Lipids: Source of Static Electricity of Regenerative Natural Substances and Nondestructive Energy Harvesting
It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural subst...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 52; pp. e1804949 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long‐term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid‐based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid‐based nondestructive TENGs are fabricated. The concept of energy‐harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is.
Lipids are the cause of positive static electricity of regenerative natural substances and can be sources for nondestructive energy harvesting. Lipid layers on the surface of regenerative substances are responsible for the positive static electricity and they can be an ideal source in generating electricity while preserving nature as it is. |
---|---|
AbstractList | It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long-term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid-based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid-based nondestructive TENGs are fabricated. The concept of energy-harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is. It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long‐term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid‐based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid‐based nondestructive TENGs are fabricated. The concept of energy‐harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is. Lipids are the cause of positive static electricity of regenerative natural substances and can be sources for nondestructive energy harvesting. Lipid layers on the surface of regenerative substances are responsible for the positive static electricity and they can be an ideal source in generating electricity while preserving nature as it is. It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long-term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid-based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid-based nondestructive TENGs are fabricated. The concept of energy-harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is.It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long-term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid-based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid-based nondestructive TENGs are fabricated. The concept of energy-harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is. |
Author | Kim, Sang‐Woo Kim, Dong Wook Jeong, Unyong |
Author_xml | – sequence: 1 givenname: Dong Wook surname: Kim fullname: Kim, Dong Wook organization: Pohang University of Science and Technology (POSTECH) – sequence: 2 givenname: Sang‐Woo surname: Kim fullname: Kim, Sang‐Woo organization: Sungkyunkwan University (SKKU) – sequence: 3 givenname: Unyong orcidid: 0000-0002-7519-7595 surname: Jeong fullname: Jeong, Unyong email: ujeong@postech.ac.kr organization: Pohang University of Science and Technology (POSTECH) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30387241$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1vEzEQxS1URNPClSOyxIXLBn_u2tyiEihSKBKBszXxzkauNt5g7xblv8chLUiVECdL4997Hr93Qc7iEJGQl5zNOWPiLbQ7mAvGDVNW2SdkxrXglWJWn5EZs1JXtlbmnFzkfMsYszWrn5FzyaRphOIz0q_CPrT5HV0PU_JIh46uRxiDp8se_ZiCD-PhOP2KW4yYytUd0hsYpwQ9XU-bPEL0mCnElt4MscU8psn_ppaF3x7oNaS7Mg1x-5w87aDP-OL-vCTfPyy_XV1Xqy8fP10tVpVXTW0rxKZDVnONtjPN8WdSNnLD68YAE0I2mkuorUDdaVDaSmNrsELhRloOBuQleXPy3afhx1TedruQPfY9RBym7AQXVkuhVFPQ14_Q2xJELNsVqlgrww0v1Kt7atrssHX7FHaQDu4hxwKoE-DTkHPCzpXcSlZDHBOE3nHmjnW5Y13uT11FNn8ke3D-p8CeBD9Dj4f_0G7x_vPir_YXXWOmow |
CitedBy_id | crossref_primary_10_1002_advs_202103414 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1002_jbm_a_37871 crossref_primary_10_3390_agronomy14030573 crossref_primary_10_1021_acsanm_9b01299 crossref_primary_10_1021_acsami_0c17601 crossref_primary_10_1007_s40820_019_0271_3 crossref_primary_10_1021_acsaelm_0c00407 crossref_primary_10_1016_j_nanoen_2020_104636 crossref_primary_10_1002_adsr_202200015 crossref_primary_10_1007_s12274_023_5784_x crossref_primary_10_1016_j_cej_2024_154869 crossref_primary_10_1016_j_isci_2021_102064 crossref_primary_10_1016_j_nanoen_2022_107101 crossref_primary_10_1016_j_nanoen_2023_109056 crossref_primary_10_1002_aenm_202101170 crossref_primary_10_1039_D3BM01204B crossref_primary_10_1002_advs_202405666 crossref_primary_10_1016_j_susmat_2025_e01295 crossref_primary_10_1002_adfm_201910162 crossref_primary_10_1002_advs_202002606 crossref_primary_10_1039_D2EE00405D crossref_primary_10_1002_advs_202307266 crossref_primary_10_1039_D2TA10024J crossref_primary_10_1109_MIM_2022_9955463 crossref_primary_10_1002_tcr_202200067 crossref_primary_10_1016_j_ceramint_2024_08_215 crossref_primary_10_1038_s43246_022_00302_x crossref_primary_10_1002_ente_202000236 crossref_primary_10_1002_adsr_202300129 crossref_primary_10_1039_D1MH00919B crossref_primary_10_1088_1748_3190_ac1711 crossref_primary_10_1364_PRJ_394044 crossref_primary_10_1016_j_nanoen_2022_107320 crossref_primary_10_1186_s11671_021_03578_z crossref_primary_10_1039_D2TC03058F crossref_primary_10_1088_1748_3190_aca198 crossref_primary_10_1002_adfm_202106475 crossref_primary_10_1016_j_nanoen_2024_110283 crossref_primary_10_1016_j_susmat_2024_e01096 crossref_primary_10_1038_s41427_019_0176_0 crossref_primary_10_1007_s00542_022_05356_y crossref_primary_10_1021_acsomega_9b01963 crossref_primary_10_1016_j_nanoen_2020_105414 crossref_primary_10_1016_j_cej_2022_139138 crossref_primary_10_1016_j_nanoen_2020_104767 crossref_primary_10_1021_acsenergylett_0c01909 crossref_primary_10_1002_advs_202000254 crossref_primary_10_29121_granthaalayah_v7_i4_2019_921 crossref_primary_10_1016_j_nanoen_2020_105011 crossref_primary_10_1016_j_nanoen_2020_105694 crossref_primary_10_1021_acs_chemrev_1c00525 |
Cites_doi | 10.1088/0022-3727/2/11/307 10.3390/ijms14024242 10.1046/j.1365-3040.2000.00581.x 10.3389/fpls.2014.00481 10.1002/aenm.201600988 10.1021/acs.chemmater.5b01507 10.1038/nrm1102 10.1002/adma.201502463 10.1016/j.chemphyslip.2006.06.016 10.1016/j.surfrep.2010.10.001 10.1016/j.nanoen.2017.02.032 10.1126/sciadv.1602902 10.1002/aenm.201703133 10.1016/j.elstat.2004.05.005 10.1080/00253359.2004.10656896 10.1111/j.1469-8137.2006.01823.x 10.1039/C5EE02711J 10.1016/j.nanoen.2015.12.021 10.1007/s004250100530 10.1093/aob/mcm255 10.1016/j.micron.2007.11.010 10.1021/nn404614z 10.1016/j.nanoen.2018.05.041 10.1016/j.bbalip.2013.09.011 10.1016/j.jsb.2004.10.003 10.1098/rsta.2009.0015 10.1104/pp.113.222737 10.1002/aenm.201700289 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201804949 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30387241 10_1002_adma_201804949 ADMA201804949 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Science and Technology funderid: CASE‐2015M3A6A5072945 – fundername: Korea Research Institute of Chemical Technology – fundername: Ministry of Education, Science and Technology grantid: CASE-2015M3A6A5072945 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4769-ee7fe0615e9f8780493373b1678a02237513a692e5f5a4593896a924eb391a8a3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 12:32:32 EDT 2025 Fri Jul 25 02:15:33 EDT 2025 Wed Feb 19 02:36:11 EST 2025 Tue Jul 01 00:44:46 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:36:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | triboelectric nanogenerators energy harvesting lipids triboelectricity of natural substances contact electrification |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4769-ee7fe0615e9f8780493373b1678a02237513a692e5f5a4593896a924eb391a8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7519-7595 |
PMID | 30387241 |
PQID | 2159348181 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2129532447 proquest_journals_2159348181 pubmed_primary_30387241 crossref_citationtrail_10_1002_adma_201804949 crossref_primary_10_1002_adma_201804949 wiley_primary_10_1002_adma_201804949_ADMA201804949 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Dec |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2004; 62 2017; 3 2000; 23 2007; 100 2008; 39 2013; 163 2006; 172 2013; 7 2014; 1841 2004; 90 2015; 8 2018; 8 2014; 5 2015; 27 2013; 14 1969; 2 2005; 149 2017; 34 2016; 20 2003; 4 2011; 66 2018; 50 2009; 367 2001; 213 2006; 144 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_10_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 39 start-page: 759 year: 2008 publication-title: Micron – volume: 213 start-page: 427 year: 2001 publication-title: Planta – volume: 5 start-page: 481 year: 2014 publication-title: Front. Plant Sci. – volume: 50 start-page: 192 year: 2018 publication-title: Nano Energy – volume: 8 start-page: 1703133 year: 2018 publication-title: Adv. Energy Mater. – volume: 20 start-page: 283 year: 2016 publication-title: Nano Energy – volume: 144 start-page: 45 year: 2006 publication-title: Chem. Phys. Lipids – volume: 4 start-page: 414 year: 2003 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 23 start-page: 619 year: 2000 publication-title: Plant, Cell Environ. – volume: 14 start-page: 4242 year: 2013 publication-title: Int. J. Mol. Sci. – volume: 66 start-page: 1 year: 2011 publication-title: Surf. Sci. Rep. – volume: 8 start-page: 3605 year: 2015 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1533 year: 1969 publication-title: J. Phys. D: Appl. Phys. – volume: 27 start-page: 5553 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 1700289 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: e1602902 year: 2017 publication-title: Sci. Adv. – volume: 1841 start-page: 314 year: 2014 publication-title: Biochim. Biophys. Acta,– Mol. Cell Biol. Lipids – volume: 34 start-page: 233 year: 2017 publication-title: Nano Energy – volume: 90 start-page: 187 year: 2004 publication-title: Mar. Mirror – volume: 100 start-page: 1557 year: 2007 publication-title: Ann. Bot. – volume: 367 start-page: 1673 year: 2009 publication-title: Philos. Trans. R. Soc., A – volume: 62 start-page: 277 year: 2004 publication-title: J. Electrost. – volume: 7 start-page: 9533 year: 2013 publication-title: ACS Nano – volume: 149 start-page: 235 year: 2005 publication-title: J. Struct. Biol. – volume: 7 start-page: 1600988 year: 2017 publication-title: Adv. Energy Mater. – volume: 172 start-page: 305 year: 2006 publication-title: New Phytol. – volume: 163 start-page: 5 year: 2013 publication-title: Plant Physiol. – volume: 27 start-page: 4749 year: 2015 publication-title: Chem. Mater. – ident: e_1_2_4_8_1 doi: 10.1088/0022-3727/2/11/307 – ident: e_1_2_4_10_1 doi: 10.3390/ijms14024242 – ident: e_1_2_4_18_1 doi: 10.1046/j.1365-3040.2000.00581.x – ident: e_1_2_4_21_1 doi: 10.3389/fpls.2014.00481 – ident: e_1_2_4_25_1 doi: 10.1002/aenm.201600988 – ident: e_1_2_4_9_1 doi: 10.1021/acs.chemmater.5b01507 – ident: e_1_2_4_13_1 doi: 10.1038/nrm1102 – ident: e_1_2_4_5_1 doi: 10.1002/adma.201502463 – ident: e_1_2_4_22_1 doi: 10.1016/j.chemphyslip.2006.06.016 – ident: e_1_2_4_24_1 doi: 10.1016/j.surfrep.2010.10.001 – ident: e_1_2_4_1_1 doi: 10.1016/j.nanoen.2017.02.032 – ident: e_1_2_4_26_1 doi: 10.1126/sciadv.1602902 – ident: e_1_2_4_7_1 doi: 10.1002/aenm.201703133 – ident: e_1_2_4_6_1 doi: 10.1016/j.elstat.2004.05.005 – ident: e_1_2_4_28_1 doi: 10.1080/00253359.2004.10656896 – ident: e_1_2_4_20_1 doi: 10.1111/j.1469-8137.2006.01823.x – ident: e_1_2_4_23_1 doi: 10.1039/C5EE02711J – ident: e_1_2_4_4_1 doi: 10.1016/j.nanoen.2015.12.021 – ident: e_1_2_4_17_1 doi: 10.1007/s004250100530 – ident: e_1_2_4_19_1 doi: 10.1093/aob/mcm255 – ident: e_1_2_4_15_1 doi: 10.1016/j.micron.2007.11.010 – ident: e_1_2_4_2_1 doi: 10.1021/nn404614z – ident: e_1_2_4_3_1 doi: 10.1016/j.nanoen.2018.05.041 – ident: e_1_2_4_11_1 doi: 10.1016/j.bbalip.2013.09.011 – ident: e_1_2_4_12_1 doi: 10.1016/j.jsb.2004.10.003 – ident: e_1_2_4_16_1 doi: 10.1098/rsta.2009.0015 – ident: e_1_2_4_14_1 doi: 10.1104/pp.113.222737 – ident: e_1_2_4_27_1 doi: 10.1002/aenm.201700289 |
SSID | ssj0009606 |
Score | 2.493495 |
Snippet | It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1804949 |
SubjectTerms | contact electrification Electric power generation Electricity Energy harvesting Leaves Lipids Materials science Nanogenerators Skin Static electricity triboelectric nanogenerators triboelectricity of natural substances |
Title | Lipids: Source of Static Electricity of Regenerative Natural Substances and Nondestructive Energy Harvesting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804949 https://www.ncbi.nlm.nih.gov/pubmed/30387241 https://www.proquest.com/docview/2159348181 https://www.proquest.com/docview/2129532447 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pa9swFMcfo6ft0P3evGZDg0FPTmrrh63dwpYSBskhWyA3I8lyKQt2Icmlf33fkx2n6RiF7eYfz1i29KSvbL3PA_giJA7qApWb087HwjoX6zKXsfX2oipV6bOM4p1nczVdih8ruboXxd_yIfoPbuQZob8mBzd2MzpAQ00ZuEFJToQTiuCjBVukihYHfhTJ8wDb4zLWSuR7auNFOjq-_HhU-kNqHivXMPRcPgezL3S74uT3cLe1Q3f7gOf4P0_1Ak47XcrGbUN6CU98_Qqe3aMVvoY15bkuN1_Zz_DBnzUVI6l67dgk5NK5dqjo6ejCXwWYNfWkbG4C2YNRD7WlJrZhpi7ZvKlL38Fr0WoSQhAZZSoi7Ed99QaWl5Nf36Zxl6whdiJTOvY-qzzpI6-rnKhGmvOM2wQHQ4M6gWcy4Ubp1MtKGiE1CiVlcPKHk3mdmNzwt3BSN7V_DyyRmTZOcQIFCedKm6tKWq3wRqimrIgg3ldW4TqSOSXUWBctgzkt6C0W_VuM4Ly3v2kZHn-1HOzrvuh8eVOgKNIUrpwnEXzuT6MX0q8VU_tmRzaplqhNRRbBu7bN9LfitEIAhVIEaaj5R8pQjL_Pxv3eh3-56Aye0na76mYAJ1iZ_iNqp639FPzjDp78D2g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHBQ7AgQItEArFSJV6CpDEdmJuq3bR8tg98JB6i2zHQQiURdrlwl_PjPOgS1VVKsc4tpJ4PPbPjv0NwDcucFDnqNyssi7kxtpQFZkIjTNHZSELl6Z03nk4koMbfvZLtLsJ6SxMzYfoFtzIM3x_TQ5OC9KHr9RQXXhwUJQR4kTNwQKF9fazqstXghQJdI_bS0SoJM9abuNRfDhbfnZc-kNszmpXP_icfATTvna95-T-4GlqDuzzG6Lju75rFVYaacp6dVtagw-uWofl34CFn-CBQl0Xk2N25df82bhkpFbvLOv7cDp3FkU9pV66W8-zps6UjbSHezDqpKbUyiZMVwUbjavCNfxazNX3pxAZBSsi8kd1-xluTvrXPwZhE68htDyVKnQuLR1JJKfKjMBGKknSxEQ4HmqUCkmK5tFSxU6UQnOhUCtJjfM_nM-rSGc62YD5aly5LWCRSJW2MiFWELe2MJkshVESH4SCyvAAwtZauW1g5hRT4yGvMcxxTrWYd7UYwPcu_2ON8fhrzp3W-HnjzpMcdZGiE8tZFMB-dxsdkf6u6MqNnyhPrATKU54GsFk3mu5RCW0SQK0UQOxN_493yHs_h73uavt_Cu3B4uB6eJFfnI7Ov8ASpdebcHZgHg3rdlFKTc1X7ywvln4Tgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHLZWqcih9QgptXalST4FN_Ejc24rdFX2wqmiRuEV-BaGiLNIuF_76zjjZwFKhSvQYx5Yd22P_7NjfAHwUEid1gcrNaRdSYZ1LtS9laoMd1F75UBR03_lwqg6OxdcTeXLjFn_Lh-g33Mgy4nhNBn7h671raKjxkRuUlUQ40Q_hkVCDkvr16OgaIEX6PNL2uEy1EuUS2zjI91bTr05Lf2nNVeka557JBphlqdsjJ793Lxd2113dAjr-z2c9g6edMGXDtic9hweheQHrN3CFL-GcHF37-Wf2M-74s1nNSKueOTaOznTOHEp6Cj0Kp5FmTUMpm5qI9mA0RC2oj82ZaTybzhofOnotxhrHO4iMXBUR96M5fQXHk_Gv_YO089aQOlEonYZQ1IEEUtB1SVgjzXnBbYazoUGhwAuZcaN0HmQtjZAalZIyuPrD1bzOTGn4a1hrZk3YApbJQhunOJGChHPelqqWVivMCOWUFQmky8aqXIcyJ48a51ULYc4rqsWqr8UEPvXxL1qIx50xd5ZtX3XGPK9QFWm6r1xmCXzoX6MZ0r8V04TZJcXJtURxKooENts-02fF6YgAKqUE8tjy_yhDNRwdDvunN_dJ9B4e_xhNqu9fpt-24QkFtydwdmAN2zW8RR21sO-iqfwBXxYSOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipids%3A+Source+of+Static+Electricity+of+Regenerative+Natural+Substances+and+Nondestructive+Energy+Harvesting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Dong+Wook&rft.au=Kim%2C+Sang%E2%80%90Woo&rft.au=Jeong%2C+Unyong&rft.date=2018-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=52&rft_id=info:doi/10.1002%2Fadma.201804949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |