Performance Evaluation of the Small-Animal nanoScan PET/MRI System
nanoScan is a high-resolution integrated system for consecutive PET and MR imaging of small laboratory animals. We evaluated the performance of the system, using the NEMA NU 4-2008 protocol for the PET component and the NEMA MS 1-2007, MS 2-2008, and MS 3-2007 standards for the MR imaging component....
Saved in:
Published in | Journal of Nuclear Medicine Vol. 54; no. 10; pp. 1825 - 1832 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Nuclear Medicine
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | nanoScan is a high-resolution integrated system for consecutive PET and MR imaging of small laboratory animals. We evaluated the performance of the system, using the NEMA NU 4-2008 protocol for the PET component and the NEMA MS 1-2007, MS 2-2008, and MS 3-2007 standards for the MR imaging component.
The imaging system uses magnetically shielded position-sensitive photomultiplier tubes and a compact 1-T permanent-magnet MR imaging platform. Spatial resolution, sensitivity, counting rate capabilities, and image quality parameters were evaluated in accordance with the aforementioned NEMA standards. Further in vivo evaluation experiments complement the physical validation results.
The spatial resolution of the PET system enabled the 0.8-mm rods of a Derenzo phantom to be resolved. With point source and 2-dimensional filtered backprojection reconstruction, the resolution varied from 1.50 to 2.01 mm in full width at half maximum in the radial direction and from 1.32 to 1.65 mm in the tangential direction within the radius of 25 mm. Peak absolute sensitivity was 8.41%. Scatter fraction was 17.3% and 34.0%, and maximum noise-equivalent counting rate was 406 and 119 kcps in the mouselike and ratlike phantom, respectively. The image quality test found a nonuniformity of 3.52% and a spillover ratio of 6.2% and 5.8% in water and air, respectively. In testing of the MR imaging component, artifact-free images with high signal-to-noise ratio were recorded. Geometric distortion was below 5%, and image uniformity was at least 94.5% and 96.6% for the 60- and 35-mm radiofrequency coils, respectively.
The nanoScan integrated small-animal PET/MR imaging system has excellent spatial resolution and sensitivity. The performance characteristics of the PET and the MR imaging components are not compromised as a result of their integration onto a single platform. Because of its combination of features and performance parameters, the system provides crucial advantages for preclinical imaging studies over existing PET/CT systems, especially in neurologic and oncologic research. |
---|---|
AbstractList | nanoScan is a high-resolution integrated system for consecutive PET and MR imaging of small laboratory animals. We evaluated the performance of the system, using the NEMA NU 4-2008 protocol for the PET component and the NEMA MS 1-2007, MS 2-2008, and MS 3-2007 standards for the MR imaging component. The imaging system uses magnetically shielded position-sensitive photomultiplier tubes and a compact 1-T permanent-magnet MR imaging platform. Spatial resolution, sensitivity, counting rate capabilities, and image quality parameters were evaluated in accordance with the aforementioned NEMA standards. Further in vivo evaluation experiments complement the physical validation results. The spatial resolution of the PET system enabled the 0.8-mm rods of a Derenzo phantom to be resolved. With point source and 2-dimensional filtered backprojection reconstruction, the resolution varied from 1.50 to 2.01 mm in full width at half maximum in the radial direction and from 1.32 to 1.65 mm in the tangential direction within the radius of 25 mm. Peak absolute sensitivity was 8.41%. Scatter fraction was 17.3% and 34.0%, and maximum noise-equivalent counting rate was 406 and 119 kcps in the mouselike and ratlike phantom, respectively. The image quality test found a nonuniformity of 3.52% and a spillover ratio of 6.2% and 5.8% in water and air, respectively. In testing of the MR imaging component, artifact-free images with high signal-to-noise ratio were recorded. Geometric distortion was below 5%, and image uniformity was at least 94.5% and 96.6% for the 60- and 35-mm radiofrequency coils, respectively. The nanoScan integrated small-animal PET/MR imaging system has excellent spatial resolution and sensitivity. The performance characteristics of the PET and the MR imaging components are not compromised as a result of their integration onto a single platform. Because of its combination of features and performance parameters, the system provides crucial advantages for preclinical imaging studies over existing PET/CT systems, especially in neurologic and oncologic research. nanoScan is a high-resolution integrated system for consecutive PET and MR imaging of small laboratory animals. We evaluated the performance of the system, using the NEMA NU 4-2008 protocol for the PET component and the NEMA MS 1-2007, MS 2-2008, and MS 3-2007 standards for the MR imaging component.UNLABELLEDnanoScan is a high-resolution integrated system for consecutive PET and MR imaging of small laboratory animals. We evaluated the performance of the system, using the NEMA NU 4-2008 protocol for the PET component and the NEMA MS 1-2007, MS 2-2008, and MS 3-2007 standards for the MR imaging component.The imaging system uses magnetically shielded position-sensitive photomultiplier tubes and a compact 1-T permanent-magnet MR imaging platform. Spatial resolution, sensitivity, counting rate capabilities, and image quality parameters were evaluated in accordance with the aforementioned NEMA standards. Further in vivo evaluation experiments complement the physical validation results.METHODSThe imaging system uses magnetically shielded position-sensitive photomultiplier tubes and a compact 1-T permanent-magnet MR imaging platform. Spatial resolution, sensitivity, counting rate capabilities, and image quality parameters were evaluated in accordance with the aforementioned NEMA standards. Further in vivo evaluation experiments complement the physical validation results.The spatial resolution of the PET system enabled the 0.8-mm rods of a Derenzo phantom to be resolved. With point source and 2-dimensional filtered backprojection reconstruction, the resolution varied from 1.50 to 2.01 mm in full width at half maximum in the radial direction and from 1.32 to 1.65 mm in the tangential direction within the radius of 25 mm. Peak absolute sensitivity was 8.41%. Scatter fraction was 17.3% and 34.0%, and maximum noise-equivalent counting rate was 406 and 119 kcps in the mouselike and ratlike phantom, respectively. The image quality test found a nonuniformity of 3.52% and a spillover ratio of 6.2% and 5.8% in water and air, respectively. In testing of the MR imaging component, artifact-free images with high signal-to-noise ratio were recorded. Geometric distortion was below 5%, and image uniformity was at least 94.5% and 96.6% for the 60- and 35-mm radiofrequency coils, respectively.RESULTSThe spatial resolution of the PET system enabled the 0.8-mm rods of a Derenzo phantom to be resolved. With point source and 2-dimensional filtered backprojection reconstruction, the resolution varied from 1.50 to 2.01 mm in full width at half maximum in the radial direction and from 1.32 to 1.65 mm in the tangential direction within the radius of 25 mm. Peak absolute sensitivity was 8.41%. Scatter fraction was 17.3% and 34.0%, and maximum noise-equivalent counting rate was 406 and 119 kcps in the mouselike and ratlike phantom, respectively. The image quality test found a nonuniformity of 3.52% and a spillover ratio of 6.2% and 5.8% in water and air, respectively. In testing of the MR imaging component, artifact-free images with high signal-to-noise ratio were recorded. Geometric distortion was below 5%, and image uniformity was at least 94.5% and 96.6% for the 60- and 35-mm radiofrequency coils, respectively.The nanoScan integrated small-animal PET/MR imaging system has excellent spatial resolution and sensitivity. The performance characteristics of the PET and the MR imaging components are not compromised as a result of their integration onto a single platform. Because of its combination of features and performance parameters, the system provides crucial advantages for preclinical imaging studies over existing PET/CT systems, especially in neurologic and oncologic research.CONCLUSIONThe nanoScan integrated small-animal PET/MR imaging system has excellent spatial resolution and sensitivity. The performance characteristics of the PET and the MR imaging components are not compromised as a result of their integration onto a single platform. Because of its combination of features and performance parameters, the system provides crucial advantages for preclinical imaging studies over existing PET/CT systems, especially in neurologic and oncologic research. nanoScan is a high-resolution integrated system for consecutive PET and MR imaging of small laboratory animals. We evaluated the performance of the system, using the NEMA NU 4-2008 protocol for the PET component and the NEMA MS 1-2007, MS 2-2008, and MS 3-2007 standards for the MR imaging component. The imaging system uses magnetically shielded position-sensitive photomultiplier tubes and a compact 1-T permanent-magnet MR imaging platform. Spatial resolution, sensitivity, counting rate capabilities, and image quality parameters were evaluated in accordance with the aforementioned NEMA standards. Further in vivo evaluation experiments complement the physical validation results. The spatial resolution of the PET system enabled the 0.8-mm rods of a Derenzo phantom to be resolved. With point source and 2-dimensional filtered backprojection reconstruction, the resolution varied from 1.50 to 2.01 mm in full width at half maximum in the radial direction and from 1.32 to 1.65 mm in the tangential direction within the radius of 25 mm. Peak absolute sensitivity was 8.41%. Scatter fraction was 17.3% and 34.0%, and maximum noise-equivalent counting rate was 406 and 119 kcps in the mouselike and ratlike phantom, respectively. The image quality test found a nonuniformity of 3.52% and a spillover ratio of 6.2% and 5.8% in water and air, respectively. In testing of the MR imaging component, artifact-free images with high signal-to-noise ratio were recorded. Geometric distortion was below 5%, and image uniformity was at least 94.5% and 96.6% for the 60- and 35-mm radiofrequency coils, respectively. The nanoScan integrated small-animal PET/MR imaging system has excellent spatial resolution and sensitivity. The performance characteristics of the PET and the MR imaging components are not compromised as a result of their integration onto a single platform. Because of its combination of features and performance parameters, the system provides crucial advantages for preclinical imaging studies over existing PET/CT systems, especially in neurologic and oncologic research. |
