Lipids: Source of Static Electricity of Regenerative Natural Substances and Nondestructive Energy Harvesting

It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural subst...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 52; pp. e1804949 - n/a
Main Authors Kim, Dong Wook, Kim, Sang‐Woo, Jeong, Unyong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long‐term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid‐based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid‐based nondestructive TENGs are fabricated. The concept of energy‐harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is. Lipids are the cause of positive static electricity of regenerative natural substances and can be sources for nondestructive energy harvesting. Lipid layers on the surface of regenerative substances are responsible for the positive static electricity and they can be an ideal source in generating electricity while preserving nature as it is.
AbstractList It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long-term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid-based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid-based nondestructive TENGs are fabricated. The concept of energy-harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is.
It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long‐term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid‐based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid‐based nondestructive TENGs are fabricated. The concept of energy‐harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is. Lipids are the cause of positive static electricity of regenerative natural substances and can be sources for nondestructive energy harvesting. Lipid layers on the surface of regenerative substances are responsible for the positive static electricity and they can be an ideal source in generating electricity while preserving nature as it is.
It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long-term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid-based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid-based nondestructive TENGs are fabricated. The concept of energy-harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is.It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such natural regenerative substances take a high ranking in the triboelectric series. Even though the static electricity of regenerative natural substances has been a long-term curiosity in human history, it is not yet clear which of their components causes the positive static charges. This study reveals that lipid layers on the surface of regenerative substances (skin, hair, leaves, cells) and even synthetic lipids are responsible for this positive static electricity and shows that it is possible to manufacture lipid-based triboelectric nanogenerators (TENGs). Using the characteristic that lipids on leaves regenerate within a few hours, lipids from living tree leaves are collected, and lipid-based nondestructive TENGs are fabricated. The concept of energy-harvesting vines is also presented, which can generate electricity when they are wrapped loosely on living tree branches. This study suggests how to harvest electricity while preserving nature as it is.
Author Kim, Sang‐Woo
Kim, Dong Wook
Jeong, Unyong
Author_xml – sequence: 1
  givenname: Dong Wook
  surname: Kim
  fullname: Kim, Dong Wook
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 2
  givenname: Sang‐Woo
  surname: Kim
  fullname: Kim, Sang‐Woo
  organization: Sungkyunkwan University (SKKU)
– sequence: 3
  givenname: Unyong
  orcidid: 0000-0002-7519-7595
  surname: Jeong
  fullname: Jeong, Unyong
  email: ujeong@postech.ac.kr
  organization: Pohang University of Science and Technology (POSTECH)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30387241$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vEzEQxS1URNPClSOyxIXLBn_u2tyiEihSKBKBszXxzkauNt5g7xblv8chLUiVECdL4997Hr93Qc7iEJGQl5zNOWPiLbQ7mAvGDVNW2SdkxrXglWJWn5EZs1JXtlbmnFzkfMsYszWrn5FzyaRphOIz0q_CPrT5HV0PU_JIh46uRxiDp8se_ZiCD-PhOP2KW4yYytUd0hsYpwQ9XU-bPEL0mCnElt4MscU8psn_ppaF3x7oNaS7Mg1x-5w87aDP-OL-vCTfPyy_XV1Xqy8fP10tVpVXTW0rxKZDVnONtjPN8WdSNnLD68YAE0I2mkuorUDdaVDaSmNrsELhRloOBuQleXPy3afhx1TedruQPfY9RBym7AQXVkuhVFPQ14_Q2xJELNsVqlgrww0v1Kt7atrssHX7FHaQDu4hxwKoE-DTkHPCzpXcSlZDHBOE3nHmjnW5Y13uT11FNn8ke3D-p8CeBD9Dj4f_0G7x_vPir_YXXWOmow
CitedBy_id crossref_primary_10_1002_advs_202103414
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1002_jbm_a_37871
crossref_primary_10_3390_agronomy14030573
crossref_primary_10_1021_acsanm_9b01299
crossref_primary_10_1021_acsami_0c17601
crossref_primary_10_1007_s40820_019_0271_3
crossref_primary_10_1021_acsaelm_0c00407
crossref_primary_10_1016_j_nanoen_2020_104636
crossref_primary_10_1002_adsr_202200015
crossref_primary_10_1007_s12274_023_5784_x
crossref_primary_10_1016_j_cej_2024_154869
crossref_primary_10_1016_j_isci_2021_102064
crossref_primary_10_1016_j_nanoen_2022_107101
crossref_primary_10_1016_j_nanoen_2023_109056
crossref_primary_10_1002_aenm_202101170
crossref_primary_10_1039_D3BM01204B
crossref_primary_10_1002_advs_202405666
crossref_primary_10_1016_j_susmat_2025_e01295
crossref_primary_10_1002_adfm_201910162
crossref_primary_10_1002_advs_202002606
crossref_primary_10_1039_D2EE00405D
crossref_primary_10_1002_advs_202307266
crossref_primary_10_1039_D2TA10024J
crossref_primary_10_1109_MIM_2022_9955463
crossref_primary_10_1002_tcr_202200067
crossref_primary_10_1016_j_ceramint_2024_08_215
crossref_primary_10_1038_s43246_022_00302_x
crossref_primary_10_1002_ente_202000236
crossref_primary_10_1002_adsr_202300129
crossref_primary_10_1039_D1MH00919B
crossref_primary_10_1088_1748_3190_ac1711
crossref_primary_10_1364_PRJ_394044
crossref_primary_10_1016_j_nanoen_2022_107320
crossref_primary_10_1186_s11671_021_03578_z
crossref_primary_10_1039_D2TC03058F
crossref_primary_10_1088_1748_3190_aca198
crossref_primary_10_1002_adfm_202106475
crossref_primary_10_1016_j_nanoen_2024_110283
crossref_primary_10_1016_j_susmat_2024_e01096
crossref_primary_10_1038_s41427_019_0176_0
crossref_primary_10_1007_s00542_022_05356_y
crossref_primary_10_1021_acsomega_9b01963
crossref_primary_10_1016_j_nanoen_2020_105414
crossref_primary_10_1016_j_cej_2022_139138
crossref_primary_10_1016_j_nanoen_2020_104767
crossref_primary_10_1021_acsenergylett_0c01909
crossref_primary_10_1002_advs_202000254
crossref_primary_10_29121_granthaalayah_v7_i4_2019_921
crossref_primary_10_1016_j_nanoen_2020_105011
crossref_primary_10_1016_j_nanoen_2020_105694
crossref_primary_10_1021_acs_chemrev_1c00525
Cites_doi 10.1088/0022-3727/2/11/307
10.3390/ijms14024242
10.1046/j.1365-3040.2000.00581.x
10.3389/fpls.2014.00481
10.1002/aenm.201600988
10.1021/acs.chemmater.5b01507
10.1038/nrm1102
10.1002/adma.201502463
10.1016/j.chemphyslip.2006.06.016
10.1016/j.surfrep.2010.10.001
10.1016/j.nanoen.2017.02.032
10.1126/sciadv.1602902
10.1002/aenm.201703133
10.1016/j.elstat.2004.05.005
10.1080/00253359.2004.10656896
10.1111/j.1469-8137.2006.01823.x
10.1039/C5EE02711J
10.1016/j.nanoen.2015.12.021
10.1007/s004250100530
10.1093/aob/mcm255
10.1016/j.micron.2007.11.010
10.1021/nn404614z
10.1016/j.nanoen.2018.05.041
10.1016/j.bbalip.2013.09.011
10.1016/j.jsb.2004.10.003
10.1098/rsta.2009.0015
10.1104/pp.113.222737
10.1002/aenm.201700289
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201804949
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30387241
10_1002_adma_201804949
ADMA201804949
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Science and Technology
  funderid: CASE‐2015M3A6A5072945
– fundername: Korea Research Institute of Chemical Technology
– fundername: Ministry of Education, Science and Technology
  grantid: CASE-2015M3A6A5072945
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4769-ee7fe0615e9f8780493373b1678a02237513a692e5f5a4593896a924eb391a8a3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 12:32:32 EDT 2025
Fri Jul 25 02:15:33 EDT 2025
Wed Feb 19 02:36:11 EST 2025
Tue Jul 01 00:44:46 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:36:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords triboelectric nanogenerators
energy harvesting
lipids
triboelectricity of natural substances
contact electrification
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-ee7fe0615e9f8780493373b1678a02237513a692e5f5a4593896a924eb391a8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7519-7595
PMID 30387241
PQID 2159348181
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_2129532447
proquest_journals_2159348181
pubmed_primary_30387241
crossref_citationtrail_10_1002_adma_201804949
crossref_primary_10_1002_adma_201804949
wiley_primary_10_1002_adma_201804949_ADMA201804949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Dec
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2004; 62
2017; 3
2000; 23
2007; 100
2008; 39
2013; 163
2006; 172
2013; 7
2014; 1841
2004; 90
2015; 8
2018; 8
2014; 5
2015; 27
2013; 14
1969; 2
2005; 149
2017; 34
2016; 20
2003; 4
2011; 66
2018; 50
2009; 367
2001; 213
2006; 144
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 39
  start-page: 759
  year: 2008
  publication-title: Micron
– volume: 213
  start-page: 427
  year: 2001
  publication-title: Planta
– volume: 5
  start-page: 481
  year: 2014
  publication-title: Front. Plant Sci.
– volume: 50
  start-page: 192
  year: 2018
  publication-title: Nano Energy
– volume: 8
  start-page: 1703133
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 283
  year: 2016
  publication-title: Nano Energy
– volume: 144
  start-page: 45
  year: 2006
  publication-title: Chem. Phys. Lipids
– volume: 4
  start-page: 414
  year: 2003
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 23
  start-page: 619
  year: 2000
  publication-title: Plant, Cell Environ.
– volume: 14
  start-page: 4242
  year: 2013
  publication-title: Int. J. Mol. Sci.
– volume: 66
  start-page: 1
  year: 2011
  publication-title: Surf. Sci. Rep.
– volume: 8
  start-page: 3605
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1533
  year: 1969
  publication-title: J. Phys. D: Appl. Phys.
– volume: 27
  start-page: 5553
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1700289
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: e1602902
  year: 2017
  publication-title: Sci. Adv.
– volume: 1841
  start-page: 314
  year: 2014
  publication-title: Biochim. Biophys. Acta,– Mol. Cell Biol. Lipids
– volume: 34
  start-page: 233
  year: 2017
  publication-title: Nano Energy
– volume: 90
  start-page: 187
  year: 2004
  publication-title: Mar. Mirror
– volume: 100
  start-page: 1557
  year: 2007
  publication-title: Ann. Bot.
– volume: 367
  start-page: 1673
  year: 2009
  publication-title: Philos. Trans. R. Soc., A
– volume: 62
  start-page: 277
  year: 2004
  publication-title: J. Electrost.
– volume: 7
  start-page: 9533
  year: 2013
  publication-title: ACS Nano
– volume: 149
  start-page: 235
  year: 2005
  publication-title: J. Struct. Biol.
– volume: 7
  start-page: 1600988
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 172
  start-page: 305
  year: 2006
  publication-title: New Phytol.
– volume: 163
  start-page: 5
  year: 2013
  publication-title: Plant Physiol.
– volume: 27
  start-page: 4749
  year: 2015
  publication-title: Chem. Mater.
– ident: e_1_2_4_8_1
  doi: 10.1088/0022-3727/2/11/307
– ident: e_1_2_4_10_1
  doi: 10.3390/ijms14024242
– ident: e_1_2_4_18_1
  doi: 10.1046/j.1365-3040.2000.00581.x
– ident: e_1_2_4_21_1
  doi: 10.3389/fpls.2014.00481
– ident: e_1_2_4_25_1
  doi: 10.1002/aenm.201600988
– ident: e_1_2_4_9_1
  doi: 10.1021/acs.chemmater.5b01507
– ident: e_1_2_4_13_1
  doi: 10.1038/nrm1102
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201502463
– ident: e_1_2_4_22_1
  doi: 10.1016/j.chemphyslip.2006.06.016
– ident: e_1_2_4_24_1
  doi: 10.1016/j.surfrep.2010.10.001
– ident: e_1_2_4_1_1
  doi: 10.1016/j.nanoen.2017.02.032
– ident: e_1_2_4_26_1
  doi: 10.1126/sciadv.1602902
– ident: e_1_2_4_7_1
  doi: 10.1002/aenm.201703133
– ident: e_1_2_4_6_1
  doi: 10.1016/j.elstat.2004.05.005
– ident: e_1_2_4_28_1
  doi: 10.1080/00253359.2004.10656896
– ident: e_1_2_4_20_1
  doi: 10.1111/j.1469-8137.2006.01823.x
– ident: e_1_2_4_23_1
  doi: 10.1039/C5EE02711J
– ident: e_1_2_4_4_1
  doi: 10.1016/j.nanoen.2015.12.021
– ident: e_1_2_4_17_1
  doi: 10.1007/s004250100530
– ident: e_1_2_4_19_1
  doi: 10.1093/aob/mcm255
– ident: e_1_2_4_15_1
  doi: 10.1016/j.micron.2007.11.010
– ident: e_1_2_4_2_1
  doi: 10.1021/nn404614z
– ident: e_1_2_4_3_1
  doi: 10.1016/j.nanoen.2018.05.041
– ident: e_1_2_4_11_1
  doi: 10.1016/j.bbalip.2013.09.011
– ident: e_1_2_4_12_1
  doi: 10.1016/j.jsb.2004.10.003
– ident: e_1_2_4_16_1
  doi: 10.1098/rsta.2009.0015
– ident: e_1_2_4_14_1
  doi: 10.1104/pp.113.222737
– ident: e_1_2_4_27_1
  doi: 10.1002/aenm.201700289
SSID ssj0009606
Score 2.493495
Snippet It is familiar to everyone that human skin and hair easily lose electrons and cause static electricity as they undergo friction with other materials. Such...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1804949
SubjectTerms contact electrification
Electric power generation
Electricity
Energy harvesting
Leaves
Lipids
Materials science
Nanogenerators
Skin
Static electricity
triboelectric nanogenerators
triboelectricity of natural substances
Title Lipids: Source of Static Electricity of Regenerative Natural Substances and Nondestructive Energy Harvesting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804949
https://www.ncbi.nlm.nih.gov/pubmed/30387241
https://www.proquest.com/docview/2159348181
https://www.proquest.com/docview/2129532447
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pa9swFMcfo6ft0P3evGZDg0FPTmrrh63dwpYSBskhWyA3I8lyKQt2Icmlf33fkx2n6RiF7eYfz1i29KSvbL3PA_giJA7qApWb087HwjoX6zKXsfX2oipV6bOM4p1nczVdih8ruboXxd_yIfoPbuQZob8mBzd2MzpAQ00ZuEFJToQTiuCjBVukihYHfhTJ8wDb4zLWSuR7auNFOjq-_HhU-kNqHivXMPRcPgezL3S74uT3cLe1Q3f7gOf4P0_1Ak47XcrGbUN6CU98_Qqe3aMVvoY15bkuN1_Zz_DBnzUVI6l67dgk5NK5dqjo6ejCXwWYNfWkbG4C2YNRD7WlJrZhpi7ZvKlL38Fr0WoSQhAZZSoi7Ed99QaWl5Nf36Zxl6whdiJTOvY-qzzpI6-rnKhGmvOM2wQHQ4M6gWcy4Ubp1MtKGiE1CiVlcPKHk3mdmNzwt3BSN7V_DyyRmTZOcQIFCedKm6tKWq3wRqimrIgg3ldW4TqSOSXUWBctgzkt6C0W_VuM4Ly3v2kZHn-1HOzrvuh8eVOgKNIUrpwnEXzuT6MX0q8VU_tmRzaplqhNRRbBu7bN9LfitEIAhVIEaaj5R8pQjL_Pxv3eh3-56Aye0na76mYAJ1iZ_iNqp639FPzjDp78D2g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHBQ7AgQItEArFSJV6CpDEdmJuq3bR8tg98JB6i2zHQQiURdrlwl_PjPOgS1VVKsc4tpJ4PPbPjv0NwDcucFDnqNyssi7kxtpQFZkIjTNHZSELl6Z03nk4koMbfvZLtLsJ6SxMzYfoFtzIM3x_TQ5OC9KHr9RQXXhwUJQR4kTNwQKF9fazqstXghQJdI_bS0SoJM9abuNRfDhbfnZc-kNszmpXP_icfATTvna95-T-4GlqDuzzG6Lju75rFVYaacp6dVtagw-uWofl34CFn-CBQl0Xk2N25df82bhkpFbvLOv7cDp3FkU9pV66W8-zps6UjbSHezDqpKbUyiZMVwUbjavCNfxazNX3pxAZBSsi8kd1-xluTvrXPwZhE68htDyVKnQuLR1JJKfKjMBGKknSxEQ4HmqUCkmK5tFSxU6UQnOhUCtJjfM_nM-rSGc62YD5aly5LWCRSJW2MiFWELe2MJkshVESH4SCyvAAwtZauW1g5hRT4yGvMcxxTrWYd7UYwPcu_2ON8fhrzp3W-HnjzpMcdZGiE8tZFMB-dxsdkf6u6MqNnyhPrATKU54GsFk3mu5RCW0SQK0UQOxN_493yHs_h73uavt_Cu3B4uB6eJFfnI7Ov8ASpdebcHZgHg3rdlFKTc1X7ywvln4Tgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHLZWqcih9QgptXalST4FN_Ejc24rdFX2wqmiRuEV-BaGiLNIuF_76zjjZwFKhSvQYx5Yd22P_7NjfAHwUEid1gcrNaRdSYZ1LtS9laoMd1F75UBR03_lwqg6OxdcTeXLjFn_Lh-g33Mgy4nhNBn7h671raKjxkRuUlUQ40Q_hkVCDkvr16OgaIEX6PNL2uEy1EuUS2zjI91bTr05Lf2nNVeka557JBphlqdsjJ793Lxd2113dAjr-z2c9g6edMGXDtic9hweheQHrN3CFL-GcHF37-Wf2M-74s1nNSKueOTaOznTOHEp6Cj0Kp5FmTUMpm5qI9mA0RC2oj82ZaTybzhofOnotxhrHO4iMXBUR96M5fQXHk_Gv_YO089aQOlEonYZQ1IEEUtB1SVgjzXnBbYazoUGhwAuZcaN0HmQtjZAalZIyuPrD1bzOTGn4a1hrZk3YApbJQhunOJGChHPelqqWVivMCOWUFQmky8aqXIcyJ48a51ULYc4rqsWqr8UEPvXxL1qIx50xd5ZtX3XGPK9QFWm6r1xmCXzoX6MZ0r8V04TZJcXJtURxKooENts-02fF6YgAKqUE8tjy_yhDNRwdDvunN_dJ9B4e_xhNqu9fpt-24QkFtydwdmAN2zW8RR21sO-iqfwBXxYSOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipids%3A+Source+of+Static+Electricity+of+Regenerative+Natural+Substances+and+Nondestructive+Energy+Harvesting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Dong+Wook&rft.au=Kim%2C+Sang%E2%80%90Woo&rft.au=Jeong%2C+Unyong&rft.date=2018-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=52&rft_id=info:doi/10.1002%2Fadma.201804949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon