Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability i...
Saved in:
Published in | eLife Vol. 13 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
25.09.2024
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
Seasonal influenza (flu) viruses cause outbreaks every winter. People infected with influenza typically develop mild respiratory symptoms. But flu infections can cause serious illness in young children, older adults and people with chronic medical conditions. Infected or vaccinated individuals develop some immunity, but the viruses evolve quickly to evade these defenses in a process called antigenic drift. As the viruses change, they can re-infect previously immune people. Scientists update the flu vaccine yearly to keep up with this antigenic drift.
The immune system fights flu infections by recognizing two proteins, known as antigens, on the virus’s surface, called hemagglutinin (HA) and neuraminidase (NA). However, mutations in the genes encoding these proteins can make them unrecognizable, letting the virus slip past the immune system. Scientists would like to know how these changes affect the size, severity and timing of annual influenza outbreaks.
Perofsky et al. show that tracking genetic changes in HA and NA may help improve flu season predictions. The experiments compared the severity of 22 flu seasons caused by the A(H3N2) subtype in the United States with how much HA and NA had evolved since the previous year. The A(H3N2) subtype experiences the fastest rates of antigenic drift and causes more cases and deaths than other seasonal flu viruses. Genetic changes in HA and NA were a better predictor of A(H3N2) outbreak severity than the blood tests for protective antibodies that epidemiologists traditionally use to track flu evolution. However, the prevalence of another subtype of influenza A circulating in the population, called A(H1N1), was an even better predictor of how severe A(H3N2) outbreaks would be.
Perofsky et al. are the first to show that genetic changes in NA contribute to the severity of flu seasons. Previous studies suggested a link between genetic changes in HA and flu season severity, and flu vaccines include the HA protein to help the body recognize new influenza strains. The results suggest that adding the NA protein to flu vaccines may improve their effectiveness. In the future, flu forecasters may want to analyze genetic changes in both NA and HA to make their outbreak predictions. Tracking how much of the A(H1N1) subtype is circulating may also be useful for predicting the severity of A(H3N2) outbreaks. |
---|---|
AbstractList | Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity. Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity. Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity. Seasonal influenza (flu) viruses cause outbreaks every winter. People infected with influenza typically develop mild respiratory symptoms. But flu infections can cause serious illness in young children, older adults and people with chronic medical conditions. Infected or vaccinated individuals develop some immunity, but the viruses evolve quickly to evade these defenses in a process called antigenic drift. As the viruses change, they can re-infect previously immune people. Scientists update the flu vaccine yearly to keep up with this antigenic drift. The immune system fights flu infections by recognizing two proteins, known as antigens, on the virus’s surface, called hemagglutinin (HA) and neuraminidase (NA). However, mutations in the genes encoding these proteins can make them unrecognizable, letting the virus slip past the immune system. Scientists would like to know how these changes affect the size, severity and timing of annual influenza outbreaks. Perofsky et al. show that tracking genetic changes in HA and NA may help improve flu season predictions. The experiments compared the severity of 22 flu seasons caused by the A(H3N2) subtype in the United States with how much HA and NA had evolved since the previous year. The A(H3N2) subtype experiences the fastest rates of antigenic drift and causes more cases and deaths than other seasonal flu viruses. Genetic changes in HA and NA were a better predictor of A(H3N2) outbreak severity than the blood tests for protective antibodies that epidemiologists traditionally use to track flu evolution. However, the prevalence of another subtype of influenza A circulating in the population, called A(H1N1), was an even better predictor of how severe A(H3N2) outbreaks would be. Perofsky et al. are the first to show that genetic changes in NA contribute to the severity of flu seasons. Previous studies suggested a link between genetic changes in HA and flu season severity, and flu vaccines include the HA protein to help the body recognize new influenza strains. The results suggest that adding the NA protein to flu vaccines may improve their effectiveness. In the future, flu forecasters may want to analyze genetic changes in both NA and HA to make their outbreak predictions. Tracking how much of the A(H1N1) subtype is circulating may also be useful for predicting the severity of A(H3N2) outbreaks. |
Author | Viboud, Cécile Krammer, Florian Galiano, Monica Barr, Ian G Daniels, Rodney Stuart Huddleston, John Nakamura, Kazuya Wentworth, David E Harvey, Ruth Barnes, John R Xu, Xiyan McCauley, John W Subbarao, Kanta Watanabe, Shinji Whittaker, Lynne Lewis, Nicola Fujisaki, Seiichiro Bedford, Trevor Kondor, Rebecca Perofsky, Amanda C Rowe, Thomas Sullivan, Sheena G Hansen, Chelsea L Kishida, Noriko Ermetal, Burcu Hasegawa, Hideki |
Author_xml | – sequence: 1 givenname: Amanda C orcidid: 0000-0001-7341-9193 surname: Perofsky fullname: Perofsky, Amanda C – sequence: 2 givenname: John orcidid: 0000-0002-4250-2063 surname: Huddleston fullname: Huddleston, John – sequence: 3 givenname: Chelsea L orcidid: 0000-0002-4526-6772 surname: Hansen fullname: Hansen, Chelsea L – sequence: 4 givenname: John R surname: Barnes fullname: Barnes, John R – sequence: 5 givenname: Thomas surname: Rowe fullname: Rowe, Thomas – sequence: 6 givenname: Xiyan surname: Xu fullname: Xu, Xiyan – sequence: 7 givenname: Rebecca orcidid: 0000-0002-2596-4282 surname: Kondor fullname: Kondor, Rebecca – sequence: 8 givenname: David E orcidid: 0000-0002-5190-980X surname: Wentworth fullname: Wentworth, David E – sequence: 9 givenname: Nicola surname: Lewis fullname: Lewis, Nicola – sequence: 10 givenname: Lynne surname: Whittaker fullname: Whittaker, Lynne – sequence: 11 givenname: Burcu surname: Ermetal fullname: Ermetal, Burcu – sequence: 12 givenname: Ruth surname: Harvey fullname: Harvey, Ruth – sequence: 13 givenname: Monica surname: Galiano fullname: Galiano, Monica – sequence: 14 givenname: Rodney Stuart orcidid: 0000-0003-2818-5089 surname: Daniels fullname: Daniels, Rodney Stuart – sequence: 15 givenname: John W orcidid: 0000-0002-4744-6347 surname: McCauley fullname: McCauley, John W – sequence: 16 givenname: Seiichiro surname: Fujisaki fullname: Fujisaki, Seiichiro – sequence: 17 givenname: Kazuya surname: Nakamura fullname: Nakamura, Kazuya – sequence: 18 givenname: Noriko surname: Kishida fullname: Kishida, Noriko – sequence: 19 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji – sequence: 20 givenname: Hideki surname: Hasegawa fullname: Hasegawa, Hideki – sequence: 21 givenname: Sheena G surname: Sullivan fullname: Sullivan, Sheena G – sequence: 22 givenname: Ian G surname: Barr fullname: Barr, Ian G – sequence: 23 givenname: Kanta orcidid: 0000-0003-1713-3056 surname: Subbarao fullname: Subbarao, Kanta – sequence: 24 givenname: Florian surname: Krammer fullname: Krammer, Florian – sequence: 25 givenname: Trevor orcidid: 0000-0002-4039-5794 surname: Bedford fullname: Bedford, Trevor – sequence: 26 givenname: Cécile orcidid: 0000-0003-3243-4711 surname: Viboud fullname: Viboud, Cécile |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39319780$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkFrFDEUgINUbF178i4DXiqyNZm87CQnWYrawqIHLXiRkEne7GaZzaxJRth_b3a3lbaYywsv3_t4Sd5LchKGgIS8ZvSyEQI-4MJ3eKmYBPWMnNVU0CmV8PPkwf6UnKe0pmU1ICVTL8gpV5ypRtIz8msesl9i8LZy0Xe5MsFVaWzzbouVDxljhxGDxSqtTEnNL6751_pdhVvvcLOv2gVTYipwlVdY3Qaf0VXfs8mYXpHnnekTnt_FCbn9_OnH1fV08e3LzdV8MbXQzPIU0AgEKjrV8A7QNdw0whnTyE64GWdOgAMrTF3LFphlrZOG1YqigJkQBvmE3By9bjBrvY1-Y-JOD8brQ2KIS21i9rZH7UACYyC4AQ4UpAHWqdZaia0RdcuL6-PRtR3bDTqLIUfTP5I-Pgl-pZfDH12sNdByhQm5uDPE4feIKeuNTxb73gQcxqQ5owpqxYEV9O0TdD2MMZS3KtReqEDVhXrzsKV_vdx_YwHYEbBxSClip60vH-CHfYe-14zq_bTow7Tow7SUmvdPau61_6P_Ai1Tv_k |
CitedBy_id | crossref_primary_10_1111_irv_70033 |
Cites_doi | 10.1126/scitranslmed.aan5325 10.1093/infdis/jiw181 10.7554/eLife.44205 10.1038/srep11013 10.1073/pnas.1712377114 10.1038/nm.3350 10.1186/1745-6150-1-34 10.1093/infdis/jis419 10.1016/j.amepre.2019.04.007 10.1016/j.vaccine.2009.02.047 10.1093/cid/ciz075 10.1093/cid/ciw635 10.1016/j.chom.2019.01.002 10.1371/journal.pgen.1001301 10.1093/infdis/jiz543 10.3389/fimmu.2016.00195 10.1128/mBio.02332-17 10.1097/EDE.0b013e31819d1092 10.1038/nature01509 10.1111/ajt.16381 10.1002/j.1538-7305.1948.tb01338.x 10.1038/414716a 10.1084/jem.20130212 10.7554/eLife.00631 10.1186/1471-2334-14-480 10.1093/infdis/129.4.411 10.48550/arXiv.2110.12461 10.1073/pnas.1321656111 10.2807/1560-7917.ES.2017.22.13.30494 10.1371/currents.RRN1200 10.1093/infdis/151.1.81 10.1098/rstb.2001.0999 10.1371/journal.pcbi.1000882 10.1093/aje/kws140 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1038/nature08182 10.7554/eLife.49324 10.1111/irv.12562 10.1371/journal.pcbi.1007989 10.1093/cid/cis431 10.1186/1471-2148-11-220 10.1371/journal.ppat.1008109 10.1093/aje/kwt158 10.5694/j.1326-5377.1977.tb99276.x 10.1186/s12859-020-03622-2 10.1016/j.vaccine.2016.01.054 10.1128/JVI.2.8.778-786.1968 10.1128/mBio.00417-16 10.1371/journal.pcbi.1005749 10.21105/joss.02906 10.7554/eLife.07361 10.1128/JVI.03509-12 10.1093/cid/ciu680 10.1038/s41467-022-28858-9 10.1073/pnas.1113801108 10.1056/NEJM197206222862502 10.1073/pnas.87.2.786 10.1016/0042-6822(80)90372-4 10.1016/j.coi.2018.03.025 10.1093/infdis/jiu224 10.1016/j.micinf.2008.07.002 10.1890/13-0133.1 10.1086/502146 10.15585/mmwr.mm7029a1 10.1128/JVI.72.7.5648-5653.1998 10.1093/cid/ciu356 10.1126/science.286.5446.1921 10.1016/S2468-2667(20)30090-6 10.1126/science.1125237 10.18637/jss.v028.i05 10.1093/cid/cis574 10.1056/NEJMoa1700153 10.1038/srep15279 10.1080/0266476042000214501 10.1086/595862 10.1126/science.1097211 10.1093/aje/kwt133 10.3201/eid1001.020705 10.1038/s41467-022-29402-5 10.1038/s41577-019-0143-6 10.1038/nrg2053 10.1093/infdis/jiv260 10.1093/cid/ciw176 10.1038/nature14460 10.3390/ijerph18105349 10.1016/S2214-109X(22)00358-8 10.1146/annurev.iy.08.040190.003513 10.1016/0264-410x(93)90130-p 10.1073/pnas.1525578113 10.1371/journal.ppat.1000918 10.1186/1471-2105-9-307 10.1093/ve/vex042 10.1016/j.epidem.2009.05.003 10.1093/infdis/jiv577 10.1186/1741-7007-10-38 10.1038/289373a0 10.1016/j.vaccine.2011.07.002 10.1038/nature04017 10.1093/bioinformatics/bty407 10.1126/science.aat6030 10.1371/journal.ppat.1006780 10.1007/978-1-4614-6849-3 10.1038/296115a0 10.1016/j.coviro.2016.12.004 10.1016/S1473-3099(09)70069-6 10.1016/j.vaccine.2017.04.012 10.1128/mBio.02556-14 10.1371/journal.pcbi.1005382 10.1093/nar/gkf436 10.1016/s0264-410x(03)00508-5 10.1073/pnas.0806852106 10.2807/1560-7917.ES.2017.22.6.30460 10.1093/aje/kwj040 10.1126/science.1132745 10.1186/1471-2105-8-25 10.1093/infdis/jis283 10.1002/sim.1545 10.7554/eLife.03568 10.7554/eLife.30756 10.1038/nature13087 10.1128/mr.56.1.152-179.1992 10.1126/science.1176225 10.1136/bmj.3.5773.531-b 10.1201/9781315108230 10.1093/infdis/jis935 10.1128/jcm.31.4.836-838.1993 10.1001/jama.284.13.1655 10.1146/annurev.ecolsys.34.011802.132516 10.1038/nrmicro.2017.118 10.1016/j.cell.2018.03.030 10.1093/infdis/jiu048 10.1126/science.1244730 10.1073/pnas.63.2.326 10.1093/molbev/msu300 10.1093/infdis/jiab485 10.1038/s41598-022-08233-w 10.1016/j.gene.2008.09.012 10.4049/jimmunol.1801149 10.7554/eLife.07467 10.7554/eLife.01914 10.18637/jss.v033.i01 10.1093/biostatistics/kxj011 10.1128/JVI.01414-13 10.1086/498980 10.1073/pnas.2013182117 10.32614/RJ-2013-028 10.1371/journal.pmed.1000168 10.1371/journal.pcbi.1008409 10.1093/bioinformatics/btq134 10.1038/s41467-019-09652-6 10.1371/journal.pmed.1000258 10.1016/j.virol.2005.06.006 10.1016/j.coviro.2014.07.007 10.1093/cid/ciy775 10.1093/infdis/134.4.384 10.1371/journal.pcbi.1006742 10.2807/ese.18.05.20390-en 10.1111/j.2517-6161.1995.tb02031.x 10.2307/1934352 10.18637/jss.v076.i01 10.1038/s41467-021-21157-9 10.1093/infdis/jiv195 10.1016/s0264-410x(03)00071-9 10.1001/jamanetworkopen.2022.0527 10.2807/1560-7917.ES.2021.26.29.2001600 10.1371/journal.pbio.1000316 10.1111/irv.12540 10.1128/mBio.01996-15 10.2807/1560-7917.ES.2017.22.44.17-00306 10.1093/molbev/msr044 10.1016/S0264-410X(99)00099-7 10.1093/jrsssa/qnad030 10.1038/s41598-018-28706-1 10.2807/1560-7917.ES2015.20.8.21043 10.1016/j.vaccine.2006.10.002 10.1371/journal.pone.0092153 10.7554/eLife.60067 10.1371/journal.pcbi.1006020 10.1073/pnas.1708856115 10.1186/1743-422X-10-244 10.1093/infdis/jix074 10.1038/s41467-020-16545-6 10.1093/cid/cit736 10.1016/j.tpb.2003.10.002 10.1016/j.rse.2019.04.034 10.1126/scitranslmed.3006637 10.1073/pnas.0701396104 10.1086/657311 10.1371/journal.pmed.1001051 10.1093/infdis/jiaa138 |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.91849 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_d48411453a434048a41f9bcc8eba52b3 PMC11424097 39319780 10_7554_eLife_91849 |
Genre | Journal Article |
GeographicLocations | United States United States--US |
GeographicLocations_xml | – name: United States – name: United States--US |
GrantInformation_xml | – fundername: Medical Research Council grantid: FC001030 – fundername: NIH HHS grantid: 75N93019C00051 – fundername: Ministry of Health, Labour and Welfare grantid: 10111800 – fundername: Wellcome Trust grantid: FC001030 – fundername: NIAID NIH HHS grantid: 75N93021C00014 – fundername: NIH HHS grantid: R01 AI165821 – fundername: NIAID NIH HHS grantid: F31 AI140714 – fundername: NIH HHS grantid: R01 AI127893 – fundername: NIAID NIH HHS grantid: R01 AI127893 – fundername: Cancer Research UK grantid: FC001030 – fundername: ; – fundername: ; grantid: HHSN272201400008C – fundername: ; grantid: R01 AI127893 – fundername: ; grantid: 10110400 – fundername: ; grantid: 10111800 – fundername: ; grantid: R35 GM119774 – fundername: ; grantid: 1354890 – fundername: ; grantid: 75N93021C00014 – fundername: ; grantid: JP22fk0108118 – fundername: ; grantid: JP23fk0108662 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c476t-4ea5e405f973f4ed73a75daa78f5d631d54d4c5a228b41c1bd8a1290e54655ae3 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:31:59 EDT 2025 Thu Aug 21 18:31:24 EDT 2025 Fri Jul 11 10:26:32 EDT 2025 Fri Jul 25 11:53:57 EDT 2025 Mon Jul 21 05:56:03 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Tue Jul 01 04:08:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | global health epidemiology infectious disease antigenic drift influenza virus microbiology human virus H3N2 |
Language | English |
License | This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-4ea5e405f973f4ed73a75daa78f5d631d54d4c5a228b41c1bd8a1290e54655ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4250-2063 0000-0002-5190-980X 0000-0001-7341-9193 0000-0003-3243-4711 0000-0002-4526-6772 0000-0002-4039-5794 0000-0003-2818-5089 0000-0003-1713-3056 0000-0002-4744-6347 0000-0002-2596-4282 |
OpenAccessLink | https://www.proquest.com/docview/3111429492?pq-origsite=%requestingapplication% |
PMID | 39319780 |
PQID | 3111429492 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d48411453a434048a41f9bcc8eba52b3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424097 proquest_miscellaneous_3109429341 proquest_journals_3111429492 pubmed_primary_39319780 crossref_citationtrail_10_7554_eLife_91849 crossref_primary_10_7554_eLife_91849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-25 |
PublicationDateYYYYMMDD | 2024-09-25 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2024 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Perofsky (bib136) 2024 Ulmer (bib181) 1998; 72 Webster (bib190) 1992; 56 Skowronski (bib163) 2014; 210 Hadfield (bib67) 2018; 34 Sridhar (bib171) 2013; 19 Steinhoff (bib173) 1993; 31 Axelsen (bib4) 2014; 111 Skowronski (bib165) 2017; 215 Couch (bib34) 2013; 207 Dhanasekaran (bib41) 2022; 13 Shih (bib153) 2007; 104 Qi (bib139) 2021; 224 Margine (bib115) 2013; 87 Wu (bib199) 2010; 6 National Health Interview Survey (bib125) 2008 Lu (bib113) 2019; 57 Eichelberger (bib43) 2018; 53 Ward (bib187) 2016 Janjua (bib83) 2012; 205 Koelle (bib95) 2015; 4 Shannon (bib152) 1948; 27 van Doorn (bib183) 2017; 35 Flannery (bib49) 2016; 214 Krammer (bib97) 2018; 9 Tempia (bib177) 2021; 26 Chen (bib30) 2018; 173 Flannery (bib50) 2019; 68 Sandbulte (bib145) 2011; 108 Ward (bib186) 2015 Hensley (bib72) 2014; 8 Gong (bib61) 2013; 2 Webster (bib188) 1980; 104 Dalziel (bib39) 2018; 362 Lee (bib106) 2018; 14 Public Health Agency of Canada (bib138) 2005; 31 Weinberger (bib191) 2012; 176 Yang (bib202) 2020; 16 Johansson (bib85) 2009; 6 Schulman (bib148) 1969; 63 Skowronski (bib166) 2017; 22 Muggeo (bib120) 2003; 22 Li (bib110) 2013; 210 Baker (bib5) 2020; 117 Liebhold (bib111) 2004; 35 Couch (bib33) 1974; 129 Geoghegan (bib57) 2018; 14 Charu (bib28) 2017; 13 Lee (bib107) 2019; 8 Bedford (bib7) 2011; 11 Fox (bib52) 2017; 13 Du (bib42) 2017; 9 Neher (bib128) 2016; 113 Huddleston (bib78) 2020; 9 R Development Core Team (bib141) 2023 Bedford (bib9) 2014; 3 Skowronski (bib159) 2009; 199 Gostic (bib63) 2020; 16 Boni (bib17) 2004; 65 Bedford (bib6) 2010; 6 Krammer (bib99) 2023 Murphy (bib122) 1972; 286 Garten (bib55) 2009; 325 Petrova (bib137) 2018; 16 Simonsen (bib155) 1999; 17 Suzuki (bib176) 2008; 427 Bhatt (bib14) 2023; 186 Grebe (bib64) 2008; 10 Viboud (bib185) 2006; 312 Kilbourne (bib89) 1990; 87 Luksza (bib114) 2014; 507 Greene (bib65) 2006; 163 Smith (bib168) 2004; 305 Cowling (bib38) 2020; 5 Altmann (bib3) 2010; 26 Olsen (bib132) 2020; 20 Ohmit (bib131) 2014; 58 Sridhar (bib172) 2016; 7 Cobey (bib31) 2017; 22 Gostic (bib62) 2019; 15 Ali (bib1) 2022; 10 Nachbagauer (bib124) 2016; 7 Zhao (bib204) 2019; 232 Sax (bib146) 2013; 5 Bedford (bib10) 2015; 523 Zimmerman (bib205) 2016; 63 Miller (bib118) 2013; 5 Bridges (bib19) 2000; 284 Sonoguchi (bib170) 1985; 151 World Health Organization (bib197) 2023 Hothorn (bib76) 2006; 7 Nguyen (bib130) 2015; 32 Webster (bib189) 1982; 296 Cori (bib32) 2013; 178 Katoh (bib86) 2002; 30 Huang (bib77) 2021; 12 Jang (bib82) 2021; 18 Kawai (bib87) 2003; 21 Bhatt (bib13) 2011; 28 Centers for Disease Control and Prevention (CDC) (bib23) 2004; 53 Monto (bib119) 2015; 212 Gill (bib59) 1977; 2 Wilson (bib193) 1990; 8 Skowronski (bib164) 2016; 63 Kramer (bib96) 2019; 15 Wraith (bib198) 2022; 13 Koelle (bib93) 2006; 314 Schulman (bib147) 1968; 2 Gerdil (bib58) 2003; 21 Simonsen (bib156) 2012; 206 Skowronski (bib158) 2007; 25 Wolf (bib195) 2006; 1 Kilbourne (bib88) 1976; 134 Huddleston (bib80) 2024 Lester (bib109) 2003; 24 Ferguson (bib46) 2005; 437 Cowling (bib36) 2010; 51 Terajima (bib178) 2013; 10 Treanor (bib180) 2012; 55 Nelson (bib129) 2007; 8 Hoffman (bib74) 2014; 15 Hansen (bib68) 2022; 5 Biggerstaff (bib15) 2014; 14 Lu (bib112) 2013; 178 Belongia (bib11) 2011; 29 Huddleston (bib79) 2021; 6 Debeer (bib40) 2020; 21 Goldstein (bib60) 2011; 8 Shaman (bib151) 2010; 8 Hope-Simpson (bib75) 1971; 3 Koelle (bib94) 2009; 1 Chao (bib27) 2014; 84 Brett (bib18) 2005; 339 Lessler (bib108) 2009; 9 Castilla (bib22) 2016; 34 Kryazhimskiy (bib100) 2011; 7 Olsen (bib133) 2021; 70 Cowling (bib35) 2009; 20 Carpenter (bib21) 2017; 76 Skowronski (bib162) 2014; 9 Altman (bib2) 2015; 4 Sagulenko (bib144) 2018; 4 Bush (bib20) 1999; 286 Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (bib26) 2023 Skowronski (bib167) 2022; 225 Biggerstaff (bib16) 2014; 210 Gaglani (bib54) 2016; 213 Shu (bib154) 2017; 22 Benjamini (bib12) 1995; 57 Lam (bib104) 2020; 11 Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (bib25) 2023 Fiore (bib48) 2009; 58 Gatti (bib56) 2022; 12 Strobl (bib174) 2007; 8 Koel (bib92) 2013; 342 Bedford (bib8) 2012; 10 Ranjeva (bib140) 2019; 10 Yan (bib201) 2019; 8 Muggeo (bib121) 2008; 8 Skowronski (bib160) 2010; 7 Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (bib24) 2019 Kuhn (bib102) 2013 Torrence (bib179) 1998; 79 Pebody (bib134) 2017; 22 Johansson (bib84) 1993; 11 Neher (bib127) 2014; 3 Friedman (bib53) 2010; 33 Ferrari (bib47) 2004; 31 Jackson (bib81) 2017; 377 Henry (bib71) 2019; 25 Strobl (bib175) 2008; 9 Chattopadhyay (bib29) 2018; 7 Grenfell (bib66) 2001; 414 Scott (bib149) 2021 Cowling (bib37) 2014; 59 Krammer (bib98) 2019; 19 Ndifon (bib126) 2009; 27 Memoli (bib117) 2016; 7 Ferguson (bib45) 2003; 422 Simpson (bib157) 2015; 20 Kissling (bib91) 2013; 18 Skowronski (bib161) 2012; 55 Zost (bib206) 2017; 114 Kirkpatrick (bib90) 2018; 8 Epstein (bib44) 2006; 193 Rolfes (bib142) 2019; 69 Russell (bib143) 2018; 12 Smith (bib169) 2009; 459 Xie (bib200) 2015; 5 Myers (bib123) 2013; 87 Pei (bib135) 2018; 115 Kuhn (bib101) 2008; 28 Viboud (bib184) 2004; 10 Kuhn (bib103) 2019 Wiley (bib192) 1981; 289 Hill (bib73) 1973; 54 Laurie (bib105) 2015; 212 He (bib70) 2015; 5 Flannery (bib51) 2020; 221 Valenciano (bib182) 2018; 12 Shaman (bib150) 2009; 106 Wolf (bib196) 2010; 2 Zhang (bib203) 2019; 202 Hay (bib69) 2001; 356 McLean (bib116) 2014; 59 Wohlbold (bib194) 2015; 6 37873362 - medRxiv. 2024 May 22:2023.10.02.23296453. doi: 10.1101/2023.10.02.23296453. |
References_xml | – volume: 9 year: 2017 ident: bib42 article-title: Evolution-informed forecasting of seasonal influenza A (H3N2) publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.aan5325 – volume: 214 start-page: 1010 year: 2016 ident: bib49 article-title: Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014-2015 publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiw181 – volume: 8 year: 2019 ident: bib201 article-title: Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens publication-title: eLife doi: 10.7554/eLife.44205 – year: 2023 ident: bib26 article-title: U.S. influenza surveillance: purpose and methods – volume: 5 year: 2015 ident: bib70 article-title: Global spatio-temporal patterns of influenza in the post-pandemic Era publication-title: Scientific Reports doi: 10.1038/srep11013 – volume: 114 start-page: 12578 year: 2017 ident: bib206 article-title: Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains publication-title: PNAS doi: 10.1073/pnas.1712377114 – volume: 19 start-page: 1305 year: 2013 ident: bib171 article-title: Cellular immune correlates of protection against symptomatic pandemic influenza publication-title: Nature Medicine doi: 10.1038/nm.3350 – volume: 1 year: 2006 ident: bib195 article-title: Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus publication-title: Biology Direct doi: 10.1186/1745-6150-1-34 – volume: 206 start-page: 625 year: 2012 ident: bib156 article-title: The art of modeling the mortality impact of winter-seasonal pathogens publication-title: Journal of Infectious Diseases doi: 10.1093/infdis/jis419 – volume: 57 start-page: 458 year: 2019 ident: bib113 article-title: Seasonal influenza vaccination coverage trends among adult populations, U.S., 2010-2016 publication-title: American Journal of Preventive Medicine doi: 10.1016/j.amepre.2019.04.007 – volume: 27 start-page: 2447 year: 2009 ident: bib126 article-title: On the use of hemagglutination-inhibition for influenza surveillance: surveillance data are predictive of influenza vaccine effectiveness publication-title: Vaccine doi: 10.1016/j.vaccine.2009.02.047 – volume: 69 start-page: 1845 year: 2019 ident: bib142 article-title: Effects of influenza vaccination in the united states during the 2017–2018 influenza season publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciz075 – volume: 63 start-page: 1564 year: 2016 ident: bib205 article-title: 2014-2015 influenza vaccine effectiveness in the United States by vaccine type publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciw635 – volume: 25 start-page: 357 year: 2019 ident: bib71 article-title: Influenza virus vaccination elicits poorly adapted b cell responses in elderly individuals publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2019.01.002 – volume: 7 year: 2011 ident: bib100 article-title: Prevalence of epistasis in the evolution of influenza A surface proteins publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1001301 – volume: 221 start-page: 8 year: 2020 ident: bib51 article-title: Spread of antigenically drifted influenza A(H3N2) viruses and vaccine effectiveness in the united states during the 2018-2019 Season publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiz543 – volume: 7 year: 2016 ident: bib172 article-title: Heterosubtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines publication-title: Frontiers in Immunology doi: 10.3389/fimmu.2016.00195 – volume: 9 year: 2018 ident: bib97 article-title: NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? publication-title: mBio doi: 10.1128/mBio.02332-17 – volume: 20 start-page: 344 year: 2009 ident: bib35 article-title: Estimation of the serial interval of influenza publication-title: Epidemiology doi: 10.1097/EDE.0b013e31819d1092 – volume: 422 start-page: 428 year: 2003 ident: bib45 article-title: Ecological and immunological determinants of influenza evolution publication-title: Nature doi: 10.1038/nature01509 – volume: 20 start-page: 3681 year: 2020 ident: bib132 article-title: Decreased influenza activity during the COVID-19 pandemic-United States publication-title: American Journal of Transplantation doi: 10.1111/ajt.16381 – volume: 8 start-page: 20 year: 2008 ident: bib121 article-title: Segmented: an R package to fit regression models with broken-line relationships publication-title: R News – volume: 27 start-page: 379 year: 1948 ident: bib152 article-title: A mathematical theory of communication publication-title: Bell System Technical Journal doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 414 start-page: 716 year: 2001 ident: bib66 article-title: Travelling waves and spatial hierarchies in measles epidemics publication-title: Nature doi: 10.1038/414716a – volume: 210 start-page: 1493 year: 2013 ident: bib110 article-title: Immune history shapes specificity of pandemic H1N1 influenza antibody responses publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.20130212 – volume: 2 year: 2013 ident: bib61 article-title: Stability-mediated epistasis constrains the evolution of an influenza protein publication-title: eLife doi: 10.7554/eLife.00631 – volume: 14 year: 2014 ident: bib15 article-title: Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature publication-title: BMC Infectious Diseases doi: 10.1186/1471-2334-14-480 – volume: 129 start-page: 411 year: 1974 ident: bib33 article-title: Induction of partial immunity to influenza by a neuraminidase-specific vaccine publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/129.4.411 – volume: 15 start-page: 1593 year: 2014 ident: bib74 article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo publication-title: Journal of Machine Learning Research: JMLR – volume-title: arXiv year: 2021 ident: bib149 article-title: Epidemia: an R package for semi-mechanistic bayesian modelling of infectious diseases using point processes doi: 10.48550/arXiv.2110.12461 – volume: 111 start-page: 9538 year: 2014 ident: bib4 article-title: Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers publication-title: PNAS doi: 10.1073/pnas.1321656111 – volume: 22 year: 2017 ident: bib154 article-title: GISAID: Global initiative on sharing all influenza data - from vision to reality publication-title: Euro Surveillance doi: 10.2807/1560-7917.ES.2017.22.13.30494 – volume: 2 year: 2010 ident: bib196 article-title: Projection of seasonal influenza severity from sequence and serological data publication-title: PLOS Currents doi: 10.1371/currents.RRN1200 – volume: 151 start-page: 81 year: 1985 ident: bib170 article-title: Cross-subtype protection in humans during sequential, overlapping, and/or concurrent epidemics caused by H3N2 and H1N1 influenza viruses publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/151.1.81 – volume: 356 start-page: 1861 year: 2001 ident: bib69 article-title: The evolution of human influenza viruses publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences doi: 10.1098/rstb.2001.0999 – volume-title: Github year: 2023 ident: bib99 article-title: Unpublished influenza N2 epitope sites – volume: 6 year: 2010 ident: bib199 article-title: Correlation of influenza virus excess mortality with antigenic variation: application to rapid estimation of influenza mortality burden publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000882 – volume: 176 start-page: 649 year: 2012 ident: bib191 article-title: Influenza epidemics in Iceland over 9 decades: changes in timing and synchrony with the United States and Europe publication-title: American Journal of Epidemiology doi: 10.1093/aje/kws140 – volume: 79 start-page: 61 year: 1998 ident: bib179 article-title: A practical guide to wavelet analysis publication-title: Bulletin of the American Meteorological Society doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – year: 2023 ident: bib141 article-title: R: A language and environment for statistical computing – volume: 459 start-page: 1122 year: 2009 ident: bib169 article-title: Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic publication-title: Nature doi: 10.1038/nature08182 – volume: 8 year: 2019 ident: bib107 article-title: Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin publication-title: eLife doi: 10.7554/eLife.49324 – volume: 12 start-page: 567 year: 2018 ident: bib182 article-title: Exploring the effect of previous inactivated influenza vaccination on seasonal influenza vaccine effectiveness against medically attended influenza: Results of the European I-MOVE multicentre test-negative case-control study, 2011/2012-2016/2017 publication-title: Influenza and Other Respiratory Viruses doi: 10.1111/irv.12562 – volume: 16 year: 2020 ident: bib202 article-title: Dynamic interactions of influenza viruses in Hong Kong during 1998-2018 publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1007989 – volume: 55 start-page: 332 year: 2012 ident: bib161 article-title: A sentinel platform to evaluate influenza vaccine effectiveness and new variant circulation, Canada 2010-2011 season publication-title: Clinical Infectious Diseases doi: 10.1093/cid/cis431 – volume: 11 year: 2011 ident: bib7 article-title: Strength and tempo of selection revealed in viral gene genealogies publication-title: BMC Evolutionary Biology doi: 10.1186/1471-2148-11-220 – volume: 15 year: 2019 ident: bib62 article-title: Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics publication-title: PLOS Pathogens doi: 10.1371/journal.ppat.1008109 – year: 2019 ident: bib24 article-title: Flu Vaccination Coverage, United States, 2018–19 Influenza Season – volume: 178 start-page: 1478 year: 2013 ident: bib112 article-title: Seasonal influenza vaccination coverage among adult populations in the United States, 2005-2011 publication-title: American Journal of Epidemiology doi: 10.1093/aje/kwt158 – volume: 2 start-page: 761 year: 1977 ident: bib59 article-title: Naturally acquired immunity to influenza type A: A further prospective study publication-title: The Medical Journal of Australia doi: 10.5694/j.1326-5377.1977.tb99276.x – volume: 21 year: 2020 ident: bib40 article-title: Conditional permutation importance revisited publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-03622-2 – volume-title: Software Heritage year: 2024 ident: bib80 article-title: Perofsky-ili-antigenicity – volume: 34 start-page: 1350 year: 2016 ident: bib22 article-title: Effectiveness of subunit influenza vaccination in the 2014-2015 season and residual effect of split vaccination in previous seasons publication-title: Vaccine doi: 10.1016/j.vaccine.2016.01.054 – volume: 2 start-page: 778 year: 1968 ident: bib147 article-title: Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice publication-title: Journal of Virology doi: 10.1128/JVI.2.8.778-786.1968 – volume: 7 year: 2016 ident: bib117 article-title: Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model publication-title: mBio doi: 10.1128/mBio.00417-16 – volume: 13 year: 2017 ident: bib52 article-title: Seasonality in risk of pandemic influenza emergence publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005749 – volume: 6 year: 2021 ident: bib79 article-title: Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens publication-title: Journal of Open Source Software doi: 10.21105/joss.02906 – volume-title: Early Release of Selected Estimates Based on Data From the 2015 National Health Interview Survey year: 2016 ident: bib187 – volume: 4 year: 2015 ident: bib95 article-title: The effects of A deleterious mutation load on patterns of influenza A/H3N2’s antigenic evolution in humans publication-title: eLife doi: 10.7554/eLife.07361 – year: 2008 ident: bib125 article-title: TABLE: Self-reported influenza vaccination coverage trends 1989-2008 among adults by age group, risk group, race/ethnicity, health-care worker status, and pregnancy status – volume: 87 start-page: 4728 year: 2013 ident: bib115 article-title: H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice publication-title: Journal of Virology doi: 10.1128/JVI.03509-12 – volume: 59 start-page: 1375 year: 2014 ident: bib116 article-title: Impact of repeated vaccination on vaccine effectiveness against influenza A(H3N2) and B during 8 seasons publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciu680 – volume: 13 year: 2022 ident: bib198 article-title: Homotypic protection against influenza in a pediatric cohort in Managua, Nicaragua publication-title: Nature Communications doi: 10.1038/s41467-022-28858-9 – volume: 108 start-page: 20748 year: 2011 ident: bib145 article-title: Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses publication-title: PNAS doi: 10.1073/pnas.1113801108 – volume: 58 start-page: 1 year: 2009 ident: bib48 article-title: Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009 publication-title: MMWR. Recommendations and Reports – volume: 286 start-page: 1329 year: 1972 ident: bib122 article-title: Association of serum anti-neuraminidase antibody with resistance to influenza in man publication-title: The New England Journal of Medicine doi: 10.1056/NEJM197206222862502 – volume: 87 start-page: 786 year: 1990 ident: bib89 article-title: Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins publication-title: PNAS doi: 10.1073/pnas.87.2.786 – volume: 104 start-page: 139 year: 1980 ident: bib188 article-title: Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance publication-title: Virology doi: 10.1016/0042-6822(80)90372-4 – volume: 53 start-page: 38 year: 2018 ident: bib43 article-title: Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready for picking to improve vaccine effectiveness publication-title: Current Opinion in Immunology doi: 10.1016/j.coi.2018.03.025 – volume: 210 start-page: 535 year: 2014 ident: bib16 article-title: Influenza-like illness, the time to seek healthcare, and influenza antiviral receipt during the 2010-2011 influenza season-United States publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiu224 – volume: 10 start-page: 1024 year: 2008 ident: bib64 article-title: Heterosubtypic immunity to influenza A virus: where do we stand? publication-title: Microbes and Infection doi: 10.1016/j.micinf.2008.07.002 – volume: 84 start-page: 45 year: 2014 ident: bib27 article-title: Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies publication-title: Ecological Monographs doi: 10.1890/13-0133.1 – volume: 24 start-page: 839 year: 2003 ident: bib109 article-title: Use of, effectiveness of, and attitudes regarding influenza vaccine among house staff publication-title: Infection Control & Hospital Epidemiology doi: 10.1086/502146 – volume: 70 start-page: 1013 year: 2021 ident: bib133 article-title: Changes in influenza and other respiratory virus activity during the COVID-19 pandemic - United States, 2020-2021 publication-title: MMWR. Morbidity and Mortality Weekly Report doi: 10.15585/mmwr.mm7029a1 – volume: 72 start-page: 5648 year: 1998 ident: bib181 article-title: Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA publication-title: Journal of Virology doi: 10.1128/JVI.72.7.5648-5653.1998 – volume: 59 start-page: 517 year: 2014 ident: bib37 article-title: Incidence of influenza virus infections in children in Hong Kong in a 3-year randomized placebo-controlled vaccine study, 2009-2012 publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciu356 – volume: 286 start-page: 1921 year: 1999 ident: bib20 article-title: Predicting the evolution of human influenza A publication-title: Science doi: 10.1126/science.286.5446.1921 – volume: 5 start-page: e279 year: 2020 ident: bib38 article-title: Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study publication-title: The Lancet. Public Health doi: 10.1016/S2468-2667(20)30090-6 – volume: 312 start-page: 447 year: 2006 ident: bib185 article-title: Synchrony, waves, and spatial hierarchies in the spread of influenza publication-title: Science doi: 10.1126/science.1125237 – volume: 28 start-page: 1 year: 2008 ident: bib101 article-title: Building predictive models in R using the caret package publication-title: Journal of Statistical Software doi: 10.18637/jss.v028.i05 – volume: 55 start-page: 951 year: 2012 ident: bib180 article-title: Effectiveness of seasonal influenza vaccines in the United States during a season with circulation of all three vaccine strains publication-title: Clinical Infectious Diseases doi: 10.1093/cid/cis574 – volume: 377 start-page: 534 year: 2017 ident: bib81 article-title: Influenza vaccine effectiveness in the United States during the 2015-2016 Season publication-title: The New England Journal of Medicine doi: 10.1056/NEJMoa1700153 – volume: 5 year: 2015 ident: bib200 article-title: H3N2 Mismatch of 2014-15 northern hemisphere influenza vaccines and head-to-head comparison between human and ferret antisera derived antigenic maps publication-title: Scientific Reports doi: 10.1038/srep15279 – volume: 31 start-page: 799 year: 2004 ident: bib47 article-title: Beta regression for modelling rates and proportions publication-title: Journal of Applied Statistics doi: 10.1080/0266476042000214501 – volume: 199 start-page: 168 year: 2009 ident: bib159 article-title: Component-specific effectiveness of trivalent influenza vaccine as monitored through a sentinel surveillance network in Canada, 2006-2007 publication-title: The Journal of Infectious Diseases doi: 10.1086/595862 – volume: 305 start-page: 371 year: 2004 ident: bib168 article-title: Mapping the antigenic and genetic evolution of influenza virus publication-title: Science doi: 10.1126/science.1097211 – volume: 178 start-page: 1505 year: 2013 ident: bib32 article-title: A new framework and software to estimate time-varying reproduction numbers during epidemics publication-title: American Journal of Epidemiology doi: 10.1093/aje/kwt133 – volume: 10 start-page: 32 year: 2004 ident: bib184 article-title: Influenza epidemics in the United States, France, and Australia, 1972-1997 publication-title: Emerging Infectious Diseases doi: 10.3201/eid1001.020705 – volume: 13 year: 2022 ident: bib41 article-title: Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination publication-title: Nature Communications doi: 10.1038/s41467-022-29402-5 – volume: 19 start-page: 383 year: 2019 ident: bib98 article-title: The human antibody response to influenza A virus infection and vaccination publication-title: Nature Reviews. Immunology doi: 10.1038/s41577-019-0143-6 – volume: 8 start-page: 196 year: 2007 ident: bib129 article-title: The evolution of epidemic influenza publication-title: Nature Reviews. Genetics doi: 10.1038/nrg2053 – volume: 212 start-page: 1701 year: 2015 ident: bib105 article-title: Interval between infections and viral hierarchy are determinants of viral interference following influenza virus infection in a ferret model publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiv260 – volume: 63 start-page: 21 year: 2016 ident: bib164 article-title: A perfect storm: Impact of genomic variation and serial vaccination on low influenza vaccine effectiveness during the 2014-2015 season publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciw176 – volume: 523 start-page: 217 year: 2015 ident: bib10 article-title: Global circulation patterns of seasonal influenza viruses vary with antigenic drift publication-title: Nature doi: 10.1038/nature14460 – volume: 18 year: 2021 ident: bib82 article-title: Factors associated with influenza vaccination uptake among U.S. adults: focus on nativity and race/ethnicity publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph18105349 – volume: 10 start-page: e1612 year: 2022 ident: bib1 article-title: Prediction of upcoming global infection burden of influenza seasons after relaxation of public health and social measures during the COVID-19 pandemic: a modelling study publication-title: The Lancet. Global Health doi: 10.1016/S2214-109X(22)00358-8 – volume: 8 start-page: 737 year: 1990 ident: bib193 article-title: Structural basis of immune recognition of influenza virus hemagglutinin publication-title: Annual Review of Immunology doi: 10.1146/annurev.iy.08.040190.003513 – volume: 11 start-page: 1037 year: 1993 ident: bib84 article-title: Infection-permissive immunization with influenza virus neuraminidase prevents weight loss in infected mice publication-title: Vaccine doi: 10.1016/0264-410x(93)90130-p – volume: 113 start-page: E1701 year: 2016 ident: bib128 article-title: Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses publication-title: PNAS doi: 10.1073/pnas.1525578113 – volume: 6 year: 2010 ident: bib6 article-title: Global migration dynamics underlie evolution and persistence of human influenza A (H3N2) publication-title: PLOS Pathogens doi: 10.1371/journal.ppat.1000918 – volume: 9 year: 2008 ident: bib175 article-title: Conditional variable importance for random forests publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-307 – volume: 4 year: 2018 ident: bib144 article-title: TreeTime: maximum-likelihood phylodynamic analysis publication-title: Virus Evolution doi: 10.1093/ve/vex042 – volume: 1 start-page: 129 year: 2009 ident: bib94 article-title: Understanding the dynamics of rapidly evolving pathogens through modeling the tempo of antigenic change: influenza as a case study publication-title: Epidemics doi: 10.1016/j.epidem.2009.05.003 – volume: 213 start-page: 1546 year: 2016 ident: bib54 article-title: Influenza vaccine effectiveness against 2009 pandemic influenza A(H1N1) virus differed by vaccine type during 2013-2014 in the United States publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiv577 – volume: 10 year: 2012 ident: bib8 article-title: Canalization of the evolutionary trajectory of the human influenza virus publication-title: BMC Biology doi: 10.1186/1741-7007-10-38 – volume: 289 start-page: 373 year: 1981 ident: bib192 article-title: Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation publication-title: Nature doi: 10.1038/289373a0 – volume: 29 start-page: 6558 year: 2011 ident: bib11 article-title: Influenza vaccine effectiveness in Wisconsin during the 2007-08 season: comparison of interim and final results publication-title: Vaccine doi: 10.1016/j.vaccine.2011.07.002 – volume: 437 start-page: 209 year: 2005 ident: bib46 article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia publication-title: Nature doi: 10.1038/nature04017 – volume: 34 start-page: 4121 year: 2018 ident: bib67 article-title: Nextstrain: real-time tracking of pathogen evolution publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty407 – volume: 362 start-page: 75 year: 2018 ident: bib39 article-title: Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities publication-title: Science doi: 10.1126/science.aat6030 – volume: 14 year: 2018 ident: bib57 article-title: Continental synchronicity of human influenza virus epidemics despite climatic variation publication-title: PLOS Pathogens doi: 10.1371/journal.ppat.1006780 – volume-title: Applied Predictive Modeling year: 2013 ident: bib102 doi: 10.1007/978-1-4614-6849-3 – volume: 296 start-page: 115 year: 1982 ident: bib189 article-title: Molecular mechanisms of variation in influenza viruses publication-title: Nature doi: 10.1038/296115a0 – volume: 22 start-page: 105 year: 2017 ident: bib31 article-title: Immune history and influenza virus susceptibility publication-title: Current Opinion in Virology doi: 10.1016/j.coviro.2016.12.004 – volume: 9 start-page: 291 year: 2009 ident: bib108 article-title: Incubation periods of acute respiratory viral infections: a systematic review publication-title: The Lancet. Infectious Diseases doi: 10.1016/S1473-3099(09)70069-6 – volume: 35 start-page: 2831 year: 2017 ident: bib183 article-title: Influenza vaccine effectiveness estimates in the Dutch population from 2003 to 2014: the test-negative design case-control study with different control groups publication-title: Vaccine doi: 10.1016/j.vaccine.2017.04.012 – volume: 6 year: 2015 ident: bib194 article-title: Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice publication-title: mBio doi: 10.1128/mBio.02556-14 – volume: 13 year: 2017 ident: bib28 article-title: Human mobility and the spatial transmission of influenza in the United States publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1005382 – volume-title: Software Heritage year: 2024 ident: bib136 article-title: H3N2 antigenic epi – volume: 30 start-page: 3059 year: 2002 ident: bib86 article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Research doi: 10.1093/nar/gkf436 – volume: 21 start-page: 4507 year: 2003 ident: bib87 article-title: A prospective, Internet-based study of the effectiveness and safety of influenza vaccination in the 2001-2002 influenza season publication-title: Vaccine doi: 10.1016/s0264-410x(03)00508-5 – volume: 106 start-page: 3243 year: 2009 ident: bib150 article-title: Absolute humidity modulates influenza survival, transmission, and seasonality publication-title: PNAS doi: 10.1073/pnas.0806852106 – volume: 22 year: 2017 ident: bib166 article-title: Interim estimates of 2016/17 vaccine effectiveness against influenza A(H3N2), Canada, January 2017 publication-title: Euro Surveillance doi: 10.2807/1560-7917.ES.2017.22.6.30460 – volume: 163 start-page: 316 year: 2006 ident: bib65 article-title: Patterns of influenza-associated mortality among US elderly by geographic region and virus subtype, 1968-1998 publication-title: American Journal of Epidemiology doi: 10.1093/aje/kwj040 – volume: 314 start-page: 1898 year: 2006 ident: bib93 article-title: Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans publication-title: Science doi: 10.1126/science.1132745 – volume: 8 year: 2007 ident: bib174 article-title: Bias in random forest variable importance measures: illustrations, sources and a solution publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – volume: 205 start-page: 1858 year: 2012 ident: bib83 article-title: Estimates of influenza vaccine effectiveness for 2007-2008 from Canada’s sentinel surveillance system: cross-protection against major and minor variants publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jis283 – volume: 22 start-page: 3055 year: 2003 ident: bib120 article-title: Estimating regression models with unknown break-points publication-title: Statistics in Medicine doi: 10.1002/sim.1545 – volume: 3 year: 2014 ident: bib127 article-title: Predicting evolution from the shape of genealogical trees publication-title: eLife doi: 10.7554/eLife.03568 – volume: 7 year: 2018 ident: bib29 article-title: Conjunction of factors triggering waves of seasonal influenza publication-title: eLife doi: 10.7554/eLife.30756 – year: 2023 ident: bib197 article-title: Global Influenza Programme: FluNet – volume: 507 start-page: 57 year: 2014 ident: bib114 article-title: A predictive fitness model for influenza publication-title: Nature doi: 10.1038/nature13087 – volume: 56 start-page: 152 year: 1992 ident: bib190 article-title: Evolution and ecology of influenza A viruses publication-title: Microbiological Reviews doi: 10.1128/mr.56.1.152-179.1992 – volume: 325 start-page: 197 year: 2009 ident: bib55 article-title: Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans publication-title: Science doi: 10.1126/science.1176225 – volume: 3 year: 1971 ident: bib75 article-title: Hong Kong influenza variant publication-title: British Medical Journal doi: 10.1136/bmj.3.5773.531-b – volume-title: Feature engineering and selection: a practical approach for predictive models year: 2019 ident: bib103 doi: 10.1201/9781315108230 – volume: 207 start-page: 974 year: 2013 ident: bib34 article-title: Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jis935 – volume: 31 start-page: 836 year: 1993 ident: bib173 article-title: Effect of heterosubtypic immunity on infection with attenuated influenza A virus vaccines in young children publication-title: Journal of Clinical Microbiology doi: 10.1128/jcm.31.4.836-838.1993 – volume: 284 start-page: 1655 year: 2000 ident: bib19 article-title: Effectiveness and cost-benefit of influenza vaccination of healthy working adults: A randomized controlled trial publication-title: JAMA doi: 10.1001/jama.284.13.1655 – volume: 35 start-page: 467 year: 2004 ident: bib111 article-title: Spatial synchrony in population dynamics publication-title: Annual Review of Ecology, Evolution, and Systematics doi: 10.1146/annurev.ecolsys.34.011802.132516 – volume: 16 start-page: 47 year: 2018 ident: bib137 article-title: The evolution of seasonal influenza viruses publication-title: Nature Reviews. Microbiology doi: 10.1038/nrmicro.2017.118 – volume-title: Early Release of Selected Estimates Based on Data From the 2014 National Health Interview Survey year: 2015 ident: bib186 – volume: 173 start-page: 417 year: 2018 ident: bib30 article-title: Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies publication-title: Cell doi: 10.1016/j.cell.2018.03.030 – volume: 210 start-page: 126 year: 2014 ident: bib163 article-title: Influenza A/subtype and B/lineage effectiveness estimates for the 2011-2012 trivalent vaccine: cross-season and cross-lineage protection with unchanged vaccine publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiu048 – volume: 342 start-page: 976 year: 2013 ident: bib92 article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution publication-title: Science doi: 10.1126/science.1244730 – volume: 63 start-page: 326 year: 1969 ident: bib148 article-title: Independent variation in nature of hemagglutinin and neuraminidase antigens of influenza virus: distinctiveness of hemagglutinin antigen of Hong Kong-68 virus publication-title: PNAS doi: 10.1073/pnas.63.2.326 – volume: 32 start-page: 268 year: 2015 ident: bib130 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msu300 – volume: 224 start-page: 1500 year: 2021 ident: bib139 article-title: Quantifying the impact of COVID-19 nonpharmaceutical interventions on influenza transmission in the United States publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiab485 – volume: 12 year: 2022 ident: bib56 article-title: Cross-reactive immunity potentially drives global oscillation and opposed alternation patterns of seasonal influenza A viruses publication-title: Scientific Reports doi: 10.1038/s41598-022-08233-w – volume: 427 start-page: 111 year: 2008 ident: bib176 article-title: Positive selection operates continuously on hemagglutinin during evolution of H3N2 human influenza A virus publication-title: Gene doi: 10.1016/j.gene.2008.09.012 – volume: 202 start-page: 335 year: 2019 ident: bib203 article-title: Original antigenic sin: how first exposure shapes lifelong anti-influenza virus immune responses publication-title: Journal of Immunology doi: 10.4049/jimmunol.1801149 – volume: 4 year: 2015 ident: bib2 article-title: Lamprey VLRB response to influenza virus supports universal rules of immunogenicity and antigenicity publication-title: eLife doi: 10.7554/eLife.07467 – volume: 3 year: 2014 ident: bib9 article-title: Integrating influenza antigenic dynamics with molecular evolution publication-title: eLife doi: 10.7554/eLife.01914 – volume: 33 start-page: 1 year: 2010 ident: bib53 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software doi: 10.18637/jss.v033.i01 – volume: 7 start-page: 355 year: 2006 ident: bib76 article-title: Survival ensembles publication-title: Biostatistics doi: 10.1093/biostatistics/kxj011 – volume: 87 start-page: 11168 year: 2013 ident: bib123 article-title: Compensatory hemagglutinin mutations alter antigenic properties of influenza viruses publication-title: Journal of Virology doi: 10.1128/JVI.01414-13 – volume: 193 start-page: 49 year: 2006 ident: bib44 article-title: Prior H1N1 influenza infection and susceptibility of cleveland family study participants during the H2N2 pandemic of 1957: an experiment of nature publication-title: The Journal of Infectious Diseases doi: 10.1086/498980 – volume: 117 start-page: 30547 year: 2020 ident: bib5 article-title: The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections publication-title: PNAS doi: 10.1073/pnas.2013182117 – volume: 5 year: 2013 ident: bib146 article-title: Temporal disaggregation of time series publication-title: The R Journal doi: 10.32614/RJ-2013-028 – volume: 6 year: 2009 ident: bib85 article-title: Multiyear climate variability and dengue--El Niño southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis publication-title: PLOS Medicine doi: 10.1371/journal.pmed.1000168 – volume: 16 year: 2020 ident: bib63 article-title: Practical considerations for measuring the effective reproductive number, Rt publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1008409 – volume: 26 start-page: 1340 year: 2010 ident: bib3 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq134 – volume: 10 year: 2019 ident: bib140 article-title: Age-specific differences in the dynamics of protective immunity to influenza publication-title: Nature Communications doi: 10.1038/s41467-019-09652-6 – volume: 7 year: 2010 ident: bib160 article-title: Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada publication-title: PLOS Medicine doi: 10.1371/journal.pmed.1000258 – volume: 339 start-page: 273 year: 2005 ident: bib18 article-title: Immunization against influenza A virus: comparison of conventional inactivated, live-attenuated and recombinant baculovirus produced purified hemagglutinin and neuraminidase vaccines in A murine model system publication-title: Virology doi: 10.1016/j.virol.2005.06.006 – volume: 8 start-page: 85 year: 2014 ident: bib72 article-title: Challenges of selecting seasonal influenza vaccine strains for humans with diverse pre-exposure histories publication-title: Current Opinion in Virology doi: 10.1016/j.coviro.2014.07.007 – volume: 68 start-page: 1798 year: 2019 ident: bib50 article-title: Influenza vaccine effectiveness in the united states during the 2016-2017 season publication-title: Clinical Infectious Diseases doi: 10.1093/cid/ciy775 – volume: 134 start-page: 384 year: 1976 ident: bib88 article-title: Comparative efficacy of neuraminidase-specific and conventional influenza virus vaccines in induction of antibody to neuraminidase in humans publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/134.4.384 – volume: 15 year: 2019 ident: bib96 article-title: Development and validation of influenza forecasting for 64 temperate and tropical countries publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006742 – volume: 18 year: 2013 ident: bib91 article-title: Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe: results from the I-MOVE multicentre case-control study publication-title: Euro Surveillance doi: 10.2807/ese.18.05.20390-en – volume: 57 start-page: 289 year: 1995 ident: bib12 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 54 start-page: 427 year: 1973 ident: bib73 article-title: Diversity and evenness: a unifying notation and its consequences publication-title: Ecology doi: 10.2307/1934352 – volume: 76 start-page: 1 year: 2017 ident: bib21 article-title: Stan: a probabilistic programming language publication-title: Journal of Statistical Software doi: 10.18637/jss.v076.i01 – volume: 12 year: 2021 ident: bib77 article-title: Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand publication-title: Nature Communications doi: 10.1038/s41467-021-21157-9 – volume: 212 start-page: 1191 year: 2015 ident: bib119 article-title: Antibody to influenza virus neuraminidase: An independent correlate of protection publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiv195 – volume: 21 start-page: 1776 year: 2003 ident: bib58 article-title: The annual production cycle for influenza vaccine publication-title: Vaccine doi: 10.1016/s0264-410x(03)00071-9 – volume: 5 year: 2022 ident: bib68 article-title: Mortality associated with influenza and respiratory syncytial virus in the US, 1999-2018 publication-title: JAMA Network Open doi: 10.1001/jamanetworkopen.2022.0527 – volume: 26 year: 2021 ident: bib177 article-title: Decline of influenza and respiratory syncytial virus detection in facility-based surveillance during the COVID-19 pandemic, South Africa, January to October 2020 publication-title: Euro Surveillance doi: 10.2807/1560-7917.ES.2021.26.29.2001600 – year: 2023 ident: bib25 article-title: FluView Interactive – volume: 8 year: 2010 ident: bib151 article-title: Absolute humidity and the seasonal onset of influenza in the continental United States publication-title: PLOS Biology doi: 10.1371/journal.pbio.1000316 – volume: 12 start-page: 336 year: 2018 ident: bib143 article-title: Comparison of outpatient medically attended and community-level influenza-like illness-New York City, 2013-2015 publication-title: Influenza and Other Respiratory Viruses doi: 10.1111/irv.12540 – volume: 31 start-page: 181 year: 2005 ident: bib138 article-title: Effectiveness of vaccine against medical consultation due to laboratory-confirmed influenza: results from a sentinel physician pilot project in British Columbia, 2004-2005 publication-title: Canada Communicable Disease Report – volume: 7 year: 2016 ident: bib124 article-title: Age dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humans publication-title: mBio doi: 10.1128/mBio.01996-15 – volume: 22 year: 2017 ident: bib134 article-title: End-of-season influenza vaccine effectiveness in adults and children, United Kingdom, 2016/17 publication-title: Euro Surveillance doi: 10.2807/1560-7917.ES.2017.22.44.17-00306 – volume: 28 start-page: 2443 year: 2011 ident: bib13 article-title: The genomic rate of molecular adaptation of the human influenza A virus publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msr044 – volume: 17 start-page: S3 year: 1999 ident: bib155 article-title: The global impact of influenza on morbidity and mortality publication-title: Vaccine doi: 10.1016/S0264-410X(99)00099-7 – volume: 186 start-page: 601 year: 2023 ident: bib14 article-title: Semi-mechanistic Bayesian modelling of COVID-19 with renewal processes publication-title: Journal of the Royal Statistical Society Series A doi: 10.1093/jrsssa/qnad030 – volume: 8 year: 2018 ident: bib90 article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain publication-title: Scientific Reports doi: 10.1038/s41598-018-28706-1 – volume: 20 year: 2015 ident: bib157 article-title: Trivalent inactivated seasonal influenza vaccine effectiveness for the prevention of laboratory-confirmed influenza in a Scottish population 2000 to 2009 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES2015.20.8.21043 – volume: 25 start-page: 2842 year: 2007 ident: bib158 article-title: Estimating vaccine effectiveness against laboratory-confirmed influenza using A sentinel physician network: results from the 2005-2006 season of dual A and B vaccine mismatch in Canada publication-title: Vaccine doi: 10.1016/j.vaccine.2006.10.002 – volume: 9 year: 2014 ident: bib162 article-title: Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses publication-title: PLOS ONE doi: 10.1371/journal.pone.0092153 – volume: 9 year: 2020 ident: bib78 article-title: Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution publication-title: eLife doi: 10.7554/eLife.60067 – volume: 14 year: 2018 ident: bib106 article-title: Deploying digital health data to optimize influenza surveillance at national and local scales publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1006020 – volume: 115 start-page: 2752 year: 2018 ident: bib135 article-title: Forecasting the spatial transmission of influenza in the United States publication-title: PNAS doi: 10.1073/pnas.1708856115 – volume: 10 year: 2013 ident: bib178 article-title: Cross-reactive human B cell and T cell epitopes between influenza A and B viruses publication-title: Virology Journal doi: 10.1186/1743-422X-10-244 – volume: 215 start-page: 1059 year: 2017 ident: bib165 article-title: Serial vaccination and the antigenic distance hypothesis: Effects on influenza vaccine effectiveness during A(H3N2) epidemics in Canada, 2010-2011 to 2014-2015 publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jix074 – volume: 11 year: 2020 ident: bib104 article-title: The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia publication-title: Nature Communications doi: 10.1038/s41467-020-16545-6 – volume: 53 start-page: 707 year: 2004 ident: bib23 article-title: Assessment of the effectiveness of the 2003-04 influenza vaccine among children and adults—Colorado, 2003 publication-title: MMWR. Morbidity and Mortality Weekly Report – volume: 58 start-page: 319 year: 2014 ident: bib131 article-title: Influenza vaccine effectiveness in the 2011-2012 season: protection against each circulating virus and the effect of prior vaccination on estimates publication-title: Clinical Infectious Diseases doi: 10.1093/cid/cit736 – volume: 65 start-page: 179 year: 2004 ident: bib17 article-title: Influenza drift and epidemic size: the race between generating and escaping immunity publication-title: Theoretical Population Biology doi: 10.1016/j.tpb.2003.10.002 – volume: 232 year: 2019 ident: bib204 article-title: Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.04.034 – volume: 5 year: 2013 ident: bib118 article-title: Neutralizing antibodies against previously encountered influenza virus strains increase over time: A longitudinal analysis publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.3006637 – volume: 104 start-page: 6283 year: 2007 ident: bib153 article-title: Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution publication-title: PNAS doi: 10.1073/pnas.0701396104 – volume: 51 start-page: 1370 year: 2010 ident: bib36 article-title: Protective efficacy of seasonal influenza vaccination against seasonal and pandemic influenza virus infection during 2009 in Hong Kong publication-title: Clinical Infectious Diseases doi: 10.1086/657311 – volume: 8 year: 2011 ident: bib60 article-title: Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: A statistical method publication-title: PLOS Medicine doi: 10.1371/journal.pmed.1001051 – volume: 225 start-page: 1387 year: 2022 ident: bib167 article-title: Influenza vaccine effectiveness by A(H3N2) phylogenetic subcluster and prior vaccination history: 2016-2017 and 2017-2018 epidemics in Canada publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiaa138 – reference: 37873362 - medRxiv. 2024 May 22:2023.10.02.23296453. doi: 10.1101/2023.10.02.23296453. |
SSID | ssj0000748819 |
Score | 2.460002 |
Snippet | Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adolescent Adult Antigenic drift Antigenic Drift and Shift - genetics Antigenic variation Antigens, Viral - genetics Antigens, Viral - immunology Child Child, Preschool Dominance Epidemics Epidemiology Epidemiology and Global Health Epitopes Evolution, Molecular Exo-a-sialidase Genetic distance H3N2 Hemagglutinin Glycoproteins, Influenza Virus - genetics Hemagglutinin Glycoproteins, Influenza Virus - immunology Hemagglutinins Humans Influenza A Influenza A Virus, H3N2 Subtype - genetics Influenza A Virus, H3N2 Subtype - immunology influenza virus Influenza, Human - epidemiology Influenza, Human - immunology Influenza, Human - virology Microbiology and Infectious Disease Middle Aged Neuraminidase - genetics Neuraminidase - immunology Pandemics Pest outbreaks Seasons United States - epidemiology Viruses Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23SVEhh7bgppJGlnzchoQlpDk1kEsxoxdZKE7Y9R767zOynGW3BHrpVRpjeTTSfCNrvmHsMHgdyXSaOkKrakiuqW3UunYYTXQ2NTLkBOcfF838Es6u9NVWqa98J6zQAxfFHQWwQJhdKwQFZG4IIrXOexsdaulGnk_yeVvB1LgHGzJM0ZaEPEMu8yieL1L82lJA0-64oJGp_yF4-fctyS23c_qMPZ3wIp-VcT5nj2L_gj0uFST_vGS_Zv2Q-TQXnoflIg0c-8BXa5dPVnmmglhO-Xx8dY3UNPs0VxfyM4-lMCw9VSrSr0iYExbkBYPygkFfscvTk5_H83qqmFB7MM1QQ0QdCYKl1qgEMRiFRgdEY5MOjRJBQwCvUUrrQHjhgsV8EBVzSXSNUb1me_1NH98y3qBAJUjXyQOkhNjknNlWS5OMSS5V7Mu9Ejs_0Ynnqha_Oworssa7UePdqPGKHW6EbwuLxsNi3_NsbEQy9fXYQAbRTQbR_csgKrZ_P5fdtB5XHX2JIM8LrazYx003raT8ewT7eLPOMhTqEvoBUbE3Zeo3I1EtbVXGfquY3TGKnaHu9vSL65GtO784k4q9-x8f9549kYSq8oUVqffZ3rBcxwNCRYP7MC6AOzR8DEo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXkGSmWkHgAplPgROye0rahWCHqi0l5Q5CddCWXbTfbAv2cm9gYWVVztiWKNx57PY883hBx7JwOYTl0G0fBSRFuXOkhZWhNUsDrWzGOC89eLen4pPi_kIgfc-vyscrsnjhu1XzmMkZ_wCrM-G9Gwj9c3JVaNwtvVXELjLrmH1GVo1WqhphgLuEcNHi-l5SlwnCfhyzKG9w0ca5odRzTy9d8GMv99K_mX8zl_SPYzaqSzNM0H5E7oHpH7qY7kr8fk-6wbkFVz6ahfL-NATedpv7EYX6VICLHOWX20vzLQNHsz5xfsLQ2pPCx8lerS9yBMARHShERpQqJPyOX5p29n8zLXTSidUPVQimBkACAWG8WjCF5xo6Q3Rukofc0rL4UXThrGtBWVq6zXBsNRAQujSxP4U7LXrbrwnNDaVAY0H5vohIjRmBozZxvJVFQq2liQd1slti6TimNti58tHC5Q4-2o8XbUeEGOJ-HrxKVxu9gpzsYkggTYY8Nq_aPN66n1QgswCMmN4AJ2ISNgkNY5HayRzPKCHG7nss2rsm__2FBBXk_dsJ7wksR0YbVBGTjwAgYSVUGepamfRsIb2LCU_lAQvWMUO0Pd7emWVyNnN_4YqcVe_H9cL8kDBqgJH6QweUj2hvUmvALUM9ij0bR_A01sBCg priority: 102 providerName: ProQuest |
Title | Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39319780 https://www.proquest.com/docview/3111429492 https://www.proquest.com/docview/3109429341 https://pubmed.ncbi.nlm.nih.gov/PMC11424097 https://doaj.org/article/d48411453a434048a41f9bcc8eba52b3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD70wmAvY-tu3rqgQR-2gbNaF8t-GmlpCWUNYyyQl2EkS1oDxdkcB9Z_vyPJCUvJQ1_tIywfHel8R7a-D-DE1MJi6OSp5SVLudN5WlghUq2stLpwOTX-gPP1JB9P-dVMzPZgLcbZO3C5s7TzelLT9nb498_dF5zwiF-HErPhZ_t17uywxFql3IdDTEnSSxlc9zg_LMkS4zSIfNBTEbhMZ_Gs3v32W9kpkPjvQp73f6D8LyNdPoUnPZQkozj2z2DPNkfwKIpL3j2Hn6Om81Sb85qYdu46ohpDlivtN12JZ4lo-6N-ZHmj8NLow5hN6Edio2Ystopi9Us0JggTSYSnJMLTFzC9vPhxPk57MYW05jLvUm6VsIjOXCmZ49ZIpqQwSsnCCZOzzAhueC0UpYXmWZ1pUyi_R2W9WrpQlr2Eg2bR2NdAcpUplmWudDXnzimV--O0paDSSem0S-DT2olV3TONe8GL2worDu_xKni8Ch5P4GRj_DsSbOw2O_OjsTHxrNjhwqL9VfWTrDK84FjfCaY447g0KY6d1HVdWK0E1SyB4_VYVutIq_BNMkzKvKQJvN_cxknmv5yoxi5W3garYARGPEvgVRz6TU9YiauYLE4TKLaCYqur23ea-U0g8vYP9nxjbx7w4LfwmCKe8r-qUHEMB127su8QD3V6APtyJgdweHYx-fZ9EHYVBiH-_wEwrQ4m |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASMVCZBCGz_i5IDQ8qi2dLunVtoLCnZs05VQtuxDaP8Uv5GZvGBRxa2nSMkksWbGM9_YnhmAXVcqj6qTxl7mIpbBpnHmlYqt8drbLKTcUYLz8TgdnsrPEzXZgl9dLgwdq-xsYm2o3aykNfI9kVDWZy5z_u78R0xdo2h3tWuh0ajFkV__xJBt8fbwI8r3BecHn04-DOO2q0BcSp0uY-mN8ghTQq5FkN5pYbRyxugsKJeKxCnpZKkM55mVSZlYlxlarPHUNlwZL_C7V-AqOt59Cvb0RPdrOuiOM_SwTRqgRke950fT4N_kGEblG46v7g9wEaj992zmX87u4BbcbFEqGzRqdRu2fHUHrjV9K9d34cugWlIVz2nJ3HwalsxUji1WltZzGRWgmLdZhGxxZvDW4OVQjPkr5pt2tPjWujJ4XSAxQwTKGuTLGuR7D04vhaP3YbuaVf4hsNQkBiUd8lBKGYIxKWXq5orroHWwIYLXHROLsi1iTr00vhcYzBDHi5rjRc3xCHZ74vOmdsfFZO9JGj0JFdyub8zm34p2_hZOZhIVUAkjhUSrZyQO0pZl5q1R3IoIdjpZFq0VWBR_dDaC5_1jnL-0KWMqP1sRDQbYiLlkEsGDRvT9SESOBlJn-xFkG0qxMdTNJ9X0rK4RTj-mUmaP_j-uZ3B9eHI8KkaH46PHcIMjYqPDMFztwPZyvvJPEHEt7dNazRl8vex59RvrCEEr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcUX8bvRqitUUCFesx_Z5EHkantcbT2KWOiLxN3srj2QXL0P5P41_zpnktzpSfGtT4FkkiwzszO_2d2ZAdhxpfKoOmnsZS5iGWwaZ16p2Bqvvc1Cyh0lOH8cpoNT-eFMnW3Ar2UuDB2rXNrE2lC7cUlr5F2RUNZnLnPeDe2xiJP9_ruLHzF1kKKd1mU7jUZFjvziJ4Zv07eH-yjrF5z3Dz6_H8Rth4G4lDqdxdIb5RGyhFyLIL3TwmjljNFZUC4ViVPSyVIZzjMrkzKxLjO0cOOphbgyXuB3r8GmpqioA5t7B8OTT6sVHnTOGfrbJilQo9vu-uNR8G9yDKryNTdYdwu4DOL-e1LzL9fXvw23WszKeo2S3YENX92F600Xy8U9-NKrZlTTc1QyNxmFGTOVY9O5pdVdRuUoJm1OIZueG7zVezkQQ_6K-aY5Lb61qAxep0jMEI-yBgezBgffh9Mr4ekD6FTjym8BS01iUO4hD6WUIRiTUt5urrgOWgcbIni9ZGJRtiXNqbPG9wJDG-J4UXO8qDkewc6K-KKp5HE52R5JY0VC5bfrG-PJt6KdzYWTmUR1VMJIIdEGGomDtGWZeWsUtyKC7aUsi9YmTIs_GhzB89VjnM20RWMqP54TDYbbiMBkEsHDRvSrkYgczaXOdiPI1pRibajrT6rReV0xnH5Mhc0e_X9cz-AGzqni-HB49BhucoRvdDKGq23ozCZz_wTh18w-bfWcwdernlq_ASXORsY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antigenic+drift+and+subtype+interference+shape+A%28H3N2%29+epidemic+dynamics+in+the+United+States&rft.jtitle=eLife&rft.au=Perofsky%2C+Amanda+C&rft.au=Huddleston%2C+John&rft.au=Hansen%2C+Chelsea+L&rft.au=Barnes%2C+John+R&rft.date=2024-09-25&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.91849&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |