Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States

Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability i...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 13
Main Authors Perofsky, Amanda C, Huddleston, John, Hansen, Chelsea L, Barnes, John R, Rowe, Thomas, Xu, Xiyan, Kondor, Rebecca, Wentworth, David E, Lewis, Nicola, Whittaker, Lynne, Ermetal, Burcu, Harvey, Ruth, Galiano, Monica, Daniels, Rodney Stuart, McCauley, John W, Fujisaki, Seiichiro, Nakamura, Kazuya, Kishida, Noriko, Watanabe, Shinji, Hasegawa, Hideki, Sullivan, Sheena G, Barr, Ian G, Subbarao, Kanta, Krammer, Florian, Bedford, Trevor, Viboud, Cécile
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 25.09.2024
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity. Seasonal influenza (flu) viruses cause outbreaks every winter. People infected with influenza typically develop mild respiratory symptoms. But flu infections can cause serious illness in young children, older adults and people with chronic medical conditions. Infected or vaccinated individuals develop some immunity, but the viruses evolve quickly to evade these defenses in a process called antigenic drift. As the viruses change, they can re-infect previously immune people. Scientists update the flu vaccine yearly to keep up with this antigenic drift. The immune system fights flu infections by recognizing two proteins, known as antigens, on the virus’s surface, called hemagglutinin (HA) and neuraminidase (NA). However, mutations in the genes encoding these proteins can make them unrecognizable, letting the virus slip past the immune system. Scientists would like to know how these changes affect the size, severity and timing of annual influenza outbreaks. Perofsky et al. show that tracking genetic changes in HA and NA may help improve flu season predictions. The experiments compared the severity of 22 flu seasons caused by the A(H3N2) subtype in the United States with how much HA and NA had evolved since the previous year. The A(H3N2) subtype experiences the fastest rates of antigenic drift and causes more cases and deaths than other seasonal flu viruses. Genetic changes in HA and NA were a better predictor of A(H3N2) outbreak severity than the blood tests for protective antibodies that epidemiologists traditionally use to track flu evolution. However, the prevalence of another subtype of influenza A circulating in the population, called A(H1N1), was an even better predictor of how severe A(H3N2) outbreaks would be. Perofsky et al. are the first to show that genetic changes in NA contribute to the severity of flu seasons. Previous studies suggested a link between genetic changes in HA and flu season severity, and flu vaccines include the HA protein to help the body recognize new influenza strains. The results suggest that adding the NA protein to flu vaccines may improve their effectiveness. In the future, flu forecasters may want to analyze genetic changes in both NA and HA to make their outbreak predictions. Tracking how much of the A(H1N1) subtype is circulating may also be useful for predicting the severity of A(H3N2) outbreaks.
AbstractList Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity. Seasonal influenza (flu) viruses cause outbreaks every winter. People infected with influenza typically develop mild respiratory symptoms. But flu infections can cause serious illness in young children, older adults and people with chronic medical conditions. Infected or vaccinated individuals develop some immunity, but the viruses evolve quickly to evade these defenses in a process called antigenic drift. As the viruses change, they can re-infect previously immune people. Scientists update the flu vaccine yearly to keep up with this antigenic drift. The immune system fights flu infections by recognizing two proteins, known as antigens, on the virus’s surface, called hemagglutinin (HA) and neuraminidase (NA). However, mutations in the genes encoding these proteins can make them unrecognizable, letting the virus slip past the immune system. Scientists would like to know how these changes affect the size, severity and timing of annual influenza outbreaks. Perofsky et al. show that tracking genetic changes in HA and NA may help improve flu season predictions. The experiments compared the severity of 22 flu seasons caused by the A(H3N2) subtype in the United States with how much HA and NA had evolved since the previous year. The A(H3N2) subtype experiences the fastest rates of antigenic drift and causes more cases and deaths than other seasonal flu viruses. Genetic changes in HA and NA were a better predictor of A(H3N2) outbreak severity than the blood tests for protective antibodies that epidemiologists traditionally use to track flu evolution. However, the prevalence of another subtype of influenza A circulating in the population, called A(H1N1), was an even better predictor of how severe A(H3N2) outbreaks would be. Perofsky et al. are the first to show that genetic changes in NA contribute to the severity of flu seasons. Previous studies suggested a link between genetic changes in HA and flu season severity, and flu vaccines include the HA protein to help the body recognize new influenza strains. The results suggest that adding the NA protein to flu vaccines may improve their effectiveness. In the future, flu forecasters may want to analyze genetic changes in both NA and HA to make their outbreak predictions. Tracking how much of the A(H1N1) subtype is circulating may also be useful for predicting the severity of A(H3N2) outbreaks.
Author Viboud, Cécile
Krammer, Florian
Galiano, Monica
Barr, Ian G
Daniels, Rodney Stuart
Huddleston, John
Nakamura, Kazuya
Wentworth, David E
Harvey, Ruth
Barnes, John R
Xu, Xiyan
McCauley, John W
Subbarao, Kanta
Watanabe, Shinji
Whittaker, Lynne
Lewis, Nicola
Fujisaki, Seiichiro
Bedford, Trevor
Kondor, Rebecca
Perofsky, Amanda C
Rowe, Thomas
Sullivan, Sheena G
Hansen, Chelsea L
Kishida, Noriko
Ermetal, Burcu
Hasegawa, Hideki
Author_xml – sequence: 1
  givenname: Amanda C
  orcidid: 0000-0001-7341-9193
  surname: Perofsky
  fullname: Perofsky, Amanda C
– sequence: 2
  givenname: John
  orcidid: 0000-0002-4250-2063
  surname: Huddleston
  fullname: Huddleston, John
– sequence: 3
  givenname: Chelsea L
  orcidid: 0000-0002-4526-6772
  surname: Hansen
  fullname: Hansen, Chelsea L
– sequence: 4
  givenname: John R
  surname: Barnes
  fullname: Barnes, John R
– sequence: 5
  givenname: Thomas
  surname: Rowe
  fullname: Rowe, Thomas
– sequence: 6
  givenname: Xiyan
  surname: Xu
  fullname: Xu, Xiyan
– sequence: 7
  givenname: Rebecca
  orcidid: 0000-0002-2596-4282
  surname: Kondor
  fullname: Kondor, Rebecca
– sequence: 8
  givenname: David E
  orcidid: 0000-0002-5190-980X
  surname: Wentworth
  fullname: Wentworth, David E
– sequence: 9
  givenname: Nicola
  surname: Lewis
  fullname: Lewis, Nicola
– sequence: 10
  givenname: Lynne
  surname: Whittaker
  fullname: Whittaker, Lynne
– sequence: 11
  givenname: Burcu
  surname: Ermetal
  fullname: Ermetal, Burcu
– sequence: 12
  givenname: Ruth
  surname: Harvey
  fullname: Harvey, Ruth
– sequence: 13
  givenname: Monica
  surname: Galiano
  fullname: Galiano, Monica
– sequence: 14
  givenname: Rodney Stuart
  orcidid: 0000-0003-2818-5089
  surname: Daniels
  fullname: Daniels, Rodney Stuart
– sequence: 15
  givenname: John W
  orcidid: 0000-0002-4744-6347
  surname: McCauley
  fullname: McCauley, John W
– sequence: 16
  givenname: Seiichiro
  surname: Fujisaki
  fullname: Fujisaki, Seiichiro
– sequence: 17
  givenname: Kazuya
  surname: Nakamura
  fullname: Nakamura, Kazuya
– sequence: 18
  givenname: Noriko
  surname: Kishida
  fullname: Kishida, Noriko
– sequence: 19
  givenname: Shinji
  surname: Watanabe
  fullname: Watanabe, Shinji
– sequence: 20
  givenname: Hideki
  surname: Hasegawa
  fullname: Hasegawa, Hideki
– sequence: 21
  givenname: Sheena G
  surname: Sullivan
  fullname: Sullivan, Sheena G
– sequence: 22
  givenname: Ian G
  surname: Barr
  fullname: Barr, Ian G
– sequence: 23
  givenname: Kanta
  orcidid: 0000-0003-1713-3056
  surname: Subbarao
  fullname: Subbarao, Kanta
– sequence: 24
  givenname: Florian
  surname: Krammer
  fullname: Krammer, Florian
– sequence: 25
  givenname: Trevor
  orcidid: 0000-0002-4039-5794
  surname: Bedford
  fullname: Bedford, Trevor
– sequence: 26
  givenname: Cécile
  orcidid: 0000-0003-3243-4711
  surname: Viboud
  fullname: Viboud, Cécile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39319780$$D View this record in MEDLINE/PubMed
BookMark eNptkkFrFDEUgINUbF178i4DXiqyNZm87CQnWYrawqIHLXiRkEne7GaZzaxJRth_b3a3lbaYywsv3_t4Sd5LchKGgIS8ZvSyEQI-4MJ3eKmYBPWMnNVU0CmV8PPkwf6UnKe0pmU1ICVTL8gpV5ypRtIz8msesl9i8LZy0Xe5MsFVaWzzbouVDxljhxGDxSqtTEnNL6751_pdhVvvcLOv2gVTYipwlVdY3Qaf0VXfs8mYXpHnnekTnt_FCbn9_OnH1fV08e3LzdV8MbXQzPIU0AgEKjrV8A7QNdw0whnTyE64GWdOgAMrTF3LFphlrZOG1YqigJkQBvmE3By9bjBrvY1-Y-JOD8brQ2KIS21i9rZH7UACYyC4AQ4UpAHWqdZaia0RdcuL6-PRtR3bDTqLIUfTP5I-Pgl-pZfDH12sNdByhQm5uDPE4feIKeuNTxb73gQcxqQ5owpqxYEV9O0TdD2MMZS3KtReqEDVhXrzsKV_vdx_YwHYEbBxSClip60vH-CHfYe-14zq_bTow7Tow7SUmvdPau61_6P_Ai1Tv_k
CitedBy_id crossref_primary_10_1111_irv_70033
Cites_doi 10.1126/scitranslmed.aan5325
10.1093/infdis/jiw181
10.7554/eLife.44205
10.1038/srep11013
10.1073/pnas.1712377114
10.1038/nm.3350
10.1186/1745-6150-1-34
10.1093/infdis/jis419
10.1016/j.amepre.2019.04.007
10.1016/j.vaccine.2009.02.047
10.1093/cid/ciz075
10.1093/cid/ciw635
10.1016/j.chom.2019.01.002
10.1371/journal.pgen.1001301
10.1093/infdis/jiz543
10.3389/fimmu.2016.00195
10.1128/mBio.02332-17
10.1097/EDE.0b013e31819d1092
10.1038/nature01509
10.1111/ajt.16381
10.1002/j.1538-7305.1948.tb01338.x
10.1038/414716a
10.1084/jem.20130212
10.7554/eLife.00631
10.1186/1471-2334-14-480
10.1093/infdis/129.4.411
10.48550/arXiv.2110.12461
10.1073/pnas.1321656111
10.2807/1560-7917.ES.2017.22.13.30494
10.1371/currents.RRN1200
10.1093/infdis/151.1.81
10.1098/rstb.2001.0999
10.1371/journal.pcbi.1000882
10.1093/aje/kws140
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1038/nature08182
10.7554/eLife.49324
10.1111/irv.12562
10.1371/journal.pcbi.1007989
10.1093/cid/cis431
10.1186/1471-2148-11-220
10.1371/journal.ppat.1008109
10.1093/aje/kwt158
10.5694/j.1326-5377.1977.tb99276.x
10.1186/s12859-020-03622-2
10.1016/j.vaccine.2016.01.054
10.1128/JVI.2.8.778-786.1968
10.1128/mBio.00417-16
10.1371/journal.pcbi.1005749
10.21105/joss.02906
10.7554/eLife.07361
10.1128/JVI.03509-12
10.1093/cid/ciu680
10.1038/s41467-022-28858-9
10.1073/pnas.1113801108
10.1056/NEJM197206222862502
10.1073/pnas.87.2.786
10.1016/0042-6822(80)90372-4
10.1016/j.coi.2018.03.025
10.1093/infdis/jiu224
10.1016/j.micinf.2008.07.002
10.1890/13-0133.1
10.1086/502146
10.15585/mmwr.mm7029a1
10.1128/JVI.72.7.5648-5653.1998
10.1093/cid/ciu356
10.1126/science.286.5446.1921
10.1016/S2468-2667(20)30090-6
10.1126/science.1125237
10.18637/jss.v028.i05
10.1093/cid/cis574
10.1056/NEJMoa1700153
10.1038/srep15279
10.1080/0266476042000214501
10.1086/595862
10.1126/science.1097211
10.1093/aje/kwt133
10.3201/eid1001.020705
10.1038/s41467-022-29402-5
10.1038/s41577-019-0143-6
10.1038/nrg2053
10.1093/infdis/jiv260
10.1093/cid/ciw176
10.1038/nature14460
10.3390/ijerph18105349
10.1016/S2214-109X(22)00358-8
10.1146/annurev.iy.08.040190.003513
10.1016/0264-410x(93)90130-p
10.1073/pnas.1525578113
10.1371/journal.ppat.1000918
10.1186/1471-2105-9-307
10.1093/ve/vex042
10.1016/j.epidem.2009.05.003
10.1093/infdis/jiv577
10.1186/1741-7007-10-38
10.1038/289373a0
10.1016/j.vaccine.2011.07.002
10.1038/nature04017
10.1093/bioinformatics/bty407
10.1126/science.aat6030
10.1371/journal.ppat.1006780
10.1007/978-1-4614-6849-3
10.1038/296115a0
10.1016/j.coviro.2016.12.004
10.1016/S1473-3099(09)70069-6
10.1016/j.vaccine.2017.04.012
10.1128/mBio.02556-14
10.1371/journal.pcbi.1005382
10.1093/nar/gkf436
10.1016/s0264-410x(03)00508-5
10.1073/pnas.0806852106
10.2807/1560-7917.ES.2017.22.6.30460
10.1093/aje/kwj040
10.1126/science.1132745
10.1186/1471-2105-8-25
10.1093/infdis/jis283
10.1002/sim.1545
10.7554/eLife.03568
10.7554/eLife.30756
10.1038/nature13087
10.1128/mr.56.1.152-179.1992
10.1126/science.1176225
10.1136/bmj.3.5773.531-b
10.1201/9781315108230
10.1093/infdis/jis935
10.1128/jcm.31.4.836-838.1993
10.1001/jama.284.13.1655
10.1146/annurev.ecolsys.34.011802.132516
10.1038/nrmicro.2017.118
10.1016/j.cell.2018.03.030
10.1093/infdis/jiu048
10.1126/science.1244730
10.1073/pnas.63.2.326
10.1093/molbev/msu300
10.1093/infdis/jiab485
10.1038/s41598-022-08233-w
10.1016/j.gene.2008.09.012
10.4049/jimmunol.1801149
10.7554/eLife.07467
10.7554/eLife.01914
10.18637/jss.v033.i01
10.1093/biostatistics/kxj011
10.1128/JVI.01414-13
10.1086/498980
10.1073/pnas.2013182117
10.32614/RJ-2013-028
10.1371/journal.pmed.1000168
10.1371/journal.pcbi.1008409
10.1093/bioinformatics/btq134
10.1038/s41467-019-09652-6
10.1371/journal.pmed.1000258
10.1016/j.virol.2005.06.006
10.1016/j.coviro.2014.07.007
10.1093/cid/ciy775
10.1093/infdis/134.4.384
10.1371/journal.pcbi.1006742
10.2807/ese.18.05.20390-en
10.1111/j.2517-6161.1995.tb02031.x
10.2307/1934352
10.18637/jss.v076.i01
10.1038/s41467-021-21157-9
10.1093/infdis/jiv195
10.1016/s0264-410x(03)00071-9
10.1001/jamanetworkopen.2022.0527
10.2807/1560-7917.ES.2021.26.29.2001600
10.1371/journal.pbio.1000316
10.1111/irv.12540
10.1128/mBio.01996-15
10.2807/1560-7917.ES.2017.22.44.17-00306
10.1093/molbev/msr044
10.1016/S0264-410X(99)00099-7
10.1093/jrsssa/qnad030
10.1038/s41598-018-28706-1
10.2807/1560-7917.ES2015.20.8.21043
10.1016/j.vaccine.2006.10.002
10.1371/journal.pone.0092153
10.7554/eLife.60067
10.1371/journal.pcbi.1006020
10.1073/pnas.1708856115
10.1186/1743-422X-10-244
10.1093/infdis/jix074
10.1038/s41467-020-16545-6
10.1093/cid/cit736
10.1016/j.tpb.2003.10.002
10.1016/j.rse.2019.04.034
10.1126/scitranslmed.3006637
10.1073/pnas.0701396104
10.1086/657311
10.1371/journal.pmed.1001051
10.1093/infdis/jiaa138
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.91849
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_d48411453a434048a41f9bcc8eba52b3
PMC11424097
39319780
10_7554_eLife_91849
Genre Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: Medical Research Council
  grantid: FC001030
– fundername: NIH HHS
  grantid: 75N93019C00051
– fundername: Ministry of Health, Labour and Welfare
  grantid: 10111800
– fundername: Wellcome Trust
  grantid: FC001030
– fundername: NIAID NIH HHS
  grantid: 75N93021C00014
– fundername: NIH HHS
  grantid: R01 AI165821
– fundername: NIAID NIH HHS
  grantid: F31 AI140714
– fundername: NIH HHS
  grantid: R01 AI127893
– fundername: NIAID NIH HHS
  grantid: R01 AI127893
– fundername: Cancer Research UK
  grantid: FC001030
– fundername: ;
– fundername: ;
  grantid: HHSN272201400008C
– fundername: ;
  grantid: R01 AI127893
– fundername: ;
  grantid: 10110400
– fundername: ;
  grantid: 10111800
– fundername: ;
  grantid: R35 GM119774
– fundername: ;
  grantid: 1354890
– fundername: ;
  grantid: 75N93021C00014
– fundername: ;
  grantid: JP22fk0108118
– fundername: ;
  grantid: JP23fk0108662
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c476t-4ea5e405f973f4ed73a75daa78f5d631d54d4c5a228b41c1bd8a1290e54655ae3
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:31:59 EDT 2025
Thu Aug 21 18:31:24 EDT 2025
Fri Jul 11 10:26:32 EDT 2025
Fri Jul 25 11:53:57 EDT 2025
Mon Jul 21 05:56:03 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Tue Jul 01 04:08:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords global health
epidemiology
infectious disease
antigenic drift
influenza virus
microbiology
human
virus
H3N2
Language English
License This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-4ea5e405f973f4ed73a75daa78f5d631d54d4c5a228b41c1bd8a1290e54655ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4250-2063
0000-0002-5190-980X
0000-0001-7341-9193
0000-0003-3243-4711
0000-0002-4526-6772
0000-0002-4039-5794
0000-0003-2818-5089
0000-0003-1713-3056
0000-0002-4744-6347
0000-0002-2596-4282
OpenAccessLink https://www.proquest.com/docview/3111429492?pq-origsite=%requestingapplication%
PMID 39319780
PQID 3111429492
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_d48411453a434048a41f9bcc8eba52b3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424097
proquest_miscellaneous_3109429341
proquest_journals_3111429492
pubmed_primary_39319780
crossref_citationtrail_10_7554_eLife_91849
crossref_primary_10_7554_eLife_91849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-25
PublicationDateYYYYMMDD 2024-09-25
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2024
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Perofsky (bib136) 2024
Ulmer (bib181) 1998; 72
Webster (bib190) 1992; 56
Skowronski (bib163) 2014; 210
Hadfield (bib67) 2018; 34
Sridhar (bib171) 2013; 19
Steinhoff (bib173) 1993; 31
Axelsen (bib4) 2014; 111
Skowronski (bib165) 2017; 215
Couch (bib34) 2013; 207
Dhanasekaran (bib41) 2022; 13
Shih (bib153) 2007; 104
Qi (bib139) 2021; 224
Margine (bib115) 2013; 87
Wu (bib199) 2010; 6
National Health Interview Survey (bib125) 2008
Lu (bib113) 2019; 57
Eichelberger (bib43) 2018; 53
Ward (bib187) 2016
Janjua (bib83) 2012; 205
Koelle (bib95) 2015; 4
Shannon (bib152) 1948; 27
van Doorn (bib183) 2017; 35
Flannery (bib49) 2016; 214
Krammer (bib97) 2018; 9
Tempia (bib177) 2021; 26
Chen (bib30) 2018; 173
Flannery (bib50) 2019; 68
Sandbulte (bib145) 2011; 108
Ward (bib186) 2015
Hensley (bib72) 2014; 8
Gong (bib61) 2013; 2
Webster (bib188) 1980; 104
Dalziel (bib39) 2018; 362
Lee (bib106) 2018; 14
Public Health Agency of Canada (bib138) 2005; 31
Weinberger (bib191) 2012; 176
Yang (bib202) 2020; 16
Johansson (bib85) 2009; 6
Schulman (bib148) 1969; 63
Skowronski (bib166) 2017; 22
Muggeo (bib120) 2003; 22
Li (bib110) 2013; 210
Baker (bib5) 2020; 117
Liebhold (bib111) 2004; 35
Couch (bib33) 1974; 129
Geoghegan (bib57) 2018; 14
Charu (bib28) 2017; 13
Lee (bib107) 2019; 8
Bedford (bib7) 2011; 11
Fox (bib52) 2017; 13
Du (bib42) 2017; 9
Neher (bib128) 2016; 113
Huddleston (bib78) 2020; 9
R Development Core Team (bib141) 2023
Bedford (bib9) 2014; 3
Skowronski (bib159) 2009; 199
Gostic (bib63) 2020; 16
Boni (bib17) 2004; 65
Bedford (bib6) 2010; 6
Krammer (bib99) 2023
Murphy (bib122) 1972; 286
Garten (bib55) 2009; 325
Petrova (bib137) 2018; 16
Simonsen (bib155) 1999; 17
Suzuki (bib176) 2008; 427
Bhatt (bib14) 2023; 186
Grebe (bib64) 2008; 10
Viboud (bib185) 2006; 312
Kilbourne (bib89) 1990; 87
Luksza (bib114) 2014; 507
Greene (bib65) 2006; 163
Smith (bib168) 2004; 305
Cowling (bib38) 2020; 5
Altmann (bib3) 2010; 26
Olsen (bib132) 2020; 20
Ohmit (bib131) 2014; 58
Sridhar (bib172) 2016; 7
Cobey (bib31) 2017; 22
Gostic (bib62) 2019; 15
Ali (bib1) 2022; 10
Nachbagauer (bib124) 2016; 7
Zhao (bib204) 2019; 232
Sax (bib146) 2013; 5
Bedford (bib10) 2015; 523
Zimmerman (bib205) 2016; 63
Miller (bib118) 2013; 5
Bridges (bib19) 2000; 284
Sonoguchi (bib170) 1985; 151
World Health Organization (bib197) 2023
Hothorn (bib76) 2006; 7
Nguyen (bib130) 2015; 32
Webster (bib189) 1982; 296
Cori (bib32) 2013; 178
Katoh (bib86) 2002; 30
Huang (bib77) 2021; 12
Jang (bib82) 2021; 18
Kawai (bib87) 2003; 21
Bhatt (bib13) 2011; 28
Centers for Disease Control and Prevention (CDC) (bib23) 2004; 53
Monto (bib119) 2015; 212
Gill (bib59) 1977; 2
Wilson (bib193) 1990; 8
Skowronski (bib164) 2016; 63
Kramer (bib96) 2019; 15
Wraith (bib198) 2022; 13
Koelle (bib93) 2006; 314
Schulman (bib147) 1968; 2
Gerdil (bib58) 2003; 21
Simonsen (bib156) 2012; 206
Skowronski (bib158) 2007; 25
Wolf (bib195) 2006; 1
Kilbourne (bib88) 1976; 134
Huddleston (bib80) 2024
Lester (bib109) 2003; 24
Ferguson (bib46) 2005; 437
Cowling (bib36) 2010; 51
Terajima (bib178) 2013; 10
Treanor (bib180) 2012; 55
Nelson (bib129) 2007; 8
Hoffman (bib74) 2014; 15
Hansen (bib68) 2022; 5
Biggerstaff (bib15) 2014; 14
Lu (bib112) 2013; 178
Belongia (bib11) 2011; 29
Huddleston (bib79) 2021; 6
Debeer (bib40) 2020; 21
Goldstein (bib60) 2011; 8
Shaman (bib151) 2010; 8
Hope-Simpson (bib75) 1971; 3
Koelle (bib94) 2009; 1
Chao (bib27) 2014; 84
Brett (bib18) 2005; 339
Lessler (bib108) 2009; 9
Castilla (bib22) 2016; 34
Kryazhimskiy (bib100) 2011; 7
Olsen (bib133) 2021; 70
Cowling (bib35) 2009; 20
Carpenter (bib21) 2017; 76
Skowronski (bib162) 2014; 9
Altman (bib2) 2015; 4
Sagulenko (bib144) 2018; 4
Bush (bib20) 1999; 286
Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (bib26) 2023
Skowronski (bib167) 2022; 225
Biggerstaff (bib16) 2014; 210
Gaglani (bib54) 2016; 213
Shu (bib154) 2017; 22
Benjamini (bib12) 1995; 57
Lam (bib104) 2020; 11
Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (bib25) 2023
Fiore (bib48) 2009; 58
Gatti (bib56) 2022; 12
Strobl (bib174) 2007; 8
Koel (bib92) 2013; 342
Bedford (bib8) 2012; 10
Ranjeva (bib140) 2019; 10
Yan (bib201) 2019; 8
Muggeo (bib121) 2008; 8
Skowronski (bib160) 2010; 7
Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (bib24) 2019
Kuhn (bib102) 2013
Torrence (bib179) 1998; 79
Pebody (bib134) 2017; 22
Johansson (bib84) 1993; 11
Neher (bib127) 2014; 3
Friedman (bib53) 2010; 33
Ferrari (bib47) 2004; 31
Jackson (bib81) 2017; 377
Henry (bib71) 2019; 25
Strobl (bib175) 2008; 9
Chattopadhyay (bib29) 2018; 7
Grenfell (bib66) 2001; 414
Scott (bib149) 2021
Cowling (bib37) 2014; 59
Krammer (bib98) 2019; 19
Ndifon (bib126) 2009; 27
Memoli (bib117) 2016; 7
Ferguson (bib45) 2003; 422
Simpson (bib157) 2015; 20
Kissling (bib91) 2013; 18
Skowronski (bib161) 2012; 55
Zost (bib206) 2017; 114
Kirkpatrick (bib90) 2018; 8
Epstein (bib44) 2006; 193
Rolfes (bib142) 2019; 69
Russell (bib143) 2018; 12
Smith (bib169) 2009; 459
Xie (bib200) 2015; 5
Myers (bib123) 2013; 87
Pei (bib135) 2018; 115
Kuhn (bib101) 2008; 28
Viboud (bib184) 2004; 10
Kuhn (bib103) 2019
Wiley (bib192) 1981; 289
Hill (bib73) 1973; 54
Laurie (bib105) 2015; 212
He (bib70) 2015; 5
Flannery (bib51) 2020; 221
Valenciano (bib182) 2018; 12
Shaman (bib150) 2009; 106
Wolf (bib196) 2010; 2
Zhang (bib203) 2019; 202
Hay (bib69) 2001; 356
McLean (bib116) 2014; 59
Wohlbold (bib194) 2015; 6
37873362 - medRxiv. 2024 May 22:2023.10.02.23296453. doi: 10.1101/2023.10.02.23296453.
References_xml – volume: 9
  year: 2017
  ident: bib42
  article-title: Evolution-informed forecasting of seasonal influenza A (H3N2)
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.aan5325
– volume: 214
  start-page: 1010
  year: 2016
  ident: bib49
  article-title: Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014-2015
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiw181
– volume: 8
  year: 2019
  ident: bib201
  article-title: Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens
  publication-title: eLife
  doi: 10.7554/eLife.44205
– year: 2023
  ident: bib26
  article-title: U.S. influenza surveillance: purpose and methods
– volume: 5
  year: 2015
  ident: bib70
  article-title: Global spatio-temporal patterns of influenza in the post-pandemic Era
  publication-title: Scientific Reports
  doi: 10.1038/srep11013
– volume: 114
  start-page: 12578
  year: 2017
  ident: bib206
  article-title: Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains
  publication-title: PNAS
  doi: 10.1073/pnas.1712377114
– volume: 19
  start-page: 1305
  year: 2013
  ident: bib171
  article-title: Cellular immune correlates of protection against symptomatic pandemic influenza
  publication-title: Nature Medicine
  doi: 10.1038/nm.3350
– volume: 1
  year: 2006
  ident: bib195
  article-title: Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus
  publication-title: Biology Direct
  doi: 10.1186/1745-6150-1-34
– volume: 206
  start-page: 625
  year: 2012
  ident: bib156
  article-title: The art of modeling the mortality impact of winter-seasonal pathogens
  publication-title: Journal of Infectious Diseases
  doi: 10.1093/infdis/jis419
– volume: 57
  start-page: 458
  year: 2019
  ident: bib113
  article-title: Seasonal influenza vaccination coverage trends among adult populations, U.S., 2010-2016
  publication-title: American Journal of Preventive Medicine
  doi: 10.1016/j.amepre.2019.04.007
– volume: 27
  start-page: 2447
  year: 2009
  ident: bib126
  article-title: On the use of hemagglutination-inhibition for influenza surveillance: surveillance data are predictive of influenza vaccine effectiveness
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.02.047
– volume: 69
  start-page: 1845
  year: 2019
  ident: bib142
  article-title: Effects of influenza vaccination in the united states during the 2017–2018 influenza season
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciz075
– volume: 63
  start-page: 1564
  year: 2016
  ident: bib205
  article-title: 2014-2015 influenza vaccine effectiveness in the United States by vaccine type
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciw635
– volume: 25
  start-page: 357
  year: 2019
  ident: bib71
  article-title: Influenza virus vaccination elicits poorly adapted b cell responses in elderly individuals
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2019.01.002
– volume: 7
  year: 2011
  ident: bib100
  article-title: Prevalence of epistasis in the evolution of influenza A surface proteins
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1001301
– volume: 221
  start-page: 8
  year: 2020
  ident: bib51
  article-title: Spread of antigenically drifted influenza A(H3N2) viruses and vaccine effectiveness in the united states during the 2018-2019 Season
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiz543
– volume: 7
  year: 2016
  ident: bib172
  article-title: Heterosubtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines
  publication-title: Frontiers in Immunology
  doi: 10.3389/fimmu.2016.00195
– volume: 9
  year: 2018
  ident: bib97
  article-title: NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines?
  publication-title: mBio
  doi: 10.1128/mBio.02332-17
– volume: 20
  start-page: 344
  year: 2009
  ident: bib35
  article-title: Estimation of the serial interval of influenza
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31819d1092
– volume: 422
  start-page: 428
  year: 2003
  ident: bib45
  article-title: Ecological and immunological determinants of influenza evolution
  publication-title: Nature
  doi: 10.1038/nature01509
– volume: 20
  start-page: 3681
  year: 2020
  ident: bib132
  article-title: Decreased influenza activity during the COVID-19 pandemic-United States
  publication-title: American Journal of Transplantation
  doi: 10.1111/ajt.16381
– volume: 8
  start-page: 20
  year: 2008
  ident: bib121
  article-title: Segmented: an R package to fit regression models with broken-line relationships
  publication-title: R News
– volume: 27
  start-page: 379
  year: 1948
  ident: bib152
  article-title: A mathematical theory of communication
  publication-title: Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 414
  start-page: 716
  year: 2001
  ident: bib66
  article-title: Travelling waves and spatial hierarchies in measles epidemics
  publication-title: Nature
  doi: 10.1038/414716a
– volume: 210
  start-page: 1493
  year: 2013
  ident: bib110
  article-title: Immune history shapes specificity of pandemic H1N1 influenza antibody responses
  publication-title: The Journal of Experimental Medicine
  doi: 10.1084/jem.20130212
– volume: 2
  year: 2013
  ident: bib61
  article-title: Stability-mediated epistasis constrains the evolution of an influenza protein
  publication-title: eLife
  doi: 10.7554/eLife.00631
– volume: 14
  year: 2014
  ident: bib15
  article-title: Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature
  publication-title: BMC Infectious Diseases
  doi: 10.1186/1471-2334-14-480
– volume: 129
  start-page: 411
  year: 1974
  ident: bib33
  article-title: Induction of partial immunity to influenza by a neuraminidase-specific vaccine
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/129.4.411
– volume: 15
  start-page: 1593
  year: 2014
  ident: bib74
  article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: Journal of Machine Learning Research: JMLR
– volume-title: arXiv
  year: 2021
  ident: bib149
  article-title: Epidemia: an R package for semi-mechanistic bayesian modelling of infectious diseases using point processes
  doi: 10.48550/arXiv.2110.12461
– volume: 111
  start-page: 9538
  year: 2014
  ident: bib4
  article-title: Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers
  publication-title: PNAS
  doi: 10.1073/pnas.1321656111
– volume: 22
  year: 2017
  ident: bib154
  article-title: GISAID: Global initiative on sharing all influenza data - from vision to reality
  publication-title: Euro Surveillance
  doi: 10.2807/1560-7917.ES.2017.22.13.30494
– volume: 2
  year: 2010
  ident: bib196
  article-title: Projection of seasonal influenza severity from sequence and serological data
  publication-title: PLOS Currents
  doi: 10.1371/currents.RRN1200
– volume: 151
  start-page: 81
  year: 1985
  ident: bib170
  article-title: Cross-subtype protection in humans during sequential, overlapping, and/or concurrent epidemics caused by H3N2 and H1N1 influenza viruses
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/151.1.81
– volume: 356
  start-page: 1861
  year: 2001
  ident: bib69
  article-title: The evolution of human influenza viruses
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
  doi: 10.1098/rstb.2001.0999
– volume-title: Github
  year: 2023
  ident: bib99
  article-title: Unpublished influenza N2 epitope sites
– volume: 6
  year: 2010
  ident: bib199
  article-title: Correlation of influenza virus excess mortality with antigenic variation: application to rapid estimation of influenza mortality burden
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000882
– volume: 176
  start-page: 649
  year: 2012
  ident: bib191
  article-title: Influenza epidemics in Iceland over 9 decades: changes in timing and synchrony with the United States and Europe
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kws140
– volume: 79
  start-page: 61
  year: 1998
  ident: bib179
  article-title: A practical guide to wavelet analysis
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– year: 2023
  ident: bib141
  article-title: R: A language and environment for statistical computing
– volume: 459
  start-page: 1122
  year: 2009
  ident: bib169
  article-title: Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic
  publication-title: Nature
  doi: 10.1038/nature08182
– volume: 8
  year: 2019
  ident: bib107
  article-title: Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin
  publication-title: eLife
  doi: 10.7554/eLife.49324
– volume: 12
  start-page: 567
  year: 2018
  ident: bib182
  article-title: Exploring the effect of previous inactivated influenza vaccination on seasonal influenza vaccine effectiveness against medically attended influenza: Results of the European I-MOVE multicentre test-negative case-control study, 2011/2012-2016/2017
  publication-title: Influenza and Other Respiratory Viruses
  doi: 10.1111/irv.12562
– volume: 16
  year: 2020
  ident: bib202
  article-title: Dynamic interactions of influenza viruses in Hong Kong during 1998-2018
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1007989
– volume: 55
  start-page: 332
  year: 2012
  ident: bib161
  article-title: A sentinel platform to evaluate influenza vaccine effectiveness and new variant circulation, Canada 2010-2011 season
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/cis431
– volume: 11
  year: 2011
  ident: bib7
  article-title: Strength and tempo of selection revealed in viral gene genealogies
  publication-title: BMC Evolutionary Biology
  doi: 10.1186/1471-2148-11-220
– volume: 15
  year: 2019
  ident: bib62
  article-title: Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics
  publication-title: PLOS Pathogens
  doi: 10.1371/journal.ppat.1008109
– year: 2019
  ident: bib24
  article-title: Flu Vaccination Coverage, United States, 2018–19 Influenza Season
– volume: 178
  start-page: 1478
  year: 2013
  ident: bib112
  article-title: Seasonal influenza vaccination coverage among adult populations in the United States, 2005-2011
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwt158
– volume: 2
  start-page: 761
  year: 1977
  ident: bib59
  article-title: Naturally acquired immunity to influenza type A: A further prospective study
  publication-title: The Medical Journal of Australia
  doi: 10.5694/j.1326-5377.1977.tb99276.x
– volume: 21
  year: 2020
  ident: bib40
  article-title: Conditional permutation importance revisited
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-03622-2
– volume-title: Software Heritage
  year: 2024
  ident: bib80
  article-title: Perofsky-ili-antigenicity
– volume: 34
  start-page: 1350
  year: 2016
  ident: bib22
  article-title: Effectiveness of subunit influenza vaccination in the 2014-2015 season and residual effect of split vaccination in previous seasons
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.01.054
– volume: 2
  start-page: 778
  year: 1968
  ident: bib147
  article-title: Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice
  publication-title: Journal of Virology
  doi: 10.1128/JVI.2.8.778-786.1968
– volume: 7
  year: 2016
  ident: bib117
  article-title: Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model
  publication-title: mBio
  doi: 10.1128/mBio.00417-16
– volume: 13
  year: 2017
  ident: bib52
  article-title: Seasonality in risk of pandemic influenza emergence
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005749
– volume: 6
  year: 2021
  ident: bib79
  article-title: Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.02906
– volume-title: Early Release of Selected Estimates Based on Data From the 2015 National Health Interview Survey
  year: 2016
  ident: bib187
– volume: 4
  year: 2015
  ident: bib95
  article-title: The effects of A deleterious mutation load on patterns of influenza A/H3N2’s antigenic evolution in humans
  publication-title: eLife
  doi: 10.7554/eLife.07361
– year: 2008
  ident: bib125
  article-title: TABLE: Self-reported influenza vaccination coverage trends 1989-2008 among adults by age group, risk group, race/ethnicity, health-care worker status, and pregnancy status
– volume: 87
  start-page: 4728
  year: 2013
  ident: bib115
  article-title: H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice
  publication-title: Journal of Virology
  doi: 10.1128/JVI.03509-12
– volume: 59
  start-page: 1375
  year: 2014
  ident: bib116
  article-title: Impact of repeated vaccination on vaccine effectiveness against influenza A(H3N2) and B during 8 seasons
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciu680
– volume: 13
  year: 2022
  ident: bib198
  article-title: Homotypic protection against influenza in a pediatric cohort in Managua, Nicaragua
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-28858-9
– volume: 108
  start-page: 20748
  year: 2011
  ident: bib145
  article-title: Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses
  publication-title: PNAS
  doi: 10.1073/pnas.1113801108
– volume: 58
  start-page: 1
  year: 2009
  ident: bib48
  article-title: Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009
  publication-title: MMWR. Recommendations and Reports
– volume: 286
  start-page: 1329
  year: 1972
  ident: bib122
  article-title: Association of serum anti-neuraminidase antibody with resistance to influenza in man
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJM197206222862502
– volume: 87
  start-page: 786
  year: 1990
  ident: bib89
  article-title: Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins
  publication-title: PNAS
  doi: 10.1073/pnas.87.2.786
– volume: 104
  start-page: 139
  year: 1980
  ident: bib188
  article-title: Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance
  publication-title: Virology
  doi: 10.1016/0042-6822(80)90372-4
– volume: 53
  start-page: 38
  year: 2018
  ident: bib43
  article-title: Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready for picking to improve vaccine effectiveness
  publication-title: Current Opinion in Immunology
  doi: 10.1016/j.coi.2018.03.025
– volume: 210
  start-page: 535
  year: 2014
  ident: bib16
  article-title: Influenza-like illness, the time to seek healthcare, and influenza antiviral receipt during the 2010-2011 influenza season-United States
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiu224
– volume: 10
  start-page: 1024
  year: 2008
  ident: bib64
  article-title: Heterosubtypic immunity to influenza A virus: where do we stand?
  publication-title: Microbes and Infection
  doi: 10.1016/j.micinf.2008.07.002
– volume: 84
  start-page: 45
  year: 2014
  ident: bib27
  article-title: Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies
  publication-title: Ecological Monographs
  doi: 10.1890/13-0133.1
– volume: 24
  start-page: 839
  year: 2003
  ident: bib109
  article-title: Use of, effectiveness of, and attitudes regarding influenza vaccine among house staff
  publication-title: Infection Control & Hospital Epidemiology
  doi: 10.1086/502146
– volume: 70
  start-page: 1013
  year: 2021
  ident: bib133
  article-title: Changes in influenza and other respiratory virus activity during the COVID-19 pandemic - United States, 2020-2021
  publication-title: MMWR. Morbidity and Mortality Weekly Report
  doi: 10.15585/mmwr.mm7029a1
– volume: 72
  start-page: 5648
  year: 1998
  ident: bib181
  article-title: Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA
  publication-title: Journal of Virology
  doi: 10.1128/JVI.72.7.5648-5653.1998
– volume: 59
  start-page: 517
  year: 2014
  ident: bib37
  article-title: Incidence of influenza virus infections in children in Hong Kong in a 3-year randomized placebo-controlled vaccine study, 2009-2012
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciu356
– volume: 286
  start-page: 1921
  year: 1999
  ident: bib20
  article-title: Predicting the evolution of human influenza A
  publication-title: Science
  doi: 10.1126/science.286.5446.1921
– volume: 5
  start-page: e279
  year: 2020
  ident: bib38
  article-title: Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study
  publication-title: The Lancet. Public Health
  doi: 10.1016/S2468-2667(20)30090-6
– volume: 312
  start-page: 447
  year: 2006
  ident: bib185
  article-title: Synchrony, waves, and spatial hierarchies in the spread of influenza
  publication-title: Science
  doi: 10.1126/science.1125237
– volume: 28
  start-page: 1
  year: 2008
  ident: bib101
  article-title: Building predictive models in R using the caret package
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v028.i05
– volume: 55
  start-page: 951
  year: 2012
  ident: bib180
  article-title: Effectiveness of seasonal influenza vaccines in the United States during a season with circulation of all three vaccine strains
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/cis574
– volume: 377
  start-page: 534
  year: 2017
  ident: bib81
  article-title: Influenza vaccine effectiveness in the United States during the 2015-2016 Season
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMoa1700153
– volume: 5
  year: 2015
  ident: bib200
  article-title: H3N2 Mismatch of 2014-15 northern hemisphere influenza vaccines and head-to-head comparison between human and ferret antisera derived antigenic maps
  publication-title: Scientific Reports
  doi: 10.1038/srep15279
– volume: 31
  start-page: 799
  year: 2004
  ident: bib47
  article-title: Beta regression for modelling rates and proportions
  publication-title: Journal of Applied Statistics
  doi: 10.1080/0266476042000214501
– volume: 199
  start-page: 168
  year: 2009
  ident: bib159
  article-title: Component-specific effectiveness of trivalent influenza vaccine as monitored through a sentinel surveillance network in Canada, 2006-2007
  publication-title: The Journal of Infectious Diseases
  doi: 10.1086/595862
– volume: 305
  start-page: 371
  year: 2004
  ident: bib168
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
  doi: 10.1126/science.1097211
– volume: 178
  start-page: 1505
  year: 2013
  ident: bib32
  article-title: A new framework and software to estimate time-varying reproduction numbers during epidemics
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwt133
– volume: 10
  start-page: 32
  year: 2004
  ident: bib184
  article-title: Influenza epidemics in the United States, France, and Australia, 1972-1997
  publication-title: Emerging Infectious Diseases
  doi: 10.3201/eid1001.020705
– volume: 13
  year: 2022
  ident: bib41
  article-title: Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29402-5
– volume: 19
  start-page: 383
  year: 2019
  ident: bib98
  article-title: The human antibody response to influenza A virus infection and vaccination
  publication-title: Nature Reviews. Immunology
  doi: 10.1038/s41577-019-0143-6
– volume: 8
  start-page: 196
  year: 2007
  ident: bib129
  article-title: The evolution of epidemic influenza
  publication-title: Nature Reviews. Genetics
  doi: 10.1038/nrg2053
– volume: 212
  start-page: 1701
  year: 2015
  ident: bib105
  article-title: Interval between infections and viral hierarchy are determinants of viral interference following influenza virus infection in a ferret model
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiv260
– volume: 63
  start-page: 21
  year: 2016
  ident: bib164
  article-title: A perfect storm: Impact of genomic variation and serial vaccination on low influenza vaccine effectiveness during the 2014-2015 season
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciw176
– volume: 523
  start-page: 217
  year: 2015
  ident: bib10
  article-title: Global circulation patterns of seasonal influenza viruses vary with antigenic drift
  publication-title: Nature
  doi: 10.1038/nature14460
– volume: 18
  year: 2021
  ident: bib82
  article-title: Factors associated with influenza vaccination uptake among U.S. adults: focus on nativity and race/ethnicity
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph18105349
– volume: 10
  start-page: e1612
  year: 2022
  ident: bib1
  article-title: Prediction of upcoming global infection burden of influenza seasons after relaxation of public health and social measures during the COVID-19 pandemic: a modelling study
  publication-title: The Lancet. Global Health
  doi: 10.1016/S2214-109X(22)00358-8
– volume: 8
  start-page: 737
  year: 1990
  ident: bib193
  article-title: Structural basis of immune recognition of influenza virus hemagglutinin
  publication-title: Annual Review of Immunology
  doi: 10.1146/annurev.iy.08.040190.003513
– volume: 11
  start-page: 1037
  year: 1993
  ident: bib84
  article-title: Infection-permissive immunization with influenza virus neuraminidase prevents weight loss in infected mice
  publication-title: Vaccine
  doi: 10.1016/0264-410x(93)90130-p
– volume: 113
  start-page: E1701
  year: 2016
  ident: bib128
  article-title: Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses
  publication-title: PNAS
  doi: 10.1073/pnas.1525578113
– volume: 6
  year: 2010
  ident: bib6
  article-title: Global migration dynamics underlie evolution and persistence of human influenza A (H3N2)
  publication-title: PLOS Pathogens
  doi: 10.1371/journal.ppat.1000918
– volume: 9
  year: 2008
  ident: bib175
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-307
– volume: 4
  year: 2018
  ident: bib144
  article-title: TreeTime: maximum-likelihood phylodynamic analysis
  publication-title: Virus Evolution
  doi: 10.1093/ve/vex042
– volume: 1
  start-page: 129
  year: 2009
  ident: bib94
  article-title: Understanding the dynamics of rapidly evolving pathogens through modeling the tempo of antigenic change: influenza as a case study
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2009.05.003
– volume: 213
  start-page: 1546
  year: 2016
  ident: bib54
  article-title: Influenza vaccine effectiveness against 2009 pandemic influenza A(H1N1) virus differed by vaccine type during 2013-2014 in the United States
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiv577
– volume: 10
  year: 2012
  ident: bib8
  article-title: Canalization of the evolutionary trajectory of the human influenza virus
  publication-title: BMC Biology
  doi: 10.1186/1741-7007-10-38
– volume: 289
  start-page: 373
  year: 1981
  ident: bib192
  article-title: Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation
  publication-title: Nature
  doi: 10.1038/289373a0
– volume: 29
  start-page: 6558
  year: 2011
  ident: bib11
  article-title: Influenza vaccine effectiveness in Wisconsin during the 2007-08 season: comparison of interim and final results
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2011.07.002
– volume: 437
  start-page: 209
  year: 2005
  ident: bib46
  article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia
  publication-title: Nature
  doi: 10.1038/nature04017
– volume: 34
  start-page: 4121
  year: 2018
  ident: bib67
  article-title: Nextstrain: real-time tracking of pathogen evolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty407
– volume: 362
  start-page: 75
  year: 2018
  ident: bib39
  article-title: Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities
  publication-title: Science
  doi: 10.1126/science.aat6030
– volume: 14
  year: 2018
  ident: bib57
  article-title: Continental synchronicity of human influenza virus epidemics despite climatic variation
  publication-title: PLOS Pathogens
  doi: 10.1371/journal.ppat.1006780
– volume-title: Applied Predictive Modeling
  year: 2013
  ident: bib102
  doi: 10.1007/978-1-4614-6849-3
– volume: 296
  start-page: 115
  year: 1982
  ident: bib189
  article-title: Molecular mechanisms of variation in influenza viruses
  publication-title: Nature
  doi: 10.1038/296115a0
– volume: 22
  start-page: 105
  year: 2017
  ident: bib31
  article-title: Immune history and influenza virus susceptibility
  publication-title: Current Opinion in Virology
  doi: 10.1016/j.coviro.2016.12.004
– volume: 9
  start-page: 291
  year: 2009
  ident: bib108
  article-title: Incubation periods of acute respiratory viral infections: a systematic review
  publication-title: The Lancet. Infectious Diseases
  doi: 10.1016/S1473-3099(09)70069-6
– volume: 35
  start-page: 2831
  year: 2017
  ident: bib183
  article-title: Influenza vaccine effectiveness estimates in the Dutch population from 2003 to 2014: the test-negative design case-control study with different control groups
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2017.04.012
– volume: 6
  year: 2015
  ident: bib194
  article-title: Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice
  publication-title: mBio
  doi: 10.1128/mBio.02556-14
– volume: 13
  year: 2017
  ident: bib28
  article-title: Human mobility and the spatial transmission of influenza in the United States
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1005382
– volume-title: Software Heritage
  year: 2024
  ident: bib136
  article-title: H3N2 antigenic epi
– volume: 30
  start-page: 3059
  year: 2002
  ident: bib86
  article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkf436
– volume: 21
  start-page: 4507
  year: 2003
  ident: bib87
  article-title: A prospective, Internet-based study of the effectiveness and safety of influenza vaccination in the 2001-2002 influenza season
  publication-title: Vaccine
  doi: 10.1016/s0264-410x(03)00508-5
– volume: 106
  start-page: 3243
  year: 2009
  ident: bib150
  article-title: Absolute humidity modulates influenza survival, transmission, and seasonality
  publication-title: PNAS
  doi: 10.1073/pnas.0806852106
– volume: 22
  year: 2017
  ident: bib166
  article-title: Interim estimates of 2016/17 vaccine effectiveness against influenza A(H3N2), Canada, January 2017
  publication-title: Euro Surveillance
  doi: 10.2807/1560-7917.ES.2017.22.6.30460
– volume: 163
  start-page: 316
  year: 2006
  ident: bib65
  article-title: Patterns of influenza-associated mortality among US elderly by geographic region and virus subtype, 1968-1998
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwj040
– volume: 314
  start-page: 1898
  year: 2006
  ident: bib93
  article-title: Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans
  publication-title: Science
  doi: 10.1126/science.1132745
– volume: 8
  year: 2007
  ident: bib174
  article-title: Bias in random forest variable importance measures: illustrations, sources and a solution
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-25
– volume: 205
  start-page: 1858
  year: 2012
  ident: bib83
  article-title: Estimates of influenza vaccine effectiveness for 2007-2008 from Canada’s sentinel surveillance system: cross-protection against major and minor variants
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jis283
– volume: 22
  start-page: 3055
  year: 2003
  ident: bib120
  article-title: Estimating regression models with unknown break-points
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1545
– volume: 3
  year: 2014
  ident: bib127
  article-title: Predicting evolution from the shape of genealogical trees
  publication-title: eLife
  doi: 10.7554/eLife.03568
– volume: 7
  year: 2018
  ident: bib29
  article-title: Conjunction of factors triggering waves of seasonal influenza
  publication-title: eLife
  doi: 10.7554/eLife.30756
– year: 2023
  ident: bib197
  article-title: Global Influenza Programme: FluNet
– volume: 507
  start-page: 57
  year: 2014
  ident: bib114
  article-title: A predictive fitness model for influenza
  publication-title: Nature
  doi: 10.1038/nature13087
– volume: 56
  start-page: 152
  year: 1992
  ident: bib190
  article-title: Evolution and ecology of influenza A viruses
  publication-title: Microbiological Reviews
  doi: 10.1128/mr.56.1.152-179.1992
– volume: 325
  start-page: 197
  year: 2009
  ident: bib55
  article-title: Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans
  publication-title: Science
  doi: 10.1126/science.1176225
– volume: 3
  year: 1971
  ident: bib75
  article-title: Hong Kong influenza variant
  publication-title: British Medical Journal
  doi: 10.1136/bmj.3.5773.531-b
– volume-title: Feature engineering and selection: a practical approach for predictive models
  year: 2019
  ident: bib103
  doi: 10.1201/9781315108230
– volume: 207
  start-page: 974
  year: 2013
  ident: bib34
  article-title: Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jis935
– volume: 31
  start-page: 836
  year: 1993
  ident: bib173
  article-title: Effect of heterosubtypic immunity on infection with attenuated influenza A virus vaccines in young children
  publication-title: Journal of Clinical Microbiology
  doi: 10.1128/jcm.31.4.836-838.1993
– volume: 284
  start-page: 1655
  year: 2000
  ident: bib19
  article-title: Effectiveness and cost-benefit of influenza vaccination of healthy working adults: A randomized controlled trial
  publication-title: JAMA
  doi: 10.1001/jama.284.13.1655
– volume: 35
  start-page: 467
  year: 2004
  ident: bib111
  article-title: Spatial synchrony in population dynamics
  publication-title: Annual Review of Ecology, Evolution, and Systematics
  doi: 10.1146/annurev.ecolsys.34.011802.132516
– volume: 16
  start-page: 47
  year: 2018
  ident: bib137
  article-title: The evolution of seasonal influenza viruses
  publication-title: Nature Reviews. Microbiology
  doi: 10.1038/nrmicro.2017.118
– volume-title: Early Release of Selected Estimates Based on Data From the 2014 National Health Interview Survey
  year: 2015
  ident: bib186
– volume: 173
  start-page: 417
  year: 2018
  ident: bib30
  article-title: Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.030
– volume: 210
  start-page: 126
  year: 2014
  ident: bib163
  article-title: Influenza A/subtype and B/lineage effectiveness estimates for the 2011-2012 trivalent vaccine: cross-season and cross-lineage protection with unchanged vaccine
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiu048
– volume: 342
  start-page: 976
  year: 2013
  ident: bib92
  article-title: Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution
  publication-title: Science
  doi: 10.1126/science.1244730
– volume: 63
  start-page: 326
  year: 1969
  ident: bib148
  article-title: Independent variation in nature of hemagglutinin and neuraminidase antigens of influenza virus: distinctiveness of hemagglutinin antigen of Hong Kong-68 virus
  publication-title: PNAS
  doi: 10.1073/pnas.63.2.326
– volume: 32
  start-page: 268
  year: 2015
  ident: bib130
  article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msu300
– volume: 224
  start-page: 1500
  year: 2021
  ident: bib139
  article-title: Quantifying the impact of COVID-19 nonpharmaceutical interventions on influenza transmission in the United States
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiab485
– volume: 12
  year: 2022
  ident: bib56
  article-title: Cross-reactive immunity potentially drives global oscillation and opposed alternation patterns of seasonal influenza A viruses
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-08233-w
– volume: 427
  start-page: 111
  year: 2008
  ident: bib176
  article-title: Positive selection operates continuously on hemagglutinin during evolution of H3N2 human influenza A virus
  publication-title: Gene
  doi: 10.1016/j.gene.2008.09.012
– volume: 202
  start-page: 335
  year: 2019
  ident: bib203
  article-title: Original antigenic sin: how first exposure shapes lifelong anti-influenza virus immune responses
  publication-title: Journal of Immunology
  doi: 10.4049/jimmunol.1801149
– volume: 4
  year: 2015
  ident: bib2
  article-title: Lamprey VLRB response to influenza virus supports universal rules of immunogenicity and antigenicity
  publication-title: eLife
  doi: 10.7554/eLife.07467
– volume: 3
  year: 2014
  ident: bib9
  article-title: Integrating influenza antigenic dynamics with molecular evolution
  publication-title: eLife
  doi: 10.7554/eLife.01914
– volume: 33
  start-page: 1
  year: 2010
  ident: bib53
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v033.i01
– volume: 7
  start-page: 355
  year: 2006
  ident: bib76
  article-title: Survival ensembles
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj011
– volume: 87
  start-page: 11168
  year: 2013
  ident: bib123
  article-title: Compensatory hemagglutinin mutations alter antigenic properties of influenza viruses
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01414-13
– volume: 193
  start-page: 49
  year: 2006
  ident: bib44
  article-title: Prior H1N1 influenza infection and susceptibility of cleveland family study participants during the H2N2 pandemic of 1957: an experiment of nature
  publication-title: The Journal of Infectious Diseases
  doi: 10.1086/498980
– volume: 117
  start-page: 30547
  year: 2020
  ident: bib5
  article-title: The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections
  publication-title: PNAS
  doi: 10.1073/pnas.2013182117
– volume: 5
  year: 2013
  ident: bib146
  article-title: Temporal disaggregation of time series
  publication-title: The R Journal
  doi: 10.32614/RJ-2013-028
– volume: 6
  year: 2009
  ident: bib85
  article-title: Multiyear climate variability and dengue--El Niño southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1000168
– volume: 16
  year: 2020
  ident: bib63
  article-title: Practical considerations for measuring the effective reproductive number, Rt
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1008409
– volume: 26
  start-page: 1340
  year: 2010
  ident: bib3
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– volume: 10
  year: 2019
  ident: bib140
  article-title: Age-specific differences in the dynamics of protective immunity to influenza
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-09652-6
– volume: 7
  year: 2010
  ident: bib160
  article-title: Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1000258
– volume: 339
  start-page: 273
  year: 2005
  ident: bib18
  article-title: Immunization against influenza A virus: comparison of conventional inactivated, live-attenuated and recombinant baculovirus produced purified hemagglutinin and neuraminidase vaccines in A murine model system
  publication-title: Virology
  doi: 10.1016/j.virol.2005.06.006
– volume: 8
  start-page: 85
  year: 2014
  ident: bib72
  article-title: Challenges of selecting seasonal influenza vaccine strains for humans with diverse pre-exposure histories
  publication-title: Current Opinion in Virology
  doi: 10.1016/j.coviro.2014.07.007
– volume: 68
  start-page: 1798
  year: 2019
  ident: bib50
  article-title: Influenza vaccine effectiveness in the united states during the 2016-2017 season
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/ciy775
– volume: 134
  start-page: 384
  year: 1976
  ident: bib88
  article-title: Comparative efficacy of neuraminidase-specific and conventional influenza virus vaccines in induction of antibody to neuraminidase in humans
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/134.4.384
– volume: 15
  year: 2019
  ident: bib96
  article-title: Development and validation of influenza forecasting for 64 temperate and tropical countries
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006742
– volume: 18
  year: 2013
  ident: bib91
  article-title: Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe: results from the I-MOVE multicentre case-control study
  publication-title: Euro Surveillance
  doi: 10.2807/ese.18.05.20390-en
– volume: 57
  start-page: 289
  year: 1995
  ident: bib12
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 54
  start-page: 427
  year: 1973
  ident: bib73
  article-title: Diversity and evenness: a unifying notation and its consequences
  publication-title: Ecology
  doi: 10.2307/1934352
– volume: 76
  start-page: 1
  year: 2017
  ident: bib21
  article-title: Stan: a probabilistic programming language
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v076.i01
– volume: 12
  year: 2021
  ident: bib77
  article-title: Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-21157-9
– volume: 212
  start-page: 1191
  year: 2015
  ident: bib119
  article-title: Antibody to influenza virus neuraminidase: An independent correlate of protection
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiv195
– volume: 21
  start-page: 1776
  year: 2003
  ident: bib58
  article-title: The annual production cycle for influenza vaccine
  publication-title: Vaccine
  doi: 10.1016/s0264-410x(03)00071-9
– volume: 5
  year: 2022
  ident: bib68
  article-title: Mortality associated with influenza and respiratory syncytial virus in the US, 1999-2018
  publication-title: JAMA Network Open
  doi: 10.1001/jamanetworkopen.2022.0527
– volume: 26
  year: 2021
  ident: bib177
  article-title: Decline of influenza and respiratory syncytial virus detection in facility-based surveillance during the COVID-19 pandemic, South Africa, January to October 2020
  publication-title: Euro Surveillance
  doi: 10.2807/1560-7917.ES.2021.26.29.2001600
– year: 2023
  ident: bib25
  article-title: FluView Interactive
– volume: 8
  year: 2010
  ident: bib151
  article-title: Absolute humidity and the seasonal onset of influenza in the continental United States
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1000316
– volume: 12
  start-page: 336
  year: 2018
  ident: bib143
  article-title: Comparison of outpatient medically attended and community-level influenza-like illness-New York City, 2013-2015
  publication-title: Influenza and Other Respiratory Viruses
  doi: 10.1111/irv.12540
– volume: 31
  start-page: 181
  year: 2005
  ident: bib138
  article-title: Effectiveness of vaccine against medical consultation due to laboratory-confirmed influenza: results from a sentinel physician pilot project in British Columbia, 2004-2005
  publication-title: Canada Communicable Disease Report
– volume: 7
  year: 2016
  ident: bib124
  article-title: Age dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humans
  publication-title: mBio
  doi: 10.1128/mBio.01996-15
– volume: 22
  year: 2017
  ident: bib134
  article-title: End-of-season influenza vaccine effectiveness in adults and children, United Kingdom, 2016/17
  publication-title: Euro Surveillance
  doi: 10.2807/1560-7917.ES.2017.22.44.17-00306
– volume: 28
  start-page: 2443
  year: 2011
  ident: bib13
  article-title: The genomic rate of molecular adaptation of the human influenza A virus
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msr044
– volume: 17
  start-page: S3
  year: 1999
  ident: bib155
  article-title: The global impact of influenza on morbidity and mortality
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(99)00099-7
– volume: 186
  start-page: 601
  year: 2023
  ident: bib14
  article-title: Semi-mechanistic Bayesian modelling of COVID-19 with renewal processes
  publication-title: Journal of the Royal Statistical Society Series A
  doi: 10.1093/jrsssa/qnad030
– volume: 8
  year: 2018
  ident: bib90
  article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-28706-1
– volume: 20
  year: 2015
  ident: bib157
  article-title: Trivalent inactivated seasonal influenza vaccine effectiveness for the prevention of laboratory-confirmed influenza in a Scottish population 2000 to 2009
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES2015.20.8.21043
– volume: 25
  start-page: 2842
  year: 2007
  ident: bib158
  article-title: Estimating vaccine effectiveness against laboratory-confirmed influenza using A sentinel physician network: results from the 2005-2006 season of dual A and B vaccine mismatch in Canada
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.10.002
– volume: 9
  year: 2014
  ident: bib162
  article-title: Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0092153
– volume: 9
  year: 2020
  ident: bib78
  article-title: Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution
  publication-title: eLife
  doi: 10.7554/eLife.60067
– volume: 14
  year: 2018
  ident: bib106
  article-title: Deploying digital health data to optimize influenza surveillance at national and local scales
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1006020
– volume: 115
  start-page: 2752
  year: 2018
  ident: bib135
  article-title: Forecasting the spatial transmission of influenza in the United States
  publication-title: PNAS
  doi: 10.1073/pnas.1708856115
– volume: 10
  year: 2013
  ident: bib178
  article-title: Cross-reactive human B cell and T cell epitopes between influenza A and B viruses
  publication-title: Virology Journal
  doi: 10.1186/1743-422X-10-244
– volume: 215
  start-page: 1059
  year: 2017
  ident: bib165
  article-title: Serial vaccination and the antigenic distance hypothesis: Effects on influenza vaccine effectiveness during A(H3N2) epidemics in Canada, 2010-2011 to 2014-2015
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jix074
– volume: 11
  year: 2020
  ident: bib104
  article-title: The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-16545-6
– volume: 53
  start-page: 707
  year: 2004
  ident: bib23
  article-title: Assessment of the effectiveness of the 2003-04 influenza vaccine among children and adults—Colorado, 2003
  publication-title: MMWR. Morbidity and Mortality Weekly Report
– volume: 58
  start-page: 319
  year: 2014
  ident: bib131
  article-title: Influenza vaccine effectiveness in the 2011-2012 season: protection against each circulating virus and the effect of prior vaccination on estimates
  publication-title: Clinical Infectious Diseases
  doi: 10.1093/cid/cit736
– volume: 65
  start-page: 179
  year: 2004
  ident: bib17
  article-title: Influenza drift and epidemic size: the race between generating and escaping immunity
  publication-title: Theoretical Population Biology
  doi: 10.1016/j.tpb.2003.10.002
– volume: 232
  year: 2019
  ident: bib204
  article-title: Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.04.034
– volume: 5
  year: 2013
  ident: bib118
  article-title: Neutralizing antibodies against previously encountered influenza virus strains increase over time: A longitudinal analysis
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.3006637
– volume: 104
  start-page: 6283
  year: 2007
  ident: bib153
  article-title: Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution
  publication-title: PNAS
  doi: 10.1073/pnas.0701396104
– volume: 51
  start-page: 1370
  year: 2010
  ident: bib36
  article-title: Protective efficacy of seasonal influenza vaccination against seasonal and pandemic influenza virus infection during 2009 in Hong Kong
  publication-title: Clinical Infectious Diseases
  doi: 10.1086/657311
– volume: 8
  year: 2011
  ident: bib60
  article-title: Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: A statistical method
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1001051
– volume: 225
  start-page: 1387
  year: 2022
  ident: bib167
  article-title: Influenza vaccine effectiveness by A(H3N2) phylogenetic subcluster and prior vaccination history: 2016-2017 and 2017-2018 epidemics in Canada
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiaa138
– reference: 37873362 - medRxiv. 2024 May 22:2023.10.02.23296453. doi: 10.1101/2023.10.02.23296453.
SSID ssj0000748819
Score 2.460002
Snippet Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adolescent
Adult
Antigenic drift
Antigenic Drift and Shift - genetics
Antigenic variation
Antigens, Viral - genetics
Antigens, Viral - immunology
Child
Child, Preschool
Dominance
Epidemics
Epidemiology
Epidemiology and Global Health
Epitopes
Evolution, Molecular
Exo-a-sialidase
Genetic distance
H3N2
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Hemagglutinin Glycoproteins, Influenza Virus - immunology
Hemagglutinins
Humans
Influenza A
Influenza A Virus, H3N2 Subtype - genetics
Influenza A Virus, H3N2 Subtype - immunology
influenza virus
Influenza, Human - epidemiology
Influenza, Human - immunology
Influenza, Human - virology
Microbiology and Infectious Disease
Middle Aged
Neuraminidase - genetics
Neuraminidase - immunology
Pandemics
Pest outbreaks
Seasons
United States - epidemiology
Viruses
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23SVEhh7bgppJGlnzchoQlpDk1kEsxoxdZKE7Y9R767zOynGW3BHrpVRpjeTTSfCNrvmHsMHgdyXSaOkKrakiuqW3UunYYTXQ2NTLkBOcfF838Es6u9NVWqa98J6zQAxfFHQWwQJhdKwQFZG4IIrXOexsdaulGnk_yeVvB1LgHGzJM0ZaEPEMu8yieL1L82lJA0-64oJGp_yF4-fctyS23c_qMPZ3wIp-VcT5nj2L_gj0uFST_vGS_Zv2Q-TQXnoflIg0c-8BXa5dPVnmmglhO-Xx8dY3UNPs0VxfyM4-lMCw9VSrSr0iYExbkBYPygkFfscvTk5_H83qqmFB7MM1QQ0QdCYKl1qgEMRiFRgdEY5MOjRJBQwCvUUrrQHjhgsV8EBVzSXSNUb1me_1NH98y3qBAJUjXyQOkhNjknNlWS5OMSS5V7Mu9Ejs_0Ynnqha_Oworssa7UePdqPGKHW6EbwuLxsNi3_NsbEQy9fXYQAbRTQbR_csgKrZ_P5fdtB5XHX2JIM8LrazYx003raT8ewT7eLPOMhTqEvoBUbE3Zeo3I1EtbVXGfquY3TGKnaHu9vSL65GtO784k4q9-x8f9549kYSq8oUVqffZ3rBcxwNCRYP7MC6AOzR8DEo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXkGSmWkHgAplPgROye0rahWCHqi0l5Q5CddCWXbTfbAv2cm9gYWVVztiWKNx57PY883hBx7JwOYTl0G0fBSRFuXOkhZWhNUsDrWzGOC89eLen4pPi_kIgfc-vyscrsnjhu1XzmMkZ_wCrM-G9Gwj9c3JVaNwtvVXELjLrmH1GVo1WqhphgLuEcNHi-l5SlwnCfhyzKG9w0ca5odRzTy9d8GMv99K_mX8zl_SPYzaqSzNM0H5E7oHpH7qY7kr8fk-6wbkFVz6ahfL-NATedpv7EYX6VICLHOWX20vzLQNHsz5xfsLQ2pPCx8lerS9yBMARHShERpQqJPyOX5p29n8zLXTSidUPVQimBkACAWG8WjCF5xo6Q3Rukofc0rL4UXThrGtBWVq6zXBsNRAQujSxP4U7LXrbrwnNDaVAY0H5vohIjRmBozZxvJVFQq2liQd1slti6TimNti58tHC5Q4-2o8XbUeEGOJ-HrxKVxu9gpzsYkggTYY8Nq_aPN66n1QgswCMmN4AJ2ISNgkNY5HayRzPKCHG7nss2rsm__2FBBXk_dsJ7wksR0YbVBGTjwAgYSVUGepamfRsIb2LCU_lAQvWMUO0Pd7emWVyNnN_4YqcVe_H9cL8kDBqgJH6QweUj2hvUmvALUM9ij0bR_A01sBCg
  priority: 102
  providerName: ProQuest
Title Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States
URI https://www.ncbi.nlm.nih.gov/pubmed/39319780
https://www.proquest.com/docview/3111429492
https://www.proquest.com/docview/3109429341
https://pubmed.ncbi.nlm.nih.gov/PMC11424097
https://doaj.org/article/d48411453a434048a41f9bcc8eba52b3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD70wmAvY-tu3rqgQR-2gbNaF8t-GmlpCWUNYyyQl2EkS1oDxdkcB9Z_vyPJCUvJQ1_tIywfHel8R7a-D-DE1MJi6OSp5SVLudN5WlghUq2stLpwOTX-gPP1JB9P-dVMzPZgLcbZO3C5s7TzelLT9nb498_dF5zwiF-HErPhZ_t17uywxFql3IdDTEnSSxlc9zg_LMkS4zSIfNBTEbhMZ_Gs3v32W9kpkPjvQp73f6D8LyNdPoUnPZQkozj2z2DPNkfwKIpL3j2Hn6Om81Sb85qYdu46ohpDlivtN12JZ4lo-6N-ZHmj8NLow5hN6Edio2Ystopi9Us0JggTSYSnJMLTFzC9vPhxPk57MYW05jLvUm6VsIjOXCmZ49ZIpqQwSsnCCZOzzAhueC0UpYXmWZ1pUyi_R2W9WrpQlr2Eg2bR2NdAcpUplmWudDXnzimV--O0paDSSem0S-DT2olV3TONe8GL2worDu_xKni8Ch5P4GRj_DsSbOw2O_OjsTHxrNjhwqL9VfWTrDK84FjfCaY447g0KY6d1HVdWK0E1SyB4_VYVutIq_BNMkzKvKQJvN_cxknmv5yoxi5W3garYARGPEvgVRz6TU9YiauYLE4TKLaCYqur23ea-U0g8vYP9nxjbx7w4LfwmCKe8r-qUHEMB127su8QD3V6APtyJgdweHYx-fZ9EHYVBiH-_wEwrQ4m
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASMVCZBCGz_i5IDQ8qi2dLunVtoLCnZs05VQtuxDaP8Uv5GZvGBRxa2nSMkksWbGM9_YnhmAXVcqj6qTxl7mIpbBpnHmlYqt8drbLKTcUYLz8TgdnsrPEzXZgl9dLgwdq-xsYm2o3aykNfI9kVDWZy5z_u78R0xdo2h3tWuh0ajFkV__xJBt8fbwI8r3BecHn04-DOO2q0BcSp0uY-mN8ghTQq5FkN5pYbRyxugsKJeKxCnpZKkM55mVSZlYlxlarPHUNlwZL_C7V-AqOt59Cvb0RPdrOuiOM_SwTRqgRke950fT4N_kGEblG46v7g9wEaj992zmX87u4BbcbFEqGzRqdRu2fHUHrjV9K9d34cugWlIVz2nJ3HwalsxUji1WltZzGRWgmLdZhGxxZvDW4OVQjPkr5pt2tPjWujJ4XSAxQwTKGuTLGuR7D04vhaP3YbuaVf4hsNQkBiUd8lBKGYIxKWXq5orroHWwIYLXHROLsi1iTr00vhcYzBDHi5rjRc3xCHZ74vOmdsfFZO9JGj0JFdyub8zm34p2_hZOZhIVUAkjhUSrZyQO0pZl5q1R3IoIdjpZFq0VWBR_dDaC5_1jnL-0KWMqP1sRDQbYiLlkEsGDRvT9SESOBlJn-xFkG0qxMdTNJ9X0rK4RTj-mUmaP_j-uZ3B9eHI8KkaH46PHcIMjYqPDMFztwPZyvvJPEHEt7dNazRl8vex59RvrCEEr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcUX8bvRqitUUCFesx_Z5EHkantcbT2KWOiLxN3srj2QXL0P5P41_zpnktzpSfGtT4FkkiwzszO_2d2ZAdhxpfKoOmnsZS5iGWwaZ16p2Bqvvc1Cyh0lOH8cpoNT-eFMnW3Ar2UuDB2rXNrE2lC7cUlr5F2RUNZnLnPeDe2xiJP9_ruLHzF1kKKd1mU7jUZFjvziJ4Zv07eH-yjrF5z3Dz6_H8Rth4G4lDqdxdIb5RGyhFyLIL3TwmjljNFZUC4ViVPSyVIZzjMrkzKxLjO0cOOphbgyXuB3r8GmpqioA5t7B8OTT6sVHnTOGfrbJilQo9vu-uNR8G9yDKryNTdYdwu4DOL-e1LzL9fXvw23WszKeo2S3YENX92F600Xy8U9-NKrZlTTc1QyNxmFGTOVY9O5pdVdRuUoJm1OIZueG7zVezkQQ_6K-aY5Lb61qAxep0jMEI-yBgezBgffh9Mr4ekD6FTjym8BS01iUO4hD6WUIRiTUt5urrgOWgcbIni9ZGJRtiXNqbPG9wJDG-J4UXO8qDkewc6K-KKp5HE52R5JY0VC5bfrG-PJt6KdzYWTmUR1VMJIIdEGGomDtGWZeWsUtyKC7aUsi9YmTIs_GhzB89VjnM20RWMqP54TDYbbiMBkEsHDRvSrkYgczaXOdiPI1pRibajrT6rReV0xnH5Mhc0e_X9cz-AGzqni-HB49BhucoRvdDKGq23ozCZz_wTh18w-bfWcwdernlq_ASXORsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antigenic+drift+and+subtype+interference+shape+A%28H3N2%29+epidemic+dynamics+in+the+United+States&rft.jtitle=eLife&rft.au=Perofsky%2C+Amanda+C&rft.au=Huddleston%2C+John&rft.au=Hansen%2C+Chelsea+L&rft.au=Barnes%2C+John+R&rft.date=2024-09-25&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.91849&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon