Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen
Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue....
Saved in:
Published in | Antibiotics (Basel) Vol. 10; no. 7; p. 839 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
10.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-6382 2079-6382 |
DOI | 10.3390/antibiotics10070839 |
Cover
Loading…
Abstract | Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic–AgNPs combinations. Overall, these results suggest the study of antibiotic–AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen. |
---|---|
AbstractList | Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic–AgNPs combinations. Overall, these results suggest the study of antibiotic–AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen. Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei . Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei . The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei . The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei . The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic–AgNPs combinations. Overall, these results suggest the study of antibiotic–AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen. Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen. |
Author | Daduang, Sakda Klaynongsruang, Sompong Thammawithan, Saengrawee Sirithongsuk, Pawinee Malawong, Sathit Wong, Pamela T. Patramanon, Rina |
AuthorAffiliation | 5 Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA 3 Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand 1 Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sathitmalawong@hotmail.com (S.M.); sunshine.sc.bc19@gmail.com (S.T.); parbiochem@gmail.com (P.S.); somkly@kku.ac.th (S.K.) 2 Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sakdad@kku.ac.th 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; ptw@umich.edu |
AuthorAffiliation_xml | – name: 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; ptw@umich.edu – name: 2 Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sakdad@kku.ac.th – name: 5 Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA – name: 1 Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sathitmalawong@hotmail.com (S.M.); sunshine.sc.bc19@gmail.com (S.T.); parbiochem@gmail.com (P.S.); somkly@kku.ac.th (S.K.) – name: 3 Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand |
Author_xml | – sequence: 1 givenname: Sathit surname: Malawong fullname: Malawong, Sathit – sequence: 2 givenname: Saengrawee surname: Thammawithan fullname: Thammawithan, Saengrawee – sequence: 3 givenname: Pawinee surname: Sirithongsuk fullname: Sirithongsuk, Pawinee – sequence: 4 givenname: Sakda surname: Daduang fullname: Daduang, Sakda – sequence: 5 givenname: Sompong surname: Klaynongsruang fullname: Klaynongsruang, Sompong – sequence: 6 givenname: Pamela T. surname: Wong fullname: Wong, Pamela T. – sequence: 7 givenname: Rina orcidid: 0000-0002-9325-2527 surname: Patramanon fullname: Patramanon, Rina |
BookMark | eNp9kk1vVCEUhm9Mja21v8ANiRs3o8DhcmFj0jRTbVI_onVNuHzMMLkDIzBNuvC_y3TGaBsjGwjnPc-b8_G8O4opuq57SfAbAInf6ljDGFINphCMByxAPulOKB7kjIOgR3-9j7uzUla4HUlAYPGsOwYGPR84Oel-fgvTrcvok45po3PjTa6geVzqaBw6by7rYHIag57Q3PtgtLlDyd9HDv5IR4u-ulJTduhmqesfoV7oEEtFdenQRzeFFGwqoaAvui7TwsUX3VOvp-LODvdp9_1yfnPxYXb9-f3Vxfn1zLCB1xkF643jA5GegrN0HFnvKaEgBDWeOk5GQgwjlnHdgxSSYSOtYCO1WBrRw2l3tefapFdqk8Na5zuVdFD3Hykv1KF2BYD7QXJwhFrmRqKpN6QfwXPcY05xY73bszbbce2scbFmPT2APozEsFSLdKsEtEHxoQFeHwA5_di2vql1KMZNk44ubYuifS8ZAKO8SV89kq7SNsfWqp2KASfDAE0l96o2qFKy88qEqmtIO_8wKYLVbmfUP3am5cKj3N-F_C_rF0jzysI |
CitedBy_id | crossref_primary_10_1007_s12011_024_04361_8 crossref_primary_10_1016_j_cej_2024_151788 crossref_primary_10_1016_j_micpath_2024_106950 crossref_primary_10_1016_j_nxmate_2025_100542 crossref_primary_10_3390_molecules27217589 crossref_primary_10_1097_QCO_0000000000000869 crossref_primary_10_26599_NBE_2023_9290010 crossref_primary_10_3390_nano12111841 crossref_primary_10_20538_1682_0363_2024_2_55_64 crossref_primary_10_3390_molecules28041603 crossref_primary_10_1016_j_micpath_2024_107087 crossref_primary_10_1016_j_procbio_2023_11_016 crossref_primary_10_1021_acsanm_1c03891 crossref_primary_10_1186_s12934_024_02508_9 crossref_primary_10_1016_j_inoche_2023_111725 crossref_primary_10_1016_j_nanoso_2025_101437 crossref_primary_10_1093_jambio_lxae046 crossref_primary_10_3390_antibiotics12030535 crossref_primary_10_1007_s10904_024_03015_5 crossref_primary_10_1021_acsanm_4c02566 crossref_primary_10_53365_nrfhh_145339 crossref_primary_10_1038_s41598_022_14550_x crossref_primary_10_3390_antibiotics12081264 crossref_primary_10_3389_fmicb_2022_1064095 crossref_primary_10_26599_NBE_2024_9290067 crossref_primary_10_1016_j_micpath_2025_107495 crossref_primary_10_3390_ijms242216183 |
Cites_doi | 10.4236/oje.2016.67043 10.1007/s12257-016-0641-3 10.1016/j.ijantimicag.2008.02.019 10.1128/JCM.01636-16 10.1016/j.nano.2009.04.006 10.1086/520219 10.2147/IDR.S35529 10.1016/S0924-8579(00)00149-7 10.1371/journal.pone.0168098 10.1007/s11468-013-9541-y 10.1128/AAC.01603-17 10.1128/AAC.43.7.1747 10.1371/journal.pntd.0002267 10.1093/jac/dkh471 10.3389/fmicb.2016.01831 10.1016/j.micpath.2005.06.001 10.1128/JB.186.12.3938-3950.2004 10.1021/acs.estlett.5b00159 10.1038/nmicrobiol.2015.8 10.1021/mp900056g 10.1371/journal.pntd.0001453 10.1073/pnas.0403302101 10.3389/fcimb.2021.656984 10.1016/j.cmi.2017.07.029 10.1128/AAC.02444-15 10.1021/acs.est.6b00998 10.1093/jac/45.1.15 10.36468/pharmaceutical-sciences.601 10.1016/j.ijantimicag.2009.05.012 10.2147/IJN.S246484 10.1126/science.1219192 10.1590/S1517-838246120140218 10.1086/318116 10.1093/jac/37.3.611 10.1016/j.mib.2018.07.006 10.1371/journal.pone.0030789 10.1371/journal.pone.0102108 10.1016/j.jinorgbio.2016.12.005 10.1039/C6EN00031B 10.1128/microbiolspec.MB-0011-2014 10.1016/j.phymed.2011.03.012 10.1038/nature03912 10.1371/journal.pbio.0060014 10.2147/IJN.S132163 10.1128/JB.184.3.849-852.2002 10.1016/S0140-6736(03)13374-0 10.1088/0957-4484/16/9/082 10.1039/C3RA44507K 10.2174/0929866522666150728115439 10.1111/1348-0421.12331 10.1007/s10989-016-9530-z 10.1590/S0103-50532010000600002 10.1073/pnas.1401876111 10.1016/S0035-9203(08)70025-7 10.1128/mSphere.00329-16 10.1186/s12951-017-0308-z 10.1016/j.resmic.2011.11.002 10.1016/j.colsurfb.2016.03.007 10.1016/S1995-7645(12)60050-9 10.1039/C4AN00978A 10.1073/pnas.1111020108 10.1128/AAC.48.5.1763-1765.2004 10.1099/jmm.0.047100-0 10.1039/C8NP00046H 10.1186/1556-276X-9-373 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7QL 7T7 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/antibiotics10070839 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) Biological Sciences Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2079-6382 |
ExternalDocumentID | oai_doaj_org_article_33057963e12d4eb1a2fc15b3f6050620 PMC8300767 10_3390_antibiotics10070839 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM 7QL 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c476t-23dfce6719f23ed2bb45f2123882cf2e61b11c41d46a5398940c9d84b2d09c853 |
IEDL.DBID | BENPR |
ISSN | 2079-6382 |
IngestDate | Wed Aug 27 01:21:38 EDT 2025 Thu Aug 21 18:34:21 EDT 2025 Fri Jul 11 15:30:21 EDT 2025 Fri Jul 25 12:06:41 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 02:09:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-23dfce6719f23ed2bb45f2123882cf2e61b11c41d46a5398940c9d84b2d09c853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9325-2527 |
OpenAccessLink | https://www.proquest.com/docview/2554361773?pq-origsite=%requestingapplication% |
PMID | 34356761 |
PQID | 2554361773 |
PQPubID | 2032437 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33057963e12d4eb1a2fc15b3f6050620 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8300767 proquest_miscellaneous_2559433426 proquest_journals_2554361773 crossref_citationtrail_10_3390_antibiotics10070839 crossref_primary_10_3390_antibiotics10070839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210710 |
PublicationDateYYYYMMDD | 2021-07-10 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210710 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Antibiotics (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | DeShazer (ref_68) 2004; 186 Duran (ref_45) 2010; 21 Cheng (ref_11) 2004; 48 Fayaz (ref_44) 2010; 6 Viktorov (ref_5) 2008; 102 Mongkolrob (ref_66) 2015; 59 Randall (ref_71) 2015; 60 Currie (ref_3) 2000; 31 ref_53 ref_52 Slavin (ref_25) 2017; 15 Smith (ref_13) 1996; 37 Cloutier (ref_49) 2018; 35 Li (ref_43) 2005; 16 Jaimee (ref_60) 2017; 168 Aka (ref_51) 2015; 46 Jain (ref_23) 2009; 6 Hwan (ref_73) 2010; 39 Dwyer (ref_54) 2014; 111 Holden (ref_32) 2004; 101 Taweechaisupapong (ref_65) 2005; 39 Ma (ref_21) 2017; 168 Mackay (ref_72) 2000; 15 Agnihotri (ref_33) 2014; 4 Marti (ref_59) 2017; 2 White (ref_2) 2003; 361 ref_69 ref_24 Sarovich (ref_9) 2012; 5 Deng (ref_30) 2016; 50 Winkler (ref_28) 2013; 5 Trinh (ref_38) 2018; 24 Kalyani (ref_40) 2019; 81 Foti (ref_55) 2012; 336 Simpson (ref_10) 1999; 29 Ma (ref_34) 2013; 8 Braga (ref_57) 2000; 45 Hemeg (ref_22) 2017; 12 Paramelle (ref_35) 2014; 139 Almaaytah (ref_18) 2016; 22 Burtnick (ref_47) 2002; 184 Kim (ref_39) 2017; 22 Behera (ref_12) 2012; 5 Haroun (ref_20) 2016; 19 Climo (ref_14) 1999; 43 Cho (ref_19) 2011; 18 Jamaran (ref_46) 2016; 6 ref_36 Hemarajata (ref_4) 2016; 54 Hoffman (ref_61) 2005; 436 Affifi (ref_42) 2017; 10 Mazur (ref_41) 2020; 15 Kanellakopoulou (ref_15) 2008; 32 Limmathurotsakul (ref_1) 2016; 1 ref_37 Amani (ref_17) 2015; 22 Msarah (ref_50) 2018; 14 Hwang (ref_31) 2012; 61 Dakal (ref_26) 2016; 7 Yang (ref_62) 2015; 2 Thibault (ref_6) 2004; 54 Naghmouchi (ref_16) 2012; 163 Yu (ref_58) 2018; 62 Froning (ref_29) 2016; 142 Ranieri (ref_56) 2018; 45 Limmathurotsakul (ref_64) 2014; 20 Chantratita (ref_7) 2011; 108 Wang (ref_27) 2016; 3 Saeki (ref_63) 2021; 11 ref_48 ref_8 Kanthawong (ref_70) 2009; 34 Gurunathan (ref_67) 2014; 9 |
References_xml | – volume: 6 start-page: 452 year: 2016 ident: ref_46 article-title: Synergistic Effect of Silver Nanoparticles with Neomycin or Gentamicin Antibiotics on Mastitis-Causing Staphylococcus aureus publication-title: Open J. Ecol. doi: 10.4236/oje.2016.67043 – volume: 5 start-page: 190 year: 2013 ident: ref_28 article-title: Silver Enhances Antibiotic Activity against Gram-Negative Bacteria publication-title: Sci. Transl. Med. – volume: 22 start-page: 210 year: 2017 ident: ref_39 article-title: Effect of the Size and Shape of Silver Nanoparticles on Bacterial Growth and Metabolism by Monitoring Optical Density and Fluorescence Intensity publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-016-0641-3 – volume: 32 start-page: 33 year: 2008 ident: ref_15 article-title: In Vitro Synergism of Beta-Lactams with Ciprofloxacin and Moxifloxacin against Genetically Distinct Multidrug-Resistant Isolates of Pseudomonas Aeruginosa publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2008.02.019 – volume: 54 start-page: 2866 year: 2016 ident: ref_4 article-title: Burkholderia Pseudomallei: Challenges for the Clinical Microbiology Laboratory publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01636-16 – volume: 6 start-page: 103 year: 2010 ident: ref_44 article-title: Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: A Study against Gram-Positive and Gram-Negative Bacteria publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2009.04.006 – volume: 168 start-page: 722 year: 2017 ident: ref_60 article-title: Subinhibitory Concentrations of Gentamicin Trigger Expression of Aac (6′)Ie-Aph (2″)Ia, Chaperones and Biofilm-Related Genes in Lactobacillus Plantarum MCC3011 publication-title: Res. Microbiol. – volume: 29 start-page: 381 year: 1999 ident: ref_10 article-title: Comparison of Imipenem and Ceftazidime as Therapy for Severe Melioidosis publication-title: Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. doi: 10.1086/520219 – volume: 5 start-page: 129 year: 2012 ident: ref_9 article-title: Development of Ceftazidime Resistance in an Acute Burkholderia Pseudomallei Infection publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S35529 – volume: 14 start-page: 435 year: 2018 ident: ref_50 article-title: Extreme Environment: Biofilms and Microbial Diversity publication-title: Malays. J. Microbiol. – volume: 15 start-page: 125 year: 2000 ident: ref_72 article-title: Comparison of Methods for Assessing Synergic Antibiotic Interactions publication-title: Int. J. Antimicrob. Agents doi: 10.1016/S0924-8579(00)00149-7 – ident: ref_37 doi: 10.1371/journal.pone.0168098 – volume: 8 start-page: 1351 year: 2013 ident: ref_34 article-title: Theoretical Study of the Local Surface Plasmon Resonance Properties of Silver Nanosphere Clusters publication-title: Plasmonics doi: 10.1007/s11468-013-9541-y – volume: 62 start-page: e01603 year: 2018 ident: ref_58 article-title: Interplay between Antibiotic Efficacy and Drug-Induced Lysis Underlies Enhanced Biofilm Formation at Subinhibitory Drug Concentrations publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01603-17 – volume: 43 start-page: 1747 year: 1999 ident: ref_14 article-title: Combinations of Vancomycin and Beta-Lactams Are Synergistic against Staphylococci with Reduced Susceptibilities to Vancomycin publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.43.7.1747 – ident: ref_69 doi: 10.1371/journal.pntd.0002267 – volume: 54 start-page: 1134 year: 2004 ident: ref_6 article-title: Antibiotic Susceptibility of 65 Isolates of Burkholderia Pseudomallei and Burkholderia Mallei to 35 Antimicrobial Agents publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkh471 – volume: 19 start-page: 1193 year: 2016 ident: ref_20 article-title: Synergistic Effect of Thymbra Spicata, L. Extracts with Antibiotics against Multidrug—Resistant Staphylococcus Aureus and Klebsiella Pneumoniae Strains publication-title: Iran. J. Basic Med. Sci. – volume: 7 start-page: 1831 year: 2016 ident: ref_26 article-title: Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01831 – volume: 39 start-page: 77 year: 2005 ident: ref_65 article-title: Virulence of Burkholderia Pseudomallei Does Not Correlate with Biofilm Formation publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2005.06.001 – volume: 186 start-page: 3938 year: 2004 ident: ref_68 article-title: Genomic Diversity of Burkholderia Pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia Mallei-Specific Prophage in B. Pseudomallei 1026b publication-title: J. Bacteriol. doi: 10.1128/JB.186.12.3938-3950.2004 – volume: 2 start-page: 221 year: 2015 ident: ref_62 article-title: Sublethal Concentrations of Silver Nanoparticles Stimulate Biofilm Development publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.5b00159 – volume: 1 start-page: 120135 year: 2016 ident: ref_1 article-title: Predicted Global Distribution of Burkholderia Pseudomallei and Burden of Melioidosis publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2015.8 – volume: 6 start-page: 1388 year: 2009 ident: ref_23 article-title: Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use publication-title: Mol. Pharm. doi: 10.1021/mp900056g – ident: ref_48 doi: 10.1371/journal.pntd.0001453 – volume: 101 start-page: 14240 year: 2004 ident: ref_32 article-title: Genomic Plasticity of the Causative Agent of Melioidosis, Burkholderia pseudomallei publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0403302101 – volume: 11 start-page: 656984 year: 2021 ident: ref_63 article-title: Subinhibitory Concentrations of Biogenic Silver Nanoparticles Affect Motility and Biofilm Formation in Pseudomonas Aeruginosa publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2021.656984 – volume: 24 start-page: 84 year: 2018 ident: ref_38 article-title: A Simple Laboratory Algorithm for Diagnosis of Melioidosis in Resource-Constrained Areas: A Study from North-Central Vietnam publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2017.07.029 – volume: 60 start-page: 1509 year: 2015 ident: ref_71 article-title: Membrane-Bound PenA β-Lactamase of Burkholderia Pseudomallei publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02444-15 – volume: 50 start-page: 8840 year: 2016 ident: ref_30 article-title: Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00998 – volume: 45 start-page: 15 year: 2000 ident: ref_57 article-title: Sub-MIC Concentrations of Cefodizime Interfere with Various Factors Affecting Bacterial Virulence publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/45.1.15 – volume: 81 start-page: 1036 year: 2019 ident: ref_40 article-title: Biosynthesis of Silver Nanoparticles Using Annona Squamosa Leaf Extract with Synergistic Antibacterial Activity publication-title: Indian J. Pharm. Sci. doi: 10.36468/pharmaceutical-sciences.601 – volume: 34 start-page: 309 year: 2009 ident: ref_70 article-title: In Vitro Susceptibility of Burkholderia Pseudomallei to Antimicrobial Peptides publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2009.05.012 – volume: 15 start-page: 3551 year: 2020 ident: ref_41 article-title: Synergistic ROS-Associated Antimicrobial Activity of Silver Nanoparticles and Gentamicin Against Staphylococcus Epidermidis publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S246484 – volume: 10 start-page: 353 year: 2017 ident: ref_42 article-title: Control of Imipenem Resistant—Klebsiella Pneumoniae Pulmonary Infection by Oral Treatment Using a Combination of Mycosynthesized Ag-Nanoparticles and Imipenem publication-title: J. Radiat. Res. Appl. Sci. – volume: 336 start-page: 315 year: 2012 ident: ref_55 article-title: Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics publication-title: Science doi: 10.1126/science.1219192 – volume: 46 start-page: 149 year: 2015 ident: ref_51 article-title: Sub-MIC of Antibiotics Induced Biofilm Formation of Pseudomonas Aeruginosa in the Presence of Chlorhexidine publication-title: J. Microbiol. Publ. Braz. Soc. Microbiol. doi: 10.1590/S1517-838246120140218 – volume: 31 start-page: 981 year: 2000 ident: ref_3 article-title: Endemic Melioidosis in Tropical Northern Australia: A 10-Year Prospective Study and Review of the Literature publication-title: Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. doi: 10.1086/318116 – volume: 37 start-page: 611 year: 1996 ident: ref_13 article-title: In-Vitro Activity of Carbapenem Antibiotics against Beta-Lactam Susceptible and Resistant Strains of Burkholderia Pseudomallei publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/37.3.611 – volume: 45 start-page: 164 year: 2018 ident: ref_56 article-title: Mechanisms of Biofilm Stimulation by Subinhibitory Concentrations of Antimicrobials publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2018.07.006 – ident: ref_8 doi: 10.1371/journal.pone.0030789 – ident: ref_24 doi: 10.1371/journal.pone.0102108 – volume: 39 start-page: 77 year: 2010 ident: ref_73 article-title: Antibacterial Activity of Silver-Nanoparticles Against Staphylococcus Aureus and Escherichia Coli publication-title: Korean J. Microbiol. Biotechnol. – volume: 168 start-page: 38 year: 2017 ident: ref_21 article-title: Synergistic Antibacterial Effect of Bi2S3 Nanospheres Combined with Ineffective Antibiotic Gentamicin against Methicillin-Resistant Staphylococcus Aureus publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2016.12.005 – volume: 3 start-page: 788 year: 2016 ident: ref_27 article-title: Enhanced Bactericidal Toxicity of Silver Nanoparticles by the Antibiotic Gentamicin publication-title: Environ. Sci. Nano doi: 10.1039/C6EN00031B – ident: ref_52 doi: 10.1128/microbiolspec.MB-0011-2014 – volume: 20 start-page: O854 year: 2014 ident: ref_64 article-title: Role of Burkholderia Pseudomallei Biofilm Formation and Lipopolysaccharide in Relapse of Melioidosis publication-title: Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. – volume: 18 start-page: 941 year: 2011 ident: ref_19 article-title: Synergistic Anti-Bacterial and Proteomic Effects of Epigallocatechin Gallate on Clinical Isolates of Imipenem-Resistant Klebsiella Pneumoniae publication-title: Phytomedicine doi: 10.1016/j.phymed.2011.03.012 – volume: 436 start-page: 1171 year: 2005 ident: ref_61 article-title: Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation publication-title: Nature doi: 10.1038/nature03912 – ident: ref_53 doi: 10.1371/journal.pbio.0060014 – volume: 12 start-page: 8211 year: 2017 ident: ref_22 article-title: Nanomaterials for Alternative Antibacterial Therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S132163 – volume: 184 start-page: 849 year: 2002 ident: ref_47 article-title: Molecular and Physical Characterization of Burkholderia Mallei O Antigens publication-title: J. Bacteriol. doi: 10.1128/JB.184.3.849-852.2002 – volume: 361 start-page: 1715 year: 2003 ident: ref_2 article-title: Melioidosis publication-title: Lancet doi: 10.1016/S0140-6736(03)13374-0 – volume: 16 start-page: 1912 year: 2005 ident: ref_43 article-title: Synergistic Antibacterial Effect of β-Lactum Antibiotic Combined with Silver Nanoparticle publication-title: Nanotechnology doi: 10.1088/0957-4484/16/9/082 – volume: 4 start-page: 3974 year: 2014 ident: ref_33 article-title: Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 Nm Using the Same Protocol and Their Antibacterial Efficacy publication-title: RSC Adv. doi: 10.1039/C3RA44507K – volume: 22 start-page: 940 year: 2015 ident: ref_17 article-title: In Vitro Synergistic Effect of the CM11 Antimicrobial Peptide in Combination with Common Antibiotics against Clinical Isolates of Six Species of Multidrug-Resistant Pathogenic Bacteria publication-title: Protein Pept. Lett. doi: 10.2174/0929866522666150728115439 – volume: 59 start-page: 653 year: 2015 ident: ref_66 article-title: Correlation between Biofilm Production, Antibiotic Susceptibility and Exopolysaccharide Composition in Burkholderia Pseudomallei BpsI, Ppk, and RpoS Mutant Strains publication-title: Microbiol. Immunol. doi: 10.1111/1348-0421.12331 – volume: 22 start-page: 497 year: 2016 ident: ref_18 article-title: In Vitro Synergistic Activities of the Hybrid Antimicrobial Peptide MelitAP-27 in Combination with Conventional Antibiotics Against Planktonic and Biofilm Forming Bacteria publication-title: Int. J. Pept. Res. Ther. doi: 10.1007/s10989-016-9530-z – volume: 21 start-page: 949 year: 2010 ident: ref_45 article-title: Potential Use of Silver Nanoparticles on Pathogenic Bacteria, Their Toxicity and Possible Mechanisms of Action publication-title: Rev. J. Braz. Chem. Soc. doi: 10.1590/S0103-50532010000600002 – volume: 111 start-page: E2100 year: 2014 ident: ref_54 article-title: Antibiotics Induce Redox-Related Physiological Alterations as Part of Their Lethality publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1401876111 – volume: 102 start-page: S103 year: 2008 ident: ref_5 article-title: High-Level Resistance to Fluoroquinolones and Cephalosporins in Burkholderia Pseudomallei and Closely Related Species publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/S0035-9203(08)70025-7 – volume: 2 start-page: e00329 year: 2017 ident: ref_59 article-title: Bacterial Lysis through Interference with Peptidoglycan Synthesis Increases Biofilm Formation by Nontypeable Haemophilus Influenzae publication-title: mSphere doi: 10.1128/mSphere.00329-16 – volume: 15 start-page: 65 year: 2017 ident: ref_25 article-title: Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-017-0308-z – volume: 163 start-page: 101 year: 2012 ident: ref_16 article-title: Antibiotic and Antimicrobial Peptide Combinations: Synergistic Inhibition of Pseudomonas Fluorescens and Antibiotic-Resistant Variants publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2011.11.002 – volume: 142 start-page: 392 year: 2016 ident: ref_29 article-title: Silver Nanoparticles Strongly Enhance and Restore Bactericidal Activity of Inactive Antibiotics against Multiresistant Enterobacteriaceae publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2016.03.007 – volume: 5 start-page: 329 year: 2012 ident: ref_12 article-title: Ceftazidime Resistance in Burkholderia Pseudomallei: First Report from India publication-title: Asian Pac. J. Trop. Med. doi: 10.1016/S1995-7645(12)60050-9 – volume: 139 start-page: 4855 year: 2014 ident: ref_35 article-title: A Rapid Method to Estimate the Concentration of Citrate Capped Silver Nanoparticles from UV-Visible Light Spectra publication-title: Analyst doi: 10.1039/C4AN00978A – volume: 108 start-page: 17165 year: 2011 ident: ref_7 article-title: Antimicrobial Resistance to Ceftazidime Involving Loss of Penicillin-Binding Protein 3 in Burkholderia Pseudomallei publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1111020108 – volume: 48 start-page: 1763 year: 2004 ident: ref_11 article-title: Outcomes of Patients with Melioidosis Treated with Meropenem publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.5.1763-1765.2004 – volume: 61 start-page: 1719 year: 2012 ident: ref_31 article-title: Synergistic Effects between Silver Nanoparticles and Antibiotics and the Mechanisms Involved publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.047100-0 – ident: ref_36 – volume: 35 start-page: 1251 year: 2018 ident: ref_49 article-title: Polysaccharides from Burkholderia Species as Targets for Vaccine Development, Immunomodulation and Chemical Synthesis publication-title: Nat. Prod. Rep. doi: 10.1039/C8NP00046H – volume: 9 start-page: 373 year: 2014 ident: ref_67 article-title: Enhanced Antibacterial and Anti-Biofilm Activities of Silver Nanoparticles against Gram-Negative and Gram-Positive Bacteria publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-373 |
SSID | ssj0000913808 |
Score | 2.3099494 |
Snippet | Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to... Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei . Due to the emerging resistance of B. pseudomallei to... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 839 |
SubjectTerms | Antibacterial activity Antibiotics Antiinfectives and antibacterials antimicrobial agent Antimicrobial agents Bacteria Burkholderia pseudomallei Ceftazidime combination Combinatorial analysis Drug resistance Fatalities Fibers Gentamicin Imipenem Infectious diseases Melioidosis Meropenem Nanoparticles Pathogens Silver silver nanoparticles Spectrum analysis Starch synergism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CmjbEbVJUKDmtifXw67gpG0IgYckDcjPWqyvY2iG7Oewh_z0zsrO7htJeerVkW9KMNN-HRp8I-WEYbv-lmIpjdCylhjkHUTCG2AAcCOVCVFD7vMkuH-TVY_q4ddUX5oR18sDdwJ0B38bjksIybiQsLDV3mqVKOMDhScYDW4eYt0WmwhpcMlEkRSczJIDXn0E7vfItah9jYgAgj3IQioJi_wBmDpMkt6LOxT7Z6-EiHXfN_Eh2bHNATqed3vRqRO83x6cWI3pKpxsl6tUn8nrnMfGZwhIK3LhPgaOTZoampmNo628fhJjgFxPUkoBv0taFkr4XtG4MvQ3Xz1j4W73cVKx_1R7AJQUISa_t3LfetAu_oFMAlS345WfycDG5_3kZ9_ctxFrm2TLmwjhts5yVjgtruFIydRjaAIVrx23GFGNaMiOzOhWo3J7o0hRScZOUGuL-Idlt2sYeEaoFmCnlLreulFyqOtFSGeDDLmNOmiIi_H3oK92LkeOdGPMKSAnaq_qDvSIyWr_01Glx_L36Odp0XRWFtMMDcK-qH_PqX-4VkeN3j6j62b2ogIZJAdAvFxH5vi6GeYmbLXVj25dQp5RCAACKSD7wpEGDhiWNnwWF70LgDmn-5X_04Cv5wDEPB8VAk2Oyu3x-sScApJbqW5gzbxqKHws priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6VcuGCyksYClok1FMM3odfB4QKSlUhFUXQSL1Z3ldrKbUhSaXmwH9nZuMkWCq9ene9490Zzzfa2W8A3ltOx38ppeJYEytl0ObQC8boGzAGIroQHdg-v2enU_XtIr3Yg01V1H4BF3eGdlRPajqffbj9vfqMBv-JIk4M2T-iCI1uOqI1pjN_BBXlA3iIriknSz3r8X74NZdcFkmxZh_639iBhwpE_gP0Ocyd_McZnRzA4x5FsuP1tj-BPdc-haPJmoZ6NWLnu1tVixE7YpMdQfXqGfz52VA-NMM_K4bMfWYcG7dXpAHsGGW9bgI_E04xJooJfCfrfGjpv4LVrWU_QlUah7PVy13H-rJuEHMyRJbszM2arrHdolmwCWLNDtX1OUxPxudfT-O-DENsVJ4tYyGtNy7LeemFdFZorVJPHg_BufHCZVxzbhS3KqtTSYTuiSltobSwSWkQDryA_bZr3UtgRgpvUuFz50sllK4To7TFMNln3CtbRCA2S1-ZnqOcSmXMKoxVaL-qO_YrgtF20K81Rcf93b_Qnm67Er92eNDNL6t-zXFwuKQrHRdWoTurUW6eapQzSZNMJBEcbjSi2uhshdGZkogIcxnBu20zmiudwdSt625Cn1JJibgognygSQOBhi1tcxWIvwtJB6f5q_snfw2PBCXeEPtncgj7y_mNe4PIaanfBmv4C8qjHVg priority: 102 providerName: Scholars Portal |
Title | Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen |
URI | https://www.proquest.com/docview/2554361773 https://www.proquest.com/docview/2559433426 https://pubmed.ncbi.nlm.nih.gov/PMC8300767 https://doaj.org/article/33057963e12d4eb1a2fc15b3f6050620 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauPRS0ZeaQpErVZw2IrGd16kCtAhVAq0oSNyi-AWWaAxkOXDgv3fG690lUsUlh9iJJxnb8409_oaQnzrH7b8CQ3G0SoVQMObACqZgG8AHQroQGdg-z8qTS_H7qriKC25DDKtczolhotZe4Rr5PkBfwcHcVvzX3X2KWaNwdzWm0HhLNmEKrsH52jycns3OV6ssyHpZZ_WCboiDf78P8jrpPHIgY4AAIJBmZJICc_8Ibo6DJV9Yn-Mt8j7CRnqw0PMH8sb0H8nebME7_TShF-tjVMOE7tHZmpH66RN5_uMwAJrCVAo-cgyFo9P-BlVOD0DWvy4QMkETU-SUgHdSb0NJ_Ara9ZqehzQ0Blrr5uuK3XXnAGRSgJL01Nw677Qf3EBnAC499M_P5PJ4enF0ksa8C6kSVTlPGddWmbLKG8u40UxKUVg0cYDGlWWmzGWeK5FrUXYFRwb3TDW6FpLprFFg_7-Qjd735iuhijOrCmYrYxvBhOwyJaQGv9iWuRW6Tghb_vpWRVJyzI1x24Jzgvpq_6OvhExWD90tODler36IOl1VRULtcMM_XLfxn8PD4VQuNznTAuxXB3LnhQQ5syIrWZaQnWWPaOMoH9p1n0zIj1UxjE_cdOl64x9DnUZwDkAoIdWoJ40EGpf07iYwfdccd0qrb683vk3eMYy0QbrPbIdszB8ezXeASnO5G8fDblhqgOupqP8BaEIa9Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNpL1ae6lLau1HLaCMd2XoeqgnbRUmC1oovELY1fEAkSIIuqPfQv9Td2Jo_dRqq4cV0764nnHY-_IeSj8fH4L8BSHKM9KTXoHHhBD3wD5EAIF6JqtM9JOD6V38-CszXyp7sLg2WVnU2sDbUpNX4j34HQVwpwt5H4cn3jYdcoPF3tWmg0YnFoF78gZas-H3wD_n7ifH80-zr22q4CnpZROPe4ME7bMPITx4U1XCkZODTgEGtqx23oK9_X0jcyzAKB-ORMJyaWihuW6Bi7RIDJ3wBiGBiCjb3RZHqy_KqDKJsxixt4IyEStgP7k6u8RMxlLEiAiCfpucC6U0AvvO0XZ_7j7fafkidtmEp3G7l6RtZs8ZxsTxuc68WQzlbXtqoh3abTFQL24gX5_SPHgmsKphty8rb0jo6KCxQxugu0XuU1ABQsMUIMC_hPWrp6pH0LmhWGntRtbyysls1XE7PzLIeglkLoSo_tZV7mpqzyik4hmC1BH16S0wfhyCuyXpSFfU2oFtzpgLvIukRyqTKmpTKQh7vQd9LEA8K7rU91C4KOvTguU0iGkF_pf_g1IMPlQ9cNBsj90_eQp8upCOBd_1DenqftnsPD9S1gYX1uJPjLDOj2AwV0soCFnA3IVicRaWtVqnSlAwPyYTkM9gAPebLClnf1nEQKAYHXgEQ9SeoR1B8p8osaWTwWeDIbbd6_-HvyaDw7PkqPDiaHb8hjjlU-CDXKtsj6_PbOvoUwba7etbpByc-HVse_-KdVFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IJ4i0IKRoKeNNrGd1wGhlu6qpbCKSiv1FuJXG6kkbbMV2gN_jF_HTB67REK99bp21o7HM_NNPP6GkPfax-O_AFNxtHKFUKBz4AVd8A0QAyFdiGzYPufhwan4chacbZA__V0YTKvsbWJjqHWl8Bv5BKCv4OBuIz6xXVpEuj_7dHXtYgUpPGnty2m0W-TILH9B-FZ_PNwHWX9gbDY9-XzgdhUGXCWicOEyrq0yYeQnlnGjmZQisGjMAXcqy0zoS99XwtcizAOOXOWeSnQsJNNeomKsGAHmfzOCqMgbkc296Tw9Xn3hQcbN2ItbqiPOE28Ca1XIokL-ZUxOAPSTDNxhUzVgAHWHiZr_eL7ZY_Kog6x0t91jT8iGKZ-SnbTlvF6O6cn6Clc9pjs0XbNhL5-R398LTL6mYMYhPu_S8Oi0vMDtRndhrj-LhgwKhpginwX8J61s09K9Bc1LTY-bEjgGRssX6475eV4AwKUAY-k3c1lUha7qoqYpANsKdOM5Ob0Xibwgo7IqzUtCFWdWBcxGxiaCCZl7SkgNMbkNfSt07BDWL32mOkJ0rMtxmUFghPLK_iMvh4xXD121fCB3d99Dma66Ipl380N1c551aw4PNzeCufGZFuA7c5i3H0iYpxd4IfMcstXviKyzMHW21geHvFs1g23AA5-8NNVt0ycRnAMIc0g02EmDCQ1byuKiYRmPOZ7SRq_uHvwteQBqmH09nB-9Jg8ZJvwg66i3RUaLm1uzDYhtId90qkHJj_vWxr-DuVlK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Nanoparticles+Enhance+Antimicrobial+Efficacy+of+Antibiotics+and+Restore+That+Efficacy+against+the+Melioidosis+Pathogen&rft.jtitle=Antibiotics+%28Basel%29&rft.au=Malawong%2C+Sathit&rft.au=Thammawithan%2C+Saengrawee&rft.au=Sirithongsuk%2C+Pawinee&rft.au=Daduang%2C+Sakda&rft.date=2021-07-10&rft.pub=MDPI+AG&rft.eissn=2079-6382&rft.volume=10&rft.issue=7&rft.spage=839&rft_id=info:doi/10.3390%2Fantibiotics10070839&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6382&client=summon |