Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect n...
Saved in:
Published in | Genes, brain and behavior Vol. 15; no. 2; pp. 280 - 290 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2016
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.
Integrating analysis of natural variants with mutations at defined genomic locations can unmask epistatic modifiers of behaviors. |
---|---|
AbstractList | The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]-element insertion mutants in Sema-5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry-go-round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema-5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. Integrating analysis of natural variants with mutations at defined genomic locations can unmask epistatic modifiers of behaviors. The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel ( DGRP ). We crossed the DGRP lines to P[ GT1 ] ‐element insertion mutants in Sema‐5c and neuralized ( neur ), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F 1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur ( merry‐go‐round ( mgr ), prospero ( pros) , CG10098 , Alhambra ( Alh ) and CG12535 ) and Sema‐5c ( CG42540 and bruchpilot ( brp )) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1] -element insertion mutants in Sema-5c and neuralized ( neur ), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F sub(1) genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur ( merry-go-round ( mgr ), prospero ( pros) , CG10098 , Alhambra ( Alh ) and CG12535 ) and Sema-5c ( CG42540 and bruchpilot ( brp )) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. Integrating analysis of natural variants with mutations at defined genomic locations can unmask epistatic modifiers of behaviors. The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]-element insertion mutants in Sema-5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry-go-round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema-5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild-derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]-element insertion mutants in Sema-5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild-type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome-wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry-go-round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema-5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome-wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. |
Author | Mackay, T. F. C. St. Armour, G. E. Zhou, S. Anholt, R. R. H. He, X. |
AuthorAffiliation | 1 Department of Entomology South China Agricultural University Guangzhou China 2 Department of Biological Sciences Program in Genetics and W. M. Keck Center for Behavioral Biology Raleigh NC USA |
AuthorAffiliation_xml | – name: 1 Department of Entomology South China Agricultural University Guangzhou China – name: 2 Department of Biological Sciences Program in Genetics and W. M. Keck Center for Behavioral Biology Raleigh NC USA |
Author_xml | – sequence: 1 givenname: X. surname: He fullname: He, X. organization: South China Agricultural University – sequence: 2 givenname: S. surname: Zhou fullname: Zhou, S. organization: Program in Genetics and W. M. Keck Center for Behavioral Biology – sequence: 3 givenname: G. E. surname: St. Armour fullname: St. Armour, G. E. organization: Program in Genetics and W. M. Keck Center for Behavioral Biology – sequence: 4 givenname: T. F. C. surname: Mackay fullname: Mackay, T. F. C. organization: Program in Genetics and W. M. Keck Center for Behavioral Biology – sequence: 5 givenname: R. R. H. surname: Anholt fullname: Anholt, R. R. H. organization: Program in Genetics and W. M. Keck Center for Behavioral Biology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26678546$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1LHDEUhoMoftUL_0AZ8EYvVicfk2RuBLVqBUtvKngXMsmZ3chsMk1mlP33zbq6VKHQXCSH5OHh5Lx7aNMHDwgd4vIU53U2bZpTTIioN9Au5iWeYEkfN9c1kztoL6WnssSCSryNdgjnQlaM76If171Lgx6cKXodBw8xFaEtPIwxTMHn67xDKubBjp0eoPgWQwr9zHW6CF2rzRDiomhgpp9diF_QVqu7BAdv5z56uLn-dfV9cv_z9u7q4n5imOD1xEKpLasENFQaIYkBKxtLpKWWlIKwWhCZ22NMtrKhtAbTVsTkUkthKmvpPjpfefuxmYM14IeoO9VHN9dxoYJ26uOLdzM1Dc-KSYYZI1lw_CaI4fcIaVBzlwx0nfYQxqSwEJzzStL6P1BOKMOk5hk9-oQ-hTH6PIklhZdcvRSerCiTR5kitOu-camWeaqcp3rNM7Nf__7omnwPMANnK-DFdbD4t0ndXl6ulH8A82asaA |
CODEN | GBBEAO |
CitedBy_id | crossref_primary_10_1016_j_tig_2023_02_007 crossref_primary_10_1007_s10519_019_09949_8 crossref_primary_10_1093_gbe_evw191 crossref_primary_10_1007_s00335_017_9722_7 crossref_primary_10_1093_sleep_zsx205 crossref_primary_10_1534_genetics_119_302263 crossref_primary_10_1016_j_tig_2019_10_005 crossref_primary_10_1093_genetics_iyaa020 crossref_primary_10_3389_fgene_2020_599292 crossref_primary_10_1038_s41467_018_04882_6 crossref_primary_10_1016_j_tig_2018_03_007 crossref_primary_10_1371_journal_pgen_1007075 crossref_primary_10_1093_bioinformatics_bty462 crossref_primary_10_1038_s41576_024_00711_3 crossref_primary_10_1534_g3_118_200503 crossref_primary_10_1016_j_tig_2017_01_009 crossref_primary_10_1002_wdev_289 crossref_primary_10_1016_j_mcn_2023_103842 crossref_primary_10_1093_g3journal_jkab285 |
Cites_doi | 10.1371/journal.pone.0034745 10.1007/s00335-005-0091-2 10.1017/S0016672309990279 10.1073/pnas.1423275112 10.1534/genetics.110.123505 10.1371/journal.pgen.1001037 10.1534/genetics.112.142877 10.1111/j.1420-9101.2004.00702.x 10.1186/1471-2164-14-281 10.1038/nrg1426 10.1038/nature03865 10.1038/nrg3949 10.1046/j.1365-2540.2001.00779.x 10.1038/ng1674 10.1017/S001667231200002X 10.1038/150563a0 10.1093/chemse/bjv001 10.1093/genetics/165.2.623 10.1152/physiolgenomics.00247.2005 10.1371/journal.pgen.1002180 10.1038/nature08494 10.1186/1471-213X-10-92 10.1073/pnas.0804889105 10.1073/pnas.1220168110 10.1093/genetics/162.4.1655 10.1101/gr.171546.113 10.1371/journal.pone.0126880 10.1007/s003350010218 10.1371/journal.pgen.1003661 10.1038/nrg3627 10.1105/tpc.108.058131 10.1073/pnas.1119675109 10.1073/pnas.1213423109 10.3389/fgene.2011.00071 10.1038/ng1761 10.1093/genetics/148.4.1885 10.1126/science.1166426 10.1371/journal.pone.0038722 10.1534/genetics.106.060574 10.1038/ng1314 10.1038/289079a0 10.1038/nature03480 10.1371/journal.pgen.0030162 10.1016/j.neuron.2006.02.008 10.1534/genetics.113.159426 10.1534/genetics.106.069781 10.1038/nature10811 10.1534/genetics.104.026427 10.1093/genetics/143.1.293 10.1093/genetics/141.1.333 10.1098/rstb.2009.0315 10.1073/pnas.1510104112 10.1534/genetics.108.088435 10.1093/genetics/147.1.157 10.1016/S0960-9822(03)00546-3 10.1093/genetics/144.4.1497 10.1111/j.1601-183X.2011.00704.x 10.1093/nar/gkq537 10.1371/journal.pgen.1005163 10.1093/genetics/157.2.727 10.1534/genetics.104.032631 |
ContentType | Journal Article |
Copyright | 2015 The Authors. published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd. 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd. 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society |
Copyright_xml | – notice: 2015 The Authors. published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd. – notice: 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd. – notice: 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7TK 8FD FR3 P64 RC3 7X8 7SS 5PM |
DOI | 10.1111/gbb.12279 |
DatabaseName | Wiley Online Library website Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Entomology Abstracts (Full archive) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Animal Behavior Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Entomology Abstracts |
DatabaseTitleList | MEDLINE Entomology Abstracts Genetics Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Epistatic modifiers for Drosophila olfaction |
EISSN | 1601-183X |
EndPage | 290 |
ExternalDocumentID | 3939295901 10_1111_gbb_12279 26678546 GBB12279 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201208440319 – fundername: NIH funderid: R01 GM059469 and R01 GM045146 – fundername: National Institute of Environmental Health Sciences funderid: T32 ES7046‐35 – fundername: NIGMS NIH HHS grantid: R01 GM059469 – fundername: NIGMS NIH HHS grantid: R01 GM045146 – fundername: NIEHS NIH HHS grantid: T32 ES7046-35 – fundername: NIA NIH HHS grantid: R01 AG073181 – fundername: NIEHS NIH HHS grantid: T32 ES007046 – fundername: China Scholarship Council grantid: 201208440319 – fundername: National Institute of Environmental Health Sciences grantid: T32 ES7046‐35 – fundername: NIH grantid: R01 GM059469 and R01 GM045146 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABPVW ACAHQ ACCFJ ACFBH ACGFO ACGFS ACMXC ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADOZA ADPDF ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFKRA AFPWT AFZJQ AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN ESX F00 F01 F04 F5P FUBAC G-S G.N GODZA H.X HCIFZ HF~ HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PGMZT PSYQQ Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WYISQ XG1 YFH YUY ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7TK 8FD FR3 P64 RC3 7X8 7SS 5PM |
ID | FETCH-LOGICAL-c4769-de0ad457eb38c782ced8bd28d3d207249728854448f8b339ecf52c8b3a87c5dd3 |
IEDL.DBID | 24P |
ISSN | 1601-1848 1601-183X |
IngestDate | Tue Sep 17 21:23:42 EDT 2024 Fri Aug 16 03:53:56 EDT 2024 Sat Oct 26 04:20:42 EDT 2024 Thu Oct 10 22:42:36 EDT 2024 Fri Dec 06 02:26:01 EST 2024 Sat Nov 02 12:31:35 EDT 2024 Sat Aug 24 00:52:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | quantitative traits genetic architecture Chemosensation genome-wide association study Drosophila melanogaster Genetic Reference Panel |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0 This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4769-de0ad457eb38c782ced8bd28d3d207249728854448f8b339ecf52c8b3a87c5dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbb.12279 |
PMID | 26678546 |
PQID | 1761623499 |
PQPubID | 1066353 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4841442 proquest_miscellaneous_1776665839 proquest_miscellaneous_1762341296 proquest_journals_1761623499 crossref_primary_10_1111_gbb_12279 pubmed_primary_26678546 wiley_primary_10_1111_gbb_12279_GBB12279 |
PublicationCentury | 2000 |
PublicationDate | February 2016 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Malden |
PublicationTitle | Genes, brain and behavior |
PublicationTitleAlternate | Genes Brain Behav |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | 2004; 167 2010; 10 2012; 482 2006; 38 2003; 13 2006; 174 2004; 5 2014; 24 2011; 10 1996; 144 2008; 105 1996; 143 2013; 9 2001; 86 1997; 147 2013; 14 2009; 91 2015; 40 2007; 176 2004; 36 2006; 26 2014; 15 2013; 110 2008; 20 2007; 3 2005; 37 2001; 12 2009; 323 2010; 6 2003; 165 2010; 38 2015; 16 2011; 2 1981; 289 2006; 17 2015; 11 2005; 435 2010; 365 2005; 436 2015; 10 1996 2014; 196 2011; 7 2012; 109 2012; 94 1942; 150 2001; 157 2002; 162 2004; 17 2005; 169 2006; 49 2015; 112 2012; 192 1998; 148 2009; 461 2008; 179 2012; 7 1995; 141 2011; 187 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_38_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 Dilda C.L. (e_1_2_5_15_1) 2002; 162 e_1_2_5_28_1 e_1_2_5_49_1 Falconer D.S. (e_1_2_5_17_1) 1996 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_20_1 e_1_2_5_41_1 Fedorowicz G.M. (e_1_2_5_18_1) 1998; 148 Clark A.G. (e_1_2_5_12_1) 1997; 147 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_31_1 Lukacsovich T. (e_1_2_5_34_1) 2001; 157 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 11 start-page: e1005163 year: 2015 article-title: Genetic architecture of abdominal pigmentation in publication-title: PLoS Genet – volume: 38 start-page: 418 year: 2006 end-page: 420 article-title: Epistasis and the release of genetic variation during long‐term selection publication-title: Nat Genet – volume: 14 start-page: 281 year: 2013 article-title: Genome‐wide association study of sleep in publication-title: BMC Genomics – volume: 192 start-page: 1533 year: 2012 end-page: 1542 article-title: More than the sum of its parts: a complex epistatic network underlies natural variation in thermal preference behavior in publication-title: Genetics – volume: 187 start-page: 597 year: 2011 end-page: 610 article-title: Mapping the epistatic network underlying murine reproductive fatpad variation publication-title: Genetics – volume: 9 start-page: e1003661 year: 2013 article-title: The conditional nature of genetic interactions: the consequences of wild‐type backgrounds on mutational interactions in a genome‐wide modifier screen publication-title: PLoS Genet – volume: 323 start-page: 498 year: 2009 end-page: 501 article-title: Genetic interactions between transcription factors cause natural variation in yeast publication-title: Science – volume: 86 start-page: 144 year: 2001 end-page: 152 article-title: The contrasting genetic architecture of wing size and shape in publication-title: Heredity – volume: 13 start-page: 1388 year: 2003 end-page: 1396 article-title: Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development publication-title: Curr Biol – volume: 12 start-page: 3 year: 2001 end-page: 12 article-title: Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice publication-title: Mamm Genome – volume: 165 start-page: 623 year: 2003 end-page: 635 article-title: Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila publication-title: Genetics – volume: 365 start-page: 1229 year: 2010 end-page: 1239 article-title: Mutations and quantitative genetic variation: lessons from Drosophila publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 162 start-page: 1655 year: 2002 end-page: 1674 article-title: The genetic architecture of Drosophila sensory bristle number publication-title: Genetics – volume: 5 start-page: 681 year: 2004 end-page: 690 article-title: Uncovering cryptic genetic variation publication-title: Nat Rev Genet – volume: 112 start-page: 1662 year: 2015 end-page: 1669 article-title: Causes of natural variation in fitness: evidence from studies of Drosophila populations publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 483 year: 2015 end-page: 496 article-title: Pervasive robustness in biological systems publication-title: Nat Rev Genet – volume: 169 start-page: 2151 year: 2005 end-page: 2163 article-title: Flexibility in a gene network affecting a simple behavior in publication-title: Genetics – volume: 7 start-page: e1002180 year: 2011 article-title: Replication and explorations of high‐order epistasis using a large advanced intercross line pedigree publication-title: PLoS Genet – volume: 112 start-page: E3555 year: 2015 end-page: E3563 article-title: Genetic architecture of natural variation in aggressive behavior publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 22 year: 2006 end-page: 36 article-title: Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci publication-title: Mamm Genome – volume: 10 start-page: e0126880 year: 2015 article-title: Accounting for genetic architecture improves sequence based genomic prediction for a Drosophila fitness trait publication-title: PLoS ONE – volume: 40 start-page: 233 year: 2015 end-page: 243 article-title: The genetic basis for variation in olfactory behavior in publication-title: Chem Senses – volume: 109 start-page: 15553 year: 2012 end-page: 15559 article-title: Epistasis dominates the genetic architecture of Drosophila quantitative traits publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: e38722 year: 2012 article-title: Genome‐wide association for sensitivity to chronic oxidative stress in publication-title: PLoS ONE – volume: 105 start-page: 12393 year: 2008 end-page: 12398 article-title: Neurogenetic networks for startle‐induced locomotion in Drosophila publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: e34745 year: 2012 article-title: Genome‐wide association analysis of oxidative stress resistance in publication-title: PLoS ONE – volume: 436 start-page: 701 year: 2005 end-page: 703 article-title: Genetic interactions between polymorphisms that affect gene expression in yeast publication-title: Nature – volume: 10 start-page: 648 year: 2011 end-page: 657 article-title: Functional dissection of genes in publication-title: Genes Brain Behav – volume: 94 start-page: 9 year: 2012 end-page: 20 article-title: Extensive epistasis for olfactory behaviour, sleep and waking activity in publication-title: Genet Res – volume: 176 start-page: 947 year: 2007 end-page: 956 article-title: The early developmental gene contributes to olfactory behavior in adult Drosophila publication-title: Genetics – volume: 110 start-page: 1017 year: 2013 end-page: 1022 article-title: Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 1687 year: 2007 end-page: 1701 article-title: Linking metabolic QTLs with network and ‐eQTLs controlling biosynthetic pathways publication-title: PLoS Genet – volume: 91 start-page: 373 year: 2009 end-page: 382 article-title: Epistatic interactions attenuate mutations affecting startle behaviour in publication-title: Genet Res – volume: 15 start-page: 22 year: 2014 end-page: 33 article-title: Epistasis and quantitative traits: using model organisms to study gene‐gene interactions publication-title: Nat Rev Genet – volume: 435 start-page: 95 year: 2005 end-page: 98 article-title: Epistasis and balanced polymorphism influencing complex trait variation publication-title: Nature – year: 1996 – volume: 179 start-page: 1327 year: 2008 end-page: 1336 article-title: Pleiotropic effects of Drosophila on complex behaviors and brain structure publication-title: Genetics – volume: 49 start-page: 833 year: 2006 end-page: 844 article-title: Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila publication-title: Neuron – volume: 109 start-page: 1193 year: 2012 end-page: 1198 article-title: The mystery of missing heritability: genetic interactions create phantom heritability publication-title: Proc Natl Acad Sci USA – volume: 141 start-page: 333 year: 1995 end-page: 346 article-title: Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance publication-title: Genetics – volume: 20 start-page: 1199 year: 2008 end-page: 1216 article-title: Biochemical networks and epistasis shape the metabolome publication-title: Plant Cell – volume: 2 start-page: 71 year: 2011 article-title: Sex‐, diet‐, and cancer‐dependent epistatic effects on complex traits in mice publication-title: Front Genet – volume: 289 start-page: 79 year: 1981 end-page: 81 article-title: Defect in cyclic AMP phosphodiesterase due to the mutation of learning in publication-title: Nature – volume: 37 start-page: 1333 year: 2005 end-page: 1340 article-title: Quantitative trait loci mapped to single nucleotide resolution in yeast publication-title: Nat Genet – volume: 167 start-page: 761 year: 2004 end-page: 781 article-title: The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes publication-title: Genetics – volume: 10 start-page: 92 year: 2010 article-title: The essential role of bursicon during Drosophila development publication-title: BMC Dev Biol – volume: 6 start-page: e1001037 year: 2010 article-title: Quantitative and molecular genetic analyses of mutations increasing Drosophila life span publication-title: PLoS Genet – volume: 24 start-page: 1193 year: 2014 end-page: 1208 article-title: Natural variation in genome architecture among 205 Genetic Reference Panel lines publication-title: Genome Res – volume: 482 start-page: 173 year: 2012 end-page: 178 article-title: The Genetic Reference Panel publication-title: Nature – volume: 17 start-page: 593 year: 2004 end-page: 602 article-title: Epistasis affecting litter size in mice publication-title: J Evol Biol – volume: 174 start-page: 1349 year: 2006 end-page: 1363 article-title: Dynamic genetic interactions determine odor‐guided behavior in publication-title: Genetics – volume: 36 start-page: 283 year: 2004 end-page: 287 article-title: A complementary transposon tool kit for using and publication-title: Nat Genet – volume: 144 start-page: 1497 year: 1996 end-page: 1510 article-title: Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in publication-title: Genetics – volume: 157 start-page: 727 year: 2001 end-page: 742 article-title: Dual‐tagging gene trap of novel genes in publication-title: Genetics – volume: 461 start-page: 747 year: 2009 end-page: 753 article-title: Finding the missing heritability of complex diseases publication-title: Nature – volume: 143 start-page: 293 year: 1996 end-page: 301 article-title: Effects of single ‐element insertions on olfactory behavior in publication-title: Genetics – volume: 150 start-page: 563 year: 1942 end-page: 565 article-title: Canalization of development and the inheritance of acquired characters publication-title: Nature – volume: 26 start-page: 46 year: 2006 end-page: 54 article-title: Three‐locus and four‐locus QTL interactions influence mouse insulin‐like growth Factor‐I publication-title: Physiol Genome – volume: 147 start-page: 157 year: 1997 end-page: 163 article-title: Epistasis in measured genotypes: Drosophila ‐element insertions publication-title: Genetics – volume: 38 start-page: W214 issue: Suppl year: 2010 end-page: W220 article-title: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function publication-title: Nucleic Acids Res – volume: 196 start-page: 1321 year: 2014 end-page: 1336 article-title: Causes and consequences of genetic background effects illuminated by integrative genomic analysis publication-title: Genetics – volume: 148 start-page: 1885 year: 1998 end-page: 1891 article-title: Epistatic interactions between loci in publication-title: Genetics – volume-title: Introduction to Quantitative Genetics year: 1996 ident: e_1_2_5_17_1 contributor: fullname: Falconer D.S. – ident: e_1_2_5_59_1 doi: 10.1371/journal.pone.0034745 – ident: e_1_2_5_50_1 doi: 10.1007/s00335-005-0091-2 – ident: e_1_2_5_62_1 doi: 10.1017/S0016672309990279 – ident: e_1_2_5_8_1 doi: 10.1073/pnas.1423275112 – ident: e_1_2_5_28_1 doi: 10.1534/genetics.110.123505 – ident: e_1_2_5_38_1 doi: 10.1371/journal.pgen.1001037 – ident: e_1_2_5_20_1 doi: 10.1534/genetics.112.142877 – ident: e_1_2_5_43_1 doi: 10.1111/j.1420-9101.2004.00702.x – ident: e_1_2_5_25_1 doi: 10.1186/1471-2164-14-281 – ident: e_1_2_5_22_1 doi: 10.1038/nrg1426 – ident: e_1_2_5_5_1 doi: 10.1038/nature03865 – ident: e_1_2_5_19_1 doi: 10.1038/nrg3949 – ident: e_1_2_5_23_1 doi: 10.1046/j.1365-2540.2001.00779.x – ident: e_1_2_5_14_1 doi: 10.1038/ng1674 – ident: e_1_2_5_52_1 doi: 10.1017/S001667231200002X – ident: e_1_2_5_56_1 doi: 10.1038/150563a0 – ident: e_1_2_5_3_1 doi: 10.1093/chemse/bjv001 – ident: e_1_2_5_40_1 doi: 10.1093/genetics/165.2.623 – ident: e_1_2_5_24_1 doi: 10.1152/physiolgenomics.00247.2005 – ident: e_1_2_5_44_1 doi: 10.1371/journal.pgen.1002180 – ident: e_1_2_5_39_1 doi: 10.1038/nature08494 – ident: e_1_2_5_33_1 doi: 10.1186/1471-213X-10-92 – ident: e_1_2_5_61_1 doi: 10.1073/pnas.0804889105 – ident: e_1_2_5_53_1 doi: 10.1073/pnas.1220168110 – volume: 162 start-page: 1655 year: 2002 ident: e_1_2_5_15_1 article-title: The genetic architecture of Drosophila sensory bristle number publication-title: Genetics doi: 10.1093/genetics/162.4.1655 contributor: fullname: Dilda C.L. – ident: e_1_2_5_27_1 doi: 10.1101/gr.171546.113 – ident: e_1_2_5_42_1 doi: 10.1371/journal.pone.0126880 – ident: e_1_2_5_11_1 doi: 10.1007/s003350010218 – ident: e_1_2_5_10_1 doi: 10.1371/journal.pgen.1003661 – ident: e_1_2_5_37_1 doi: 10.1038/nrg3627 – ident: e_1_2_5_47_1 doi: 10.1105/tpc.108.058131 – ident: e_1_2_5_63_1 doi: 10.1073/pnas.1119675109 – ident: e_1_2_5_26_1 doi: 10.1073/pnas.1213423109 – ident: e_1_2_5_31_1 doi: 10.3389/fgene.2011.00071 – ident: e_1_2_5_7_1 doi: 10.1038/ng1761 – volume: 148 start-page: 1885 year: 1998 ident: e_1_2_5_18_1 article-title: Epistatic interactions between smell‐impaired loci in Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/148.4.1885 contributor: fullname: Fedorowicz G.M. – ident: e_1_2_5_21_1 doi: 10.1126/science.1166426 – ident: e_1_2_5_29_1 doi: 10.1371/journal.pone.0038722 – ident: e_1_2_5_48_1 doi: 10.1534/genetics.106.060574 – ident: e_1_2_5_54_1 doi: 10.1038/ng1314 – ident: e_1_2_5_6_1 doi: 10.1038/289079a0 – ident: e_1_2_5_30_1 doi: 10.1038/nature03480 – ident: e_1_2_5_60_1 doi: 10.1371/journal.pgen.0030162 – ident: e_1_2_5_57_1 doi: 10.1016/j.neuron.2006.02.008 – ident: e_1_2_5_9_1 doi: 10.1534/genetics.113.159426 – ident: e_1_2_5_45_1 doi: 10.1534/genetics.106.069781 – ident: e_1_2_5_36_1 doi: 10.1038/nature10811 – ident: e_1_2_5_4_1 doi: 10.1534/genetics.104.026427 – ident: e_1_2_5_2_1 doi: 10.1093/genetics/143.1.293 – ident: e_1_2_5_16_1 doi: 10.1093/genetics/141.1.333 – ident: e_1_2_5_35_1 doi: 10.1098/rstb.2009.0315 – ident: e_1_2_5_49_1 doi: 10.1073/pnas.1510104112 – ident: e_1_2_5_46_1 doi: 10.1534/genetics.108.088435 – volume: 147 start-page: 157 year: 1997 ident: e_1_2_5_12_1 article-title: Epistasis in measured genotypes: Drosophila P‐element insertions publication-title: Genetics doi: 10.1093/genetics/147.1.157 contributor: fullname: Clark A.G. – ident: e_1_2_5_41_1 doi: 10.1016/S0960-9822(03)00546-3 – ident: e_1_2_5_32_1 doi: 10.1093/genetics/144.4.1497 – ident: e_1_2_5_51_1 doi: 10.1111/j.1601-183X.2011.00704.x – ident: e_1_2_5_58_1 doi: 10.1093/nar/gkq537 – ident: e_1_2_5_13_1 doi: 10.1371/journal.pgen.1005163 – volume: 157 start-page: 727 year: 2001 ident: e_1_2_5_34_1 article-title: Dual‐tagging gene trap of novel genes in Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/157.2.727 contributor: fullname: Lukacsovich T. – ident: e_1_2_5_55_1 doi: 10.1534/genetics.104.032631 |
SSID | ssj0017381 |
Score | 2.2812016 |
Snippet | The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 280 |
SubjectTerms | Animals Behavior Behavior, Animal - physiology Chemosensation Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - physiology Drosophila melanogaster Genetic Reference Panel Epistasis, Genetic - genetics Gene loci Genes, Insect - genetics genetic architecture Genetic Variation - genetics Genome-Wide Association Study Genomes Genotype Insects Mutation - genetics Olfactory Bulb - physiology Original Phenotype quantitative traits |
Title | Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbb.12279 https://www.ncbi.nlm.nih.gov/pubmed/26678546 https://www.proquest.com/docview/1761623499 https://www.proquest.com/docview/1762341296 https://search.proquest.com/docview/1776665839 https://pubmed.ncbi.nlm.nih.gov/PMC4841442 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50vXgR31ZXiSLipdKmaZPiyceuIigiLngrbZOooO2yj8P-eyfpAxdRvJTQTKHJzCTfl8cMwLFKQz9nVLtmd9NFo_BcEcjYzXCq8jXXaWyDVd8_RLcDdvcSvizAeXMXpooP0S64Gc-w47Vx8DQbf3Py1yw78038u0VYQlgTmfQFlD22Wwg8sBlKfWQcLtIYUYcVMsd42k_nJ6MfCPPnQcnvANbOQP1VWKmhI7modL0GC6pYh42LAmnz54ycEHuY066Sb8B9b2iAIUqSIRpHgSCPlJrY6JVoMvj61Qxy5LOUJn-XItcjm9Dg_SMl5UeVhGdGmjv8mzDo956vbt06c4KbMx7FrlReKlnIkSmLHDFArqTIJBUykNTjyLg4FSJkSM20yIIgVrkOaY7FVPA8lDLYgk5RFmoHCJc0p1JHMuaKxUjPaBBqz8-UF8VSs8CBo6YLk2EVICNpiAX2c2L72YFu07lJ7SPjxOeRj-ALKZcDh201WrfZskgLVU6tDEogJon-kuHIwUJEeg5sV_pq_wThB8eG4td8TpOtgImuPV9TvL_ZKNtMMCSb1IFTq_PfG5fcXF7awu7_RfdgGZFXffy7C53JaKr2Ed1MsgNrxfi8fqJf0-n24g |
link.rule.ids | 230,314,780,784,885,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLSXAqWFUKBuVVW9ZBU7TuxIXHh227IcKpC4VFHiB6BCsqK7B_j1jJ2HWFCrqrconki2MxN_nz35BuCjKRKqOLOhO90M0SmiUMY6C0tcqqgVtsi8WPXoOB2e8m9nydkcbHf_wjT6EP2Gm4sM_712Ae42pB9E-XlZDqgTwHsGCxju1CV07f_oxaOoiH2JUoqUI0QeI1tdIZfH0z86uxo9gZhPMyUfIli_BB0uws-u803mya_BdFIO1N0jXcf_Hd0SvGyxKdlpnGkZ5kz1ClZ2KuTl17fkE_HZon4bfgVGB2OHPNGSjNH7KkSRpLbEy2OiT-Ltc_cVJde1dgXCDNm_8RUTLq8KUl81VX5uSScS8BpODw9O9oZhW5ohVFykWahNVGieCKTiUiHIUEbLUjOpY80igZROMCkTjtzPyjKOM6NswhReFlKoROv4DcxXdWXWgAjNFNM21ZkwPEP-x-LERrQ0UZppy-MAPnSvKB83Chx5x1xwknI_SQFsdC8vb4Pwd05FShHdIacL4H3fjOHjzkSKytRTb4MWCHrSv9kIJHkJQskAVht_6HuC-EbgQPFpMeMpvYGT755tqS4vvIw3lxzZLAvgs3eEPw8u_7K76y_W_930HTwfnoyO8qOvx9_fwguEeW2u-QbMT26mZhOh1KTc8hFzD0XhGiE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5tQap6aUvpI4WCW1VVL1kljhM74rTLsgVaEEJF4lApSvygqJCs6O4Bfj1j56FdUFHFLYonku3MxN9nT74B-KzzOJSMGt-ebvroFIEvIpX6BS5VoeEmT51Y9cFhsnvC9k_j0x5stf_C1PoQ3YabjQz3vbYBPlFmLsjPiqIfWv27J7DMEppa4fzRcacdFfLIVSgNkXH4SGNEIytk03i6RxcXo3sI836i5DyAdSvQ-AX8avteJ5786c-mRV_e3JF1fOTgXsLzBpmSQe1KK9DT5StYHZTIyi-vyRfickXdJvwqHOxMLO5ESzJB3ysRQ5LKECeOiR6Jt8_sN5RcVsqWB9NkdOXqJZxf5KS6qGv8XJNWIuA1nIx3fm7v-k1hBl8ynqS-0kGuWMyRiAuJEENqJQpFhYoUDTgSOk6FiBkyPyOKKEq1NDGVeJkLLmOlojewVFalfgeEKyqpMolKuWYpsj8axSYICx0kqTIs8uBT-4aySa2_kbW8BScpc5PkwXr77rImBP9mIU9CxHbI6Dz42DVj8NgTkbzU1czZoAVCnuQhG44UL0Yg6cHb2h26niC64ThQfJovOEpnYMW7F1vK899OxJsJhlyWevDV-cG_B5d9Gw7dxfv_N92Ep0ejcfZj7_D7GjxDjNckmq_D0vRqpj8gjpoWGy5ebgHtOhjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epistatic+partners+of+neurogenic+genes+modulate+Drosophila+olfactory+behavior&rft.jtitle=Genes%2C+brain+and+behavior&rft.au=He%2C+X&rft.au=Zhou%2C+S&rft.au=St+Armour%2C+G+E&rft.au=Mackay%2C+T+F+C&rft.date=2016-02-01&rft.eissn=1601-183X&rft.volume=15&rft.issue=2&rft.spage=280&rft_id=info:doi/10.1111%2Fgbb.12279&rft_id=info%3Apmid%2F26678546&rft.externalDocID=26678546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1601-1848&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1601-1848&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1601-1848&client=summon |