Author | Gulyás, Balázs Häggkvist, Jenny Nagy, Kálmán Patay, Gergely Varrone, Andrea Halldin, Christer Tóth, Miklós Major, Péter Egri, Győző Farde, Lars |
Author_xml | – sequence: 1 givenname: Kálmán surname: Nagy fullname: Nagy, Kálmán – sequence: 2 givenname: Miklós surname: Tóth fullname: Tóth, Miklós – sequence: 3 givenname: Péter surname: Major fullname: Major, Péter – sequence: 4 givenname: Gergely surname: Patay fullname: Patay, Gergely – sequence: 5 givenname: Győző surname: Egri fullname: Egri, Győző – sequence: 6 givenname: Jenny surname: Häggkvist fullname: Häggkvist, Jenny – sequence: 7 givenname: Andrea surname: Varrone fullname: Varrone, Andrea – sequence: 8 givenname: Lars surname: Farde fullname: Farde, Lars – sequence: 9 givenname: Christer surname: Halldin fullname: Halldin, Christer – sequence: 10 givenname: Balázs surname: Gulyás fullname: Gulyás, Balázs |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23990683$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:127497051$$DView record from Swedish Publication Index |
BookMark | eNp1kUFv1DAQhS1URLeFH8AFReLSS1rPxHacY6m2UKmIii0SN2vi9Yosib3YCaj_vl6y5VCJgzXW6JvRm_dO2JEP3jH2Fvg5Nqq-2PppcOtzAMyv4Uq-YAsE2ZRK4fcjtuCgoJSSy2N2ktKWc6601q_YMVZNxnW1YB_uXNyEOJC3rlj-pn6isQu-CJti_OGK1UB9X176LtfCkw8rS764W95ffP56U6we0uiG1-zlhvrk3hzqKft2vby_-lTefvl4c3V5W1pRq7FE3SKBlkpWFjlBTQ2iIlprWbcOqSHgbo2tUGuwAmudTwTRNmShaSWI6pSV8970x-2m1uxiVhUfTKDOHFo_888ZiTWqKvNnM7-L4dfk0miGLlnX9-RdmJIBISrBuRAyo--fodswRZ-v2VPAFWrcC3h3oKY2-_5PwJObGahnwMaQUnQbY7vxr59jpK43wM0-NzPnZnJuZs4tT8Kzyafl_595BPyhmgc |
CODEN | JNMEAQ |
CitedBy_id | crossref_primary_10_1007_s00429_014_0970_y crossref_primary_10_1007_s11307_016_1035_9 crossref_primary_10_1088_2057_1976_aae6c2 crossref_primary_10_1126_scitranslmed_aan5662 crossref_primary_10_1186_s40658_016_0160_5 crossref_primary_10_1088_1361_6560_aa910d crossref_primary_10_1093_ijnp_pyw023 crossref_primary_10_3389_fnins_2016_00620 crossref_primary_10_3390_electronics11101542 crossref_primary_10_1016_j_jsbmb_2023_106387 crossref_primary_10_3390_cimb46050273 crossref_primary_10_1016_j_apradiso_2021_110034 crossref_primary_10_1371_journal_pone_0125917 crossref_primary_10_1088_1361_6560_ab6b44 crossref_primary_10_1088_0031_9155_60_4_R115 crossref_primary_10_1088_0031_9155_61_2_696 crossref_primary_10_1016_j_omto_2021_03_003 crossref_primary_10_1088_1361_6560_aba08c crossref_primary_10_1088_1361_6560_ab82e9 crossref_primary_10_1186_s40658_022_00483_x crossref_primary_10_1016_j_cpet_2015_10_005 crossref_primary_10_1016_j_neuroimage_2024_120748 crossref_primary_10_1007_s00213_015_3938_6 crossref_primary_10_2967_jnumed_113_129098 crossref_primary_10_1016_j_cpet_2020_06_003 crossref_primary_10_1007_s00259_015_3047_0 crossref_primary_10_1016_j_nima_2015_10_077 crossref_primary_10_1109_TRPMS_2018_2823587 crossref_primary_10_1088_1361_6560_abe558 crossref_primary_10_1186_s40658_023_00583_2 crossref_primary_10_1084_jem_20160534 crossref_primary_10_1007_s40336_020_00376_y crossref_primary_10_1007_s11307_024_01923_z crossref_primary_10_1088_0031_9155_61_22_7934 crossref_primary_10_1038_s41591_019_0478_3 crossref_primary_10_1118_1_4937784 crossref_primary_10_1158_2326_6066_CIR_20_0678 crossref_primary_10_3390_ijms232315409 crossref_primary_10_1109_TRPMS_2022_3211780 crossref_primary_10_1259_bjr_20160363 crossref_primary_10_1016_j_brainres_2017_04_001 crossref_primary_10_1155_2022_2679260 crossref_primary_10_1016_j_mad_2016_08_001 crossref_primary_10_1038_s43586_024_00330_6 crossref_primary_10_3389_fmed_2020_00529 crossref_primary_10_1007_s11307_019_01368_9 crossref_primary_10_1038_s41598_017_12670_3 crossref_primary_10_1186_s13550_021_00799_2 crossref_primary_10_1177_2045893217743122 crossref_primary_10_1002_mp_15088 crossref_primary_10_1088_2057_1976_acf936 crossref_primary_10_1088_1361_6560_ac311c crossref_primary_10_1109_TMI_2015_2427993 crossref_primary_10_1038_s41598_017_01044_4 crossref_primary_10_1002_mp_13785 crossref_primary_10_1053_j_semnuclmed_2018_02_011 crossref_primary_10_3389_fmed_2019_00039 crossref_primary_10_1016_j_biocel_2018_06_008 crossref_primary_10_1186_s13550_018_0388_2 crossref_primary_10_3389_fmed_2021_745064 crossref_primary_10_1038_s41598_021_04188_6 crossref_primary_10_1088_1361_6560_adb936 crossref_primary_10_1007_s12149_015_0966_6 crossref_primary_10_1088_1361_6560_acae17 crossref_primary_10_1088_1361_6560_aad946 crossref_primary_10_1007_s12149_024_01937_1 crossref_primary_10_2967_jnumed_116_180497 crossref_primary_10_1016_j_cmet_2016_12_006 crossref_primary_10_1007_s11307_017_1126_2 crossref_primary_10_1186_s40658_020_0279_2 crossref_primary_10_1109_TCI_2021_3059107 crossref_primary_10_3389_fmed_2022_771982 crossref_primary_10_15252_emmm_201506085 crossref_primary_10_1088_1361_6560_aacec3 crossref_primary_10_3389_fphys_2020_00154 crossref_primary_10_2174_1573405616666201012154548 crossref_primary_10_1109_TNS_2013_2294176 crossref_primary_10_3390_ijms22020951 crossref_primary_10_1186_s13550_014_0064_0 crossref_primary_10_1038_s41417_019_0081_2 crossref_primary_10_1088_1361_6560_abbc83 crossref_primary_10_1007_s11307_015_0822_z crossref_primary_10_1088_2057_1976_aa686d crossref_primary_10_1117_1_JMI_5_3_033504 crossref_primary_10_1088_1361_6560_ab8f71 crossref_primary_10_1186_s13550_019_0489_6 crossref_primary_10_1186_s40658_022_00454_2 crossref_primary_10_1371_journal_pone_0207658 crossref_primary_10_1016_j_neuroimage_2024_120513 crossref_primary_10_1088_1361_6560_aac4f7 crossref_primary_10_1186_s40658_021_00415_1 crossref_primary_10_2967_jnumed_114_150318 |
Cites_doi | 10.1109/NSSMIC.2011.6153777 10.1016/j.neubiorev.2012.01.009 10.1007/s00259-012-2177-x 10.1109/TNS.2012.2214444 10.2967/jnumed.111.088260 10.2967/jnumed.111.099382 10.1088/0031-9155/30/2/005 10.1109/NSSMIC.2010.5874491 10.1007/978-0-387-30382-6_3 10.1088/0031-9155/52/5/019 10.2967/jnumed.108.056374 10.1109/TNS.2011.2160998 10.2967/jnumed.108.055152 10.1109/NSSMIC.2009.5401698 10.2174/1381612013396871 10.1016/j.neuroimage.2009.10.036 10.1088/0266-5611/11/5/003 10.1007/s00228-003-0643-x |
ContentType | Journal Article |
Copyright | Copyright Society of Nuclear Medicine Oct 1, 2013 |
Copyright_xml | – notice: Copyright Society of Nuclear Medicine Oct 1, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 8FD FR3 K9. M7Z NAPCQ P64 7X8 ADTPV AOWAS |
DOI | 10.2967/jnumed.112.119065 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database Docstoc Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2159-662X 1535-5667 |
EndPage | 1832 |
ExternalDocumentID | oai_swepub_ki_se_527263 3095329751 23990683 10_2967_jnumed_112_119065 |
Genre | Evaluation Studies Journal Article Feature |
GroupedDBID | 123 18M 41~ 5VS 96U AAYXX ACGFO AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CITATION GX1 N9A RHI TSM U5U W8F --- -~X .55 .GJ 29L 2WC 3O- 53G 5RE 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8WZ A6W ABEFU ABSQV ABUWG ACGOD ACIWK ACPRK ADDZX ADMOG AENEX AFFNX AFKRA AFOSN AFRAH AHMBA AI. ALIPV ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EBD EBS ECM EIF EJD EMOBN EX3 F5P F9R FYUFA GNUQQ H13 HCIFZ HMCUK I-F IL9 INIJC J5H KQ8 L7B LK8 M1P M2P M2Q M7P N4W NAPCQ NPM OK1 P2P P62 PHGZT PQQKQ PROAC PSQYO Q2X R0Z RNS RWL S0X SJN SV3 TAE TR2 TUS UKHRP VH1 WH7 WOQ WOW X7M YHG YQJ ZGI ZXP 4T- 8FD FR3 K9. M7Z P64 7X8 ADTPV AOWAS PHGZM PJZUB PPXIY PQGLB PUEGO |
ID | FETCH-LOGICAL-c476t-28b2a185653c20a17a9226aad857be2a9a10ed2b46d1c427829614b9ac19b5143 |
ISSN | 0161-5505 1535-5667 |
IngestDate | Mon Aug 25 03:25:32 EDT 2025 Fri Jul 11 10:56:08 EDT 2025 Mon Jun 30 10:40:45 EDT 2025 Thu Apr 03 06:52:21 EDT 2025 Tue Jul 01 01:45:09 EDT 2025 Thu Apr 24 22:50:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | preclinical PET performance evaluation small-animal imaging PET/MR imaging multimodality imaging |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c476t-28b2a185653c20a17a9226aad857be2a9a10ed2b46d1c427829614b9ac19b5143 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | http://jnm.snmjournals.org/content/54/10/1825.full.pdf |
PMID | 23990683 |
PQID | 1441062824 |
PQPubID | 40808 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_527263 proquest_miscellaneous_1443400445 proquest_journals_1441062824 pubmed_primary_23990683 crossref_citationtrail_10_2967_jnumed_112_119065 crossref_primary_10_2967_jnumed_112_119065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of Nuclear Medicine |
PublicationTitleAlternate | J Nucl Med |
PublicationYear | 2013 |
Publisher | Society of Nuclear Medicine |
Publisher_xml | – name: Society of Nuclear Medicine |
References | 2021051712052280000_54.10.1825.3 2021051712052280000_54.10.1825.16 2021051712052280000_54.10.1825.4 Szirmay-Kalos (2021051712052280000_54.10.1825.12) 2010; 5910 2021051712052280000_54.10.1825.17 2021051712052280000_54.10.1825.5 2021051712052280000_54.10.1825.6 2021051712052280000_54.10.1825.19 2021051712052280000_54.10.1825.13 2021051712052280000_54.10.1825.1 2021051712052280000_54.10.1825.14 2021051712052280000_54.10.1825.2 2021051712052280000_54.10.1825.15 Halldin (2021051712052280000_54.10.1825.18) 1995; 36 Wang (2021051712052280000_54.10.1825.24) 2006; 47 2021051712052280000_54.10.1825.7 2021051712052280000_54.10.1825.8 Daube-Witherspoon (2021051712052280000_54.10.1825.9) 1987; 28 Tai (2021051712052280000_54.10.1825.23) 2005; 46 2021051712052280000_54.10.1825.20 2021051712052280000_54.10.1825.10 2021051712052280000_54.10.1825.21 2021051712052280000_54.10.1825.11 2021051712052280000_54.10.1825.22 |
References_xml | – volume: 5910 start-page: 433 year: 2010 ident: 2021051712052280000_54.10.1825.12 article-title: Gamma photon transport on the GPU for PET publication-title: Lect Notes Comput Sci. – ident: 2021051712052280000_54.10.1825.11 doi: 10.1109/NSSMIC.2011.6153777 – ident: 2021051712052280000_54.10.1825.4 doi: 10.1016/j.neubiorev.2012.01.009 – volume: 36 start-page: 1275 year: 1995 ident: 2021051712052280000_54.10.1825.18 article-title: Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors publication-title: J Nucl Med. – ident: 2021051712052280000_54.10.1825.3 doi: 10.1007/s00259-012-2177-x – ident: 2021051712052280000_54.10.1825.20 doi: 10.1109/TNS.2012.2214444 – ident: 2021051712052280000_54.10.1825.7 doi: 10.2967/jnumed.111.088260 – ident: 2021051712052280000_54.10.1825.13 doi: 10.2967/jnumed.111.099382 – ident: 2021051712052280000_54.10.1825.19 doi: 10.1088/0031-9155/30/2/005 – ident: 2021051712052280000_54.10.1825.16 doi: 10.1109/NSSMIC.2010.5874491 – volume: 28 start-page: 1717 year: 1987 ident: 2021051712052280000_54.10.1825.9 article-title: Treatment of axial data in three-dimensional PET publication-title: J Nucl Med. – volume: 47 start-page: 1891 year: 2006 ident: 2021051712052280000_54.10.1825.24 article-title: Performance evaluation of the GE Healthcare eXplore VISTA dual-ring small-animal PET scanner publication-title: J Nucl Med. – ident: 2021051712052280000_54.10.1825.2 doi: 10.1007/978-0-387-30382-6_3 – ident: 2021051712052280000_54.10.1825.15 doi: 10.1088/0031-9155/52/5/019 – ident: 2021051712052280000_54.10.1825.14 doi: 10.2967/jnumed.108.056374 – ident: 2021051712052280000_54.10.1825.21 doi: 10.1109/TNS.2011.2160998 – ident: 2021051712052280000_54.10.1825.22 doi: 10.2967/jnumed.108.055152 – ident: 2021051712052280000_54.10.1825.8 doi: 10.1109/NSSMIC.2009.5401698 – volume: 46 start-page: 455 year: 2005 ident: 2021051712052280000_54.10.1825.23 article-title: Performance evaluation of the microPET Focus: a third-generation microPET scanner dedicated to animal imaging publication-title: J Nucl Med. – ident: 2021051712052280000_54.10.1825.1 doi: 10.2174/1381612013396871 – ident: 2021051712052280000_54.10.1825.17 – ident: 2021051712052280000_54.10.1825.6 doi: 10.1016/j.neuroimage.2009.10.036 – ident: 2021051712052280000_54.10.1825.10 doi: 10.1088/0266-5611/11/5/003 – ident: 2021051712052280000_54.10.1825.5 doi: 10.1007/s00228-003-0643-x |
SSID | ssj0006888 ssj0062072 |
Score | 2.438553 |
Snippet | nanoScan is a high-resolution integrated system for consecutive PET and MR imaging of small laboratory animals. We evaluated the performance of the system,... |
SourceID | swepub proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1825 |
SubjectTerms | Animals Laboratory animals Magnetic Resonance Imaging - instrumentation Mice NMR Nuclear magnetic resonance Performance evaluation Positron-Emission Tomography - instrumentation Protocol Rats Signal-To-Noise Ratio Systems Integration Tomography |
Title | Performance Evaluation of the Small-Animal nanoScan PET/MRI System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23990683 https://www.proquest.com/docview/1441062824 https://www.proquest.com/docview/1443400445 http://kipublications.ki.se/Default.aspx?queryparsed=id:127497051 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgL4s1CQUFCHECmsZM48bGgRQW0VaFbqbdo7Dio7ZIgSC_99Z2J8ypdUOGw2Shx4t2ZL5N5eGYYe-lKeo9YwUsdJjxOMsGNdprbVNswLTOrQkpwXuyqnYP402FyOHZxbLNLGvPWnq3NK_kfruIx5Ctlyf4DZ4eb4gHcR_7iFjmM2yvxeG-y6n8-lO3uw_7732G14tvVEX6_qaCq91uJN1_ihIuvH7ti5VPtdMwTW_kFHpaaSgzx97aoE9qDE-_BLny7GPdf1t5RMy4OgGPvERgSyfagAZ8fM3U5iHHx2uCFVIKTaTMVo74WdA-XcCIU0YRJ1klrqRXFi48rvLygXCb86NC3jlhTBNtXcs1PcM_liUyliq6zGxLNA5Jvn7-MVeJV1vYbHX6mj2bTdFuXJruoj1wyMn6rINtqHcs77HbHjGDb8_4uu-aqe-zmomPIffZuAoFghEBQlwFCIJhCIOghECAEthAAgQfAA3bwYb58v8O7thjcxqlquMyMBFSzVBJZGYJIQaMODVBkSWqcBA0idIU0sSqEpU4q-MdFbDRYoQ3pxw_ZRlVX7jELkjCCxJKSXUBsTGxcCSVog1p6qoSVMxb2xMltVzOeWpescrQdiZ65pyfakTL39Jyx18MlP3zBlL8N3uwpnnfP1a-cTHzK7JXxjL0YTqPUo1AWVK4-bcdE9PaJ8RaPPKeG2ShbGyEQzdirDjL9mT-g6MlVBz5lt8bHYZNtND9P3TPUSRvzvAXgOQ5iiac |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+the+Small-Animal+nanoScan+PET%2FMRI+System&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Nagy%2C+K&rft.au=Toth%2C+M&rft.au=Major%2C+P&rft.au=Patay%2C+G&rft.date=2013-10-01&rft.issn=0161-5505&rft.volume=54&rft.issue=10&rft.spage=1825&rft_id=info:doi/10.2967%2Fjnumed.112.119065&rft.externalDocID=oai_swepub_ki_se_527263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon |