007
  ident: 10.1016/j.jcis.2012.03.060_b0130
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 5
  start-page: 798
  year: 1993
  ident: 10.1016/j.jcis.2012.03.060_b0225
  publication-title: Chem. Mater.
  doi: 10.1021/cm00030a014
– volume: 7
  start-page: 1350
  year: 2007
  ident: 10.1016/j.jcis.2012.03.060_b0240
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070343+
– volume: 49
  start-page: 2693
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0175
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.02.059
– volume: 3
  start-page: 590
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0120
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am101171a
– volume: 4
  start-page: 4806
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0200
  publication-title: ACS Nano
  doi: 10.1021/nn1006368
– volume: 80
  start-page: 195
  year: 2005
  ident: 10.1016/j.jcis.2012.03.060_b0235
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2004.12.012
– volume: 46
  start-page: 6099
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0280
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01259a
– volume: 3
  start-page: 339
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0215
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-1037-x
– volume: 95
  start-page: 735
  year: 1995
  ident: 10.1016/j.jcis.2012.03.060_b0055
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a013
– volume: 134
  start-page: 108
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0105
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2010.05.015
– volume: 63
  start-page: 515
  year: 2008
  ident: 10.1016/j.jcis.2012.03.060_b0255
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2008.10.001
– volume: 442
  start-page: 282
  year: 2006
  ident: 10.1016/j.jcis.2012.03.060_b0205
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 39
  start-page: 4206
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0040
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b921692h
– volume: 95
  start-page: 69
  year: 1995
  ident: 10.1016/j.jcis.2012.03.060_b0030
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
– volume: 114
  start-page: 1641
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0090
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp910500c
– volume: 363
  start-page: 175
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0095
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.07.005
– volume: 114
  start-page: 890
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0060
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp909478q
– volume: 93
  start-page: 267
  year: 1993
  ident: 10.1016/j.jcis.2012.03.060_b0260
  publication-title: Chem. Rev.
  doi: 10.1021/cr00017a013
– volume: 126
  start-page: 5670
  year: 2004
  ident: 10.1016/j.jcis.2012.03.060_b0265
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049705h
– volume: 21
  start-page: 12503
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0080
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm11798j
– volume: 42
  start-page: 308
  year: 2008
  ident: 10.1016/j.jcis.2012.03.060_b0275
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071770e
– volume: 126
  start-page: 903
  year: 2000
  ident: 10.1016/j.jcis.2012.03.060_b0005
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2000)126:10(903)
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.jcis.2012.03.060_b0245
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 35
  start-page: 219
  year: 2005
  ident: 10.1016/j.jcis.2012.03.060_b0020
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380590917932
– volume: 101
  start-page: 382
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0250
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2010.10.007
– volume: 184
  start-page: 1421
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0160
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2011.03.006
– volume: 115
  start-page: 2563
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0165
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109597n
– volume: 115
  start-page: 13844
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0070
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2038653
– volume: 148
  start-page: 57
  year: 2002
  ident: 10.1016/j.jcis.2012.03.060_b0085
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/S1010-6030(02)00039-4
– volume: 321
  start-page: 385
  year: 2008
  ident: 10.1016/j.jcis.2012.03.060_b0135
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 3
  start-page: 3152
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0110
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200655h
– volume: 10
  start-page: 780
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0150
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3087
– volume: 3
  start-page: 2779
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0170
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200561k
– volume: 30
  start-page: 953
  year: 2004
  ident: 10.1016/j.jcis.2012.03.060_b0015
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2004.02.001
– volume: 110
  start-page: 132
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0145
  publication-title: Chem. Rev.
  doi: 10.1021/cr900070d
– volume: 4
  start-page: 887
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0195
  publication-title: ACS Nano
  doi: 10.1021/nn901660v
– volume: 113
  start-page: 10842
  year: 2009
  ident: 10.1016/j.jcis.2012.03.060_b0230
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp903821n
– volume: 4
  start-page: 380
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0125
  publication-title: ACS Nano
  doi: 10.1021/nn901221k
– volume: 192
  start-page: 1772
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0050
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.07.013
– volume: 77
  start-page: 247
  year: 2001
  ident: 10.1016/j.jcis.2012.03.060_b0010
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(00)00080-8
– volume: 21
  start-page: 2233
  year: 2009
  ident: 10.1016/j.jcis.2012.03.060_b0115
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802738
– volume: 115
  start-page: 2650
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0100
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110075j
– volume: 1
  start-page: 2607
  year: 2010
  ident: 10.1016/j.jcis.2012.03.060_b0180
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100978u
– volume: 40
  start-page: 1276
  year: 2006
  ident: 10.1016/j.jcis.2012.03.060_b0035
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.01.019
– volume: 21
  start-page: 3346
  year: 2011
  ident: 10.1016/j.jcis.2012.03.060_b0185
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM03253K
SSID ssj0011559
Score 2.556623
Snippet [Display omitted] ► ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route. ► The ZnO/GO nanocomposite exhibited...
In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms adsorption
annealing
atmospheric deposition
Chemistry
Colloidal state and disperse state
Dyes
Exact sciences and technology
General and physical chemistry
Graphene oxide
mass transfer
methylene blue
Nanocomposite
Nanocomposites
Nanomaterials
nanoparticles
Nanostructure
nitrogen
oxygen
Photocatalysis
photocatalysts
Photochemistry
photolysis
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
porosity
Porous materials
reactive oxygen species
reflectance spectroscopy
Scanning electron microscopy
surface area
Surface physical chemistry
Synthesis
transmission electron microscopy
Visible light
X-ray diffraction
X-ray photoelectron spectroscopy
X-rays
Zinc oxide
ZnO
Title ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance
URI https://dx.doi.org/10.1016/j.jcis.2012.03.060
https://www.ncbi.nlm.nih.gov/pubmed/22498370
https://www.proquest.com/docview/1013767390
https://www.proquest.com/docview/1038243863
https://www.proquest.com/docview/1803162476
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGOAAHNMaPFbbKSNyQ19qx4-Q4VUwFxDhApYqLZSc2yyhJ1XUSu_C3856TdJsEPXBMZCuO3_N7z_b3vkfIG2-d0mVwzCUqZTJkkmWO58wKJdIC_I2yeN7x6SydzuSHuZrvkEmfC4Owys72tzY9WuvuzaibzdGyqjDHF1abzjWPpJ7ZHDPYpUYtP_69gXlwvHZrYR6cYesucabFeF0UFVJ243lgcjyONJV_dU73gm0QNWkvYeJCW_Hi3yFpdE2ne-RxF1PSk3bYT8iOr_fJg0lfym2fPLrFOviUVN_qz6NIVA12jjW_qtLT2tYNossRwuUpHs7Slf9pVz-sW1xTX59HoADFTHS38GwR6UfKFZpKujxv1k08BrqGAdDlTSrCMzI7ffd1MmVdxQVWwMytmc4LKUIuLQ86Fz5JM8stdzIPZYCNjw94aajcuHQQtziuilxqiDAhJoJAQMN-9znZrZvaHxCaWi-01dA_4dJ6CIsKL2B7pkqkKEvVgPB-qk3R0ZFjVYyF6XFnFwbFY1A8ZpwYEM-AvN30WbZkHFtbq16C5o5KGfAWW_sdgLiN_Q5W1sy-COTgi6xHkg_I8I4ObEYRidk0h7963SuFARnj5YutfXN1iR9D4pwkH29rk2RCJlmabGmTgRlOBYhrQF60WnczCthLI5nRy__881fkIT61aORDsrteXfkjiLnWbhgX1ZDcP3n_cXr2B_GRKJM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5t3cPgAcH4sQ4YQeINmdaJHSePU8XUsa08sEoVL5adOCyjS6quk9h_z52TdEyCPvCa2Irjs-_Ovu--A_jgjJUqLyyzkYyZKBLBEstTZkIZxhnaG2novuN8Eo-n4stMzrZg1OXCEKyy1f2NTvfaun0yaGdzsChLyvHF3aZSxT2pZzLbhh1ip5I92Dk6OR1P1sEEirw1SA_OqEObO9PAvK6ykli76Uow-jT0TJV_tU_bhakJOGlucO6KpujFv71Sb52On8KT1q0MjpqRP4MtV-3B7qir5rYHj_8gHnwO5ffq68BzVaOqY_WvMndBZaqaAOaE4nIB3c8GS3dtlj-Nnd8Frrr0WIGAktHt3LG5ZyDJl6Qtg8Vlvar9TdAdDiBY3GcjvIDp8eeL0Zi1RRdYJlS8YirNRFikwvBCpaGL4sRww61Ii7zAs48rKG4o7TC36LpYLrNUKHQy0S1CX0Dhkfcl9Kq6cvsQxMaFyijsH3FhHHpGmQvxhCZzYimLZR94N9U6axnJqTDGXHfQsytN4tEkHj2MNIqnDx_XfRYNH8fG1rKToH6wqjQajI399lHc2vxARaun30Ki4fPER4L34fDBGliPwnOzKY5_9b5bFBplTPEXU7n69oY-Rtw5UTrc1CZKQhElcbShTYKaOA5RXH141ay6-1HgcZr4jA7-88_fwe744vxMn51MTl_DI3rTgJPfQG-1vHVv0QVb2cN2i_0GCjwrRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZnO%2Fgraphene-oxide+nanocomposite+with+remarkably+enhanced+visible-light-driven+photocatalytic+performance&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Li%2C+Benxia&rft.au=Liu%2C+Tongxuan&rft.au=Wang%2C+Yanfen&rft.au=Wang%2C+Zhoufeng&rft.date=2012-07-01&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.volume=377&rft.issue=1&rft.spage=114&rft.epage=121&rft_id=info:doi/10.1016%2Fj.jcis.2012.03.060&rft.externalDocID=US201600077641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon