Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen

Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue....

Full description

Saved in:
Bibliographic Details
Published inAntibiotics (Basel) Vol. 10; no. 7; p. 839
Main Authors Malawong, Sathit, Thammawithan, Saengrawee, Sirithongsuk, Pawinee, Daduang, Sakda, Klaynongsruang, Sompong, Wong, Pamela T., Patramanon, Rina
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.07.2021
MDPI
Subjects
Online AccessGet full text
ISSN2079-6382
2079-6382
DOI10.3390/antibiotics10070839

Cover

Loading…
Abstract Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic–AgNPs combinations. Overall, these results suggest the study of antibiotic–AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.
AbstractList Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic–AgNPs combinations. Overall, these results suggest the study of antibiotic–AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.
Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei . Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei . The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei . The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei . The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic–AgNPs combinations. Overall, these results suggest the study of antibiotic–AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.
Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.
Author Daduang, Sakda
Klaynongsruang, Sompong
Thammawithan, Saengrawee
Sirithongsuk, Pawinee
Malawong, Sathit
Wong, Pamela T.
Patramanon, Rina
AuthorAffiliation 5 Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
3 Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
1 Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sathitmalawong@hotmail.com (S.M.); sunshine.sc.bc19@gmail.com (S.T.); parbiochem@gmail.com (P.S.); somkly@kku.ac.th (S.K.)
2 Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sakdad@kku.ac.th
4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; ptw@umich.edu
AuthorAffiliation_xml – name: 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; ptw@umich.edu
– name: 2 Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sakdad@kku.ac.th
– name: 5 Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
– name: 1 Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; sathitmalawong@hotmail.com (S.M.); sunshine.sc.bc19@gmail.com (S.T.); parbiochem@gmail.com (P.S.); somkly@kku.ac.th (S.K.)
– name: 3 Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
Author_xml – sequence: 1
  givenname: Sathit
  surname: Malawong
  fullname: Malawong, Sathit
– sequence: 2
  givenname: Saengrawee
  surname: Thammawithan
  fullname: Thammawithan, Saengrawee
– sequence: 3
  givenname: Pawinee
  surname: Sirithongsuk
  fullname: Sirithongsuk, Pawinee
– sequence: 4
  givenname: Sakda
  surname: Daduang
  fullname: Daduang, Sakda
– sequence: 5
  givenname: Sompong
  surname: Klaynongsruang
  fullname: Klaynongsruang, Sompong
– sequence: 6
  givenname: Pamela T.
  surname: Wong
  fullname: Wong, Pamela T.
– sequence: 7
  givenname: Rina
  orcidid: 0000-0002-9325-2527
  surname: Patramanon
  fullname: Patramanon, Rina
BookMark eNp9kk1vVCEUhm9Mja21v8ANiRs3o8DhcmFj0jRTbVI_onVNuHzMMLkDIzBNuvC_y3TGaBsjGwjnPc-b8_G8O4opuq57SfAbAInf6ljDGFINphCMByxAPulOKB7kjIOgR3-9j7uzUla4HUlAYPGsOwYGPR84Oel-fgvTrcvok45po3PjTa6geVzqaBw6by7rYHIag57Q3PtgtLlDyd9HDv5IR4u-ulJTduhmqesfoV7oEEtFdenQRzeFFGwqoaAvui7TwsUX3VOvp-LODvdp9_1yfnPxYXb9-f3Vxfn1zLCB1xkF643jA5GegrN0HFnvKaEgBDWeOk5GQgwjlnHdgxSSYSOtYCO1WBrRw2l3tefapFdqk8Na5zuVdFD3Hykv1KF2BYD7QXJwhFrmRqKpN6QfwXPcY05xY73bszbbce2scbFmPT2APozEsFSLdKsEtEHxoQFeHwA5_di2vql1KMZNk44ubYuifS8ZAKO8SV89kq7SNsfWqp2KASfDAE0l96o2qFKy88qEqmtIO_8wKYLVbmfUP3am5cKj3N-F_C_rF0jzysI
CitedBy_id crossref_primary_10_1007_s12011_024_04361_8
crossref_primary_10_1016_j_cej_2024_151788
crossref_primary_10_1016_j_micpath_2024_106950
crossref_primary_10_1016_j_nxmate_2025_100542
crossref_primary_10_3390_molecules27217589
crossref_primary_10_1097_QCO_0000000000000869
crossref_primary_10_26599_NBE_2023_9290010
crossref_primary_10_3390_nano12111841
crossref_primary_10_20538_1682_0363_2024_2_55_64
crossref_primary_10_3390_molecules28041603
crossref_primary_10_1016_j_micpath_2024_107087
crossref_primary_10_1016_j_procbio_2023_11_016
crossref_primary_10_1021_acsanm_1c03891
crossref_primary_10_1186_s12934_024_02508_9
crossref_primary_10_1016_j_inoche_2023_111725
crossref_primary_10_1016_j_nanoso_2025_101437
crossref_primary_10_1093_jambio_lxae046
crossref_primary_10_3390_antibiotics12030535
crossref_primary_10_1007_s10904_024_03015_5
crossref_primary_10_1021_acsanm_4c02566
crossref_primary_10_53365_nrfhh_145339
crossref_primary_10_1038_s41598_022_14550_x
crossref_primary_10_3390_antibiotics12081264
crossref_primary_10_3389_fmicb_2022_1064095
crossref_primary_10_26599_NBE_2024_9290067
crossref_primary_10_1016_j_micpath_2025_107495
crossref_primary_10_3390_ijms242216183
Cites_doi 10.4236/oje.2016.67043
10.1007/s12257-016-0641-3
10.1016/j.ijantimicag.2008.02.019
10.1128/JCM.01636-16
10.1016/j.nano.2009.04.006
10.1086/520219
10.2147/IDR.S35529
10.1016/S0924-8579(00)00149-7
10.1371/journal.pone.0168098
10.1007/s11468-013-9541-y
10.1128/AAC.01603-17
10.1128/AAC.43.7.1747
10.1371/journal.pntd.0002267
10.1093/jac/dkh471
10.3389/fmicb.2016.01831
10.1016/j.micpath.2005.06.001
10.1128/JB.186.12.3938-3950.2004
10.1021/acs.estlett.5b00159
10.1038/nmicrobiol.2015.8
10.1021/mp900056g
10.1371/journal.pntd.0001453
10.1073/pnas.0403302101
10.3389/fcimb.2021.656984
10.1016/j.cmi.2017.07.029
10.1128/AAC.02444-15
10.1021/acs.est.6b00998
10.1093/jac/45.1.15
10.36468/pharmaceutical-sciences.601
10.1016/j.ijantimicag.2009.05.012
10.2147/IJN.S246484
10.1126/science.1219192
10.1590/S1517-838246120140218
10.1086/318116
10.1093/jac/37.3.611
10.1016/j.mib.2018.07.006
10.1371/journal.pone.0030789
10.1371/journal.pone.0102108
10.1016/j.jinorgbio.2016.12.005
10.1039/C6EN00031B
10.1128/microbiolspec.MB-0011-2014
10.1016/j.phymed.2011.03.012
10.1038/nature03912
10.1371/journal.pbio.0060014
10.2147/IJN.S132163
10.1128/JB.184.3.849-852.2002
10.1016/S0140-6736(03)13374-0
10.1088/0957-4484/16/9/082
10.1039/C3RA44507K
10.2174/0929866522666150728115439
10.1111/1348-0421.12331
10.1007/s10989-016-9530-z
10.1590/S0103-50532010000600002
10.1073/pnas.1401876111
10.1016/S0035-9203(08)70025-7
10.1128/mSphere.00329-16
10.1186/s12951-017-0308-z
10.1016/j.resmic.2011.11.002
10.1016/j.colsurfb.2016.03.007
10.1016/S1995-7645(12)60050-9
10.1039/C4AN00978A
10.1073/pnas.1111020108
10.1128/AAC.48.5.1763-1765.2004
10.1099/jmm.0.047100-0
10.1039/C8NP00046H
10.1186/1556-276X-9-373
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7QL
7T7
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/antibiotics10070839
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
Biological Sciences
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2079-6382
ExternalDocumentID oai_doaj_org_article_33057963e12d4eb1a2fc15b3f6050620
PMC8300767
10_3390_antibiotics10070839
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
7QL
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c476t-23dfce6719f23ed2bb45f2123882cf2e61b11c41d46a5398940c9d84b2d09c853
IEDL.DBID BENPR
ISSN 2079-6382
IngestDate Wed Aug 27 01:21:38 EDT 2025
Thu Aug 21 18:34:21 EDT 2025
Fri Jul 11 15:30:21 EDT 2025
Fri Jul 25 12:06:41 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 02:09:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-23dfce6719f23ed2bb45f2123882cf2e61b11c41d46a5398940c9d84b2d09c853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9325-2527
OpenAccessLink https://www.proquest.com/docview/2554361773?pq-origsite=%requestingapplication%
PMID 34356761
PQID 2554361773
PQPubID 2032437
ParticipantIDs doaj_primary_oai_doaj_org_article_33057963e12d4eb1a2fc15b3f6050620
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8300767
proquest_miscellaneous_2559433426
proquest_journals_2554361773
crossref_citationtrail_10_3390_antibiotics10070839
crossref_primary_10_3390_antibiotics10070839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210710
PublicationDateYYYYMMDD 2021-07-10
PublicationDate_xml – month: 7
  year: 2021
  text: 20210710
  day: 10
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Antibiotics (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References DeShazer (ref_68) 2004; 186
Duran (ref_45) 2010; 21
Cheng (ref_11) 2004; 48
Fayaz (ref_44) 2010; 6
Viktorov (ref_5) 2008; 102
Mongkolrob (ref_66) 2015; 59
Randall (ref_71) 2015; 60
Currie (ref_3) 2000; 31
ref_53
ref_52
Slavin (ref_25) 2017; 15
Smith (ref_13) 1996; 37
Cloutier (ref_49) 2018; 35
Li (ref_43) 2005; 16
Jaimee (ref_60) 2017; 168
Aka (ref_51) 2015; 46
Jain (ref_23) 2009; 6
Hwan (ref_73) 2010; 39
Dwyer (ref_54) 2014; 111
Holden (ref_32) 2004; 101
Taweechaisupapong (ref_65) 2005; 39
Ma (ref_21) 2017; 168
Mackay (ref_72) 2000; 15
Agnihotri (ref_33) 2014; 4
Marti (ref_59) 2017; 2
White (ref_2) 2003; 361
ref_69
ref_24
Sarovich (ref_9) 2012; 5
Deng (ref_30) 2016; 50
Winkler (ref_28) 2013; 5
Trinh (ref_38) 2018; 24
Kalyani (ref_40) 2019; 81
Foti (ref_55) 2012; 336
Simpson (ref_10) 1999; 29
Ma (ref_34) 2013; 8
Braga (ref_57) 2000; 45
Hemeg (ref_22) 2017; 12
Paramelle (ref_35) 2014; 139
Almaaytah (ref_18) 2016; 22
Burtnick (ref_47) 2002; 184
Kim (ref_39) 2017; 22
Behera (ref_12) 2012; 5
Haroun (ref_20) 2016; 19
Climo (ref_14) 1999; 43
Cho (ref_19) 2011; 18
Jamaran (ref_46) 2016; 6
ref_36
Hemarajata (ref_4) 2016; 54
Hoffman (ref_61) 2005; 436
Affifi (ref_42) 2017; 10
Mazur (ref_41) 2020; 15
Kanellakopoulou (ref_15) 2008; 32
Limmathurotsakul (ref_1) 2016; 1
ref_37
Amani (ref_17) 2015; 22
Msarah (ref_50) 2018; 14
Hwang (ref_31) 2012; 61
Dakal (ref_26) 2016; 7
Yang (ref_62) 2015; 2
Thibault (ref_6) 2004; 54
Naghmouchi (ref_16) 2012; 163
Yu (ref_58) 2018; 62
Froning (ref_29) 2016; 142
Ranieri (ref_56) 2018; 45
Limmathurotsakul (ref_64) 2014; 20
Chantratita (ref_7) 2011; 108
Wang (ref_27) 2016; 3
Saeki (ref_63) 2021; 11
ref_48
ref_8
Kanthawong (ref_70) 2009; 34
Gurunathan (ref_67) 2014; 9
References_xml – volume: 6
  start-page: 452
  year: 2016
  ident: ref_46
  article-title: Synergistic Effect of Silver Nanoparticles with Neomycin or Gentamicin Antibiotics on Mastitis-Causing Staphylococcus aureus
  publication-title: Open J. Ecol.
  doi: 10.4236/oje.2016.67043
– volume: 5
  start-page: 190
  year: 2013
  ident: ref_28
  article-title: Silver Enhances Antibiotic Activity against Gram-Negative Bacteria
  publication-title: Sci. Transl. Med.
– volume: 22
  start-page: 210
  year: 2017
  ident: ref_39
  article-title: Effect of the Size and Shape of Silver Nanoparticles on Bacterial Growth and Metabolism by Monitoring Optical Density and Fluorescence Intensity
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-016-0641-3
– volume: 32
  start-page: 33
  year: 2008
  ident: ref_15
  article-title: In Vitro Synergism of Beta-Lactams with Ciprofloxacin and Moxifloxacin against Genetically Distinct Multidrug-Resistant Isolates of Pseudomonas Aeruginosa
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2008.02.019
– volume: 54
  start-page: 2866
  year: 2016
  ident: ref_4
  article-title: Burkholderia Pseudomallei: Challenges for the Clinical Microbiology Laboratory
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01636-16
– volume: 6
  start-page: 103
  year: 2010
  ident: ref_44
  article-title: Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: A Study against Gram-Positive and Gram-Negative Bacteria
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2009.04.006
– volume: 168
  start-page: 722
  year: 2017
  ident: ref_60
  article-title: Subinhibitory Concentrations of Gentamicin Trigger Expression of Aac (6′)Ie-Aph (2″)Ia, Chaperones and Biofilm-Related Genes in Lactobacillus Plantarum MCC3011
  publication-title: Res. Microbiol.
– volume: 29
  start-page: 381
  year: 1999
  ident: ref_10
  article-title: Comparison of Imipenem and Ceftazidime as Therapy for Severe Melioidosis
  publication-title: Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.
  doi: 10.1086/520219
– volume: 5
  start-page: 129
  year: 2012
  ident: ref_9
  article-title: Development of Ceftazidime Resistance in an Acute Burkholderia Pseudomallei Infection
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S35529
– volume: 14
  start-page: 435
  year: 2018
  ident: ref_50
  article-title: Extreme Environment: Biofilms and Microbial Diversity
  publication-title: Malays. J. Microbiol.
– volume: 15
  start-page: 125
  year: 2000
  ident: ref_72
  article-title: Comparison of Methods for Assessing Synergic Antibiotic Interactions
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/S0924-8579(00)00149-7
– ident: ref_37
  doi: 10.1371/journal.pone.0168098
– volume: 8
  start-page: 1351
  year: 2013
  ident: ref_34
  article-title: Theoretical Study of the Local Surface Plasmon Resonance Properties of Silver Nanosphere Clusters
  publication-title: Plasmonics
  doi: 10.1007/s11468-013-9541-y
– volume: 62
  start-page: e01603
  year: 2018
  ident: ref_58
  article-title: Interplay between Antibiotic Efficacy and Drug-Induced Lysis Underlies Enhanced Biofilm Formation at Subinhibitory Drug Concentrations
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01603-17
– volume: 43
  start-page: 1747
  year: 1999
  ident: ref_14
  article-title: Combinations of Vancomycin and Beta-Lactams Are Synergistic against Staphylococci with Reduced Susceptibilities to Vancomycin
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.43.7.1747
– ident: ref_69
  doi: 10.1371/journal.pntd.0002267
– volume: 54
  start-page: 1134
  year: 2004
  ident: ref_6
  article-title: Antibiotic Susceptibility of 65 Isolates of Burkholderia Pseudomallei and Burkholderia Mallei to 35 Antimicrobial Agents
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkh471
– volume: 19
  start-page: 1193
  year: 2016
  ident: ref_20
  article-title: Synergistic Effect of Thymbra Spicata, L. Extracts with Antibiotics against Multidrug—Resistant Staphylococcus Aureus and Klebsiella Pneumoniae Strains
  publication-title: Iran. J. Basic Med. Sci.
– volume: 7
  start-page: 1831
  year: 2016
  ident: ref_26
  article-title: Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01831
– volume: 39
  start-page: 77
  year: 2005
  ident: ref_65
  article-title: Virulence of Burkholderia Pseudomallei Does Not Correlate with Biofilm Formation
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2005.06.001
– volume: 186
  start-page: 3938
  year: 2004
  ident: ref_68
  article-title: Genomic Diversity of Burkholderia Pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia Mallei-Specific Prophage in B. Pseudomallei 1026b
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.12.3938-3950.2004
– volume: 2
  start-page: 221
  year: 2015
  ident: ref_62
  article-title: Sublethal Concentrations of Silver Nanoparticles Stimulate Biofilm Development
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.5b00159
– volume: 1
  start-page: 120135
  year: 2016
  ident: ref_1
  article-title: Predicted Global Distribution of Burkholderia Pseudomallei and Burden of Melioidosis
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2015.8
– volume: 6
  start-page: 1388
  year: 2009
  ident: ref_23
  article-title: Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use
  publication-title: Mol. Pharm.
  doi: 10.1021/mp900056g
– ident: ref_48
  doi: 10.1371/journal.pntd.0001453
– volume: 101
  start-page: 14240
  year: 2004
  ident: ref_32
  article-title: Genomic Plasticity of the Causative Agent of Melioidosis, Burkholderia pseudomallei
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0403302101
– volume: 11
  start-page: 656984
  year: 2021
  ident: ref_63
  article-title: Subinhibitory Concentrations of Biogenic Silver Nanoparticles Affect Motility and Biofilm Formation in Pseudomonas Aeruginosa
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2021.656984
– volume: 24
  start-page: 84
  year: 2018
  ident: ref_38
  article-title: A Simple Laboratory Algorithm for Diagnosis of Melioidosis in Resource-Constrained Areas: A Study from North-Central Vietnam
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2017.07.029
– volume: 60
  start-page: 1509
  year: 2015
  ident: ref_71
  article-title: Membrane-Bound PenA β-Lactamase of Burkholderia Pseudomallei
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02444-15
– volume: 50
  start-page: 8840
  year: 2016
  ident: ref_30
  article-title: Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00998
– volume: 45
  start-page: 15
  year: 2000
  ident: ref_57
  article-title: Sub-MIC Concentrations of Cefodizime Interfere with Various Factors Affecting Bacterial Virulence
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/45.1.15
– volume: 81
  start-page: 1036
  year: 2019
  ident: ref_40
  article-title: Biosynthesis of Silver Nanoparticles Using Annona Squamosa Leaf Extract with Synergistic Antibacterial Activity
  publication-title: Indian J. Pharm. Sci.
  doi: 10.36468/pharmaceutical-sciences.601
– volume: 34
  start-page: 309
  year: 2009
  ident: ref_70
  article-title: In Vitro Susceptibility of Burkholderia Pseudomallei to Antimicrobial Peptides
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2009.05.012
– volume: 15
  start-page: 3551
  year: 2020
  ident: ref_41
  article-title: Synergistic ROS-Associated Antimicrobial Activity of Silver Nanoparticles and Gentamicin Against Staphylococcus Epidermidis
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S246484
– volume: 10
  start-page: 353
  year: 2017
  ident: ref_42
  article-title: Control of Imipenem Resistant—Klebsiella Pneumoniae Pulmonary Infection by Oral Treatment Using a Combination of Mycosynthesized Ag-Nanoparticles and Imipenem
  publication-title: J. Radiat. Res. Appl. Sci.
– volume: 336
  start-page: 315
  year: 2012
  ident: ref_55
  article-title: Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics
  publication-title: Science
  doi: 10.1126/science.1219192
– volume: 46
  start-page: 149
  year: 2015
  ident: ref_51
  article-title: Sub-MIC of Antibiotics Induced Biofilm Formation of Pseudomonas Aeruginosa in the Presence of Chlorhexidine
  publication-title: J. Microbiol. Publ. Braz. Soc. Microbiol.
  doi: 10.1590/S1517-838246120140218
– volume: 31
  start-page: 981
  year: 2000
  ident: ref_3
  article-title: Endemic Melioidosis in Tropical Northern Australia: A 10-Year Prospective Study and Review of the Literature
  publication-title: Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.
  doi: 10.1086/318116
– volume: 37
  start-page: 611
  year: 1996
  ident: ref_13
  article-title: In-Vitro Activity of Carbapenem Antibiotics against Beta-Lactam Susceptible and Resistant Strains of Burkholderia Pseudomallei
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/37.3.611
– volume: 45
  start-page: 164
  year: 2018
  ident: ref_56
  article-title: Mechanisms of Biofilm Stimulation by Subinhibitory Concentrations of Antimicrobials
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2018.07.006
– ident: ref_8
  doi: 10.1371/journal.pone.0030789
– ident: ref_24
  doi: 10.1371/journal.pone.0102108
– volume: 39
  start-page: 77
  year: 2010
  ident: ref_73
  article-title: Antibacterial Activity of Silver-Nanoparticles Against Staphylococcus Aureus and Escherichia Coli
  publication-title: Korean J. Microbiol. Biotechnol.
– volume: 168
  start-page: 38
  year: 2017
  ident: ref_21
  article-title: Synergistic Antibacterial Effect of Bi2S3 Nanospheres Combined with Ineffective Antibiotic Gentamicin against Methicillin-Resistant Staphylococcus Aureus
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2016.12.005
– volume: 3
  start-page: 788
  year: 2016
  ident: ref_27
  article-title: Enhanced Bactericidal Toxicity of Silver Nanoparticles by the Antibiotic Gentamicin
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C6EN00031B
– ident: ref_52
  doi: 10.1128/microbiolspec.MB-0011-2014
– volume: 20
  start-page: O854
  year: 2014
  ident: ref_64
  article-title: Role of Burkholderia Pseudomallei Biofilm Formation and Lipopolysaccharide in Relapse of Melioidosis
  publication-title: Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.
– volume: 18
  start-page: 941
  year: 2011
  ident: ref_19
  article-title: Synergistic Anti-Bacterial and Proteomic Effects of Epigallocatechin Gallate on Clinical Isolates of Imipenem-Resistant Klebsiella Pneumoniae
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2011.03.012
– volume: 436
  start-page: 1171
  year: 2005
  ident: ref_61
  article-title: Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation
  publication-title: Nature
  doi: 10.1038/nature03912
– ident: ref_53
  doi: 10.1371/journal.pbio.0060014
– volume: 12
  start-page: 8211
  year: 2017
  ident: ref_22
  article-title: Nanomaterials for Alternative Antibacterial Therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S132163
– volume: 184
  start-page: 849
  year: 2002
  ident: ref_47
  article-title: Molecular and Physical Characterization of Burkholderia Mallei O Antigens
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.3.849-852.2002
– volume: 361
  start-page: 1715
  year: 2003
  ident: ref_2
  article-title: Melioidosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13374-0
– volume: 16
  start-page: 1912
  year: 2005
  ident: ref_43
  article-title: Synergistic Antibacterial Effect of β-Lactum Antibiotic Combined with Silver Nanoparticle
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/9/082
– volume: 4
  start-page: 3974
  year: 2014
  ident: ref_33
  article-title: Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 Nm Using the Same Protocol and Their Antibacterial Efficacy
  publication-title: RSC Adv.
  doi: 10.1039/C3RA44507K
– volume: 22
  start-page: 940
  year: 2015
  ident: ref_17
  article-title: In Vitro Synergistic Effect of the CM11 Antimicrobial Peptide in Combination with Common Antibiotics against Clinical Isolates of Six Species of Multidrug-Resistant Pathogenic Bacteria
  publication-title: Protein Pept. Lett.
  doi: 10.2174/0929866522666150728115439
– volume: 59
  start-page: 653
  year: 2015
  ident: ref_66
  article-title: Correlation between Biofilm Production, Antibiotic Susceptibility and Exopolysaccharide Composition in Burkholderia Pseudomallei BpsI, Ppk, and RpoS Mutant Strains
  publication-title: Microbiol. Immunol.
  doi: 10.1111/1348-0421.12331
– volume: 22
  start-page: 497
  year: 2016
  ident: ref_18
  article-title: In Vitro Synergistic Activities of the Hybrid Antimicrobial Peptide MelitAP-27 in Combination with Conventional Antibiotics Against Planktonic and Biofilm Forming Bacteria
  publication-title: Int. J. Pept. Res. Ther.
  doi: 10.1007/s10989-016-9530-z
– volume: 21
  start-page: 949
  year: 2010
  ident: ref_45
  article-title: Potential Use of Silver Nanoparticles on Pathogenic Bacteria, Their Toxicity and Possible Mechanisms of Action
  publication-title: Rev. J. Braz. Chem. Soc.
  doi: 10.1590/S0103-50532010000600002
– volume: 111
  start-page: E2100
  year: 2014
  ident: ref_54
  article-title: Antibiotics Induce Redox-Related Physiological Alterations as Part of Their Lethality
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1401876111
– volume: 102
  start-page: S103
  year: 2008
  ident: ref_5
  article-title: High-Level Resistance to Fluoroquinolones and Cephalosporins in Burkholderia Pseudomallei and Closely Related Species
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
  doi: 10.1016/S0035-9203(08)70025-7
– volume: 2
  start-page: e00329
  year: 2017
  ident: ref_59
  article-title: Bacterial Lysis through Interference with Peptidoglycan Synthesis Increases Biofilm Formation by Nontypeable Haemophilus Influenzae
  publication-title: mSphere
  doi: 10.1128/mSphere.00329-16
– volume: 15
  start-page: 65
  year: 2017
  ident: ref_25
  article-title: Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-017-0308-z
– volume: 163
  start-page: 101
  year: 2012
  ident: ref_16
  article-title: Antibiotic and Antimicrobial Peptide Combinations: Synergistic Inhibition of Pseudomonas Fluorescens and Antibiotic-Resistant Variants
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2011.11.002
– volume: 142
  start-page: 392
  year: 2016
  ident: ref_29
  article-title: Silver Nanoparticles Strongly Enhance and Restore Bactericidal Activity of Inactive Antibiotics against Multiresistant Enterobacteriaceae
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.03.007
– volume: 5
  start-page: 329
  year: 2012
  ident: ref_12
  article-title: Ceftazidime Resistance in Burkholderia Pseudomallei: First Report from India
  publication-title: Asian Pac. J. Trop. Med.
  doi: 10.1016/S1995-7645(12)60050-9
– volume: 139
  start-page: 4855
  year: 2014
  ident: ref_35
  article-title: A Rapid Method to Estimate the Concentration of Citrate Capped Silver Nanoparticles from UV-Visible Light Spectra
  publication-title: Analyst
  doi: 10.1039/C4AN00978A
– volume: 108
  start-page: 17165
  year: 2011
  ident: ref_7
  article-title: Antimicrobial Resistance to Ceftazidime Involving Loss of Penicillin-Binding Protein 3 in Burkholderia Pseudomallei
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1111020108
– volume: 48
  start-page: 1763
  year: 2004
  ident: ref_11
  article-title: Outcomes of Patients with Melioidosis Treated with Meropenem
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.5.1763-1765.2004
– volume: 61
  start-page: 1719
  year: 2012
  ident: ref_31
  article-title: Synergistic Effects between Silver Nanoparticles and Antibiotics and the Mechanisms Involved
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.047100-0
– ident: ref_36
– volume: 35
  start-page: 1251
  year: 2018
  ident: ref_49
  article-title: Polysaccharides from Burkholderia Species as Targets for Vaccine Development, Immunomodulation and Chemical Synthesis
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C8NP00046H
– volume: 9
  start-page: 373
  year: 2014
  ident: ref_67
  article-title: Enhanced Antibacterial and Anti-Biofilm Activities of Silver Nanoparticles against Gram-Negative and Gram-Positive Bacteria
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-373
SSID ssj0000913808
Score 2.3099494
Snippet Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to...
Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei . Due to the emerging resistance of B. pseudomallei to...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 839
SubjectTerms Antibacterial activity
Antibiotics
Antiinfectives and antibacterials
antimicrobial agent
Antimicrobial agents
Bacteria
Burkholderia pseudomallei
Ceftazidime
combination
Combinatorial analysis
Drug resistance
Fatalities
Fibers
Gentamicin
Imipenem
Infectious diseases
Melioidosis
Meropenem
Nanoparticles
Pathogens
Silver
silver nanoparticles
Spectrum analysis
Starch
synergism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CmjbEbVJUKDmtifXw67gpG0IgYckDcjPWqyvY2iG7Oewh_z0zsrO7htJeerVkW9KMNN-HRp8I-WEYbv-lmIpjdCylhjkHUTCG2AAcCOVCVFD7vMkuH-TVY_q4ddUX5oR18sDdwJ0B38bjksIybiQsLDV3mqVKOMDhScYDW4eYt0WmwhpcMlEkRSczJIDXn0E7vfItah9jYgAgj3IQioJi_wBmDpMkt6LOxT7Z6-EiHXfN_Eh2bHNATqed3vRqRO83x6cWI3pKpxsl6tUn8nrnMfGZwhIK3LhPgaOTZoampmNo628fhJjgFxPUkoBv0taFkr4XtG4MvQ3Xz1j4W73cVKx_1R7AJQUISa_t3LfetAu_oFMAlS345WfycDG5_3kZ9_ctxFrm2TLmwjhts5yVjgtruFIydRjaAIVrx23GFGNaMiOzOhWo3J7o0hRScZOUGuL-Idlt2sYeEaoFmCnlLreulFyqOtFSGeDDLmNOmiIi_H3oK92LkeOdGPMKSAnaq_qDvSIyWr_01Glx_L36Odp0XRWFtMMDcK-qH_PqX-4VkeN3j6j62b2ogIZJAdAvFxH5vi6GeYmbLXVj25dQp5RCAACKSD7wpEGDhiWNnwWF70LgDmn-5X_04Cv5wDEPB8VAk2Oyu3x-sScApJbqW5gzbxqKHws
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6VcuGCyksYClok1FMM3odfB4QKSlUhFUXQSL1Z3ldrKbUhSaXmwH9nZuMkWCq9ene9490Zzzfa2W8A3ltOx38ppeJYEytl0ObQC8boGzAGIroQHdg-v2enU_XtIr3Yg01V1H4BF3eGdlRPajqffbj9vfqMBv-JIk4M2T-iCI1uOqI1pjN_BBXlA3iIriknSz3r8X74NZdcFkmxZh_639iBhwpE_gP0Ocyd_McZnRzA4x5FsuP1tj-BPdc-haPJmoZ6NWLnu1tVixE7YpMdQfXqGfz52VA-NMM_K4bMfWYcG7dXpAHsGGW9bgI_E04xJooJfCfrfGjpv4LVrWU_QlUah7PVy13H-rJuEHMyRJbszM2arrHdolmwCWLNDtX1OUxPxudfT-O-DENsVJ4tYyGtNy7LeemFdFZorVJPHg_BufHCZVxzbhS3KqtTSYTuiSltobSwSWkQDryA_bZr3UtgRgpvUuFz50sllK4To7TFMNln3CtbRCA2S1-ZnqOcSmXMKoxVaL-qO_YrgtF20K81Rcf93b_Qnm67Er92eNDNL6t-zXFwuKQrHRdWoTurUW6eapQzSZNMJBEcbjSi2uhshdGZkogIcxnBu20zmiudwdSt625Cn1JJibgognygSQOBhi1tcxWIvwtJB6f5q_snfw2PBCXeEPtncgj7y_mNe4PIaanfBmv4C8qjHVg
  priority: 102
  providerName: Scholars Portal
Title Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen
URI https://www.proquest.com/docview/2554361773
https://www.proquest.com/docview/2559433426
https://pubmed.ncbi.nlm.nih.gov/PMC8300767
https://doaj.org/article/33057963e12d4eb1a2fc15b3f6050620
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauPRS0ZeaQpErVZw2IrGd16kCtAhVAq0oSNyi-AWWaAxkOXDgv3fG690lUsUlh9iJJxnb8409_oaQnzrH7b8CQ3G0SoVQMObACqZgG8AHQroQGdg-z8qTS_H7qriKC25DDKtczolhotZe4Rr5PkBfwcHcVvzX3X2KWaNwdzWm0HhLNmEKrsH52jycns3OV6ssyHpZZ_WCboiDf78P8jrpPHIgY4AAIJBmZJICc_8Ibo6DJV9Yn-Mt8j7CRnqw0PMH8sb0H8nebME7_TShF-tjVMOE7tHZmpH66RN5_uMwAJrCVAo-cgyFo9P-BlVOD0DWvy4QMkETU-SUgHdSb0NJ_Ara9ZqehzQ0Blrr5uuK3XXnAGRSgJL01Nw677Qf3EBnAC499M_P5PJ4enF0ksa8C6kSVTlPGddWmbLKG8u40UxKUVg0cYDGlWWmzGWeK5FrUXYFRwb3TDW6FpLprFFg_7-Qjd735iuhijOrCmYrYxvBhOwyJaQGv9iWuRW6Tghb_vpWRVJyzI1x24Jzgvpq_6OvhExWD90tODler36IOl1VRULtcMM_XLfxn8PD4VQuNznTAuxXB3LnhQQ5syIrWZaQnWWPaOMoH9p1n0zIj1UxjE_cdOl64x9DnUZwDkAoIdWoJ40EGpf07iYwfdccd0qrb683vk3eMYy0QbrPbIdszB8ezXeASnO5G8fDblhqgOupqP8BaEIa9Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNpL1ae6lLau1HLaCMd2XoeqgnbRUmC1oovELY1fEAkSIIuqPfQv9Td2Jo_dRqq4cV0764nnHY-_IeSj8fH4L8BSHKM9KTXoHHhBD3wD5EAIF6JqtM9JOD6V38-CszXyp7sLg2WVnU2sDbUpNX4j34HQVwpwt5H4cn3jYdcoPF3tWmg0YnFoF78gZas-H3wD_n7ifH80-zr22q4CnpZROPe4ME7bMPITx4U1XCkZODTgEGtqx23oK9_X0jcyzAKB-ORMJyaWihuW6Bi7RIDJ3wBiGBiCjb3RZHqy_KqDKJsxixt4IyEStgP7k6u8RMxlLEiAiCfpucC6U0AvvO0XZ_7j7fafkidtmEp3G7l6RtZs8ZxsTxuc68WQzlbXtqoh3abTFQL24gX5_SPHgmsKphty8rb0jo6KCxQxugu0XuU1ABQsMUIMC_hPWrp6pH0LmhWGntRtbyysls1XE7PzLIeglkLoSo_tZV7mpqzyik4hmC1BH16S0wfhyCuyXpSFfU2oFtzpgLvIukRyqTKmpTKQh7vQd9LEA8K7rU91C4KOvTguU0iGkF_pf_g1IMPlQ9cNBsj90_eQp8upCOBd_1DenqftnsPD9S1gYX1uJPjLDOj2AwV0soCFnA3IVicRaWtVqnSlAwPyYTkM9gAPebLClnf1nEQKAYHXgEQ9SeoR1B8p8osaWTwWeDIbbd6_-HvyaDw7PkqPDiaHb8hjjlU-CDXKtsj6_PbOvoUwba7etbpByc-HVse_-KdVFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IJ4i0IKRoKeNNrGd1wGhlu6qpbCKSiv1FuJXG6kkbbMV2gN_jF_HTB67REK99bp21o7HM_NNPP6GkPfax-O_AFNxtHKFUKBz4AVd8A0QAyFdiGzYPufhwan4chacbZA__V0YTKvsbWJjqHWl8Bv5BKCv4OBuIz6xXVpEuj_7dHXtYgUpPGnty2m0W-TILH9B-FZ_PNwHWX9gbDY9-XzgdhUGXCWicOEyrq0yYeQnlnGjmZQisGjMAXcqy0zoS99XwtcizAOOXOWeSnQsJNNeomKsGAHmfzOCqMgbkc296Tw9Xn3hQcbN2ItbqiPOE28Ca1XIokL-ZUxOAPSTDNxhUzVgAHWHiZr_eL7ZY_Kog6x0t91jT8iGKZ-SnbTlvF6O6cn6Clc9pjs0XbNhL5-R398LTL6mYMYhPu_S8Oi0vMDtRndhrj-LhgwKhpginwX8J61s09K9Bc1LTY-bEjgGRssX6475eV4AwKUAY-k3c1lUha7qoqYpANsKdOM5Ob0Xibwgo7IqzUtCFWdWBcxGxiaCCZl7SkgNMbkNfSt07BDWL32mOkJ0rMtxmUFghPLK_iMvh4xXD121fCB3d99Dma66Ipl380N1c551aw4PNzeCufGZFuA7c5i3H0iYpxd4IfMcstXviKyzMHW21geHvFs1g23AA5-8NNVt0ycRnAMIc0g02EmDCQ1byuKiYRmPOZ7SRq_uHvwteQBqmH09nB-9Jg8ZJvwg66i3RUaLm1uzDYhtId90qkHJj_vWxr-DuVlK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Nanoparticles+Enhance+Antimicrobial+Efficacy+of+Antibiotics+and+Restore+That+Efficacy+against+the+Melioidosis+Pathogen&rft.jtitle=Antibiotics+%28Basel%29&rft.au=Malawong%2C+Sathit&rft.au=Thammawithan%2C+Saengrawee&rft.au=Sirithongsuk%2C+Pawinee&rft.au=Daduang%2C+Sakda&rft.date=2021-07-10&rft.pub=MDPI+AG&rft.eissn=2079-6382&rft.volume=10&rft.issue=7&rft.spage=839&rft_id=info:doi/10.3390%2Fantibiotics10070839&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6382&client=summon