Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method

[Display omitted] •First revision of the Williamson-Hall βcosθ-sinθ plot to β2cos2θ-sinθ and βcos2θ-sinθ.•The β2cos2θ-sinθ overestimates crystallite size when compares to HRTEM sizes.•The new βcos2θ-sinθ plot improves strain approaching the Raman standard.•The new βcos2θ-sinθ plot is the same as the...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 9; pp. 628 - 635
Main Authors Kibasomba, Pierre M., Dhlamini, Simon, Maaza, Malik, Liu, Chuan-Pu, Rashad, Mohamed M., Rayan, Diaa A., Mwakikunga, Bonex W.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •First revision of the Williamson-Hall βcosθ-sinθ plot to β2cos2θ-sinθ and βcos2θ-sinθ.•The β2cos2θ-sinθ overestimates crystallite size when compares to HRTEM sizes.•The new βcos2θ-sinθ plot improves strain approaching the Raman standard.•The new βcos2θ-sinθ plot is the same as the HRTEM on crystallite size.•The new βcos2θ-sinθ plot is better than W-H and Scherrer methods on crystallite size. The Williamson-Hall (W-H) equation, which has been used to obtain relative crystallite sizes and strains between samples since 1962, is revisited. A modified W-H equation is derived which takes into account the Scherrer equation, first published in 1918, (which traditionally gives more absolute crystallite size prediction) and strain prediction from Raman spectra. It is found that W-H crystallite sizes are on average 2.11 ± 0.01 times smaller than the sizes from Scherrer equation. Furthermore the strain from the W-H plots when compared to strain obtained from Raman spectral red-shifts yield factors whose values depend on the phases in the materials – whether anatase, rutile or brookite. Two main phases are identified in the annealing temperatures (350 °C–700 °C) chosen herein – anatase and brookite. A transition temperature of 550 °C has been found for nano-TiO2 to irreversibly transform from brookite to anatase by plotting the Raman peak shifts against the annealing temperatures. The W-H underestimation on the strain in the brookite phase gives W-H/Raman factor of 3.10 ± 0.05 whereas for the anatase phase, one gets 2.46 ± 0.03. The new βtot2cos2θ-sinθ plot and when fitted with a polynomial yield less strain but much better matching with experimental TEM crystallite sizes and the agglomerates than both the traditional Williamson-Hall and the Scherrer methods. There is greater improvement in the model when linearized – that is the βtotcos2θ-sinθ plot rather than the βtot2cos2θ-sinθ plot.
AbstractList The Williamson-Hall (W-H) equation, which has been used to obtain relative crystallite sizes and strains between samples since 1962, is revisited. A modified W-H equation is derived which takes into account the Scherrer equation, first published in 1918, (which traditionally gives more absolute crystallite size prediction) and strain prediction from Raman spectra. It is found that W-H crystallite sizes are on average 2.11 ± 0.01 times smaller than the sizes from Scherrer equation. Furthermore the strain from the W-H plots when compared to strain obtained from Raman spectral red-shifts yield factors whose values depend on the phases in the materials – whether anatase, rutile or brookite. Two main phases are identified in the annealing temperatures (350 °C–700 °C) chosen herein – anatase and brookite. A transition temperature of 550 °C has been found for nano-TiO2 to irreversibly transform from brookite to anatase by plotting the Raman peak shifts against the annealing temperatures. The W-H underestimation on the strain in the brookite phase gives W-H/Raman factor of 3.10 ± 0.05 whereas for the anatase phase, one gets 2.46 ± 0.03. The new βtot2cos2θ-sinθ plot and when fitted with a polynomial yield less strain but much better matching with experimental TEM crystallite sizes and the agglomerates than both the traditional Williamson-Hall and the Scherrer methods. There is greater improvement in the model when linearized – that is the βtotcos2θ-sinθ plot rather than the βtot2cos2θ-sinθ plot. Keywords: Williamson-Hall, Scherrer, Particle, Crystallite, Strain, Size
[Display omitted] •First revision of the Williamson-Hall βcosθ-sinθ plot to β2cos2θ-sinθ and βcos2θ-sinθ.•The β2cos2θ-sinθ overestimates crystallite size when compares to HRTEM sizes.•The new βcos2θ-sinθ plot improves strain approaching the Raman standard.•The new βcos2θ-sinθ plot is the same as the HRTEM on crystallite size.•The new βcos2θ-sinθ plot is better than W-H and Scherrer methods on crystallite size. The Williamson-Hall (W-H) equation, which has been used to obtain relative crystallite sizes and strains between samples since 1962, is revisited. A modified W-H equation is derived which takes into account the Scherrer equation, first published in 1918, (which traditionally gives more absolute crystallite size prediction) and strain prediction from Raman spectra. It is found that W-H crystallite sizes are on average 2.11 ± 0.01 times smaller than the sizes from Scherrer equation. Furthermore the strain from the W-H plots when compared to strain obtained from Raman spectral red-shifts yield factors whose values depend on the phases in the materials – whether anatase, rutile or brookite. Two main phases are identified in the annealing temperatures (350 °C–700 °C) chosen herein – anatase and brookite. A transition temperature of 550 °C has been found for nano-TiO2 to irreversibly transform from brookite to anatase by plotting the Raman peak shifts against the annealing temperatures. The W-H underestimation on the strain in the brookite phase gives W-H/Raman factor of 3.10 ± 0.05 whereas for the anatase phase, one gets 2.46 ± 0.03. The new βtot2cos2θ-sinθ plot and when fitted with a polynomial yield less strain but much better matching with experimental TEM crystallite sizes and the agglomerates than both the traditional Williamson-Hall and the Scherrer methods. There is greater improvement in the model when linearized – that is the βtotcos2θ-sinθ plot rather than the βtot2cos2θ-sinθ plot.
Author Maaza, Malik
Rayan, Diaa A.
Rashad, Mohamed M.
Mwakikunga, Bonex W.
Dhlamini, Simon
Liu, Chuan-Pu
Kibasomba, Pierre M.
Author_xml – sequence: 1
  givenname: Pierre M.
  surname: Kibasomba
  fullname: Kibasomba, Pierre M.
  organization: Department of Physics, Florida Research Centre, University of South Africa, Florida, South Africa
– sequence: 2
  givenname: Simon
  surname: Dhlamini
  fullname: Dhlamini, Simon
  organization: UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
– sequence: 3
  givenname: Malik
  surname: Maaza
  fullname: Maaza, Malik
  organization: Department of Physics, Florida Research Centre, University of South Africa, Florida, South Africa
– sequence: 4
  givenname: Chuan-Pu
  surname: Liu
  fullname: Liu, Chuan-Pu
  organization: Materials Science and Engineering, National Cheng Kung University, 1 University Rd, Tainan, Taiwan
– sequence: 5
  givenname: Mohamed M.
  surname: Rashad
  fullname: Rashad, Mohamed M.
  organization: Centre for Metallurgical Research and Development Institute, (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
– sequence: 6
  givenname: Diaa A.
  surname: Rayan
  fullname: Rayan, Diaa A.
  organization: Centre for Metallurgical Research and Development Institute, (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
– sequence: 7
  givenname: Bonex W.
  surname: Mwakikunga
  fullname: Mwakikunga, Bonex W.
  email: bmwakikunga@csir.co.za
  organization: DST/CSIR-National Centre for Nano-Structured Materials, PO Box 395 Pretoria, South Africa
BookMark eNp9kdtqFTEUhoNUsNa-gFd5AGfMYQ4Z8UZqbQuVQt2idyGTw-7azCRDEgrtrS9uZu8WxIteZbHI9yVr_W_RkQ_eIvSekpoS2n3c1RH8UjNCRU14TYh4hY4Zo7Ti_dAf_VO_Qacp7QgpVNO2lB6jPz9yVOCx8gZv91WCR4uDwxu4YdgrHxYVM-jJJuximPHm_PsHfKtmVa4uVucYkg7Lw97w-_brJ7y5szjae0iQwW9XVS6dXzBNoOYUfHWppgkvU8h4tvkumHfotVNTsqdP5wn6-e18c3ZZXd9cXJ19ua5003e54nzsnCasdY3uGs2caQQjznKhBk1IPxI6GmFa0fe6H0xHOVOcNYUqnFCMn6Crg9cEtZNLhFnFBxkUyH0jxK18GlV2g1slXI_MNNyM5SHlWkG7obGiYaa4xMGly_wpWic1ZJUh-HWfk6RErtnInVyzkWs2knBZsiko-w99_sqL0OcDZMuC7sFGmTRYr62BWEIoE8BL-F8RIqqu
CitedBy_id crossref_primary_10_1016_j_ceramint_2024_03_177
crossref_primary_10_1016_j_mseb_2022_116018
crossref_primary_10_1186_s40623_024_02028_1
crossref_primary_10_1016_j_mtcomm_2025_111510
crossref_primary_10_1021_acsomega_3c05930
crossref_primary_10_1016_j_optmat_2019_109538
crossref_primary_10_1002_pssa_202300742
crossref_primary_10_1021_acsnano_1c04774
crossref_primary_10_1016_j_chemosphere_2023_140577
crossref_primary_10_1007_s10854_020_04914_2
crossref_primary_10_1016_j_ijhydene_2020_09_053
crossref_primary_10_1016_j_wasman_2023_02_031
crossref_primary_10_1016_j_optmat_2024_115310
crossref_primary_10_1016_j_jmrt_2021_07_076
crossref_primary_10_1016_j_wear_2022_204533
crossref_primary_10_1021_jacs_9b11045
crossref_primary_10_1007_s00531_022_02284_0
crossref_primary_10_1016_j_molstruc_2024_140168
crossref_primary_10_1016_j_matlet_2022_133236
crossref_primary_10_1002_pssa_202000324
crossref_primary_10_1016_j_ijleo_2023_171495
crossref_primary_10_1016_j_jics_2023_101070
crossref_primary_10_1016_j_ceramint_2023_01_172
crossref_primary_10_1016_j_est_2022_106318
crossref_primary_10_1016_j_colcom_2021_100447
crossref_primary_10_1007_s11270_022_05877_2
crossref_primary_10_1007_s11244_022_01741_z
crossref_primary_10_1088_1361_648X_ac1093
crossref_primary_10_1002_smtd_202400793
crossref_primary_10_1186_s12951_025_03227_y
crossref_primary_10_1039_D4NJ00918E
crossref_primary_10_1016_j_matpr_2023_09_127
crossref_primary_10_1016_j_molstruc_2024_140034
crossref_primary_10_1016_j_matchemphys_2020_123512
crossref_primary_10_1088_1361_6463_ac021c
crossref_primary_10_1021_acsomega_0c05552
crossref_primary_10_1016_j_jpcs_2022_110826
crossref_primary_10_1007_s10570_020_03573_0
crossref_primary_10_1016_j_solidstatesciences_2021_106647
crossref_primary_10_1007_s11270_022_05600_1
crossref_primary_10_1016_j_electacta_2022_140802
crossref_primary_10_1002_adma_201900108
crossref_primary_10_1016_j_matpr_2020_04_131
crossref_primary_10_1007_s10854_024_13708_9
crossref_primary_10_1016_j_fuel_2025_135114
crossref_primary_10_1016_j_jallcom_2019_151650
crossref_primary_10_1002_smtd_202400685
crossref_primary_10_1007_s11771_021_4688_8
crossref_primary_10_1016_j_inoche_2024_112595
crossref_primary_10_1016_j_jclepro_2024_141635
crossref_primary_10_1016_j_nanoso_2024_101330
crossref_primary_10_1016_j_jpowsour_2018_12_065
crossref_primary_10_1007_s11356_021_12618_1
crossref_primary_10_1007_s11666_021_01207_w
crossref_primary_10_1007_s10971_022_05785_1
crossref_primary_10_1007_s11581_024_06026_x
crossref_primary_10_1016_j_ceramint_2023_08_253
crossref_primary_10_1016_j_msea_2020_138977
crossref_primary_10_3390_ma12132182
crossref_primary_10_3390_polym13050675
crossref_primary_10_1016_j_jics_2024_101255
crossref_primary_10_1007_s40243_024_00269_4
crossref_primary_10_1016_j_mseb_2023_116544
crossref_primary_10_1016_j_colsurfa_2020_125083
crossref_primary_10_1016_j_mseb_2023_116666
crossref_primary_10_1016_j_cej_2025_160092
crossref_primary_10_1111_ijac_13439
crossref_primary_10_1016_j_rinma_2023_100496
crossref_primary_10_9767_bcrec_18305
crossref_primary_10_1016_j_inoche_2024_113695
crossref_primary_10_1039_D4NJ03286A
crossref_primary_10_1016_j_ceramint_2022_10_016
crossref_primary_10_1016_j_cplett_2024_141204
crossref_primary_10_1246_cl_200825
crossref_primary_10_1016_j_electacta_2019_04_090
crossref_primary_10_1103_PhysRevApplied_14_014050
crossref_primary_10_1016_j_materresbull_2023_112328
crossref_primary_10_3390_ma16175876
crossref_primary_10_1007_s11356_023_27891_5
crossref_primary_10_1007_s13369_024_09638_7
crossref_primary_10_1016_j_ceramint_2024_10_101
crossref_primary_10_1016_j_jallcom_2023_171410
crossref_primary_10_1007_s10904_022_02409_7
crossref_primary_10_1007_s40042_023_00888_6
crossref_primary_10_1016_j_jcrysgro_2024_127646
crossref_primary_10_3390_ma16072836
crossref_primary_10_1016_j_rinma_2023_100492
crossref_primary_10_1016_j_optmat_2021_111800
crossref_primary_10_1016_j_optmat_2025_116813
crossref_primary_10_1007_s10971_021_05553_7
crossref_primary_10_1016_j_cej_2023_144138
crossref_primary_10_1016_j_inoche_2025_114158
crossref_primary_10_1149_2162_8777_ac33f1
crossref_primary_10_1016_j_apsusc_2019_144356
crossref_primary_10_3390_biomedicines10020421
crossref_primary_10_1002_aenm_202101122
crossref_primary_10_1016_j_inoche_2021_108668
crossref_primary_10_1021_acsomega_9b00262
crossref_primary_10_1016_j_ijleo_2021_167874
crossref_primary_10_1016_j_jclepro_2020_121162
crossref_primary_10_1021_acscatal_1c04587
crossref_primary_10_1016_j_apcata_2022_118995
crossref_primary_10_1016_j_physb_2023_415571
crossref_primary_10_1016_j_solidstatesciences_2023_107360
crossref_primary_10_1007_s10854_023_10381_2
crossref_primary_10_1515_ntrev_2020_0019
crossref_primary_10_1016_j_apt_2022_103639
crossref_primary_10_1002_jemt_23867
crossref_primary_10_1007_s10800_023_01999_5
crossref_primary_10_1007_s42452_022_05153_2
crossref_primary_10_1016_j_jallcom_2020_158129
crossref_primary_10_1021_acs_iecr_9b04655
crossref_primary_10_1016_j_ijleo_2021_167087
crossref_primary_10_1039_D4TC03022B
crossref_primary_10_1016_j_jics_2024_101273
crossref_primary_10_1016_j_ceramint_2024_05_255
crossref_primary_10_1016_j_jallcom_2025_179622
crossref_primary_10_1016_j_ceramint_2023_05_132
crossref_primary_10_1016_j_jallcom_2020_155651
crossref_primary_10_1002_srin_202400687
crossref_primary_10_3390_en15228520
crossref_primary_10_1007_s11244_020_01390_0
crossref_primary_10_1007_s10854_021_07119_3
crossref_primary_10_1016_j_jlumin_2024_120658
crossref_primary_10_1007_s11051_020_05084_2
crossref_primary_10_1016_j_matchemphys_2024_128959
crossref_primary_10_1088_2053_1591_abbd09
crossref_primary_10_1016_j_jes_2024_05_013
crossref_primary_10_1007_s00339_021_05090_8
crossref_primary_10_1016_j_solener_2019_04_066
crossref_primary_10_1007_s00289_023_04850_1
crossref_primary_10_1038_s41598_022_22408_5
crossref_primary_10_1016_j_ijhydene_2024_08_101
crossref_primary_10_1016_j_tsf_2021_138997
crossref_primary_10_1007_s12034_022_02843_w
crossref_primary_10_1016_j_diamond_2023_110425
crossref_primary_10_1016_j_ceramint_2023_04_107
crossref_primary_10_1063_5_0058971
crossref_primary_10_1016_j_jes_2023_04_035
crossref_primary_10_1080_24701556_2020_1835973
crossref_primary_10_3390_ma15124123
crossref_primary_10_3390_nano11092311
crossref_primary_10_1016_j_physb_2020_412555
crossref_primary_10_1007_s10854_024_13903_8
crossref_primary_10_1016_j_jallcom_2021_162723
crossref_primary_10_1016_j_physc_2020_1353728
crossref_primary_10_1016_j_diamond_2024_111050
crossref_primary_10_1016_j_jcrysgro_2024_127958
crossref_primary_10_1007_s10854_020_04950_y
crossref_primary_10_1007_s13538_021_00857_z
crossref_primary_10_1088_1361_665X_ad212a
crossref_primary_10_1016_j_jssc_2020_121215
crossref_primary_10_1016_j_rinma_2025_100666
crossref_primary_10_1007_s00339_022_05808_2
crossref_primary_10_1016_j_chemosphere_2022_133540
crossref_primary_10_1016_j_inoche_2024_113409
crossref_primary_10_1080_02670836_2018_1490857
crossref_primary_10_1016_j_molstruc_2025_141756
crossref_primary_10_1016_j_seppur_2024_127598
crossref_primary_10_1016_j_jallcom_2021_160777
crossref_primary_10_1016_j_ceramint_2023_09_019
crossref_primary_10_1021_acsami_8b18081
crossref_primary_10_1016_j_jallcom_2020_156884
crossref_primary_10_1016_j_matpr_2021_06_256
crossref_primary_10_1016_j_vacuum_2020_109655
crossref_primary_10_1021_acs_energyfuels_3c01992
crossref_primary_10_1016_j_jiec_2020_09_008
crossref_primary_10_1021_acsomega_4c02688
crossref_primary_10_1088_1402_4896_ad8272
crossref_primary_10_1016_j_snb_2021_130530
crossref_primary_10_1016_j_nxmate_2025_100490
crossref_primary_10_1007_s11356_021_17687_w
crossref_primary_10_1002_app_53075
crossref_primary_10_3390_catal10020251
crossref_primary_10_1016_j_nanoso_2024_101389
crossref_primary_10_1088_1742_6596_2312_1_012070
crossref_primary_10_1088_1402_4896_adafe6
crossref_primary_10_1007_s42452_024_05873_7
crossref_primary_10_1007_s11665_025_10930_2
crossref_primary_10_1007_s10854_024_12158_7
crossref_primary_10_1016_j_surfin_2021_101515
crossref_primary_10_1016_j_solener_2023_05_015
crossref_primary_10_1016_j_physe_2020_114153
crossref_primary_10_1021_acsaem_1c02201
crossref_primary_10_1088_1402_4896_ad03c0
crossref_primary_10_1021_acsomega_1c03581
crossref_primary_10_1016_j_heliyon_2024_e33267
crossref_primary_10_1007_s42114_024_00862_1
crossref_primary_10_1016_j_jphotochem_2024_115797
crossref_primary_10_1016_j_matchemphys_2025_130557
crossref_primary_10_1007_s42452_019_1004_4
crossref_primary_10_3390_batteries10030080
crossref_primary_10_3390_chemistry5030120
crossref_primary_10_1155_2022_1473922
crossref_primary_10_1016_j_jwpe_2024_105882
crossref_primary_10_1007_s12633_022_02040_8
crossref_primary_10_1016_j_mseb_2022_115684
crossref_primary_10_1007_s12633_023_02502_7
crossref_primary_10_1016_j_tsf_2019_137558
crossref_primary_10_1016_j_sintl_2022_100161
crossref_primary_10_1080_01411594_2021_1944630
crossref_primary_10_1007_s10854_022_09643_2
crossref_primary_10_1016_j_nanoso_2024_101274
crossref_primary_10_1007_s42452_021_04281_5
crossref_primary_10_1021_acsomega_3c05890
crossref_primary_10_1063_1_5127653
crossref_primary_10_1007_s10854_023_09899_2
crossref_primary_10_1016_j_apsusc_2020_145416
crossref_primary_10_1109_JSEN_2024_3393775
crossref_primary_10_1016_j_jmmm_2022_169809
crossref_primary_10_1007_s10854_024_12517_4
crossref_primary_10_1016_j_measurement_2019_107191
crossref_primary_10_1016_j_rineng_2024_102595
crossref_primary_10_1016_j_nanoso_2025_101436
crossref_primary_10_1016_j_triboint_2023_108868
crossref_primary_10_1038_s41598_024_78830_4
crossref_primary_10_1007_s00339_020_03919_2
crossref_primary_10_1016_j_micromeso_2022_112072
crossref_primary_10_1002_adfm_202108959
crossref_primary_10_1002_masy_202100138
crossref_primary_10_1002_slct_202001137
crossref_primary_10_1088_2053_1591_ad7dd3
crossref_primary_10_1016_j_vacuum_2022_111496
crossref_primary_10_1016_j_powtec_2020_10_092
crossref_primary_10_1016_j_jmrt_2021_10_092
crossref_primary_10_1016_j_ceramint_2024_12_152
crossref_primary_10_1016_j_conbuildmat_2020_121442
crossref_primary_10_1016_j_mtla_2020_100917
crossref_primary_10_1016_j_jallcom_2024_174009
crossref_primary_10_1016_j_matpr_2022_02_262
crossref_primary_10_1016_j_chemosphere_2021_131692
crossref_primary_10_1166_jnn_2021_19457
crossref_primary_10_1177_1747519820984729
crossref_primary_10_3390_ma13225072
crossref_primary_10_4028_p_0c9315
crossref_primary_10_1002_pi_6279
crossref_primary_10_1016_j_inoche_2024_113164
crossref_primary_10_1007_s11082_023_05517_x
crossref_primary_10_1007_s40145_020_0410_9
crossref_primary_10_3390_s22155794
crossref_primary_10_1002_inf2_12635
crossref_primary_10_1049_mna2_12038
crossref_primary_10_1039_D0NJ05596D
crossref_primary_10_1002_aenm_202304074
crossref_primary_10_1007_s13538_024_01491_1
crossref_primary_10_1038_s41598_021_82446_3
crossref_primary_10_1016_j_jallcom_2020_157931
crossref_primary_10_1016_j_micpath_2024_106595
crossref_primary_10_1007_s11051_021_05299_x
crossref_primary_10_1016_j_mtsust_2024_100772
crossref_primary_10_1186_s40543_022_00363_0
crossref_primary_10_3390_mi15121429
crossref_primary_10_1002_jobm_202300505
crossref_primary_10_1016_j_mssp_2020_105157
crossref_primary_10_3390_ijms25010681
crossref_primary_10_1016_j_mtcomm_2020_101739
crossref_primary_10_1021_acsomega_2c03139
crossref_primary_10_3390_polym16243473
crossref_primary_10_1016_j_ceramint_2022_08_003
crossref_primary_10_1021_acsomega_3c01183
crossref_primary_10_1039_D2RE00259K
crossref_primary_10_1016_j_jre_2025_02_015
crossref_primary_10_1680_jnaen_23_00087
crossref_primary_10_1016_j_jmrt_2024_10_126
crossref_primary_10_1002_chem_202401038
crossref_primary_10_1016_j_inoche_2023_111017
crossref_primary_10_1021_acs_jpcc_3c07634
crossref_primary_10_1007_s11664_018_06846_4
crossref_primary_10_1016_j_solidstatesciences_2021_106707
crossref_primary_10_3390_plasma6020025
crossref_primary_10_2174_1573413719666230720161905
crossref_primary_10_1016_j_ceramint_2024_08_239
crossref_primary_10_1016_j_jmmm_2019_165999
crossref_primary_10_1515_mt_2022_0039
crossref_primary_10_1016_j_enmm_2021_100466
crossref_primary_10_1016_j_surfin_2020_100608
crossref_primary_10_1016_j_mtcomm_2022_103889
crossref_primary_10_1007_s10854_019_02501_8
crossref_primary_10_3390_ma17071701
crossref_primary_10_1007_s10562_023_04433_9
crossref_primary_10_1016_j_surfin_2020_100609
crossref_primary_10_3390_coatings12050587
crossref_primary_10_1016_j_jmrt_2021_01_007
crossref_primary_10_1016_j_jlumin_2022_119134
crossref_primary_10_3390_nano11010238
crossref_primary_10_1016_j_molliq_2020_112499
crossref_primary_10_1016_j_jmmm_2021_168999
crossref_primary_10_1021_acs_langmuir_4c02807
crossref_primary_10_2139_ssrn_4116421
crossref_primary_10_1007_s40089_021_00338_w
crossref_primary_10_1016_j_rechem_2023_100946
crossref_primary_10_1016_j_jallcom_2020_157679
crossref_primary_10_1007_s10971_024_06558_8
crossref_primary_10_1002_cssc_202401255
crossref_primary_10_1007_s10971_020_05264_5
crossref_primary_10_1021_acs_langmuir_9b03587
crossref_primary_10_1016_j_rinp_2021_105095
crossref_primary_10_1016_j_optmat_2022_112778
crossref_primary_10_1016_j_physe_2024_116112
crossref_primary_10_1016_j_ceramint_2023_03_147
crossref_primary_10_1016_j_intermet_2019_106572
crossref_primary_10_1007_s10904_022_02319_8
crossref_primary_10_1007_s00339_022_06115_6
crossref_primary_10_1016_j_materresbull_2024_113016
crossref_primary_10_1016_j_matchemphys_2019_122219
crossref_primary_10_1016_j_chemosphere_2019_124554
crossref_primary_10_1107_S2052520622001731
crossref_primary_10_1016_j_solidstatesciences_2020_106307
crossref_primary_10_1088_2043_6254_ab8732
crossref_primary_10_1155_2022_5949086
crossref_primary_10_1039_D3NJ05399G
crossref_primary_10_1016_j_nimb_2024_165320
crossref_primary_10_1021_acs_molpharmaceut_4c00529
crossref_primary_10_1016_j_heliyon_2023_e14761
crossref_primary_10_1016_j_cej_2021_133915
crossref_primary_10_1016_j_mtchem_2021_100654
crossref_primary_10_1088_1402_4896_acd036
crossref_primary_10_1007_s11051_020_05089_x
crossref_primary_10_1016_j_eti_2022_102746
crossref_primary_10_2139_ssrn_3972669
crossref_primary_10_1016_j_tsf_2024_140526
crossref_primary_10_1149_2162_8777_ac949f
crossref_primary_10_1002_anie_201916507
crossref_primary_10_1063_5_0218434
crossref_primary_10_1063_5_0139163
crossref_primary_10_1016_j_nanoso_2024_101098
crossref_primary_10_1016_j_saa_2022_122297
crossref_primary_10_1007_s11144_021_02064_y
crossref_primary_10_1007_s10854_024_13447_x
crossref_primary_10_3390_ma16041742
crossref_primary_10_1016_j_seppur_2025_131868
crossref_primary_10_3390_molecules29153646
crossref_primary_10_1007_s10854_023_10312_1
crossref_primary_10_1016_j_physb_2023_415199
crossref_primary_10_1155_2022_7268273
crossref_primary_10_3390_catal13030523
crossref_primary_10_1177_09673911211038461
crossref_primary_10_1016_j_jciso_2021_100032
crossref_primary_10_1016_j_jlumin_2019_03_050
crossref_primary_10_1007_s00339_024_07814_y
crossref_primary_10_1063_5_0224567
crossref_primary_10_1088_1402_4896_ace138
crossref_primary_10_1007_s13538_022_01181_w
crossref_primary_10_1016_j_jphotochem_2023_114688
crossref_primary_10_1002_ange_201916507
crossref_primary_10_1088_2051_672X_ac5c68
crossref_primary_10_1149_2162_8777_acaee5
crossref_primary_10_1002_adem_202402052
crossref_primary_10_1007_s10570_022_04522_9
crossref_primary_10_1021_acsomega_2c01311
crossref_primary_10_1016_j_rechem_2024_101313
crossref_primary_10_1016_j_heliyon_2024_e26463
crossref_primary_10_1016_j_jpcs_2022_110648
crossref_primary_10_1016_j_inoche_2023_111455
crossref_primary_10_1134_S1061933X21010099
crossref_primary_10_2139_ssrn_3924370
crossref_primary_10_1007_s10853_023_09153_4
crossref_primary_10_1007_s10854_022_08027_w
crossref_primary_10_1007_s12034_023_03093_0
crossref_primary_10_1016_j_chphi_2024_100673
crossref_primary_10_1016_j_ceramint_2024_03_351
Cites_doi 10.1109/JSEN.2016.2517085
10.1016/j.jallcom.2015.08.094
10.1021/acsnano.5b04617
10.1016/j.jallcom.2017.06.336
10.1016/j.cplett.2011.11.046
10.1016/j.matlet.2014.06.008
10.1016/0001-6160(53)90006-6
10.1016/j.jallcom.2016.02.105
10.1107/S0021889803011580
10.1021/cm0403762
10.1186/1556-276X-6-320
10.1039/C6RA15685A
10.1088/1361-6633/80/1/016101
10.1063/1.4928218
10.1016/j.solidstatesciences.2010.11.024
10.1021/am2018089
10.1155/2012/904323
10.1016/j.intermet.2010.04.010
10.1088/1757-899X/75/1/012020
10.1007/s11671-009-9494-4
10.1155/2015/617130
10.3390/ma3042260
10.1016/j.matlet.2011.12.046
10.1016/j.apsusc.2012.04.073
10.1021/nn403378g
10.1166/jnn.2010.2478
10.1039/cs9962500061
10.1107/S0365110X66000628
10.1063/1.4927213
10.1103/PhysRevB.70.134102
10.1186/2251-7235-6-6
10.1016/j.ceramint.2014.07.129
10.1016/S0925-8388(00)01221-4
10.1038/nnano.2013.46
10.1126/science.1067453
ContentType Journal Article
Copyright 2018 The Authors
Copyright_xml – notice: 2018 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2018.03.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
EndPage 635
ExternalDocumentID oai_doaj_org_article_69f7c793cb2d43db820af581694e842d
10_1016_j_rinp_2018_03_008
S2211379717320466
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c476t-33b6fc025f4c64c2fd4820fe38a9c007b01bd8d5877c79d6132a3243b6b6f8a23
IEDL.DBID IXB
ISSN 2211-3797
IngestDate Wed Aug 27 01:31:56 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
Wed May 17 01:21:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Particle
Crystallite
Williamson-Hall
Scherrer
Size
Strain
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-33b6fc025f4c64c2fd4820fe38a9c007b01bd8d5877c79d6132a3243b6b6f8a23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379717320466
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_69f7c793cb2d43db820af581694e842d
crossref_citationtrail_10_1016_j_rinp_2018_03_008
crossref_primary_10_1016_j_rinp_2018_03_008
elsevier_sciencedirect_doi_10_1016_j_rinp_2018_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle Results in physics
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dhara, Giri (b0105) 2011; 6
Lobanov, Prakapenka, Prescher, Konôpkova, Liermann, Crispin (b0115) 2015; 118
Mwakikunga, Forbes, Sideras-Haddad, Scriba, Manikandan (b0200) 2010; 5
Stella, Soundararajan, Ramachandran (b0095) 2015; 5
Taziwa, Meyer, Sideras-Haddad, Erasmus, Manikandan, Mwakikunga (b0160) 2012; 2012
Fu, Liao, Liu, Xu, Yu (b0120) 2013; 7
Klug, Alexander (b0135) 1954
Izumi, Ikeda (b0050) 2014; 3
Sathyaseelan, Manikandan, Lakshmanan, Baskaran, Sivakumar (b0220) 2016; 671
Shen, Mao (b0110) 2017; 80
Gouadec G, Colomban P. Raman spectroscopy of nanomaterials: how spectra relate to disorder. Particle Size and Mechanical Properties. The open archive HAL.
Fang, Kennedy, Manikandan, Futter, Markwitz (b0180) 2012; 521
Weibel, Bouchet, Boulc'h, Knauth (b0175) 2005; 17
Halder, Wagner (b0035) 1966; 20
Sithole, Balla Ngom, Khamlich, Manikandan, Manyala, Saboungi (b0205) 2012; 258
Halder, Wagner (b0040) 1966; 9
Manikandan, Manikandan, Meenatchi, Vadivel, Jaganathan, Ladchumananandasivam (b0230) 2017; 723
Sathyaseelan, Manikandan, Sivakumar, Kennedy, Maaza (b0195) 2015; 651
Mote, Purushotham, Dole (b0015) 2012; 6
Kumar S, Tiwari N, Jha SN, Chatterjee S, Bhattacharyya D, Ghosh AK. Structural and optical properties of sol–gel derived Cr-doped ZnO diluted magnetic semiconductor nanocrystals: an EXAFS study to relate the local structure. RSC Adv 2016;Issue 109, Issue in Progress doi.org/10.1039/c6ra15685a.
Ida, Shimazaki, Hibino, Toraya (b0045) 2003; 36
Fu, Liao, Liu, Lin, Xu, Zhu (b0125) 2015; 9
Rehani, Joshi, Lad, Pratap (b0145) 2006; 44
Sikhwivhilu, Mpelane, Mwakikunga, Sinha Ray (b0165) 2012; 4
Chen, Jian, Wei, Jang, Lin (b0055) 2010; 18
Hadjiivanov, Klissurski (b0155) 1996; 25
Ferrari, Basko (b0080) 2013; 8
Bera, Qian, Tseng, Holloway (b0090) 2010; 3
Khorsand Zak, Abd Majid, Abrisham, Yousfi (b0010) 2011; 13
Scherrer (b0020) 1918; 26
Guerbous, Boukerika (b0100) 2015; 2015
Kim, Choi, Suresh, Argon (b0065) 2002; 295
Saasa, Mokwena, Dhonge, Manikandan, Kennedy, Murmu (b0225) 2015; 195
Gonçalves, Carvalho, Lima, Sasaki (b0005) 2012; 72
.
Thamaphat1 K, Limsuwan P, Ngotawornchai B. Phase Characterization of TiO2 Powder by XRD and TEM. Kasetsart J (Nat Sci) 2008;42:357–61.
Manikandan, Moodley, Ray, Panigrahi, Krishnan, Padhy (b0215) 2010; 10
Manikandan, Kavitha, Kennedy (b0190) 2014; 40
Elayaperumal, Krishnakumar, Gnanasekaran, Mani, Rayappan, Ladchumananandasivam, Maaza (b0210) 2016; 16
Kumar, Yedla (b0060) 2015; 75
Williamson, Hall (b0025) 1953; 1
Gras, Vrel, Gaffet, Bernard (b0130) 2001; 314
Tian, Atzmon (b0170) 1999; 79
Beams, Cancado, Novotny (b0075) 2015; 27
Manikandan, Murugan, Kavitha, Babu, Maaza (b0185) 2014; 131
Hearne, Zhao, Dawe, Pischedda, Maaza, Nieuwoudt (b0140) 2004; 70
Stella (10.1016/j.rinp.2018.03.008_b0095) 2015; 5
Izumi (10.1016/j.rinp.2018.03.008_b0050) 2014; 3
Beams (10.1016/j.rinp.2018.03.008_b0075) 2015; 27
Rehani (10.1016/j.rinp.2018.03.008_b0145) 2006; 44
Bera (10.1016/j.rinp.2018.03.008_b0090) 2010; 3
Fang (10.1016/j.rinp.2018.03.008_b0180) 2012; 521
10.1016/j.rinp.2018.03.008_b0030
Ferrari (10.1016/j.rinp.2018.03.008_b0080) 2013; 8
Hearne (10.1016/j.rinp.2018.03.008_b0140) 2004; 70
10.1016/j.rinp.2018.03.008_b0150
Sithole (10.1016/j.rinp.2018.03.008_b0205) 2012; 258
Kim (10.1016/j.rinp.2018.03.008_b0065) 2002; 295
Dhara (10.1016/j.rinp.2018.03.008_b0105) 2011; 6
Hadjiivanov (10.1016/j.rinp.2018.03.008_b0155) 1996; 25
Halder (10.1016/j.rinp.2018.03.008_b0040) 1966; 9
Fu (10.1016/j.rinp.2018.03.008_b0125) 2015; 9
Sikhwivhilu (10.1016/j.rinp.2018.03.008_b0165) 2012; 4
Tian (10.1016/j.rinp.2018.03.008_b0170) 1999; 79
Halder (10.1016/j.rinp.2018.03.008_b0035) 1966; 20
Manikandan (10.1016/j.rinp.2018.03.008_b0190) 2014; 40
Saasa (10.1016/j.rinp.2018.03.008_b0225) 2015; 195
Sathyaseelan (10.1016/j.rinp.2018.03.008_b0195) 2015; 651
Williamson (10.1016/j.rinp.2018.03.008_b0025) 1953; 1
Klug (10.1016/j.rinp.2018.03.008_b0135) 1954
Scherrer (10.1016/j.rinp.2018.03.008_b0020) 1918; 26
Fu (10.1016/j.rinp.2018.03.008_b0120) 2013; 7
Manikandan (10.1016/j.rinp.2018.03.008_b0215) 2010; 10
Weibel (10.1016/j.rinp.2018.03.008_b0175) 2005; 17
Chen (10.1016/j.rinp.2018.03.008_b0055) 2010; 18
Guerbous (10.1016/j.rinp.2018.03.008_b0100) 2015; 2015
Gonçalves (10.1016/j.rinp.2018.03.008_b0005) 2012; 72
10.1016/j.rinp.2018.03.008_b0085
Mwakikunga (10.1016/j.rinp.2018.03.008_b0200) 2010; 5
Manikandan (10.1016/j.rinp.2018.03.008_b0230) 2017; 723
Shen (10.1016/j.rinp.2018.03.008_b0110) 2017; 80
Mote (10.1016/j.rinp.2018.03.008_b0015) 2012; 6
Lobanov (10.1016/j.rinp.2018.03.008_b0115) 2015; 118
10.1016/j.rinp.2018.03.008_b0070
Gras (10.1016/j.rinp.2018.03.008_b0130) 2001; 314
Taziwa (10.1016/j.rinp.2018.03.008_b0160) 2012; 2012
Elayaperumal (10.1016/j.rinp.2018.03.008_b0210) 2016; 16
Kumar (10.1016/j.rinp.2018.03.008_b0060) 2015; 75
Sathyaseelan (10.1016/j.rinp.2018.03.008_b0220) 2016; 671
Ida (10.1016/j.rinp.2018.03.008_b0045) 2003; 36
Khorsand Zak (10.1016/j.rinp.2018.03.008_b0010) 2011; 13
Manikandan (10.1016/j.rinp.2018.03.008_b0185) 2014; 131
References_xml – volume: 6
  start-page: 6
  year: 2012
  ident: b0015
  article-title: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles
  publication-title: J Theor Appl Phys
– volume: 2015
  start-page: 617130
  year: 2015
  end-page: 617140
  ident: b0100
  article-title: Nanomaterial host bands effect on the photoluminescence properties of Ce-Doped YAG Nanophosphor synthesized by Sol-Gel method
  publication-title: J Nanomater
– volume: 7
  start-page: 8891
  year: 2013
  end-page: 8898
  ident: b0120
  article-title: Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires
  publication-title: ACS Nano
– volume: 4
  start-page: 1656
  year: 2012
  end-page: 1665
  ident: b0165
  article-title: Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments
  publication-title: ACS Appl Mater Interfaces
– volume: 79
  year: 1999
  ident: b0170
  article-title: Comparison of X-ray analysis methods used to determine the grain size and strain in nanocrystalline materials
  publication-title: J Phil Magazine A
– volume: 258
  start-page: 7839
  year: 2012
  end-page: 7843
  ident: b0205
  article-title: Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties
  publication-title: Appl Surf Sci
– volume: 18
  start-page: 1572
  year: 2010
  end-page: 1577
  ident: b0055
  article-title: A study of the relationship between semi-circular shear bands and pop-ins induced by indentation in bulk metallic glasses
  publication-title: Intermetallics
– volume: 118
  start-page: 035905
  year: 2015
  ident: b0115
  article-title: Pressure, stress, and strain distribution in the double-stage diamond anvil cell
  publication-title: J Appl Phys
– volume: 671
  start-page: 486
  year: 2016
  end-page: 492
  ident: b0220
  article-title: Structural, optical and morphological properties of post-growth calcined TiO2 nanopowder for opto-electronic device application: Ex-situ studies
  publication-title: J Alloy Compd
– volume: 195
  start-page: 9
  year: 2015
  ident: b0225
  article-title: Optical and structural properties of multi-wall-carbon-nanotube-modified ZnO synthesized at varying substrate temperatures for highly efficient light sensing devices
  publication-title: Sensors Transducers
– volume: 40
  start-page: 16065
  year: 2014
  end-page: 16070
  ident: b0190
  article-title: Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study
  publication-title: Ceram Int
– volume: 9
  start-page: 91
  year: 1966
  end-page: 102
  ident: b0040
  article-title: analysis of the broadening of powder pattern peaks using variance, integral breadth, and fourier coefficients of the line profile
  publication-title: Adv X-Ray Anal
– volume: 521
  start-page: 86
  year: 2012
  end-page: 90
  ident: b0180
  article-title: Morphology and characterization of TiO2 nanoparticles synthesized by arc discharge
  publication-title: Chem Phys Lett
– volume: 27
  year: 2015
  ident: b0075
  article-title: Raman characterization of defects and dopants in graphene
  publication-title: J Phys: Condens Matter
– volume: 16
  start-page: 2477
  year: 2016
  end-page: 2483
  ident: b0210
  article-title: Effective Ammonia Detection Using n-ZnO/p-NiO Heterostructured Nanofibers
  publication-title: IEEE Sens J
– volume: 80
  start-page: 016101
  year: 2017
  end-page: 101654
  ident: b0110
  article-title: High-pressure studies with X-rays using diamond anvil cells
  publication-title: Rep Prog Phys
– reference: Kumar S, Tiwari N, Jha SN, Chatterjee S, Bhattacharyya D, Ghosh AK. Structural and optical properties of sol–gel derived Cr-doped ZnO diluted magnetic semiconductor nanocrystals: an EXAFS study to relate the local structure. RSC Adv 2016;Issue 109, Issue in Progress doi.org/10.1039/c6ra15685a.
– volume: 25
  start-page: 61
  year: 1996
  end-page: 69
  ident: b0155
  article-title: Surface chemistry of titania (anatase) and titania-supported catalysts, Surface chemistry of titania (anatase) and titania-supported catalysts
  publication-title: Chem Soc Rev
– volume: 75
  year: 2015
  ident: b0060
  article-title: Mechanical and structure studies of Zr
  publication-title: IOP Conf Ser: Mater Sci Eng
– volume: 3
  start-page: 2260
  year: 2010
  end-page: 2345
  ident: b0090
  article-title: Quantum dots and their multimodal applications: a review
  publication-title: Materials
– volume: 6
  start-page: 320
  year: 2011
  ident: b0105
  article-title: Size-dependent visible absorption and fast photoluminescence decay dynamics from freestanding strained silicon nanocrystals
  publication-title: Nanoscale Res Lett
– volume: 44
  start-page: 02
  year: 2006
  ident: b0145
  article-title: Crystallite size estimation of elemental and composite silver nano-powders using XRD, principles
  publication-title: Indian J Pure Appl Phys
– volume: 5
  start-page: 087104
  year: 2015
  ident: b0095
  article-title: Structural, optical, and magnetic properties of Mn and Fe-doped Co
  publication-title: AIP Adv
– volume: 10
  start-page: 5602
  year: 2010
  end-page: 5611
  ident: b0215
  article-title: Zinc oxide epitaxial thin film deposited over carbon on various substrate by pulsed laser deposition technique
  publication-title: J Nanosci Nanotechnol
– reference: Gouadec G, Colomban P. Raman spectroscopy of nanomaterials: how spectra relate to disorder. Particle Size and Mechanical Properties. The open archive HAL.
– volume: 2012
  year: 2012
  ident: b0160
  article-title: Effect of carbon modification on the electrical, structural, and optical properties of TiO
  publication-title: Int J Photoenergy
– volume: 314
  start-page: 240
  year: 2001
  end-page: 250
  ident: b0130
  publication-title: J. Alloys Comput
– volume: 20
  start-page: 312
  year: 1966
  end-page: 313
  ident: b0035
  article-title: Separation of particle size and lattice strain in integral breadth measurements
  publication-title: a Crystallogr
– volume: 651
  start-page: 479
  year: 2015
  end-page: 482
  ident: b0195
  article-title: Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application
  publication-title: J Alloy Compd
– volume: 3
  start-page: 33
  year: 2014
  end-page: 38
  ident: b0050
  article-title: Implementation of the Williamson-Hall and Halder-Wagner methods in the RIETAN-FP
  publication-title: Adv Inst Sci Technol
– volume: 131
  start-page: 225
  year: 2014
  end-page: 228
  ident: b0185
  article-title: Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: Structural, optical and electronic properties
  publication-title: Mater Lett
– volume: 1
  start-page: 22
  year: 1953
  end-page: 31
  ident: b0025
  article-title: X-ray line broadening from filed aluminium and wolfram
  publication-title: Acta Metall
– reference: .
– volume: 723
  start-page: 1155
  year: 2017
  end-page: 1161
  ident: b0230
  article-title: Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies
  publication-title: J Alloy Compd
– volume: 8
  start-page: 235
  year: 2013
  ident: b0080
  article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene, Mat. Science (condensed-materials)
  publication-title: Nat Nanotechnol
– volume: 70
  start-page: 134102
  year: 2004
  ident: b0140
  article-title: Effect of grain size on structural transitions in anatase TiO
  publication-title: Phys Rev B
– volume: 5
  start-page: 389
  year: 2010
  ident: b0200
  article-title: Self assembly and properties of C: WO 3 nano-platelets and C: VO 2/V 2 O 5 triangular capsules produced by laser solution photolysis
  publication-title: Nanoscale Res Lett
– volume: 13
  start-page: 251
  year: 2011
  end-page: 256
  ident: b0010
  article-title: X-ray of ZnO nanoparticles by Williamson-Hall and size-strain plot methods
  publication-title: Solid State Sci
– year: 1954
  ident: b0135
  article-title: X-ray diffraction procedures for polycrystalline and amorphous materials
– volume: 295
  start-page: 654
  year: 2002
  end-page: 657
  ident: b0065
  article-title: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature
  publication-title: Science
– volume: 26
  start-page: 98
  year: 1918
  end-page: 100
  ident: b0020
  article-title: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen
  publication-title: Nachr Ges Wiss Göttingen
– reference: Thamaphat1 K, Limsuwan P, Ngotawornchai B. Phase Characterization of TiO2 Powder by XRD and TEM. Kasetsart J (Nat Sci) 2008;42:357–61.
– volume: 9
  start-page: 11960
  year: 2015
  end-page: 11967
  ident: b0125
  article-title: Strain loading mode dependent bandgap deformation potential in ZnO micro/nanowires
  publication-title: ACS Nano
– volume: 72
  start-page: 36
  year: 2012
  end-page: 38
  ident: b0005
  article-title: Size-strain study of NiO nanoparticles by X-ray powder diffraction line
  publication-title: Mater Lett
– volume: 36
  start-page: 1107
  year: 2003
  end-page: 1115
  ident: b0045
  article-title: Diffraction peak profiles from spherical crystallites with lognormal size distribution
  publication-title: J Appl Cryst
– volume: 17
  start-page: 2378
  year: 2005
  end-page: 2385
  ident: b0175
  article-title: The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders
  publication-title: Chem Mater
– volume: 16
  start-page: 2477
  issue: 8
  year: 2016
  ident: 10.1016/j.rinp.2018.03.008_b0210
  article-title: Effective Ammonia Detection Using n-ZnO/p-NiO Heterostructured Nanofibers
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2016.2517085
– volume: 651
  start-page: 479
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0195
  article-title: Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2015.08.094
– ident: 10.1016/j.rinp.2018.03.008_b0150
– volume: 9
  start-page: 11960
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0125
  article-title: Strain loading mode dependent bandgap deformation potential in ZnO micro/nanowires
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04617
– volume: 723
  start-page: 1155
  year: 2017
  ident: 10.1016/j.rinp.2018.03.008_b0230
  article-title: Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.06.336
– ident: 10.1016/j.rinp.2018.03.008_b0070
– volume: 521
  start-page: 86
  year: 2012
  ident: 10.1016/j.rinp.2018.03.008_b0180
  article-title: Morphology and characterization of TiO2 nanoparticles synthesized by arc discharge
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2011.11.046
– volume: 131
  start-page: 225
  year: 2014
  ident: 10.1016/j.rinp.2018.03.008_b0185
  article-title: Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: Structural, optical and electronic properties
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2014.06.008
– volume: 26
  start-page: 98
  year: 1918
  ident: 10.1016/j.rinp.2018.03.008_b0020
  article-title: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen
  publication-title: Nachr Ges Wiss Göttingen
– volume: 79
  issue: 8
  year: 1999
  ident: 10.1016/j.rinp.2018.03.008_b0170
  article-title: Comparison of X-ray analysis methods used to determine the grain size and strain in nanocrystalline materials
  publication-title: J Phil Magazine A
– volume: 1
  start-page: 22
  year: 1953
  ident: 10.1016/j.rinp.2018.03.008_b0025
  article-title: X-ray line broadening from filed aluminium and wolfram
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(53)90006-6
– volume: 671
  start-page: 486
  year: 2016
  ident: 10.1016/j.rinp.2018.03.008_b0220
  article-title: Structural, optical and morphological properties of post-growth calcined TiO2 nanopowder for opto-electronic device application: Ex-situ studies
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2016.02.105
– volume: 36
  start-page: 1107
  year: 2003
  ident: 10.1016/j.rinp.2018.03.008_b0045
  article-title: Diffraction peak profiles from spherical crystallites with lognormal size distribution
  publication-title: J Appl Cryst
  doi: 10.1107/S0021889803011580
– volume: 17
  start-page: 2378
  issue: 9
  year: 2005
  ident: 10.1016/j.rinp.2018.03.008_b0175
  article-title: The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders
  publication-title: Chem Mater
  doi: 10.1021/cm0403762
– volume: 6
  start-page: 320
  year: 2011
  ident: 10.1016/j.rinp.2018.03.008_b0105
  article-title: Size-dependent visible absorption and fast photoluminescence decay dynamics from freestanding strained silicon nanocrystals
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-320
– ident: 10.1016/j.rinp.2018.03.008_b0030
– ident: 10.1016/j.rinp.2018.03.008_b0085
  doi: 10.1039/C6RA15685A
– volume: 3
  start-page: 33
  year: 2014
  ident: 10.1016/j.rinp.2018.03.008_b0050
  article-title: Implementation of the Williamson-Hall and Halder-Wagner methods in the RIETAN-FP
  publication-title: Adv Inst Sci Technol
– volume: 80
  start-page: 016101
  year: 2017
  ident: 10.1016/j.rinp.2018.03.008_b0110
  article-title: High-pressure studies with X-rays using diamond anvil cells
  publication-title: Rep Prog Phys
  doi: 10.1088/1361-6633/80/1/016101
– volume: 5
  start-page: 087104
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0095
  article-title: Structural, optical, and magnetic properties of Mn and Fe-doped Co3O4 nanoparticles
  publication-title: AIP Adv
  doi: 10.1063/1.4928218
– volume: 13
  start-page: 251
  year: 2011
  ident: 10.1016/j.rinp.2018.03.008_b0010
  article-title: X-ray of ZnO nanoparticles by Williamson-Hall and size-strain plot methods
  publication-title: Solid State Sci
  doi: 10.1016/j.solidstatesciences.2010.11.024
– volume: 4
  start-page: 1656
  year: 2012
  ident: 10.1016/j.rinp.2018.03.008_b0165
  article-title: Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am2018089
– volume: 2012
  year: 2012
  ident: 10.1016/j.rinp.2018.03.008_b0160
  article-title: Effect of carbon modification on the electrical, structural, and optical properties of TiO2 electrodes and their performance in labscale dye-sensitized solar cells
  publication-title: Int J Photoenergy
  doi: 10.1155/2012/904323
– volume: 18
  start-page: 1572
  year: 2010
  ident: 10.1016/j.rinp.2018.03.008_b0055
  article-title: A study of the relationship between semi-circular shear bands and pop-ins induced by indentation in bulk metallic glasses
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.04.010
– volume: 195
  start-page: 9
  issue: 12
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0225
  article-title: Optical and structural properties of multi-wall-carbon-nanotube-modified ZnO synthesized at varying substrate temperatures for highly efficient light sensing devices
  publication-title: Sensors Transducers
– volume: 75
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0060
  article-title: Mechanical and structure studies of Zr50Cu50 glass matrix composites during nano-indentation-a molecular dynamics study
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/75/1/012020
– volume: 5
  start-page: 389
  issue: 2
  year: 2010
  ident: 10.1016/j.rinp.2018.03.008_b0200
  article-title: Self assembly and properties of C: WO 3 nano-platelets and C: VO 2/V 2 O 5 triangular capsules produced by laser solution photolysis
  publication-title: Nanoscale Res Lett
  doi: 10.1007/s11671-009-9494-4
– volume: 2015
  start-page: 617130
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0100
  article-title: Nanomaterial host bands effect on the photoluminescence properties of Ce-Doped YAG Nanophosphor synthesized by Sol-Gel method
  publication-title: J Nanomater
  doi: 10.1155/2015/617130
– volume: 3
  start-page: 2260
  year: 2010
  ident: 10.1016/j.rinp.2018.03.008_b0090
  article-title: Quantum dots and their multimodal applications: a review
  publication-title: Materials
  doi: 10.3390/ma3042260
– volume: 72
  start-page: 36
  year: 2012
  ident: 10.1016/j.rinp.2018.03.008_b0005
  article-title: Size-strain study of NiO nanoparticles by X-ray powder diffraction line
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2011.12.046
– year: 1954
  ident: 10.1016/j.rinp.2018.03.008_b0135
– volume: 258
  start-page: 7839
  issue: 20
  year: 2012
  ident: 10.1016/j.rinp.2018.03.008_b0205
  article-title: Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2012.04.073
– volume: 27
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0075
  article-title: Raman characterization of defects and dopants in graphene
  publication-title: J Phys: Condens Matter
– volume: 7
  start-page: 8891
  year: 2013
  ident: 10.1016/j.rinp.2018.03.008_b0120
  article-title: Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires
  publication-title: ACS Nano
  doi: 10.1021/nn403378g
– volume: 10
  start-page: 5602
  issue: 9
  year: 2010
  ident: 10.1016/j.rinp.2018.03.008_b0215
  article-title: Zinc oxide epitaxial thin film deposited over carbon on various substrate by pulsed laser deposition technique
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2010.2478
– volume: 25
  start-page: 61
  year: 1996
  ident: 10.1016/j.rinp.2018.03.008_b0155
  article-title: Surface chemistry of titania (anatase) and titania-supported catalysts, Surface chemistry of titania (anatase) and titania-supported catalysts
  publication-title: Chem Soc Rev
  doi: 10.1039/cs9962500061
– volume: 20
  start-page: 312
  year: 1966
  ident: 10.1016/j.rinp.2018.03.008_b0035
  article-title: Separation of particle size and lattice strain in integral breadth measurements
  publication-title: Acta Crystallogr
  doi: 10.1107/S0365110X66000628
– volume: 118
  start-page: 035905
  year: 2015
  ident: 10.1016/j.rinp.2018.03.008_b0115
  article-title: Pressure, stress, and strain distribution in the double-stage diamond anvil cell
  publication-title: J Appl Phys
  doi: 10.1063/1.4927213
– volume: 70
  start-page: 134102
  year: 2004
  ident: 10.1016/j.rinp.2018.03.008_b0140
  article-title: Effect of grain size on structural transitions in anatase TiO2: a Raman spectroscopy study at high pressure
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.70.134102
– volume: 9
  start-page: 91
  year: 1966
  ident: 10.1016/j.rinp.2018.03.008_b0040
  article-title: analysis of the broadening of powder pattern peaks using variance, integral breadth, and fourier coefficients of the line profile
  publication-title: Adv X-Ray Anal
– volume: 6
  start-page: 6
  year: 2012
  ident: 10.1016/j.rinp.2018.03.008_b0015
  article-title: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles
  publication-title: J Theor Appl Phys
  doi: 10.1186/2251-7235-6-6
– volume: 40
  start-page: 16065
  issue: 10
  year: 2014
  ident: 10.1016/j.rinp.2018.03.008_b0190
  article-title: Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2014.07.129
– volume: 314
  start-page: 240
  year: 2001
  ident: 10.1016/j.rinp.2018.03.008_b0130
  publication-title: J. Alloys Comput
  doi: 10.1016/S0925-8388(00)01221-4
– volume: 8
  start-page: 235
  year: 2013
  ident: 10.1016/j.rinp.2018.03.008_b0080
  article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene, Mat. Science (condensed-materials)
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2013.46
– volume: 44
  start-page: 02
  year: 2006
  ident: 10.1016/j.rinp.2018.03.008_b0145
  article-title: Crystallite size estimation of elemental and composite silver nano-powders using XRD, principles
  publication-title: Indian J Pure Appl Phys
– volume: 295
  start-page: 654
  year: 2002
  ident: 10.1016/j.rinp.2018.03.008_b0065
  article-title: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature
  publication-title: Science
  doi: 10.1126/science.1067453
SSID ssj0001645511
Score 2.5729423
Snippet [Display omitted] •First revision of the Williamson-Hall βcosθ-sinθ plot to β2cos2θ-sinθ and βcos2θ-sinθ.•The β2cos2θ-sinθ overestimates crystallite size when...
The Williamson-Hall (W-H) equation, which has been used to obtain relative crystallite sizes and strains between samples since 1962, is revisited. A modified...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 628
SubjectTerms Crystallite
Particle
Scherrer
Size
Strain
Williamson-Hall
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf7MGbBpPsJtl489FShCrUFnpbNrtZqdS0tPGgV_-4M5u01Eu9eNuEfYSZIfPNMvMNIRcZx7DDN14cceNxlnAP4izjRUKlvs5skHEsFO4-xZ0BfxxGw5VWX5gTVtEDV4K7jlObaDAinYWGM5OBx1I2EkGc8lzw0ODfF3zeSjDlbldiDlAAo60wRJ6-JE3qipkquWs2KpCsMhA1w-kvr-TI-1ec04rDae-Q7Rop0tvqC3fJRl7skU2Xsann--T7xXV3oKow9NWN5qOvnE4s7Y-eQ1qoAsLhOuuNYhEJ7be6V7Sn3hVMnbrmN1iS8ul2GPYebiiYDJ25anPMhcatAB3SxY3MpPA6ajym0_GkpFXj6QMyaLf69x2v7qjgaZ7EpccY1vYAzLFcx1yH1oCqfJsz0IwGtJD5QWaEiUSCMjfg6kMFiAtWwTqhQnZIGsWkyI8IDXK8ClHC-DEgBBWlglkYwaMF9TC_SYKFRKWu6cZRLmO5yCt7k6gFiVqQPpOghSa5XK6ZVmQba2ffoaKWM5Eo270A85G1gOVf5tMk0ULNssYcFZaArUZrDj_-j8NPyBZuWWWenZJGOfvIzwDjlNm5M-cfxgL2IA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_UUvBFtK14Vcs-9M1Gkuwm2RSk1KochbOgd3Bvy2Y3KydpcuZOqL76jzuz2VgL4kPfdsPOJDuzYX6zzAchnwuObkdogjThJuAs4wH4WSZIhMpDXdio4JgoPDpPhxP-c5pMV0jf7sgLcPGia4f9pCZtdfjn5u4b_PBHf2O12lmNtScj4QuWrpI3YJky7Ggw8nDf3bmkHAAC-mBxjNX7sjzzeTQvs_nHVrmS_s9M1jMzdLZJNjx-pN87hW-RlbJ-R966OE69eE8eLl3PB6pqQ6_caDG7L2lj6Xj2K6a1qsFJ9rFwFFNL6Ph09IVeqN8Kls5dSxxMVLlzHKYXJ18pHCTauhx0jJBGVoAZaX9P09TBUFUVnVfNknbtqD-Qydnp-Mcw8H0WAs2zdBkwhhk_AH4s1ynXsTWgwNCWDPSlAUMUYVQYYRKRZTrLDQCAWAEOAyqgEypm22Stbupyh9CoxAsSJUyYAm5QSS6YhRFMrU0ECwck6iUqtS9CjnKpZB9tdi1RCxK1IEMmQQsDcvBEM-9KcLy6-hgV9bQSy2e7B017Jb2AZZpb3ArTRWw4MwVsV8H3RWnOS8FjMyBJr2bpkUiHMIDV7JWXf_xPul2yjrMuBG2PrC3b23IfwM6y-ORO8CPsJfp8
  priority: 102
  providerName: Scholars Portal
Title Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method
URI https://dx.doi.org/10.1016/j.rinp.2018.03.008
https://doaj.org/article/69f7c793cb2d43db820af581694e842d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS-wwMIjwwIvoU3H1PcnBm4Ztm7RNvT19yiKsgq6wt5AmjVTWdln3HfTqH3cmTX168eClpGEmTWZCMjOdD0IOS4FqR2RZlgrLBM8FAz3LslTqIjKli0uBgcLjq2x0Jy6n6XSFnPWxMOhWGc7-7kz3p3XoGQZqDud1PbxNQHfheYG_kRPQ8jDtNhfSB_FNT__bWTIBQgHqXQjPECHEznRuXou6wbSVsQy5Tj_dTz6N_4dr6sPVc7FB1oPMSP9009okK1Xzk_zwvpvmaYu83vo6D1Q3lt771lP9UtHW0Ul9ndBGN6AYB_83iuEkdHI-PqY3-lED6NyXwcHglGc_wvTm7wmFzUMXPu4cvaJxKJATaW-baRs20rMZnc_aJe1KUG-Tu4vzydmIhdoKzIg8WzLOMcoHBB4nTCZM4iwwLXIVBx4ZkBvKKC6ttKnMc5MXFi79RIPsBViAJ3XCd8hq0zbVLqFxhUYRLW2Ugayg00JyBy14dS6VPBqQuKeoMiHxONJlpnoPsweFXFDIBRVxBVwYkKN3nHmXduNL6FNk1Dskpsz2He3iXgUCq6xwuBRuysQKbktYrob5xVkhKikSOyBpz2b1aQfCUPUXH9_7Jt4-WcO3zu3sF1ldLv5Vv0HAWZYH3jBw4PcxPMdCvgGxpPiP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKEFxQeYmFAj7ACaxNbOeFxIHSVru0W6R2K-3NOHZcpVqS1e4iVK58Ej_IjOOU9tIDUm-JYzvjGWcezjwIeVNKNDsiy9JEWiZFJhnYWZYluS4iU7q4lBgoPDlKR6fyyyyZbZA_fSwMulUG3t_xdM-tQ8swYHO4qOvhCQfbRWQF_kbmYOWlwbPyoLr4CXbb6uN4F4j8lvP9vennEQulBZiRWbpmQmCQC8h7J00qDXcWYI5cJQBEA2KzjOLS5jbJs8xkhQWZxzWoHjAKxuUasx0A378D2keG3GA82_l3sJNK0ELQ0EMAGUIYgnU6v7Jl3WCezDgPyVWvCURfN-CKXLwi6_a3yIOgpNJPHR4eko2qeUTuemdRs3pMfp_4whJUN5ae-atV_auiraPT-iunjW7AEg8OdxTjV-h0b_KeHuvvGroufN0djIa58DPMjnc_UNitdOkD3dENG6cCxZT2h0Ftw0Z6PqeLebumXc3rJ-T0VjD-lGw2bVM9IzSu8BRG5zZKQTnRSZELB1dw61ySi2hA4h6jyoRM54iXuepd2s4VUkEhFVQkFFBhQN5djll0eT5u7L2DhLrsiTm6fUO7PFMBwSotHC5FmJJbKWwJy9UAX5wWssoltwOS9GRW17Y8TFXf8PLn_znuNbk3mk4O1eH46OAFuY9POp-3bbK5Xv6oXoJ2tS5f-d1Mybfb_nz-AlxhM2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+and+grain+size+of+TiO2+nanoparticles+from+TEM%2C+Raman+spectroscopy+and+XRD%3A+The+revisiting+of+the+Williamson-Hall+plot+method&rft.jtitle=Results+in+physics&rft.au=Kibasomba%2C+Pierre+M.&rft.au=Dhlamini%2C+Simon&rft.au=Maaza%2C+Malik&rft.au=Liu%2C+Chuan-Pu&rft.date=2018-06-01&rft.pub=Elsevier+B.V&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=9&rft.spage=628&rft.epage=635&rft_id=info:doi/10.1016%2Fj.rinp.2018.03.008&rft.externalDocID=S2211379717320466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon