Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior

The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect n...

Full description

Saved in:
Bibliographic Details
Published inGenes, brain and behavior Vol. 15; no. 2; pp. 280 - 290
Main Authors He, X., Zhou, S., St. Armour, G. E., Mackay, T. F. C., Anholt, R. R. H.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2016
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. Integrating analysis of natural variants with mutations at defined genomic locations can unmask epistatic modifiers of behaviors.
AbstractList The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]-element insertion mutants in Sema-5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry-go-round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema-5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. Integrating analysis of natural variants with mutations at defined genomic locations can unmask epistatic modifiers of behaviors.
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel ( DGRP ). We crossed the DGRP lines to P[ GT1 ] ‐element insertion mutants in Sema‐5c and neuralized ( neur ), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F 1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur ( merry‐go‐round ( mgr ), prospero ( pros) , CG10098 , Alhambra ( Alh ) and CG12535 ) and Sema‐5c ( CG42540 and bruchpilot ( brp )) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1] -element insertion mutants in Sema-5c and neuralized ( neur ), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F sub(1) genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur ( merry-go-round ( mgr ), prospero ( pros) , CG10098 , Alhambra ( Alh ) and CG12535 ) and Sema-5c ( CG42540 and bruchpilot ( brp )) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. Integrating analysis of natural variants with mutations at defined genomic locations can unmask epistatic modifiers of behaviors.
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]-element insertion mutants in Sema-5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry-go-round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema-5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]-element insertion mutants in Sema-5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry-go-round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema-5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.
Author Mackay, T. F. C.
St. Armour, G. E.
Zhou, S.
Anholt, R. R. H.
He, X.
AuthorAffiliation 1 Department of Entomology South China Agricultural University Guangzhou China
2 Department of Biological Sciences Program in Genetics and W. M. Keck Center for Behavioral Biology Raleigh NC USA
AuthorAffiliation_xml – name: 1 Department of Entomology South China Agricultural University Guangzhou China
– name: 2 Department of Biological Sciences Program in Genetics and W. M. Keck Center for Behavioral Biology Raleigh NC USA
Author_xml – sequence: 1
  givenname: X.
  surname: He
  fullname: He, X.
  organization: South China Agricultural University
– sequence: 2
  givenname: S.
  surname: Zhou
  fullname: Zhou, S.
  organization: Program in Genetics and W. M. Keck Center for Behavioral Biology
– sequence: 3
  givenname: G. E.
  surname: St. Armour
  fullname: St. Armour, G. E.
  organization: Program in Genetics and W. M. Keck Center for Behavioral Biology
– sequence: 4
  givenname: T. F. C.
  surname: Mackay
  fullname: Mackay, T. F. C.
  organization: Program in Genetics and W. M. Keck Center for Behavioral Biology
– sequence: 5
  givenname: R. R. H.
  surname: Anholt
  fullname: Anholt, R. R. H.
  organization: Program in Genetics and W. M. Keck Center for Behavioral Biology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26678546$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LHDEUhoMoftUL_0AZ8EYvVicfk2RuBLVqBUtvKngXMsmZ3chsMk1mlP33zbq6VKHQXCSH5OHh5Lx7aNMHDwgd4vIU53U2bZpTTIioN9Au5iWeYEkfN9c1kztoL6WnssSCSryNdgjnQlaM76If171Lgx6cKXodBw8xFaEtPIwxTMHn67xDKubBjp0eoPgWQwr9zHW6CF2rzRDiomhgpp9diF_QVqu7BAdv5z56uLn-dfV9cv_z9u7q4n5imOD1xEKpLasENFQaIYkBKxtLpKWWlIKwWhCZ22NMtrKhtAbTVsTkUkthKmvpPjpfefuxmYM14IeoO9VHN9dxoYJ26uOLdzM1Dc-KSYYZI1lw_CaI4fcIaVBzlwx0nfYQxqSwEJzzStL6P1BOKMOk5hk9-oQ-hTH6PIklhZdcvRSerCiTR5kitOu-camWeaqcp3rNM7Nf__7omnwPMANnK-DFdbD4t0ndXl6ulH8A82asaA
CODEN GBBEAO
CitedBy_id crossref_primary_10_1016_j_tig_2023_02_007
crossref_primary_10_1007_s10519_019_09949_8
crossref_primary_10_1093_gbe_evw191
crossref_primary_10_1007_s00335_017_9722_7
crossref_primary_10_1093_sleep_zsx205
crossref_primary_10_1534_genetics_119_302263
crossref_primary_10_1016_j_tig_2019_10_005
crossref_primary_10_1093_genetics_iyaa020
crossref_primary_10_3389_fgene_2020_599292
crossref_primary_10_1038_s41467_018_04882_6
crossref_primary_10_1016_j_tig_2018_03_007
crossref_primary_10_1371_journal_pgen_1007075
crossref_primary_10_1093_bioinformatics_bty462
crossref_primary_10_1038_s41576_024_00711_3
crossref_primary_10_1534_g3_118_200503
crossref_primary_10_1016_j_tig_2017_01_009
crossref_primary_10_1002_wdev_289
crossref_primary_10_1016_j_mcn_2023_103842
crossref_primary_10_1093_g3journal_jkab285
Cites_doi 10.1371/journal.pone.0034745
10.1007/s00335-005-0091-2
10.1017/S0016672309990279
10.1073/pnas.1423275112
10.1534/genetics.110.123505
10.1371/journal.pgen.1001037
10.1534/genetics.112.142877
10.1111/j.1420-9101.2004.00702.x
10.1186/1471-2164-14-281
10.1038/nrg1426
10.1038/nature03865
10.1038/nrg3949
10.1046/j.1365-2540.2001.00779.x
10.1038/ng1674
10.1017/S001667231200002X
10.1038/150563a0
10.1093/chemse/bjv001
10.1093/genetics/165.2.623
10.1152/physiolgenomics.00247.2005
10.1371/journal.pgen.1002180
10.1038/nature08494
10.1186/1471-213X-10-92
10.1073/pnas.0804889105
10.1073/pnas.1220168110
10.1093/genetics/162.4.1655
10.1101/gr.171546.113
10.1371/journal.pone.0126880
10.1007/s003350010218
10.1371/journal.pgen.1003661
10.1038/nrg3627
10.1105/tpc.108.058131
10.1073/pnas.1119675109
10.1073/pnas.1213423109
10.3389/fgene.2011.00071
10.1038/ng1761
10.1093/genetics/148.4.1885
10.1126/science.1166426
10.1371/journal.pone.0038722
10.1534/genetics.106.060574
10.1038/ng1314
10.1038/289079a0
10.1038/nature03480
10.1371/journal.pgen.0030162
10.1016/j.neuron.2006.02.008
10.1534/genetics.113.159426
10.1534/genetics.106.069781
10.1038/nature10811
10.1534/genetics.104.026427
10.1093/genetics/143.1.293
10.1093/genetics/141.1.333
10.1098/rstb.2009.0315
10.1073/pnas.1510104112
10.1534/genetics.108.088435
10.1093/genetics/147.1.157
10.1016/S0960-9822(03)00546-3
10.1093/genetics/144.4.1497
10.1111/j.1601-183X.2011.00704.x
10.1093/nar/gkq537
10.1371/journal.pgen.1005163
10.1093/genetics/157.2.727
10.1534/genetics.104.032631
ContentType Journal Article
Copyright 2015 The Authors. published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society
Copyright_xml – notice: 2015 The Authors. published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
– notice: 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
– notice: 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7TK
8FD
FR3
P64
RC3
7X8
7SS
5PM
DOI 10.1111/gbb.12279
DatabaseName Wiley Online Library website
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Entomology Abstracts (Full archive)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Animal Behavior Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Entomology Abstracts
DatabaseTitleList MEDLINE


Entomology Abstracts
Genetics Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Epistatic modifiers for Drosophila olfaction
EISSN 1601-183X
EndPage 290
ExternalDocumentID 3939295901
10_1111_gbb_12279
26678546
GBB12279
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201208440319
– fundername: NIH
  funderid: R01 GM059469 and R01 GM045146
– fundername: National Institute of Environmental Health Sciences
  funderid: T32 ES7046‐35
– fundername: NIGMS NIH HHS
  grantid: R01 GM059469
– fundername: NIGMS NIH HHS
  grantid: R01 GM045146
– fundername: NIEHS NIH HHS
  grantid: T32 ES7046-35
– fundername: NIA NIH HHS
  grantid: R01 AG073181
– fundername: NIEHS NIH HHS
  grantid: T32 ES007046
– fundername: China Scholarship Council
  grantid: 201208440319
– fundername: National Institute of Environmental Health Sciences
  grantid: T32 ES7046‐35
– fundername: NIH
  grantid: R01 GM059469 and R01 GM045146
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABPVW
ACAHQ
ACCFJ
ACFBH
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFZJQ
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
H.X
HCIFZ
HF~
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PGMZT
PSYQQ
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXI
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7TK
8FD
FR3
P64
RC3
7X8
7SS
5PM
ID FETCH-LOGICAL-c4769-de0ad457eb38c782ced8bd28d3d207249728854448f8b339ecf52c8b3a87c5dd3
IEDL.DBID 24P
ISSN 1601-1848
1601-183X
IngestDate Tue Sep 17 21:23:42 EDT 2024
Fri Aug 16 03:53:56 EDT 2024
Sat Oct 26 04:20:42 EDT 2024
Thu Oct 10 22:42:36 EDT 2024
Fri Dec 06 02:26:01 EST 2024
Sat Nov 02 12:31:35 EDT 2024
Sat Aug 24 00:52:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords quantitative traits
genetic architecture
Chemosensation
genome-wide association study
Drosophila melanogaster Genetic Reference Panel
Language English
License Attribution-NonCommercial-NoDerivs
2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
http://creativecommons.org/licenses/by-nc-nd/4.0
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-de0ad457eb38c782ced8bd28d3d207249728854448f8b339ecf52c8b3a87c5dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbb.12279
PMID 26678546
PQID 1761623499
PQPubID 1066353
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4841442
proquest_miscellaneous_1776665839
proquest_miscellaneous_1762341296
proquest_journals_1761623499
crossref_primary_10_1111_gbb_12279
pubmed_primary_26678546
wiley_primary_10_1111_gbb_12279_GBB12279
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Malden
PublicationTitle Genes, brain and behavior
PublicationTitleAlternate Genes Brain Behav
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References 2004; 167
2010; 10
2012; 482
2006; 38
2003; 13
2006; 174
2004; 5
2014; 24
2011; 10
1996; 144
2008; 105
1996; 143
2013; 9
2001; 86
1997; 147
2013; 14
2009; 91
2015; 40
2007; 176
2004; 36
2006; 26
2014; 15
2013; 110
2008; 20
2007; 3
2005; 37
2001; 12
2009; 323
2010; 6
2003; 165
2010; 38
2015; 16
2011; 2
1981; 289
2006; 17
2015; 11
2005; 435
2010; 365
2005; 436
2015; 10
1996
2014; 196
2011; 7
2012; 109
2012; 94
1942; 150
2001; 157
2002; 162
2004; 17
2005; 169
2006; 49
2015; 112
2012; 192
1998; 148
2009; 461
2008; 179
2012; 7
1995; 141
2011; 187
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_38_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
Dilda C.L. (e_1_2_5_15_1) 2002; 162
e_1_2_5_28_1
e_1_2_5_49_1
Falconer D.S. (e_1_2_5_17_1) 1996
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_20_1
e_1_2_5_41_1
Fedorowicz G.M. (e_1_2_5_18_1) 1998; 148
Clark A.G. (e_1_2_5_12_1) 1997; 147
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_31_1
Lukacsovich T. (e_1_2_5_34_1) 2001; 157
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 11
  start-page: e1005163
  year: 2015
  article-title: Genetic architecture of abdominal pigmentation in
  publication-title: PLoS Genet
– volume: 38
  start-page: 418
  year: 2006
  end-page: 420
  article-title: Epistasis and the release of genetic variation during long‐term selection
  publication-title: Nat Genet
– volume: 14
  start-page: 281
  year: 2013
  article-title: Genome‐wide association study of sleep in
  publication-title: BMC Genomics
– volume: 192
  start-page: 1533
  year: 2012
  end-page: 1542
  article-title: More than the sum of its parts: a complex epistatic network underlies natural variation in thermal preference behavior in
  publication-title: Genetics
– volume: 187
  start-page: 597
  year: 2011
  end-page: 610
  article-title: Mapping the epistatic network underlying murine reproductive fatpad variation
  publication-title: Genetics
– volume: 9
  start-page: e1003661
  year: 2013
  article-title: The conditional nature of genetic interactions: the consequences of wild‐type backgrounds on mutational interactions in a genome‐wide modifier screen
  publication-title: PLoS Genet
– volume: 323
  start-page: 498
  year: 2009
  end-page: 501
  article-title: Genetic interactions between transcription factors cause natural variation in yeast
  publication-title: Science
– volume: 86
  start-page: 144
  year: 2001
  end-page: 152
  article-title: The contrasting genetic architecture of wing size and shape in
  publication-title: Heredity
– volume: 13
  start-page: 1388
  year: 2003
  end-page: 1396
  article-title: Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development
  publication-title: Curr Biol
– volume: 12
  start-page: 3
  year: 2001
  end-page: 12
  article-title: Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice
  publication-title: Mamm Genome
– volume: 165
  start-page: 623
  year: 2003
  end-page: 635
  article-title: Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila
  publication-title: Genetics
– volume: 365
  start-page: 1229
  year: 2010
  end-page: 1239
  article-title: Mutations and quantitative genetic variation: lessons from Drosophila
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 162
  start-page: 1655
  year: 2002
  end-page: 1674
  article-title: The genetic architecture of Drosophila sensory bristle number
  publication-title: Genetics
– volume: 5
  start-page: 681
  year: 2004
  end-page: 690
  article-title: Uncovering cryptic genetic variation
  publication-title: Nat Rev Genet
– volume: 112
  start-page: 1662
  year: 2015
  end-page: 1669
  article-title: Causes of natural variation in fitness: evidence from studies of Drosophila populations
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 483
  year: 2015
  end-page: 496
  article-title: Pervasive robustness in biological systems
  publication-title: Nat Rev Genet
– volume: 169
  start-page: 2151
  year: 2005
  end-page: 2163
  article-title: Flexibility in a gene network affecting a simple behavior in
  publication-title: Genetics
– volume: 7
  start-page: e1002180
  year: 2011
  article-title: Replication and explorations of high‐order epistasis using a large advanced intercross line pedigree
  publication-title: PLoS Genet
– volume: 112
  start-page: E3555
  year: 2015
  end-page: E3563
  article-title: Genetic architecture of natural variation in aggressive behavior
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 22
  year: 2006
  end-page: 36
  article-title: Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci
  publication-title: Mamm Genome
– volume: 10
  start-page: e0126880
  year: 2015
  article-title: Accounting for genetic architecture improves sequence based genomic prediction for a Drosophila fitness trait
  publication-title: PLoS ONE
– volume: 40
  start-page: 233
  year: 2015
  end-page: 243
  article-title: The genetic basis for variation in olfactory behavior in
  publication-title: Chem Senses
– volume: 109
  start-page: 15553
  year: 2012
  end-page: 15559
  article-title: Epistasis dominates the genetic architecture of Drosophila quantitative traits
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: e38722
  year: 2012
  article-title: Genome‐wide association for sensitivity to chronic oxidative stress in
  publication-title: PLoS ONE
– volume: 105
  start-page: 12393
  year: 2008
  end-page: 12398
  article-title: Neurogenetic networks for startle‐induced locomotion in Drosophila
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: e34745
  year: 2012
  article-title: Genome‐wide association analysis of oxidative stress resistance in
  publication-title: PLoS ONE
– volume: 436
  start-page: 701
  year: 2005
  end-page: 703
  article-title: Genetic interactions between polymorphisms that affect gene expression in yeast
  publication-title: Nature
– volume: 10
  start-page: 648
  year: 2011
  end-page: 657
  article-title: Functional dissection of genes in
  publication-title: Genes Brain Behav
– volume: 94
  start-page: 9
  year: 2012
  end-page: 20
  article-title: Extensive epistasis for olfactory behaviour, sleep and waking activity in
  publication-title: Genet Res
– volume: 176
  start-page: 947
  year: 2007
  end-page: 956
  article-title: The early developmental gene contributes to olfactory behavior in adult Drosophila
  publication-title: Genetics
– volume: 110
  start-page: 1017
  year: 2013
  end-page: 1022
  article-title: Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 1687
  year: 2007
  end-page: 1701
  article-title: Linking metabolic QTLs with network and ‐eQTLs controlling biosynthetic pathways
  publication-title: PLoS Genet
– volume: 91
  start-page: 373
  year: 2009
  end-page: 382
  article-title: Epistatic interactions attenuate mutations affecting startle behaviour in
  publication-title: Genet Res
– volume: 15
  start-page: 22
  year: 2014
  end-page: 33
  article-title: Epistasis and quantitative traits: using model organisms to study gene‐gene interactions
  publication-title: Nat Rev Genet
– volume: 435
  start-page: 95
  year: 2005
  end-page: 98
  article-title: Epistasis and balanced polymorphism influencing complex trait variation
  publication-title: Nature
– year: 1996
– volume: 179
  start-page: 1327
  year: 2008
  end-page: 1336
  article-title: Pleiotropic effects of Drosophila on complex behaviors and brain structure
  publication-title: Genetics
– volume: 49
  start-page: 833
  year: 2006
  end-page: 844
  article-title: Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila
  publication-title: Neuron
– volume: 109
  start-page: 1193
  year: 2012
  end-page: 1198
  article-title: The mystery of missing heritability: genetic interactions create phantom heritability
  publication-title: Proc Natl Acad Sci USA
– volume: 141
  start-page: 333
  year: 1995
  end-page: 346
  article-title: Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance
  publication-title: Genetics
– volume: 20
  start-page: 1199
  year: 2008
  end-page: 1216
  article-title: Biochemical networks and epistasis shape the metabolome
  publication-title: Plant Cell
– volume: 2
  start-page: 71
  year: 2011
  article-title: Sex‐, diet‐, and cancer‐dependent epistatic effects on complex traits in mice
  publication-title: Front Genet
– volume: 289
  start-page: 79
  year: 1981
  end-page: 81
  article-title: Defect in cyclic AMP phosphodiesterase due to the mutation of learning in
  publication-title: Nature
– volume: 37
  start-page: 1333
  year: 2005
  end-page: 1340
  article-title: Quantitative trait loci mapped to single nucleotide resolution in yeast
  publication-title: Nat Genet
– volume: 167
  start-page: 761
  year: 2004
  end-page: 781
  article-title: The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes
  publication-title: Genetics
– volume: 10
  start-page: 92
  year: 2010
  article-title: The essential role of bursicon during Drosophila development
  publication-title: BMC Dev Biol
– volume: 6
  start-page: e1001037
  year: 2010
  article-title: Quantitative and molecular genetic analyses of mutations increasing Drosophila life span
  publication-title: PLoS Genet
– volume: 24
  start-page: 1193
  year: 2014
  end-page: 1208
  article-title: Natural variation in genome architecture among 205 Genetic Reference Panel lines
  publication-title: Genome Res
– volume: 482
  start-page: 173
  year: 2012
  end-page: 178
  article-title: The Genetic Reference Panel
  publication-title: Nature
– volume: 17
  start-page: 593
  year: 2004
  end-page: 602
  article-title: Epistasis affecting litter size in mice
  publication-title: J Evol Biol
– volume: 174
  start-page: 1349
  year: 2006
  end-page: 1363
  article-title: Dynamic genetic interactions determine odor‐guided behavior in
  publication-title: Genetics
– volume: 36
  start-page: 283
  year: 2004
  end-page: 287
  article-title: A complementary transposon tool kit for using and
  publication-title: Nat Genet
– volume: 144
  start-page: 1497
  year: 1996
  end-page: 1510
  article-title: Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in
  publication-title: Genetics
– volume: 157
  start-page: 727
  year: 2001
  end-page: 742
  article-title: Dual‐tagging gene trap of novel genes in 
  publication-title: Genetics
– volume: 461
  start-page: 747
  year: 2009
  end-page: 753
  article-title: Finding the missing heritability of complex diseases
  publication-title: Nature
– volume: 143
  start-page: 293
  year: 1996
  end-page: 301
  article-title: Effects of single ‐element insertions on olfactory behavior in
  publication-title: Genetics
– volume: 150
  start-page: 563
  year: 1942
  end-page: 565
  article-title: Canalization of development and the inheritance of acquired characters
  publication-title: Nature
– volume: 26
  start-page: 46
  year: 2006
  end-page: 54
  article-title: Three‐locus and four‐locus QTL interactions influence mouse insulin‐like growth Factor‐I
  publication-title: Physiol Genome
– volume: 147
  start-page: 157
  year: 1997
  end-page: 163
  article-title: Epistasis in measured genotypes: Drosophila ‐element insertions
  publication-title: Genetics
– volume: 38
  start-page: W214
  issue: Suppl
  year: 2010
  end-page: W220
  article-title: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function
  publication-title: Nucleic Acids Res
– volume: 196
  start-page: 1321
  year: 2014
  end-page: 1336
  article-title: Causes and consequences of genetic background effects illuminated by integrative genomic analysis
  publication-title: Genetics
– volume: 148
  start-page: 1885
  year: 1998
  end-page: 1891
  article-title: Epistatic interactions between loci in
  publication-title: Genetics
– volume-title: Introduction to Quantitative Genetics
  year: 1996
  ident: e_1_2_5_17_1
  contributor:
    fullname: Falconer D.S.
– ident: e_1_2_5_59_1
  doi: 10.1371/journal.pone.0034745
– ident: e_1_2_5_50_1
  doi: 10.1007/s00335-005-0091-2
– ident: e_1_2_5_62_1
  doi: 10.1017/S0016672309990279
– ident: e_1_2_5_8_1
  doi: 10.1073/pnas.1423275112
– ident: e_1_2_5_28_1
  doi: 10.1534/genetics.110.123505
– ident: e_1_2_5_38_1
  doi: 10.1371/journal.pgen.1001037
– ident: e_1_2_5_20_1
  doi: 10.1534/genetics.112.142877
– ident: e_1_2_5_43_1
  doi: 10.1111/j.1420-9101.2004.00702.x
– ident: e_1_2_5_25_1
  doi: 10.1186/1471-2164-14-281
– ident: e_1_2_5_22_1
  doi: 10.1038/nrg1426
– ident: e_1_2_5_5_1
  doi: 10.1038/nature03865
– ident: e_1_2_5_19_1
  doi: 10.1038/nrg3949
– ident: e_1_2_5_23_1
  doi: 10.1046/j.1365-2540.2001.00779.x
– ident: e_1_2_5_14_1
  doi: 10.1038/ng1674
– ident: e_1_2_5_52_1
  doi: 10.1017/S001667231200002X
– ident: e_1_2_5_56_1
  doi: 10.1038/150563a0
– ident: e_1_2_5_3_1
  doi: 10.1093/chemse/bjv001
– ident: e_1_2_5_40_1
  doi: 10.1093/genetics/165.2.623
– ident: e_1_2_5_24_1
  doi: 10.1152/physiolgenomics.00247.2005
– ident: e_1_2_5_44_1
  doi: 10.1371/journal.pgen.1002180
– ident: e_1_2_5_39_1
  doi: 10.1038/nature08494
– ident: e_1_2_5_33_1
  doi: 10.1186/1471-213X-10-92
– ident: e_1_2_5_61_1
  doi: 10.1073/pnas.0804889105
– ident: e_1_2_5_53_1
  doi: 10.1073/pnas.1220168110
– volume: 162
  start-page: 1655
  year: 2002
  ident: e_1_2_5_15_1
  article-title: The genetic architecture of Drosophila sensory bristle number
  publication-title: Genetics
  doi: 10.1093/genetics/162.4.1655
  contributor:
    fullname: Dilda C.L.
– ident: e_1_2_5_27_1
  doi: 10.1101/gr.171546.113
– ident: e_1_2_5_42_1
  doi: 10.1371/journal.pone.0126880
– ident: e_1_2_5_11_1
  doi: 10.1007/s003350010218
– ident: e_1_2_5_10_1
  doi: 10.1371/journal.pgen.1003661
– ident: e_1_2_5_37_1
  doi: 10.1038/nrg3627
– ident: e_1_2_5_47_1
  doi: 10.1105/tpc.108.058131
– ident: e_1_2_5_63_1
  doi: 10.1073/pnas.1119675109
– ident: e_1_2_5_26_1
  doi: 10.1073/pnas.1213423109
– ident: e_1_2_5_31_1
  doi: 10.3389/fgene.2011.00071
– ident: e_1_2_5_7_1
  doi: 10.1038/ng1761
– volume: 148
  start-page: 1885
  year: 1998
  ident: e_1_2_5_18_1
  article-title: Epistatic interactions between smell‐impaired loci in Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1093/genetics/148.4.1885
  contributor:
    fullname: Fedorowicz G.M.
– ident: e_1_2_5_21_1
  doi: 10.1126/science.1166426
– ident: e_1_2_5_29_1
  doi: 10.1371/journal.pone.0038722
– ident: e_1_2_5_48_1
  doi: 10.1534/genetics.106.060574
– ident: e_1_2_5_54_1
  doi: 10.1038/ng1314
– ident: e_1_2_5_6_1
  doi: 10.1038/289079a0
– ident: e_1_2_5_30_1
  doi: 10.1038/nature03480
– ident: e_1_2_5_60_1
  doi: 10.1371/journal.pgen.0030162
– ident: e_1_2_5_57_1
  doi: 10.1016/j.neuron.2006.02.008
– ident: e_1_2_5_9_1
  doi: 10.1534/genetics.113.159426
– ident: e_1_2_5_45_1
  doi: 10.1534/genetics.106.069781
– ident: e_1_2_5_36_1
  doi: 10.1038/nature10811
– ident: e_1_2_5_4_1
  doi: 10.1534/genetics.104.026427
– ident: e_1_2_5_2_1
  doi: 10.1093/genetics/143.1.293
– ident: e_1_2_5_16_1
  doi: 10.1093/genetics/141.1.333
– ident: e_1_2_5_35_1
  doi: 10.1098/rstb.2009.0315
– ident: e_1_2_5_49_1
  doi: 10.1073/pnas.1510104112
– ident: e_1_2_5_46_1
  doi: 10.1534/genetics.108.088435
– volume: 147
  start-page: 157
  year: 1997
  ident: e_1_2_5_12_1
  article-title: Epistasis in measured genotypes: Drosophila P‐element insertions
  publication-title: Genetics
  doi: 10.1093/genetics/147.1.157
  contributor:
    fullname: Clark A.G.
– ident: e_1_2_5_41_1
  doi: 10.1016/S0960-9822(03)00546-3
– ident: e_1_2_5_32_1
  doi: 10.1093/genetics/144.4.1497
– ident: e_1_2_5_51_1
  doi: 10.1111/j.1601-183X.2011.00704.x
– ident: e_1_2_5_58_1
  doi: 10.1093/nar/gkq537
– ident: e_1_2_5_13_1
  doi: 10.1371/journal.pgen.1005163
– volume: 157
  start-page: 727
  year: 2001
  ident: e_1_2_5_34_1
  article-title: Dual‐tagging gene trap of novel genes in Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1093/genetics/157.2.727
  contributor:
    fullname: Lukacsovich T.
– ident: e_1_2_5_55_1
  doi: 10.1534/genetics.104.032631
SSID ssj0017381
Score 2.2812016
Snippet The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 280
SubjectTerms Animals
Behavior
Behavior, Animal - physiology
Chemosensation
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - physiology
Drosophila melanogaster Genetic Reference Panel
Epistasis, Genetic - genetics
Gene loci
Genes, Insect - genetics
genetic architecture
Genetic Variation - genetics
Genome-Wide Association Study
Genomes
Genotype
Insects
Mutation - genetics
Olfactory Bulb - physiology
Original
Phenotype
quantitative traits
Title Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbb.12279
https://www.ncbi.nlm.nih.gov/pubmed/26678546
https://www.proquest.com/docview/1761623499
https://www.proquest.com/docview/1762341296
https://search.proquest.com/docview/1776665839
https://pubmed.ncbi.nlm.nih.gov/PMC4841442
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50vXgR31ZXiSLipdKmaZPiyceuIigiLngrbZOooO2yj8P-eyfpAxdRvJTQTKHJzCTfl8cMwLFKQz9nVLtmd9NFo_BcEcjYzXCq8jXXaWyDVd8_RLcDdvcSvizAeXMXpooP0S64Gc-w47Vx8DQbf3Py1yw78038u0VYQlgTmfQFlD22Wwg8sBlKfWQcLtIYUYcVMsd42k_nJ6MfCPPnQcnvANbOQP1VWKmhI7modL0GC6pYh42LAmnz54ycEHuY066Sb8B9b2iAIUqSIRpHgSCPlJrY6JVoMvj61Qxy5LOUJn-XItcjm9Dg_SMl5UeVhGdGmjv8mzDo956vbt06c4KbMx7FrlReKlnIkSmLHDFArqTIJBUykNTjyLg4FSJkSM20yIIgVrkOaY7FVPA8lDLYgk5RFmoHCJc0p1JHMuaKxUjPaBBqz8-UF8VSs8CBo6YLk2EVICNpiAX2c2L72YFu07lJ7SPjxOeRj-ALKZcDh201WrfZskgLVU6tDEogJon-kuHIwUJEeg5sV_pq_wThB8eG4td8TpOtgImuPV9TvL_ZKNtMMCSb1IFTq_PfG5fcXF7awu7_RfdgGZFXffy7C53JaKr2Ed1MsgNrxfi8fqJf0-n24g
link.rule.ids 230,314,780,784,885,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLSXAqWFUKBuVVW9ZBU7TuxIXHh227IcKpC4VFHiB6BCsqK7B_j1jJ2HWFCrqrconki2MxN_nz35BuCjKRKqOLOhO90M0SmiUMY6C0tcqqgVtsi8WPXoOB2e8m9nydkcbHf_wjT6EP2Gm4sM_712Ae42pB9E-XlZDqgTwHsGCxju1CV07f_oxaOoiH2JUoqUI0QeI1tdIZfH0z86uxo9gZhPMyUfIli_BB0uws-u803mya_BdFIO1N0jXcf_Hd0SvGyxKdlpnGkZ5kz1ClZ2KuTl17fkE_HZon4bfgVGB2OHPNGSjNH7KkSRpLbEy2OiT-Ltc_cVJde1dgXCDNm_8RUTLq8KUl81VX5uSScS8BpODw9O9oZhW5ohVFykWahNVGieCKTiUiHIUEbLUjOpY80igZROMCkTjtzPyjKOM6NswhReFlKoROv4DcxXdWXWgAjNFNM21ZkwPEP-x-LERrQ0UZppy-MAPnSvKB83Chx5x1xwknI_SQFsdC8vb4Pwd05FShHdIacL4H3fjOHjzkSKytRTb4MWCHrSv9kIJHkJQskAVht_6HuC-EbgQPFpMeMpvYGT755tqS4vvIw3lxzZLAvgs3eEPw8u_7K76y_W_930HTwfnoyO8qOvx9_fwguEeW2u-QbMT26mZhOh1KTc8hFzD0XhGiE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5tQap6aUvpI4WCW1VVL1kljhM74rTLsgVaEEJF4lApSvygqJCs6O4Bfj1j56FdUFHFLYonku3MxN9nT74B-KzzOJSMGt-ebvroFIEvIpX6BS5VoeEmT51Y9cFhsnvC9k_j0x5stf_C1PoQ3YabjQz3vbYBPlFmLsjPiqIfWv27J7DMEppa4fzRcacdFfLIVSgNkXH4SGNEIytk03i6RxcXo3sI836i5DyAdSvQ-AX8avteJ5786c-mRV_e3JF1fOTgXsLzBpmSQe1KK9DT5StYHZTIyi-vyRfickXdJvwqHOxMLO5ESzJB3ysRQ5LKECeOiR6Jt8_sN5RcVsqWB9NkdOXqJZxf5KS6qGv8XJNWIuA1nIx3fm7v-k1hBl8ynqS-0kGuWMyRiAuJEENqJQpFhYoUDTgSOk6FiBkyPyOKKEq1NDGVeJkLLmOlojewVFalfgeEKyqpMolKuWYpsj8axSYICx0kqTIs8uBT-4aySa2_kbW8BScpc5PkwXr77rImBP9mIU9CxHbI6Dz42DVj8NgTkbzU1czZoAVCnuQhG44UL0Yg6cHb2h26niC64ThQfJovOEpnYMW7F1vK899OxJsJhlyWevDV-cG_B5d9Gw7dxfv_N92Ep0ejcfZj7_D7GjxDjNckmq_D0vRqpj8gjpoWGy5ebgHtOhjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epistatic+partners+of+neurogenic+genes+modulate+Drosophila+olfactory+behavior&rft.jtitle=Genes%2C+brain+and+behavior&rft.au=He%2C+X&rft.au=Zhou%2C+S&rft.au=St+Armour%2C+G+E&rft.au=Mackay%2C+T+F+C&rft.date=2016-02-01&rft.eissn=1601-183X&rft.volume=15&rft.issue=2&rft.spage=280&rft_id=info:doi/10.1111%2Fgbb.12279&rft_id=info%3Apmid%2F26678546&rft.externalDocID=26678546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1601-1848&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1601-1848&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1601-1848&client=summon