Transition‐Metal‐Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review
Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐met...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 23; pp. e1704179 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting.
Photoelectrochemical water splitting for hydrogen production is regarded as a promising way to harvest and store the intermittent solar energy. Highly efficient photoelectrodes require integrating of electrocatalysts onto the light absorbers. In this Review, the recent applications of transition‐metal‐based hydrogen evolution reaction and oxygen evolution reaction electrocatalysts as cocatalyst to be incorporated into photoelectrochemical systems for solar water splitting are summarized. |
---|---|
AbstractList | Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost-effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition-metal-based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co-based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe-based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self-biased PEC devices with high solar-to-hydrogen efficiency based on earth-abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting.Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost-effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition-metal-based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co-based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe-based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self-biased PEC devices with high solar-to-hydrogen efficiency based on earth-abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting. Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Photoelectrochemical water splitting for hydrogen production is regarded as a promising way to harvest and store the intermittent solar energy. Highly efficient photoelectrodes require integrating of electrocatalysts onto the light absorbers. In this Review, the recent applications of transition‐metal‐based hydrogen evolution reaction and oxygen evolution reaction electrocatalysts as cocatalyst to be incorporated into photoelectrochemical systems for solar water splitting are summarized. |
Author | Li, Can Shi, Jingying Li, Deng |
Author_xml | – sequence: 1 givenname: Deng surname: Li fullname: Li, Deng organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Jingying orcidid: 0000-0002-8493-8172 surname: Shi fullname: Shi, Jingying email: jingyingshi@dicp.ac.cn organization: Dalian National Laboratory for Clean Energy – sequence: 3 givenname: Can surname: Li fullname: Li, Can organization: Dalian National Laboratory for Clean Energy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29575653$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEUha2Kqvxuu0SWuukmqe0Zz2S6oxE_lRJRAVWXozue62LkGQfbAWXHI_CMPAmOkgaEhLq619Z3fH3P2SVbveuRkM-cDTlj4lvorB0KxkuW87L6QHZ4wbNBMRLV1qbnbJvshnDDWMZFXn4i26KSpSxktkP8lYc-mGhc__TwOMUINtUfELClxxZV9E5BulyEGCgEOn511M7TX9cuOlyD19gZBZb-gYieXs6sidH0f7_TIzo1vaEXeGfwfp981GADHqzrHvl9cnw1PhtMzk9_jo8mA5WXRTUAZFxgo6UYlUWjKt1oPmpU3kgGbVqQKSWFriBrldY607poSqlbziGTOYg22yNfV-_OvLudY4h1Z4JCa6FHNw91cm1ULN0pEvrlDXrj5r5Pv0uU5FzyMmeJOlxT86bDtp5504Ff1P_cTMBwBSjvQvCoNwhn9TKuehlXvYkrCfI3AmUiLMOIHox9X1atZPfG4uI_Q-rL6WTyon0GqWeuMg |
CitedBy_id | crossref_primary_10_1021_acsanm_0c01957 crossref_primary_10_1039_C8CS00897C crossref_primary_10_1002_ange_202015779 crossref_primary_10_1002_ange_201900292 crossref_primary_10_1021_acs_energyfuels_1c00179 crossref_primary_10_1002_aenm_202100624 crossref_primary_10_1016_j_ijhydene_2019_08_114 crossref_primary_10_1039_D3CS00820G crossref_primary_10_1039_D2NJ04818C crossref_primary_10_1039_C8TA06529B crossref_primary_10_1007_s10008_020_04636_9 crossref_primary_10_1016_j_jscs_2022_101484 crossref_primary_10_3390_nano12132169 crossref_primary_10_1039_D2TA00835A crossref_primary_10_1021_acssuschemeng_9b07252 crossref_primary_10_3390_catal13040712 crossref_primary_10_1039_D4SE00390J crossref_primary_10_1016_j_jechem_2020_11_038 crossref_primary_10_1016_j_ijhydene_2023_10_210 crossref_primary_10_1021_acsaem_1c02548 crossref_primary_10_1007_s12200_018_0852_7 crossref_primary_10_1016_j_mtphys_2023_101275 crossref_primary_10_1039_D3TA04148D crossref_primary_10_1039_C9TA06876G crossref_primary_10_1039_C9EE02247C crossref_primary_10_1016_j_ijhydene_2019_01_024 crossref_primary_10_1021_acsmaterialslett_9b00422 crossref_primary_10_1016_j_cej_2019_122501 crossref_primary_10_1039_D4CY00895B crossref_primary_10_1016_j_poly_2022_116035 crossref_primary_10_1021_acsami_4c11095 crossref_primary_10_1016_j_jssc_2020_121421 crossref_primary_10_1002_adfm_202416117 crossref_primary_10_1021_acsestengg_0c00004 crossref_primary_10_1155_2021_9401024 crossref_primary_10_1039_D2DT00765G crossref_primary_10_1016_j_apsusc_2021_151562 crossref_primary_10_1002_adfm_202406443 crossref_primary_10_1016_j_cej_2020_126231 crossref_primary_10_1002_smll_202006530 crossref_primary_10_1002_adfm_202104269 crossref_primary_10_1039_C9NR06635G crossref_primary_10_3390_catal13020217 crossref_primary_10_1016_j_jpowsour_2021_229941 crossref_primary_10_1039_D0DT04129G crossref_primary_10_1021_jacs_9b06570 crossref_primary_10_1039_C9NR09818F crossref_primary_10_1039_D4TA02403F crossref_primary_10_1021_acs_inorgchem_1c00734 crossref_primary_10_1039_D3CS00145H crossref_primary_10_1002_admi_201900290 crossref_primary_10_1002_anie_202015779 crossref_primary_10_1166_sam_2024_4691 crossref_primary_10_1016_j_jece_2023_109892 crossref_primary_10_1039_D3NJ02733C crossref_primary_10_1039_C8CC06919K crossref_primary_10_1021_acsenergylett_9b00153 crossref_primary_10_1039_C9SE00897G crossref_primary_10_1016_S1872_5805_22_60575_4 crossref_primary_10_1021_acs_jpcc_3c05747 crossref_primary_10_1016_j_ijhydene_2021_09_238 crossref_primary_10_1039_D1RA01368H crossref_primary_10_1021_acscatal_0c03272 crossref_primary_10_1002_chem_202404684 crossref_primary_10_1039_D0CC04155F crossref_primary_10_1039_D0CY00890G crossref_primary_10_1002_chem_201904021 crossref_primary_10_1016_j_solener_2020_09_022 crossref_primary_10_1021_acsomega_4c00152 crossref_primary_10_1021_acs_energyfuels_1c04113 crossref_primary_10_1039_D2CY00419D crossref_primary_10_1016_j_mtcomm_2023_106018 crossref_primary_10_1016_j_chemphys_2020_111079 crossref_primary_10_1021_acsaem_0c00296 crossref_primary_10_1007_s12274_020_3223_9 crossref_primary_10_1016_j_jelechem_2022_116760 crossref_primary_10_1016_j_ijhydene_2020_12_210 crossref_primary_10_1021_acsaem_9b02167 crossref_primary_10_1039_D0CS00156B crossref_primary_10_1002_cctc_202000004 crossref_primary_10_1002_solr_202100100 crossref_primary_10_1021_acs_jpcc_1c07625 crossref_primary_10_1021_acsanm_3c02175 crossref_primary_10_1016_j_optmat_2020_110610 crossref_primary_10_1016_j_cej_2021_131004 crossref_primary_10_1016_j_ijhydene_2023_07_232 crossref_primary_10_1021_acsami_2c03514 crossref_primary_10_1016_j_apsusc_2019_03_327 crossref_primary_10_1039_D0TA00179A crossref_primary_10_1002_smll_202411853 crossref_primary_10_1016_j_ijhydene_2019_06_018 crossref_primary_10_1016_j_jallcom_2020_155560 crossref_primary_10_1016_j_jece_2025_115791 crossref_primary_10_1039_D4TC04158E crossref_primary_10_1002_smtd_202001018 crossref_primary_10_1039_D1NA00606A crossref_primary_10_1039_C8TA12070F crossref_primary_10_1016_j_ijhydene_2023_10_180 crossref_primary_10_1002_cssc_202100613 crossref_primary_10_1016_j_jallcom_2023_172901 crossref_primary_10_1021_acsami_2c12181 crossref_primary_10_1039_D4RA01931H crossref_primary_10_1016_j_ijhydene_2018_09_157 crossref_primary_10_1002_aenm_202402034 crossref_primary_10_1021_acsphotonics_2c00708 crossref_primary_10_3390_molecules26185541 crossref_primary_10_1002_smll_202105588 crossref_primary_10_1002_solr_201900442 crossref_primary_10_1016_j_jallcom_2020_157352 crossref_primary_10_1039_D0TA08045D crossref_primary_10_1016_j_jssc_2021_122154 crossref_primary_10_1016_j_cej_2021_130854 crossref_primary_10_3390_en15051609 crossref_primary_10_1016_j_ces_2025_121334 crossref_primary_10_1021_acsanm_2c00777 crossref_primary_10_1039_D2TA02702J crossref_primary_10_1021_acs_energyfuels_0c02888 crossref_primary_10_1016_j_ijhydene_2023_04_226 crossref_primary_10_1038_s41570_022_00448_9 crossref_primary_10_1016_j_jechem_2023_06_018 crossref_primary_10_1002_smll_202304376 crossref_primary_10_1039_D2TA09479G crossref_primary_10_1039_D1TA04517B crossref_primary_10_1039_D4CP02967D crossref_primary_10_1021_acsami_8b18681 crossref_primary_10_3390_catal9120982 crossref_primary_10_1002_cctc_201900573 crossref_primary_10_1002_smll_201804268 crossref_primary_10_1021_acs_jpca_0c07884 crossref_primary_10_1016_j_apsusc_2024_160233 crossref_primary_10_1002_anie_202014871 crossref_primary_10_1016_j_ccr_2023_215362 crossref_primary_10_1002_advs_201902102 crossref_primary_10_1111_jace_18460 crossref_primary_10_1039_D4TA02433H crossref_primary_10_3390_molecules28155736 crossref_primary_10_1002_smll_202304807 crossref_primary_10_1002_adma_202300383 crossref_primary_10_1039_D4RA06774F crossref_primary_10_1021_acssuschemeng_1c03066 crossref_primary_10_1021_acssuschemeng_0c04049 crossref_primary_10_3390_catal10050525 crossref_primary_10_1021_acs_analchem_3c03287 crossref_primary_10_1088_1361_6463_ad5212 crossref_primary_10_1002_ange_202014871 crossref_primary_10_1016_j_microc_2024_110336 crossref_primary_10_1016_j_jcis_2022_10_131 crossref_primary_10_1088_1361_648X_ac792d crossref_primary_10_1002_adma_201801446 crossref_primary_10_1142_S1793604721510024 crossref_primary_10_1002_cnma_202100510 crossref_primary_10_1088_2053_1583_ac9c15 crossref_primary_10_1021_acs_jpcc_0c06059 crossref_primary_10_1007_s10008_023_05503_z crossref_primary_10_1016_j_apsusc_2019_06_122 crossref_primary_10_1016_j_nanoen_2019_02_024 crossref_primary_10_1039_D4TA09033K crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1149_1945_7111_ac0aa6 crossref_primary_10_3390_catal10020188 crossref_primary_10_1002_adma_202305742 crossref_primary_10_1021_acs_chemrev_8b00400 crossref_primary_10_1021_acs_inorgchem_9b02006 crossref_primary_10_1021_acsanm_3c04058 crossref_primary_10_1021_acscatal_9b05445 crossref_primary_10_1002_slct_202202057 crossref_primary_10_1016_j_cej_2020_128391 crossref_primary_10_1002_lpor_202200700 crossref_primary_10_1021_acs_inorgchem_9b02497 crossref_primary_10_1002_ange_202100078 crossref_primary_10_1002_ente_202200788 crossref_primary_10_1039_D0NA00799D crossref_primary_10_1016_j_solener_2021_09_028 crossref_primary_10_1016_j_electacta_2019_135183 crossref_primary_10_1002_smll_202103457 crossref_primary_10_1016_j_cej_2019_123878 crossref_primary_10_1039_D3GC03371F crossref_primary_10_1016_j_mssp_2025_109468 crossref_primary_10_1021_acs_jpcc_3c01698 crossref_primary_10_1007_s12209_023_00374_x crossref_primary_10_1039_D3MA00854A crossref_primary_10_1002_advs_201801216 crossref_primary_10_1039_D2SE01780F crossref_primary_10_1021_acsenergylett_9b01430 crossref_primary_10_1002_anie_202100078 crossref_primary_10_1039_D3DT02698A crossref_primary_10_1039_D4TA07213H crossref_primary_10_1007_s10854_021_06379_3 crossref_primary_10_1002_anie_201900292 crossref_primary_10_1002_adma_202002893 crossref_primary_10_1007_s11467_021_1066_9 crossref_primary_10_1016_j_cej_2024_150120 crossref_primary_10_1039_C8TA09404G crossref_primary_10_1021_acssuschemeng_8b05236 crossref_primary_10_1016_j_ijhydene_2021_10_075 crossref_primary_10_1002_adfm_202003399 crossref_primary_10_1016_j_jece_2023_109356 |
Cites_doi | 10.1126/science.1141483 10.1038/nmat4410 10.1021/acsami.6b15854 10.1021/cm1019469 10.1021/nn506819m 10.1002/anie.201410569 10.1002/cssc.201501599 10.1016/S0360-3199(01)00131-8 10.1126/science.1246913 10.1002/adfm.201603904 10.1021/acs.chemmater.6b02148 10.1039/C6EE02215D 10.1021/acs.chemmater.5b03404 10.1021/ja501497n 10.1021/acsami.7b08239 10.1038/ncomms3195 10.1039/C5EE01687H 10.1002/anie.201404697 10.1021/ja5025673 10.1021/acsami.6b11197 10.1038/nenergy.2016.191 10.1002/ange.201703326 10.1021/ja403440e 10.1039/C6EE00144K 10.1039/c1ee01209f 10.1002/adfm.201600711 10.1038/natrevmats.2015.10 10.1126/science.1209816 10.1016/0360-3199(82)90051-9 10.1039/C6SC00245E 10.1039/C5EE03802B 10.1039/B802885K 10.1073/pnas.0910203106 10.1002/aenm.201501758 10.1039/c1ee02444b 10.1073/pnas.0603395103 10.1038/ncomms5775 10.1021/ja306427f 10.1021/acscatal.6b03107 10.1039/C6TA08075H 10.1016/j.electacta.2015.04.101 10.1039/C6TA10707A 10.1021/nn5022204 10.1021/ar2003013 10.1002/chem.201500745 10.1039/c2cs35230c 10.1021/acsami.6b04142 10.1021/jp210584b 10.1002/adfm.201102966 10.1126/sciadv.1501764 10.1002/anie.201502573 10.1038/ncomms4059 10.1039/C5EE01076D 10.1021/ja501513t 10.1021/ja106102b 10.1021/ja807769r 10.1039/C4CS00470A 10.1039/c3ee40831k 10.1021/ja404523s 10.1021/acs.chemmater.5b03148 10.1021/nl403265k 10.1039/C5EE03655K 10.1021/ja207348x 10.1021/acs.nanolett.7b02023 10.1021/ja411835a 10.1038/nmat4408 10.1039/c1ee01488a 10.1021/acsenergylett.6b00303 10.1002/aenm.201400739 10.1038/srep11141 10.1039/c2ee23192a 10.1039/C5CC02331A 10.1038/nmat4794 10.1021/jp304285r 10.1073/pnas.1106545108 10.1039/C7TA03845C 10.1002/cssc.201701674 10.1002/aenm.201501645 10.1016/S0025-5408(00)00437-2 10.1021/ja209001d 10.1002/ange.201207111 10.1039/c2ee22608a 10.1016/j.chempr.2016.10.007 10.1021/ar900209b 10.1021/ja9016478 10.1039/c3cp50295c 10.1021/cr1002326 10.1002/anie.201203585 10.1002/smtd.201700090 10.1038/ncomms9769 10.1021/ja502379c 10.1126/science.1241327 10.1016/j.nanoen.2015.06.014 10.1002/anie.201605924 10.1021/jacs.5b00256 10.1021/ar300227e 10.1002/chem.201202214 10.1016/0013-4686(84)85008-2 10.1021/acsami.5b12093 10.1021/ar00051a007 10.1126/science.1162018 10.1021/cm502035s 10.1039/C0EE00518E 10.1039/c1ee01034d 10.1038/s41570-016-0003 10.1021/nl5041463 10.1557/JMR.2010.0020 10.1021/ja1023767 10.1021/jz5026195 10.1021/ja900023k 10.1021/jacs.5b03417 10.1021/jacs.6b07188 10.1038/ncomms3566 10.1021/cr100246c 10.1021/ja0540019 10.1021/acs.accounts.6b00001 10.1016/j.nanoen.2016.12.045 10.1002/adma.201501884 10.1021/acsenergylett.7b00597 10.1002/adfm.201500383 10.1002/adma.201602270 10.1021/acs.jpclett.5b00495 10.1016/j.tsf.2010.10.055 10.1021/ja510442p |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201704179 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 29575653 10_1002_smll_201704179 SMLL201704179 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDB17000000 – fundername: National Natural Science Foundation of China funderid: 21573230 – fundername: 973 National Basic Research Program of the Ministry of Science and Technology funderid: 2014CB239400 – fundername: Key Research Program of Frontier Science of Chinese Academy of Sciences funderid: QYZDY‐SSW‐JSC023 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4769-ae012ebf52876bc9fbf18bc4b50ad6820cc52f9a3dcfff3ff6b75fd11a354a2d3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 00:55:19 EDT 2025 Fri Jul 25 11:53:38 EDT 2025 Wed Feb 19 02:34:50 EST 2025 Thu Apr 24 22:53:19 EDT 2025 Tue Jul 01 02:10:34 EDT 2025 Wed Jan 22 16:15:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | transition-metal-based electrocatalysts oxygen evolution reaction photoelectrochemistry water splitting hydrogen evolution reaction |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4769-ae012ebf52876bc9fbf18bc4b50ad6820cc52f9a3dcfff3ff6b75fd11a354a2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8493-8172 |
PMID | 29575653 |
PQID | 2051151740 |
PQPubID | 1046358 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2018668106 proquest_journals_2051151740 pubmed_primary_29575653 crossref_primary_10_1002_smll_201704179 crossref_citationtrail_10_1002_smll_201704179 wiley_primary_10_1002_smll_201704179_SMLL201704179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2014 2014 2015 2016; 343 5 6 2 2013; 4 2009; 42 2011; 519 2014; 26 2012; 18 2016 2014; 9 136 2013; 6 2014; 136 2017; 9 2012; 51 2008 2009 2009 2009 2010 2010; 321 38 131 131 132 132 2012 2015 2016; 5 25 55 2014; 5 2014; 4 2010; 25 2012; 134 2015; 137 1984 2012 2015 2011; 29 124 27 4 2013; 13 2017; 32 2010; 110 2007 1982; 317 7 2016; 49 2012; 22 2014; 53 2017; 129 2016 2014 2017; 8 8 2 2011; 334 2015; 15 2015; 14 2009 2009 2011 2011 2011 2011 2011 2012 2012; 106 131 108 4 23 4 4 134 116 2015; 6 2015; 16 2015; 5 2013; 46 2015; 51 2015; 169 2017; 27 2015; 54 1995 2012; 28 41 2013; 342 2011; 4 2015; 9 2015; 8 2002; 27 2016; 6 2016; 7 2016; 1 2015; 27 2016; 2 2017; 17 2000; 35 2017; 16 2017; 10 2005; 127 2012 2011; 45 334 2015; 21 2013; 135 2011 2013; 133 15 2016; 138 2017 2017; 1 1 2016 2015 2015 2016; 1 44 27 4 2016; 28 2012; 116 2016; 26 2012; 5 2016; 8 2016; 9 2006; 103 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_55_2 e_1_2_10_55_3 e_1_2_10_78_1 e_1_2_10_56_3 e_1_2_10_13_1 e_1_2_10_32_3 e_1_2_10_56_4 e_1_2_10_79_2 e_1_2_10_32_2 e_1_2_10_56_5 e_1_2_10_32_1 e_1_2_10_56_6 e_1_2_10_56_7 e_1_2_10_56_8 e_1_2_10_51_1 e_1_2_10_56_9 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_19_2 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_75_2 e_1_2_10_38_1 e_1_2_10_75_3 e_1_2_10_56_1 e_1_2_10_75_4 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_56_2 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_16_3 e_1_2_10_16_4 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_16_2 e_1_2_10_8_1 e_1_2_10_12_3 e_1_2_10_12_4 e_1_2_10_57_1 e_1_2_10_11_2 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_73_2 e_1_2_10_73_3 e_1_2_10_5_2 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_55_4 e_1_2_10_9_1 e_1_2_10_12_2 e_1_2_10_55_5 e_1_2_10_59_1 e_1_2_10_55_6 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 9 start-page: 6123 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 4347 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 6211 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 7295 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 5416 year: 2017 publication-title: Nano Lett. – volume: 21 start-page: 9624 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 46 start-page: 1900 year: 2013 publication-title: Acc. Chem. Res. – volume: 8 start-page: 16071 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 321 38 131 131 132 132 start-page: 1072 109 3838 2615 13692 16501 year: 2008 2009 2009 2009 2010 2010 publication-title: Science Chem. Soc. Rev. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 136 start-page: 8504 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 2186 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 3 year: 2010 publication-title: J. Mater. Res. – volume: 5 start-page: 3059 year: 2014 publication-title: Nat. Commun. – volume: 26 start-page: 4951 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1501758 year: 2016 publication-title: Adv. Energy Mater. – volume: 334 start-page: 645 year: 2011 publication-title: Science – volume: 9 start-page: 2240 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2977 year: 2015 publication-title: Energy Environ. Sci. – volume: 136 start-page: 6744 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 6191 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 343 5 6 2 start-page: 990 4775 8769 e1501764 year: 2014 2014 2015 2016 publication-title: Science Nat. Commun. Nat. Commun. Sci. Adv. – volume: 4 start-page: 2195 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 1501645 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 25 55 start-page: 8553 2686 10854 year: 2012 2015 2016 publication-title: Energy Environ. Sci. Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 135 start-page: 9267 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 136 start-page: 472 4897 year: 2016 2014 publication-title: ChemSusChem J. Am. Chem. Soc. – volume: 9 start-page: 892 year: 2016 publication-title: Energy Environ. Sci. – volume: 32 start-page: 422 year: 2017 publication-title: Nano Energy – volume: 8 8 2 start-page: 31025 8121 1939 year: 2016 2014 2017 publication-title: ACS Appl. Mater. Interfaces ACS Nano ACS Energy Lett. – volume: 137 start-page: 5053 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 4391 year: 2016 publication-title: Chem. Sci. – volume: 135 start-page: 10274 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1327 year: 2016 publication-title: Energy Environ. Sci. – volume: 16 start-page: 335 year: 2017 publication-title: Nat. Mater. – volume: 7 start-page: 675 year: 2017 publication-title: ACS Catal. – volume: 49 start-page: 733 year: 2016 publication-title: Acc. Chem. Res. – volume: 129 start-page: 6683 year: 2017 publication-title: Angew. Chem. – volume: 42 start-page: 1890 year: 2009 publication-title: Acc. Chem. Res. – volume: 169 start-page: 402 year: 2015 publication-title: Electrochim. Acta – volume: 9 start-page: 30654 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 7035 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 664 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 11141 year: 2015 publication-title: Sci. Rep. – volume: 317 7 start-page: 100 405 year: 2007 1982 publication-title: Science Int. J. Hydrogen Energy – volume: 29 124 27 4 start-page: 1551 12875 6511 3573 year: 1984 2012 2015 2011 publication-title: Electrochim. Acta Angew. Chem. Adv. Mater. Energy Environ. Sci. – volume: 9 start-page: 3829 year: 2015 publication-title: ACS Nano – volume: 103 start-page: 15729 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 1 start-page: 0003 1700090 year: 2017 2017 publication-title: Nat. Rev. Chem. Small Methods – volume: 28 start-page: 9266 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 8011 year: 2015 publication-title: Chem. Mater. – volume: 18 start-page: 13994 year: 2012 publication-title: Chem. ‐ Eur. J. – volume: 5 start-page: 9653 year: 2012 publication-title: Energy Environ. Sci. – volume: 9 start-page: 3113 year: 2016 publication-title: Energy Environ. Sci. – volume: 106 131 108 4 23 4 4 134 116 start-page: 20633 6086 10056 5028 1105 2058 1759 16693 5082 year: 2009 2009 2011 2011 2011 2011 2011 2012 2012 publication-title: Proc. Natl. Acad. Sci. USA J. Am. Chem. Soc. Proc. Natl. Acad. Sci. Energy Environ. Sci. Chem. Mater. Energy Environ. Sci. Energy Environ. Sci. J. Am. Chem. Soc. J. Phys. Chem. C – volume: 6 start-page: 592 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 15010 year: 2016 publication-title: Nat. Rev. Mater. – volume: 28 start-page: 6017 year: 2016 publication-title: Chem. Mater. – volume: 519 start-page: 2087 year: 2011 publication-title: Thin Solid Films – volume: 4 start-page: 1400739 year: 2014 publication-title: Adv. Energy Mater. – volume: 51 start-page: 9128 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 1245 year: 2015 publication-title: Nat. Mater. – volume: 10 start-page: 4324 year: 2017 publication-title: ChemSusChem – volume: 13 start-page: 5615 year: 2013 publication-title: Nano Lett. – volume: 35 start-page: 2403 year: 2000 publication-title: Mater. Res. Bull. – volume: 4 start-page: 2566 year: 2013 publication-title: Nat. Commun. – volume: 127 start-page: 14871 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 2817 year: 2015 publication-title: Nano Lett. – volume: 16 start-page: 130 year: 2015 publication-title: Nano Energy – volume: 133 15 start-page: 18370 4589 year: 2011 2013 publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys. – volume: 8 start-page: 2644 year: 2015 publication-title: Energy Environ. Sci. – volume: 22 start-page: 3066 year: 2012 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 5327 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 1 44 27 4 start-page: 699 2060 7549 17587 year: 2016 2015 2015 2016 publication-title: Chem Chem. Soc. Rev. Chem. Mater. J. Mater. Chem. A – volume: 27 start-page: 235 year: 2002 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 3304 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 start-page: 1603904 year: 2017 publication-title: Adv. Funct. Mater. – volume: 110 start-page: 6474 year: 2010 publication-title: Chem. Rev. – volume: 110 start-page: 6446 year: 2010 publication-title: Chem. Rev. – volume: 2 start-page: 16191 year: 2016 publication-title: Nat. Energy – volume: 51 start-page: 10742 year: 2015 publication-title: Chem. Commun. – volume: 1 start-page: 624 year: 2016 publication-title: ACS Energy Lett. – volume: 6 start-page: 1983 year: 2013 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1679 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 499 year: 2011 publication-title: Energy Environ. Sci. – volume: 342 start-page: 836 year: 2013 publication-title: Science – volume: 14 start-page: 1150 year: 2015 publication-title: Nat. Mater. – volume: 45 334 start-page: 767 645 year: 2012 2011 publication-title: Acc. Chem. Res. Science – volume: 138 start-page: 13664 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 15534 year: 2017 publication-title: J. Mater. Chem. A – volume: 116 start-page: 13884 year: 2012 publication-title: J. Phys. Chem. C – volume: 136 start-page: 2843 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 28 41 start-page: 141 7909 year: 1995 2012 publication-title: Acc. Chem. Res. Chem. Soc. Rev. – volume: 26 start-page: 4826 year: 2014 publication-title: Chem. Mater. – ident: e_1_2_10_15_1 doi: 10.1126/science.1141483 – ident: e_1_2_10_44_1 doi: 10.1038/nmat4410 – ident: e_1_2_10_86_1 doi: 10.1021/acsami.6b15854 – ident: e_1_2_10_56_5 doi: 10.1021/cm1019469 – ident: e_1_2_10_23_1 doi: 10.1021/nn506819m – ident: e_1_2_10_37_1 doi: 10.1002/anie.201410569 – ident: e_1_2_10_38_1 doi: 10.1002/cssc.201501599 – ident: e_1_2_10_4_1 doi: 10.1016/S0360-3199(01)00131-8 – ident: e_1_2_10_75_1 doi: 10.1126/science.1246913 – ident: e_1_2_10_77_1 doi: 10.1002/adfm.201603904 – ident: e_1_2_10_17_1 doi: 10.1021/acs.chemmater.6b02148 – ident: e_1_2_10_45_1 doi: 10.1039/C6EE02215D – ident: e_1_2_10_70_1 doi: 10.1021/acs.chemmater.5b03404 – ident: e_1_2_10_38_2 doi: 10.1021/ja501497n – ident: e_1_2_10_90_1 doi: 10.1021/acsami.7b08239 – ident: e_1_2_10_58_1 doi: 10.1038/ncomms3195 – ident: e_1_2_10_63_1 doi: 10.1039/C5EE01687H – ident: e_1_2_10_49_1 doi: 10.1002/anie.201404697 – ident: e_1_2_10_26_1 doi: 10.1021/ja5025673 – ident: e_1_2_10_32_1 doi: 10.1021/acsami.6b11197 – ident: e_1_2_10_67_1 doi: 10.1038/nenergy.2016.191 – ident: e_1_2_10_89_1 doi: 10.1002/ange.201703326 – ident: e_1_2_10_34_1 doi: 10.1021/ja403440e – ident: e_1_2_10_85_1 doi: 10.1039/C6EE00144K – ident: e_1_2_10_56_6 doi: 10.1039/c1ee01209f – ident: e_1_2_10_57_1 doi: 10.1002/adfm.201600711 – ident: e_1_2_10_6_1 doi: 10.1038/natrevmats.2015.10 – ident: e_1_2_10_83_1 doi: 10.1126/science.1209816 – ident: e_1_2_10_15_2 doi: 10.1016/0360-3199(82)90051-9 – ident: e_1_2_10_46_1 doi: 10.1039/C6SC00245E – ident: e_1_2_10_81_1 doi: 10.1039/C5EE03802B – ident: e_1_2_10_55_2 doi: 10.1039/B802885K – ident: e_1_2_10_56_1 doi: 10.1073/pnas.0910203106 – ident: e_1_2_10_39_1 doi: 10.1002/aenm.201501758 – ident: e_1_2_10_56_4 doi: 10.1039/c1ee02444b – ident: e_1_2_10_1_1 doi: 10.1073/pnas.0603395103 – ident: e_1_2_10_75_2 doi: 10.1038/ncomms5775 – ident: e_1_2_10_56_8 doi: 10.1021/ja306427f – ident: e_1_2_10_80_1 doi: 10.1021/acscatal.6b03107 – ident: e_1_2_10_12_4 doi: 10.1039/C6TA08075H – ident: e_1_2_10_18_1 doi: 10.1016/j.electacta.2015.04.101 – ident: e_1_2_10_27_1 doi: 10.1039/C6TA10707A – ident: e_1_2_10_32_2 doi: 10.1021/nn5022204 – ident: e_1_2_10_79_1 doi: 10.1021/ar2003013 – ident: e_1_2_10_92_1 doi: 10.1002/chem.201500745 – ident: e_1_2_10_5_2 doi: 10.1039/c2cs35230c – ident: e_1_2_10_74_1 doi: 10.1021/acsami.6b04142 – ident: e_1_2_10_56_9 doi: 10.1021/jp210584b – ident: e_1_2_10_48_1 doi: 10.1002/adfm.201102966 – ident: e_1_2_10_75_4 doi: 10.1126/sciadv.1501764 – ident: e_1_2_10_43_1 doi: 10.1002/anie.201502573 – ident: e_1_2_10_84_1 doi: 10.1038/ncomms4059 – ident: e_1_2_10_79_2 doi: 10.1126/science.1209816 – ident: e_1_2_10_35_1 doi: 10.1039/C5EE01076D – ident: e_1_2_10_51_1 doi: 10.1021/ja501513t – ident: e_1_2_10_55_6 doi: 10.1021/ja106102b – ident: e_1_2_10_55_4 doi: 10.1021/ja807769r – ident: e_1_2_10_12_2 doi: 10.1039/C4CS00470A – ident: e_1_2_10_78_1 doi: 10.1039/c3ee40831k – ident: e_1_2_10_25_1 doi: 10.1021/ja404523s – ident: e_1_2_10_12_3 doi: 10.1021/acs.chemmater.5b03148 – ident: e_1_2_10_36_1 doi: 10.1021/nl403265k – ident: e_1_2_10_52_1 doi: 10.1039/C5EE03655K – ident: e_1_2_10_19_1 doi: 10.1021/ja207348x – ident: e_1_2_10_69_1 doi: 10.1021/acs.nanolett.7b02023 – ident: e_1_2_10_71_1 doi: 10.1021/ja411835a – ident: e_1_2_10_54_1 doi: 10.1038/nmat4408 – ident: e_1_2_10_16_4 doi: 10.1039/c1ee01488a – ident: e_1_2_10_76_1 doi: 10.1021/acsenergylett.6b00303 – ident: e_1_2_10_28_1 doi: 10.1002/aenm.201400739 – ident: e_1_2_10_59_1 doi: 10.1038/srep11141 – ident: e_1_2_10_87_1 doi: 10.1039/c2ee23192a – ident: e_1_2_10_40_1 doi: 10.1039/C5CC02331A – ident: e_1_2_10_53_1 doi: 10.1038/nmat4794 – ident: e_1_2_10_88_1 doi: 10.1021/jp304285r – ident: e_1_2_10_56_3 doi: 10.1073/pnas.1106545108 – ident: e_1_2_10_31_1 doi: 10.1039/C7TA03845C – ident: e_1_2_10_50_1 doi: 10.1002/cssc.201701674 – ident: e_1_2_10_66_1 doi: 10.1002/aenm.201501645 – ident: e_1_2_10_42_1 doi: 10.1016/S0025-5408(00)00437-2 – ident: e_1_2_10_72_1 doi: 10.1021/ja209001d – ident: e_1_2_10_16_2 doi: 10.1002/ange.201207111 – ident: e_1_2_10_73_1 doi: 10.1039/c2ee22608a – ident: e_1_2_10_12_1 doi: 10.1016/j.chempr.2016.10.007 – ident: e_1_2_10_2_1 doi: 10.1021/ar900209b – ident: e_1_2_10_56_2 doi: 10.1021/ja9016478 – ident: e_1_2_10_19_2 doi: 10.1039/c3cp50295c – ident: e_1_2_10_7_1 doi: 10.1021/cr1002326 – ident: e_1_2_10_21_1 doi: 10.1002/anie.201203585 – ident: e_1_2_10_11_2 doi: 10.1002/smtd.201700090 – ident: e_1_2_10_75_3 doi: 10.1038/ncomms9769 – ident: e_1_2_10_65_1 doi: 10.1021/ja502379c – ident: e_1_2_10_61_1 doi: 10.1126/science.1241327 – ident: e_1_2_10_24_1 doi: 10.1016/j.nanoen.2015.06.014 – ident: e_1_2_10_73_3 doi: 10.1002/anie.201605924 – ident: e_1_2_10_64_1 doi: 10.1021/jacs.5b00256 – ident: e_1_2_10_10_1 doi: 10.1021/ar300227e – ident: e_1_2_10_20_1 doi: 10.1002/chem.201202214 – ident: e_1_2_10_16_1 doi: 10.1016/0013-4686(84)85008-2 – ident: e_1_2_10_68_1 doi: 10.1021/acsami.5b12093 – ident: e_1_2_10_5_1 doi: 10.1021/ar00051a007 – ident: e_1_2_10_55_1 doi: 10.1126/science.1162018 – ident: e_1_2_10_29_1 doi: 10.1021/cm502035s – ident: e_1_2_10_60_1 doi: 10.1039/C0EE00518E – ident: e_1_2_10_56_7 doi: 10.1039/c1ee01034d – ident: e_1_2_10_11_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_10_93_1 doi: 10.1021/nl5041463 – ident: e_1_2_10_14_1 doi: 10.1557/JMR.2010.0020 – ident: e_1_2_10_55_5 doi: 10.1021/ja1023767 – ident: e_1_2_10_62_1 doi: 10.1021/jz5026195 – ident: e_1_2_10_55_3 doi: 10.1021/ja900023k – ident: e_1_2_10_30_1 doi: 10.1021/jacs.5b03417 – ident: e_1_2_10_82_1 doi: 10.1021/jacs.6b07188 – ident: e_1_2_10_91_1 doi: 10.1038/ncomms3566 – ident: e_1_2_10_3_1 doi: 10.1021/cr100246c – ident: e_1_2_10_33_1 doi: 10.1021/ja0540019 – ident: e_1_2_10_8_1 doi: 10.1021/acs.accounts.6b00001 – ident: e_1_2_10_22_1 doi: 10.1016/j.nanoen.2016.12.045 – ident: e_1_2_10_16_3 doi: 10.1002/adma.201501884 – ident: e_1_2_10_32_3 doi: 10.1021/acsenergylett.7b00597 – ident: e_1_2_10_73_2 doi: 10.1002/adfm.201500383 – ident: e_1_2_10_13_1 doi: 10.1002/adma.201602270 – ident: e_1_2_10_41_1 doi: 10.1021/acs.jpclett.5b00495 – ident: e_1_2_10_47_1 doi: 10.1016/j.tsf.2010.10.055 – ident: e_1_2_10_9_1 doi: 10.1021/ja510442p |
SSID | ssj0031247 |
Score | 2.6376894 |
SecondaryResourceType | review_article |
Snippet | Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1704179 |
SubjectTerms | Electrocatalysts hydrogen evolution reaction Hydrogen evolution reactions Hydrogen-based energy Molybdenum Nanotechnology Nickel oxygen evolution reaction Oxygen evolution reactions Performance enhancement Photoelectric effect Photoelectric emission photoelectrochemistry Solar energy conversion transition‐metal‐based electrocatalysts Water splitting |
Title | Transition‐Metal‐Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201704179 https://www.ncbi.nlm.nih.gov/pubmed/29575653 https://www.proquest.com/docview/2051151740 https://www.proquest.com/docview/2018668106 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuBQHn0QaCtXQurJbeLENuFWqlYV6iLUh9pbZDu2qChZtMke4MRP4DfySxjb2bDbqkIqp8jyWHHsGc8Xe_wNwBtWWJnXrKCSOUER32ZU57WhIpVSl2mJXtffRh59FMcXxYcrfjV3iz_yQwwbbt4ywnrtDVzpdu8vaWj79cYfHWQy9Um0cBH2AVseFZ0O_FE5Oq-QXQV9FvXEWzPWxpTtLTZf9Ep3oOYicg2u5-gpqFmnY8TJl91pp3fNj1t8jv_zVc9gucelZD8q0nN4ZJsX8GSOrXAFJsGvhRCv3z9_jSzCdny-RzdYk8OYTSdsBn1vu5aolhzMFREak0-fx924T7tjep4CcolYd0LOEAqHAOx3ZJ-MrptrEs8sVuHi6PD84Jj2KRuoKaQoqbLo8Kx2HH_EhDal0y57q02heapqgWjDGM5cqVAdnHO5c0JL7uosUzkvFKvzNVhqxo19CURIqRAvaX9XtrBcKplbgbIcZ7PkjiVAZ1NWmZ7P3KfVuKkiEzOr_FhWw1gmsDPIf4tMHvdKbsw0oOotusVahKae1jtNYHuoRlv0ByyqseOpl_H0gahnIoH1qDnDq1iJwFjwPAEW5v8ffajORicnQ-nVQxq9hse-QzGubQOWusnUbiKC6vRWsJI_nH0VpQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQCH8lsaKGAkJE5uEye2CbdStVpgUyHaCm6Rndiios1Wm-wBTjwCz9gn6dhOQheEkOAUWR4rjj2T-WyPvwF4zjIj05plVDIrKOLbhOq0rqiIpdR5nKPXdbeRi30xOcrefuJDNKG7CxP4IcYNN2cZ_n_tDNxtSG_9ZA1tT0_c2UEiY5dF6ypcc2m9_arqw8gglaL78vlV0GtRR7018DbGbGu5_bJf-g1sLmNX73z2boEeuh1iTr5sLjq9WX37hdHxv77rNqz20JRsB126A1dMcxduXiIsvAdz79p8lNf59x-FQeSOz9foCWuyGxLq-P2gr23XEtWSnUtFRMfk_edZN-sz71Q9VQH5iHB3Tg4QDfsY7FdkmxTHzTEJxxb34Whv93BnQvusDbTKpMipMujzjLYc12JCV7nVNnmpq0zzWNUCAUdVcWZzhRphrU2tFVpyWyeJSnmmWJ2uwUoza8w6ECGlQsik3XXZzHCpZGoEynKczpxbFgEd5qysekpzl1njpAxkzKx0Y1mOYxnBi1H-LJB5_FFyY1CBsjfqFmsRnTpm7ziCZ2M1mqM7Y1GNmS2cjGMQREUTETwIqjO-iuWIjQVPI2BeAf7Sh_KgmE7H0sN_afQUrk8Oi2k5fbP_7hHccJ0LYW4bsNLNF-YxAqpOP_EmcwHiChnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkRAc-P4IFDASEie3iRPbDbfSdlVgt6ooFb1FtmOLipKtNtkDnPgJ_EZ-CWM7G3ZBCAlOkRVbceyZvBd7_AbgGSuszGtWUMmcoMhvM6rz2lCRSqnLtETU9aeRJwdi_7h4fcJPlk7xR32IYcHNe0b4XnsHP6_d5k_R0PbTmd86yGTqk2hdhEuFSLe8Xe--HQSkckSvkF4FQYt65a2FbGPKNlfbr8LSb1xzlboG7BldB7XodQw5-bgx7_SG-fKLoOP_vNYNuNYTU7IdLekmXLDNLbi6JFd4G2YB2EKM1_ev3yYWeTteXyIO1mQvptMJq0Gf264lqiU7S0XkxuTww7Sb9nl3TC9UQN4j2Z2RI-TCIQL7Bdkmk9PmlMRNiztwPNp7t7NP-5wN1BRSlFRZRDyrHcc_MaFN6bTLtrQpNE9VLZBuGMOZKxXag3Mud05oyV2dZSrnhWJ1fhfWmmlj7wMRUiokTNofli0sl0rmVmBdjrNZcscSoIspq0wvaO7zapxVUYqZVX4sq2EsE3g-1D-PUh5_rLm-sICqd-kW7yI39breaQJPh9vojH6HRTV2Ovd1vH4g2plI4F60nOFRrERmLHieAAvz_5c-VEeT8XgoPfiXRk_g8uHuqBq_OnjzEK74vsUYt3VY62Zz-wjZVKcfB4f5AaF0GHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-Metal-Based+Electrocatalysts+as+Cocatalysts+for+Photoelectrochemical+Water+Splitting%3A+A+Mini+Review&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Deng&rft.au=Shi%2C+Jingying&rft.au=Li%2C+Can&rft.date=2018-06-01&rft.eissn=1613-6829&rft.volume=14&rft.issue=23&rft.spage=e1704179&rft_id=info:doi/10.1002%2Fsmll.201704179&rft_id=info%3Apmid%2F29575653&rft.externalDocID=29575653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |