Transition‐Metal‐Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review

Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐met...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 23; pp. e1704179 - n/a
Main Authors Li, Deng, Shi, Jingying, Li, Can
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Photoelectrochemical water splitting for hydrogen production is regarded as a promising way to harvest and store the intermittent solar energy. Highly efficient photoelectrodes require integrating of electrocatalysts onto the light absorbers. In this Review, the recent applications of transition‐metal‐based hydrogen evolution reaction and oxygen evolution reaction electrocatalysts as cocatalyst to be incorporated into photoelectrochemical systems for solar water splitting are summarized.
AbstractList Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting.
Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost-effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition-metal-based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co-based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe-based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self-biased PEC devices with high solar-to-hydrogen efficiency based on earth-abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting.Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost-effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition-metal-based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co-based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe-based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self-biased PEC devices with high solar-to-hydrogen efficiency based on earth-abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition-metal-based electrocatalysts as cocatalysts for PEC water splitting.
Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Photoelectrochemical water splitting for hydrogen production is regarded as a promising way to harvest and store the intermittent solar energy. Highly efficient photoelectrodes require integrating of electrocatalysts onto the light absorbers. In this Review, the recent applications of transition‐metal‐based hydrogen evolution reaction and oxygen evolution reaction electrocatalysts as cocatalyst to be incorporated into photoelectrochemical systems for solar water splitting are summarized.
Author Li, Can
Shi, Jingying
Li, Deng
Author_xml – sequence: 1
  givenname: Deng
  surname: Li
  fullname: Li, Deng
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Jingying
  orcidid: 0000-0002-8493-8172
  surname: Shi
  fullname: Shi, Jingying
  email: jingyingshi@dicp.ac.cn
  organization: Dalian National Laboratory for Clean Energy
– sequence: 3
  givenname: Can
  surname: Li
  fullname: Li, Can
  organization: Dalian National Laboratory for Clean Energy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29575653$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OGzEUha2Kqvxuu0SWuukmqe0Zz2S6oxE_lRJRAVWXozue62LkGQfbAWXHI_CMPAmOkgaEhLq619Z3fH3P2SVbveuRkM-cDTlj4lvorB0KxkuW87L6QHZ4wbNBMRLV1qbnbJvshnDDWMZFXn4i26KSpSxktkP8lYc-mGhc__TwOMUINtUfELClxxZV9E5BulyEGCgEOn511M7TX9cuOlyD19gZBZb-gYieXs6sidH0f7_TIzo1vaEXeGfwfp981GADHqzrHvl9cnw1PhtMzk9_jo8mA5WXRTUAZFxgo6UYlUWjKt1oPmpU3kgGbVqQKSWFriBrldY607poSqlbziGTOYg22yNfV-_OvLudY4h1Z4JCa6FHNw91cm1ULN0pEvrlDXrj5r5Pv0uU5FzyMmeJOlxT86bDtp5504Ff1P_cTMBwBSjvQvCoNwhn9TKuehlXvYkrCfI3AmUiLMOIHox9X1atZPfG4uI_Q-rL6WTyon0GqWeuMg
CitedBy_id crossref_primary_10_1021_acsanm_0c01957
crossref_primary_10_1039_C8CS00897C
crossref_primary_10_1002_ange_202015779
crossref_primary_10_1002_ange_201900292
crossref_primary_10_1021_acs_energyfuels_1c00179
crossref_primary_10_1002_aenm_202100624
crossref_primary_10_1016_j_ijhydene_2019_08_114
crossref_primary_10_1039_D3CS00820G
crossref_primary_10_1039_D2NJ04818C
crossref_primary_10_1039_C8TA06529B
crossref_primary_10_1007_s10008_020_04636_9
crossref_primary_10_1016_j_jscs_2022_101484
crossref_primary_10_3390_nano12132169
crossref_primary_10_1039_D2TA00835A
crossref_primary_10_1021_acssuschemeng_9b07252
crossref_primary_10_3390_catal13040712
crossref_primary_10_1039_D4SE00390J
crossref_primary_10_1016_j_jechem_2020_11_038
crossref_primary_10_1016_j_ijhydene_2023_10_210
crossref_primary_10_1021_acsaem_1c02548
crossref_primary_10_1007_s12200_018_0852_7
crossref_primary_10_1016_j_mtphys_2023_101275
crossref_primary_10_1039_D3TA04148D
crossref_primary_10_1039_C9TA06876G
crossref_primary_10_1039_C9EE02247C
crossref_primary_10_1016_j_ijhydene_2019_01_024
crossref_primary_10_1021_acsmaterialslett_9b00422
crossref_primary_10_1016_j_cej_2019_122501
crossref_primary_10_1039_D4CY00895B
crossref_primary_10_1016_j_poly_2022_116035
crossref_primary_10_1021_acsami_4c11095
crossref_primary_10_1016_j_jssc_2020_121421
crossref_primary_10_1002_adfm_202416117
crossref_primary_10_1021_acsestengg_0c00004
crossref_primary_10_1155_2021_9401024
crossref_primary_10_1039_D2DT00765G
crossref_primary_10_1016_j_apsusc_2021_151562
crossref_primary_10_1002_adfm_202406443
crossref_primary_10_1016_j_cej_2020_126231
crossref_primary_10_1002_smll_202006530
crossref_primary_10_1002_adfm_202104269
crossref_primary_10_1039_C9NR06635G
crossref_primary_10_3390_catal13020217
crossref_primary_10_1016_j_jpowsour_2021_229941
crossref_primary_10_1039_D0DT04129G
crossref_primary_10_1021_jacs_9b06570
crossref_primary_10_1039_C9NR09818F
crossref_primary_10_1039_D4TA02403F
crossref_primary_10_1021_acs_inorgchem_1c00734
crossref_primary_10_1039_D3CS00145H
crossref_primary_10_1002_admi_201900290
crossref_primary_10_1002_anie_202015779
crossref_primary_10_1166_sam_2024_4691
crossref_primary_10_1016_j_jece_2023_109892
crossref_primary_10_1039_D3NJ02733C
crossref_primary_10_1039_C8CC06919K
crossref_primary_10_1021_acsenergylett_9b00153
crossref_primary_10_1039_C9SE00897G
crossref_primary_10_1016_S1872_5805_22_60575_4
crossref_primary_10_1021_acs_jpcc_3c05747
crossref_primary_10_1016_j_ijhydene_2021_09_238
crossref_primary_10_1039_D1RA01368H
crossref_primary_10_1021_acscatal_0c03272
crossref_primary_10_1002_chem_202404684
crossref_primary_10_1039_D0CC04155F
crossref_primary_10_1039_D0CY00890G
crossref_primary_10_1002_chem_201904021
crossref_primary_10_1016_j_solener_2020_09_022
crossref_primary_10_1021_acsomega_4c00152
crossref_primary_10_1021_acs_energyfuels_1c04113
crossref_primary_10_1039_D2CY00419D
crossref_primary_10_1016_j_mtcomm_2023_106018
crossref_primary_10_1016_j_chemphys_2020_111079
crossref_primary_10_1021_acsaem_0c00296
crossref_primary_10_1007_s12274_020_3223_9
crossref_primary_10_1016_j_jelechem_2022_116760
crossref_primary_10_1016_j_ijhydene_2020_12_210
crossref_primary_10_1021_acsaem_9b02167
crossref_primary_10_1039_D0CS00156B
crossref_primary_10_1002_cctc_202000004
crossref_primary_10_1002_solr_202100100
crossref_primary_10_1021_acs_jpcc_1c07625
crossref_primary_10_1021_acsanm_3c02175
crossref_primary_10_1016_j_optmat_2020_110610
crossref_primary_10_1016_j_cej_2021_131004
crossref_primary_10_1016_j_ijhydene_2023_07_232
crossref_primary_10_1021_acsami_2c03514
crossref_primary_10_1016_j_apsusc_2019_03_327
crossref_primary_10_1039_D0TA00179A
crossref_primary_10_1002_smll_202411853
crossref_primary_10_1016_j_ijhydene_2019_06_018
crossref_primary_10_1016_j_jallcom_2020_155560
crossref_primary_10_1016_j_jece_2025_115791
crossref_primary_10_1039_D4TC04158E
crossref_primary_10_1002_smtd_202001018
crossref_primary_10_1039_D1NA00606A
crossref_primary_10_1039_C8TA12070F
crossref_primary_10_1016_j_ijhydene_2023_10_180
crossref_primary_10_1002_cssc_202100613
crossref_primary_10_1016_j_jallcom_2023_172901
crossref_primary_10_1021_acsami_2c12181
crossref_primary_10_1039_D4RA01931H
crossref_primary_10_1016_j_ijhydene_2018_09_157
crossref_primary_10_1002_aenm_202402034
crossref_primary_10_1021_acsphotonics_2c00708
crossref_primary_10_3390_molecules26185541
crossref_primary_10_1002_smll_202105588
crossref_primary_10_1002_solr_201900442
crossref_primary_10_1016_j_jallcom_2020_157352
crossref_primary_10_1039_D0TA08045D
crossref_primary_10_1016_j_jssc_2021_122154
crossref_primary_10_1016_j_cej_2021_130854
crossref_primary_10_3390_en15051609
crossref_primary_10_1016_j_ces_2025_121334
crossref_primary_10_1021_acsanm_2c00777
crossref_primary_10_1039_D2TA02702J
crossref_primary_10_1021_acs_energyfuels_0c02888
crossref_primary_10_1016_j_ijhydene_2023_04_226
crossref_primary_10_1038_s41570_022_00448_9
crossref_primary_10_1016_j_jechem_2023_06_018
crossref_primary_10_1002_smll_202304376
crossref_primary_10_1039_D2TA09479G
crossref_primary_10_1039_D1TA04517B
crossref_primary_10_1039_D4CP02967D
crossref_primary_10_1021_acsami_8b18681
crossref_primary_10_3390_catal9120982
crossref_primary_10_1002_cctc_201900573
crossref_primary_10_1002_smll_201804268
crossref_primary_10_1021_acs_jpca_0c07884
crossref_primary_10_1016_j_apsusc_2024_160233
crossref_primary_10_1002_anie_202014871
crossref_primary_10_1016_j_ccr_2023_215362
crossref_primary_10_1002_advs_201902102
crossref_primary_10_1111_jace_18460
crossref_primary_10_1039_D4TA02433H
crossref_primary_10_3390_molecules28155736
crossref_primary_10_1002_smll_202304807
crossref_primary_10_1002_adma_202300383
crossref_primary_10_1039_D4RA06774F
crossref_primary_10_1021_acssuschemeng_1c03066
crossref_primary_10_1021_acssuschemeng_0c04049
crossref_primary_10_3390_catal10050525
crossref_primary_10_1021_acs_analchem_3c03287
crossref_primary_10_1088_1361_6463_ad5212
crossref_primary_10_1002_ange_202014871
crossref_primary_10_1016_j_microc_2024_110336
crossref_primary_10_1016_j_jcis_2022_10_131
crossref_primary_10_1088_1361_648X_ac792d
crossref_primary_10_1002_adma_201801446
crossref_primary_10_1142_S1793604721510024
crossref_primary_10_1002_cnma_202100510
crossref_primary_10_1088_2053_1583_ac9c15
crossref_primary_10_1021_acs_jpcc_0c06059
crossref_primary_10_1007_s10008_023_05503_z
crossref_primary_10_1016_j_apsusc_2019_06_122
crossref_primary_10_1016_j_nanoen_2019_02_024
crossref_primary_10_1039_D4TA09033K
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1149_1945_7111_ac0aa6
crossref_primary_10_3390_catal10020188
crossref_primary_10_1002_adma_202305742
crossref_primary_10_1021_acs_chemrev_8b00400
crossref_primary_10_1021_acs_inorgchem_9b02006
crossref_primary_10_1021_acsanm_3c04058
crossref_primary_10_1021_acscatal_9b05445
crossref_primary_10_1002_slct_202202057
crossref_primary_10_1016_j_cej_2020_128391
crossref_primary_10_1002_lpor_202200700
crossref_primary_10_1021_acs_inorgchem_9b02497
crossref_primary_10_1002_ange_202100078
crossref_primary_10_1002_ente_202200788
crossref_primary_10_1039_D0NA00799D
crossref_primary_10_1016_j_solener_2021_09_028
crossref_primary_10_1016_j_electacta_2019_135183
crossref_primary_10_1002_smll_202103457
crossref_primary_10_1016_j_cej_2019_123878
crossref_primary_10_1039_D3GC03371F
crossref_primary_10_1016_j_mssp_2025_109468
crossref_primary_10_1021_acs_jpcc_3c01698
crossref_primary_10_1007_s12209_023_00374_x
crossref_primary_10_1039_D3MA00854A
crossref_primary_10_1002_advs_201801216
crossref_primary_10_1039_D2SE01780F
crossref_primary_10_1021_acsenergylett_9b01430
crossref_primary_10_1002_anie_202100078
crossref_primary_10_1039_D3DT02698A
crossref_primary_10_1039_D4TA07213H
crossref_primary_10_1007_s10854_021_06379_3
crossref_primary_10_1002_anie_201900292
crossref_primary_10_1002_adma_202002893
crossref_primary_10_1007_s11467_021_1066_9
crossref_primary_10_1016_j_cej_2024_150120
crossref_primary_10_1039_C8TA09404G
crossref_primary_10_1021_acssuschemeng_8b05236
crossref_primary_10_1016_j_ijhydene_2021_10_075
crossref_primary_10_1002_adfm_202003399
crossref_primary_10_1016_j_jece_2023_109356
Cites_doi 10.1126/science.1141483
10.1038/nmat4410
10.1021/acsami.6b15854
10.1021/cm1019469
10.1021/nn506819m
10.1002/anie.201410569
10.1002/cssc.201501599
10.1016/S0360-3199(01)00131-8
10.1126/science.1246913
10.1002/adfm.201603904
10.1021/acs.chemmater.6b02148
10.1039/C6EE02215D
10.1021/acs.chemmater.5b03404
10.1021/ja501497n
10.1021/acsami.7b08239
10.1038/ncomms3195
10.1039/C5EE01687H
10.1002/anie.201404697
10.1021/ja5025673
10.1021/acsami.6b11197
10.1038/nenergy.2016.191
10.1002/ange.201703326
10.1021/ja403440e
10.1039/C6EE00144K
10.1039/c1ee01209f
10.1002/adfm.201600711
10.1038/natrevmats.2015.10
10.1126/science.1209816
10.1016/0360-3199(82)90051-9
10.1039/C6SC00245E
10.1039/C5EE03802B
10.1039/B802885K
10.1073/pnas.0910203106
10.1002/aenm.201501758
10.1039/c1ee02444b
10.1073/pnas.0603395103
10.1038/ncomms5775
10.1021/ja306427f
10.1021/acscatal.6b03107
10.1039/C6TA08075H
10.1016/j.electacta.2015.04.101
10.1039/C6TA10707A
10.1021/nn5022204
10.1021/ar2003013
10.1002/chem.201500745
10.1039/c2cs35230c
10.1021/acsami.6b04142
10.1021/jp210584b
10.1002/adfm.201102966
10.1126/sciadv.1501764
10.1002/anie.201502573
10.1038/ncomms4059
10.1039/C5EE01076D
10.1021/ja501513t
10.1021/ja106102b
10.1021/ja807769r
10.1039/C4CS00470A
10.1039/c3ee40831k
10.1021/ja404523s
10.1021/acs.chemmater.5b03148
10.1021/nl403265k
10.1039/C5EE03655K
10.1021/ja207348x
10.1021/acs.nanolett.7b02023
10.1021/ja411835a
10.1038/nmat4408
10.1039/c1ee01488a
10.1021/acsenergylett.6b00303
10.1002/aenm.201400739
10.1038/srep11141
10.1039/c2ee23192a
10.1039/C5CC02331A
10.1038/nmat4794
10.1021/jp304285r
10.1073/pnas.1106545108
10.1039/C7TA03845C
10.1002/cssc.201701674
10.1002/aenm.201501645
10.1016/S0025-5408(00)00437-2
10.1021/ja209001d
10.1002/ange.201207111
10.1039/c2ee22608a
10.1016/j.chempr.2016.10.007
10.1021/ar900209b
10.1021/ja9016478
10.1039/c3cp50295c
10.1021/cr1002326
10.1002/anie.201203585
10.1002/smtd.201700090
10.1038/ncomms9769
10.1021/ja502379c
10.1126/science.1241327
10.1016/j.nanoen.2015.06.014
10.1002/anie.201605924
10.1021/jacs.5b00256
10.1021/ar300227e
10.1002/chem.201202214
10.1016/0013-4686(84)85008-2
10.1021/acsami.5b12093
10.1021/ar00051a007
10.1126/science.1162018
10.1021/cm502035s
10.1039/C0EE00518E
10.1039/c1ee01034d
10.1038/s41570-016-0003
10.1021/nl5041463
10.1557/JMR.2010.0020
10.1021/ja1023767
10.1021/jz5026195
10.1021/ja900023k
10.1021/jacs.5b03417
10.1021/jacs.6b07188
10.1038/ncomms3566
10.1021/cr100246c
10.1021/ja0540019
10.1021/acs.accounts.6b00001
10.1016/j.nanoen.2016.12.045
10.1002/adma.201501884
10.1021/acsenergylett.7b00597
10.1002/adfm.201500383
10.1002/adma.201602270
10.1021/acs.jpclett.5b00495
10.1016/j.tsf.2010.10.055
10.1021/ja510442p
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201704179
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 29575653
10_1002_smll_201704179
SMLL201704179
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB17000000
– fundername: National Natural Science Foundation of China
  funderid: 21573230
– fundername: 973 National Basic Research Program of the Ministry of Science and Technology
  funderid: 2014CB239400
– fundername: Key Research Program of Frontier Science of Chinese Academy of Sciences
  funderid: QYZDY‐SSW‐JSC023
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4769-ae012ebf52876bc9fbf18bc4b50ad6820cc52f9a3dcfff3ff6b75fd11a354a2d3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 00:55:19 EDT 2025
Fri Jul 25 11:53:38 EDT 2025
Wed Feb 19 02:34:50 EST 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 02:10:34 EDT 2025
Wed Jan 22 16:15:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords transition-metal-based electrocatalysts
oxygen evolution reaction
photoelectrochemistry
water splitting
hydrogen evolution reaction
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-ae012ebf52876bc9fbf18bc4b50ad6820cc52f9a3dcfff3ff6b75fd11a354a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8493-8172
PMID 29575653
PQID 2051151740
PQPubID 1046358
PageCount 22
ParticipantIDs proquest_miscellaneous_2018668106
proquest_journals_2051151740
pubmed_primary_29575653
crossref_primary_10_1002_smll_201704179
crossref_citationtrail_10_1002_smll_201704179
wiley_primary_10_1002_smll_201704179_SMLL201704179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2014 2014 2015 2016; 343 5 6 2
2013; 4
2009; 42
2011; 519
2014; 26
2012; 18
2016 2014; 9 136
2013; 6
2014; 136
2017; 9
2012; 51
2008 2009 2009 2009 2010 2010; 321 38 131 131 132 132
2012 2015 2016; 5 25 55
2014; 5
2014; 4
2010; 25
2012; 134
2015; 137
1984 2012 2015 2011; 29 124 27 4
2013; 13
2017; 32
2010; 110
2007 1982; 317 7
2016; 49
2012; 22
2014; 53
2017; 129
2016 2014 2017; 8 8 2
2011; 334
2015; 15
2015; 14
2009 2009 2011 2011 2011 2011 2011 2012 2012; 106 131 108 4 23 4 4 134 116
2015; 6
2015; 16
2015; 5
2013; 46
2015; 51
2015; 169
2017; 27
2015; 54
1995 2012; 28 41
2013; 342
2011; 4
2015; 9
2015; 8
2002; 27
2016; 6
2016; 7
2016; 1
2015; 27
2016; 2
2017; 17
2000; 35
2017; 16
2017; 10
2005; 127
2012 2011; 45 334
2015; 21
2013; 135
2011 2013; 133 15
2016; 138
2017 2017; 1 1
2016 2015 2015 2016; 1 44 27 4
2016; 28
2012; 116
2016; 26
2012; 5
2016; 8
2016; 9
2006; 103
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_55_2
e_1_2_10_55_3
e_1_2_10_78_1
e_1_2_10_56_3
e_1_2_10_13_1
e_1_2_10_32_3
e_1_2_10_56_4
e_1_2_10_79_2
e_1_2_10_32_2
e_1_2_10_56_5
e_1_2_10_32_1
e_1_2_10_56_6
e_1_2_10_56_7
e_1_2_10_56_8
e_1_2_10_51_1
e_1_2_10_56_9
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_19_2
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_75_2
e_1_2_10_38_1
e_1_2_10_75_3
e_1_2_10_56_1
e_1_2_10_75_4
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_56_2
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_16_3
e_1_2_10_16_4
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_16_2
e_1_2_10_8_1
e_1_2_10_12_3
e_1_2_10_12_4
e_1_2_10_57_1
e_1_2_10_11_2
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_73_2
e_1_2_10_73_3
e_1_2_10_5_2
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_55_4
e_1_2_10_9_1
e_1_2_10_12_2
e_1_2_10_55_5
e_1_2_10_59_1
e_1_2_10_55_6
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 9
  start-page: 6123
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 4347
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 6211
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 7295
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 5416
  year: 2017
  publication-title: Nano Lett.
– volume: 21
  start-page: 9624
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 46
  start-page: 1900
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 16071
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 321 38 131 131 132 132
  start-page: 1072 109 3838 2615 13692 16501
  year: 2008 2009 2009 2009 2010 2010
  publication-title: Science Chem. Soc. Rev. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 136
  start-page: 8504
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 2186
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 3
  year: 2010
  publication-title: J. Mater. Res.
– volume: 5
  start-page: 3059
  year: 2014
  publication-title: Nat. Commun.
– volume: 26
  start-page: 4951
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1501758
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 334
  start-page: 645
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 2240
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2977
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 6744
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 6191
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 343 5 6 2
  start-page: 990 4775 8769 e1501764
  year: 2014 2014 2015 2016
  publication-title: Science Nat. Commun. Nat. Commun. Sci. Adv.
– volume: 4
  start-page: 2195
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1501645
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5 25 55
  start-page: 8553 2686 10854
  year: 2012 2015 2016
  publication-title: Energy Environ. Sci. Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 135
  start-page: 9267
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9 136
  start-page: 472 4897
  year: 2016 2014
  publication-title: ChemSusChem J. Am. Chem. Soc.
– volume: 9
  start-page: 892
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 32
  start-page: 422
  year: 2017
  publication-title: Nano Energy
– volume: 8 8 2
  start-page: 31025 8121 1939
  year: 2016 2014 2017
  publication-title: ACS Appl. Mater. Interfaces ACS Nano ACS Energy Lett.
– volume: 137
  start-page: 5053
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 4391
  year: 2016
  publication-title: Chem. Sci.
– volume: 135
  start-page: 10274
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1327
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 335
  year: 2017
  publication-title: Nat. Mater.
– volume: 7
  start-page: 675
  year: 2017
  publication-title: ACS Catal.
– volume: 49
  start-page: 733
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 129
  start-page: 6683
  year: 2017
  publication-title: Angew. Chem.
– volume: 42
  start-page: 1890
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 169
  start-page: 402
  year: 2015
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 30654
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 7035
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 664
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 11141
  year: 2015
  publication-title: Sci. Rep.
– volume: 317 7
  start-page: 100 405
  year: 2007 1982
  publication-title: Science Int. J. Hydrogen Energy
– volume: 29 124 27 4
  start-page: 1551 12875 6511 3573
  year: 1984 2012 2015 2011
  publication-title: Electrochim. Acta Angew. Chem. Adv. Mater. Energy Environ. Sci.
– volume: 9
  start-page: 3829
  year: 2015
  publication-title: ACS Nano
– volume: 103
  start-page: 15729
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1 1
  start-page: 0003 1700090
  year: 2017 2017
  publication-title: Nat. Rev. Chem. Small Methods
– volume: 28
  start-page: 9266
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 8011
  year: 2015
  publication-title: Chem. Mater.
– volume: 18
  start-page: 13994
  year: 2012
  publication-title: Chem. ‐ Eur. J.
– volume: 5
  start-page: 9653
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 3113
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 106 131 108 4 23 4 4 134 116
  start-page: 20633 6086 10056 5028 1105 2058 1759 16693 5082
  year: 2009 2009 2011 2011 2011 2011 2011 2012 2012
  publication-title: Proc. Natl. Acad. Sci. USA J. Am. Chem. Soc. Proc. Natl. Acad. Sci. Energy Environ. Sci. Chem. Mater. Energy Environ. Sci. Energy Environ. Sci. J. Am. Chem. Soc. J. Phys. Chem. C
– volume: 6
  start-page: 592
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 15010
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 28
  start-page: 6017
  year: 2016
  publication-title: Chem. Mater.
– volume: 519
  start-page: 2087
  year: 2011
  publication-title: Thin Solid Films
– volume: 4
  start-page: 1400739
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 51
  start-page: 9128
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 1245
  year: 2015
  publication-title: Nat. Mater.
– volume: 10
  start-page: 4324
  year: 2017
  publication-title: ChemSusChem
– volume: 13
  start-page: 5615
  year: 2013
  publication-title: Nano Lett.
– volume: 35
  start-page: 2403
  year: 2000
  publication-title: Mater. Res. Bull.
– volume: 4
  start-page: 2566
  year: 2013
  publication-title: Nat. Commun.
– volume: 127
  start-page: 14871
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 2817
  year: 2015
  publication-title: Nano Lett.
– volume: 16
  start-page: 130
  year: 2015
  publication-title: Nano Energy
– volume: 133 15
  start-page: 18370 4589
  year: 2011 2013
  publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 2644
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 3066
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 5327
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1 44 27 4
  start-page: 699 2060 7549 17587
  year: 2016 2015 2015 2016
  publication-title: Chem Chem. Soc. Rev. Chem. Mater. J. Mater. Chem. A
– volume: 27
  start-page: 235
  year: 2002
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 3304
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1603904
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 110
  start-page: 6474
  year: 2010
  publication-title: Chem. Rev.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 2
  start-page: 16191
  year: 2016
  publication-title: Nat. Energy
– volume: 51
  start-page: 10742
  year: 2015
  publication-title: Chem. Commun.
– volume: 1
  start-page: 624
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 1983
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1679
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 499
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 342
  start-page: 836
  year: 2013
  publication-title: Science
– volume: 14
  start-page: 1150
  year: 2015
  publication-title: Nat. Mater.
– volume: 45 334
  start-page: 767 645
  year: 2012 2011
  publication-title: Acc. Chem. Res. Science
– volume: 138
  start-page: 13664
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 15534
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 13884
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 136
  start-page: 2843
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 28 41
  start-page: 141 7909
  year: 1995 2012
  publication-title: Acc. Chem. Res. Chem. Soc. Rev.
– volume: 26
  start-page: 4826
  year: 2014
  publication-title: Chem. Mater.
– ident: e_1_2_10_15_1
  doi: 10.1126/science.1141483
– ident: e_1_2_10_44_1
  doi: 10.1038/nmat4410
– ident: e_1_2_10_86_1
  doi: 10.1021/acsami.6b15854
– ident: e_1_2_10_56_5
  doi: 10.1021/cm1019469
– ident: e_1_2_10_23_1
  doi: 10.1021/nn506819m
– ident: e_1_2_10_37_1
  doi: 10.1002/anie.201410569
– ident: e_1_2_10_38_1
  doi: 10.1002/cssc.201501599
– ident: e_1_2_10_4_1
  doi: 10.1016/S0360-3199(01)00131-8
– ident: e_1_2_10_75_1
  doi: 10.1126/science.1246913
– ident: e_1_2_10_77_1
  doi: 10.1002/adfm.201603904
– ident: e_1_2_10_17_1
  doi: 10.1021/acs.chemmater.6b02148
– ident: e_1_2_10_45_1
  doi: 10.1039/C6EE02215D
– ident: e_1_2_10_70_1
  doi: 10.1021/acs.chemmater.5b03404
– ident: e_1_2_10_38_2
  doi: 10.1021/ja501497n
– ident: e_1_2_10_90_1
  doi: 10.1021/acsami.7b08239
– ident: e_1_2_10_58_1
  doi: 10.1038/ncomms3195
– ident: e_1_2_10_63_1
  doi: 10.1039/C5EE01687H
– ident: e_1_2_10_49_1
  doi: 10.1002/anie.201404697
– ident: e_1_2_10_26_1
  doi: 10.1021/ja5025673
– ident: e_1_2_10_32_1
  doi: 10.1021/acsami.6b11197
– ident: e_1_2_10_67_1
  doi: 10.1038/nenergy.2016.191
– ident: e_1_2_10_89_1
  doi: 10.1002/ange.201703326
– ident: e_1_2_10_34_1
  doi: 10.1021/ja403440e
– ident: e_1_2_10_85_1
  doi: 10.1039/C6EE00144K
– ident: e_1_2_10_56_6
  doi: 10.1039/c1ee01209f
– ident: e_1_2_10_57_1
  doi: 10.1002/adfm.201600711
– ident: e_1_2_10_6_1
  doi: 10.1038/natrevmats.2015.10
– ident: e_1_2_10_83_1
  doi: 10.1126/science.1209816
– ident: e_1_2_10_15_2
  doi: 10.1016/0360-3199(82)90051-9
– ident: e_1_2_10_46_1
  doi: 10.1039/C6SC00245E
– ident: e_1_2_10_81_1
  doi: 10.1039/C5EE03802B
– ident: e_1_2_10_55_2
  doi: 10.1039/B802885K
– ident: e_1_2_10_56_1
  doi: 10.1073/pnas.0910203106
– ident: e_1_2_10_39_1
  doi: 10.1002/aenm.201501758
– ident: e_1_2_10_56_4
  doi: 10.1039/c1ee02444b
– ident: e_1_2_10_1_1
  doi: 10.1073/pnas.0603395103
– ident: e_1_2_10_75_2
  doi: 10.1038/ncomms5775
– ident: e_1_2_10_56_8
  doi: 10.1021/ja306427f
– ident: e_1_2_10_80_1
  doi: 10.1021/acscatal.6b03107
– ident: e_1_2_10_12_4
  doi: 10.1039/C6TA08075H
– ident: e_1_2_10_18_1
  doi: 10.1016/j.electacta.2015.04.101
– ident: e_1_2_10_27_1
  doi: 10.1039/C6TA10707A
– ident: e_1_2_10_32_2
  doi: 10.1021/nn5022204
– ident: e_1_2_10_79_1
  doi: 10.1021/ar2003013
– ident: e_1_2_10_92_1
  doi: 10.1002/chem.201500745
– ident: e_1_2_10_5_2
  doi: 10.1039/c2cs35230c
– ident: e_1_2_10_74_1
  doi: 10.1021/acsami.6b04142
– ident: e_1_2_10_56_9
  doi: 10.1021/jp210584b
– ident: e_1_2_10_48_1
  doi: 10.1002/adfm.201102966
– ident: e_1_2_10_75_4
  doi: 10.1126/sciadv.1501764
– ident: e_1_2_10_43_1
  doi: 10.1002/anie.201502573
– ident: e_1_2_10_84_1
  doi: 10.1038/ncomms4059
– ident: e_1_2_10_79_2
  doi: 10.1126/science.1209816
– ident: e_1_2_10_35_1
  doi: 10.1039/C5EE01076D
– ident: e_1_2_10_51_1
  doi: 10.1021/ja501513t
– ident: e_1_2_10_55_6
  doi: 10.1021/ja106102b
– ident: e_1_2_10_55_4
  doi: 10.1021/ja807769r
– ident: e_1_2_10_12_2
  doi: 10.1039/C4CS00470A
– ident: e_1_2_10_78_1
  doi: 10.1039/c3ee40831k
– ident: e_1_2_10_25_1
  doi: 10.1021/ja404523s
– ident: e_1_2_10_12_3
  doi: 10.1021/acs.chemmater.5b03148
– ident: e_1_2_10_36_1
  doi: 10.1021/nl403265k
– ident: e_1_2_10_52_1
  doi: 10.1039/C5EE03655K
– ident: e_1_2_10_19_1
  doi: 10.1021/ja207348x
– ident: e_1_2_10_69_1
  doi: 10.1021/acs.nanolett.7b02023
– ident: e_1_2_10_71_1
  doi: 10.1021/ja411835a
– ident: e_1_2_10_54_1
  doi: 10.1038/nmat4408
– ident: e_1_2_10_16_4
  doi: 10.1039/c1ee01488a
– ident: e_1_2_10_76_1
  doi: 10.1021/acsenergylett.6b00303
– ident: e_1_2_10_28_1
  doi: 10.1002/aenm.201400739
– ident: e_1_2_10_59_1
  doi: 10.1038/srep11141
– ident: e_1_2_10_87_1
  doi: 10.1039/c2ee23192a
– ident: e_1_2_10_40_1
  doi: 10.1039/C5CC02331A
– ident: e_1_2_10_53_1
  doi: 10.1038/nmat4794
– ident: e_1_2_10_88_1
  doi: 10.1021/jp304285r
– ident: e_1_2_10_56_3
  doi: 10.1073/pnas.1106545108
– ident: e_1_2_10_31_1
  doi: 10.1039/C7TA03845C
– ident: e_1_2_10_50_1
  doi: 10.1002/cssc.201701674
– ident: e_1_2_10_66_1
  doi: 10.1002/aenm.201501645
– ident: e_1_2_10_42_1
  doi: 10.1016/S0025-5408(00)00437-2
– ident: e_1_2_10_72_1
  doi: 10.1021/ja209001d
– ident: e_1_2_10_16_2
  doi: 10.1002/ange.201207111
– ident: e_1_2_10_73_1
  doi: 10.1039/c2ee22608a
– ident: e_1_2_10_12_1
  doi: 10.1016/j.chempr.2016.10.007
– ident: e_1_2_10_2_1
  doi: 10.1021/ar900209b
– ident: e_1_2_10_56_2
  doi: 10.1021/ja9016478
– ident: e_1_2_10_19_2
  doi: 10.1039/c3cp50295c
– ident: e_1_2_10_7_1
  doi: 10.1021/cr1002326
– ident: e_1_2_10_21_1
  doi: 10.1002/anie.201203585
– ident: e_1_2_10_11_2
  doi: 10.1002/smtd.201700090
– ident: e_1_2_10_75_3
  doi: 10.1038/ncomms9769
– ident: e_1_2_10_65_1
  doi: 10.1021/ja502379c
– ident: e_1_2_10_61_1
  doi: 10.1126/science.1241327
– ident: e_1_2_10_24_1
  doi: 10.1016/j.nanoen.2015.06.014
– ident: e_1_2_10_73_3
  doi: 10.1002/anie.201605924
– ident: e_1_2_10_64_1
  doi: 10.1021/jacs.5b00256
– ident: e_1_2_10_10_1
  doi: 10.1021/ar300227e
– ident: e_1_2_10_20_1
  doi: 10.1002/chem.201202214
– ident: e_1_2_10_16_1
  doi: 10.1016/0013-4686(84)85008-2
– ident: e_1_2_10_68_1
  doi: 10.1021/acsami.5b12093
– ident: e_1_2_10_5_1
  doi: 10.1021/ar00051a007
– ident: e_1_2_10_55_1
  doi: 10.1126/science.1162018
– ident: e_1_2_10_29_1
  doi: 10.1021/cm502035s
– ident: e_1_2_10_60_1
  doi: 10.1039/C0EE00518E
– ident: e_1_2_10_56_7
  doi: 10.1039/c1ee01034d
– ident: e_1_2_10_11_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_10_93_1
  doi: 10.1021/nl5041463
– ident: e_1_2_10_14_1
  doi: 10.1557/JMR.2010.0020
– ident: e_1_2_10_55_5
  doi: 10.1021/ja1023767
– ident: e_1_2_10_62_1
  doi: 10.1021/jz5026195
– ident: e_1_2_10_55_3
  doi: 10.1021/ja900023k
– ident: e_1_2_10_30_1
  doi: 10.1021/jacs.5b03417
– ident: e_1_2_10_82_1
  doi: 10.1021/jacs.6b07188
– ident: e_1_2_10_91_1
  doi: 10.1038/ncomms3566
– ident: e_1_2_10_3_1
  doi: 10.1021/cr100246c
– ident: e_1_2_10_33_1
  doi: 10.1021/ja0540019
– ident: e_1_2_10_8_1
  doi: 10.1021/acs.accounts.6b00001
– ident: e_1_2_10_22_1
  doi: 10.1016/j.nanoen.2016.12.045
– ident: e_1_2_10_16_3
  doi: 10.1002/adma.201501884
– ident: e_1_2_10_32_3
  doi: 10.1021/acsenergylett.7b00597
– ident: e_1_2_10_73_2
  doi: 10.1002/adfm.201500383
– ident: e_1_2_10_13_1
  doi: 10.1002/adma.201602270
– ident: e_1_2_10_41_1
  doi: 10.1021/acs.jpclett.5b00495
– ident: e_1_2_10_47_1
  doi: 10.1016/j.tsf.2010.10.055
– ident: e_1_2_10_9_1
  doi: 10.1021/ja510442p
SSID ssj0031247
Score 2.6376894
SecondaryResourceType review_article
Snippet Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1704179
SubjectTerms Electrocatalysts
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen-based energy
Molybdenum
Nanotechnology
Nickel
oxygen evolution reaction
Oxygen evolution reactions
Performance enhancement
Photoelectric effect
Photoelectric emission
photoelectrochemistry
Solar energy conversion
transition‐metal‐based electrocatalysts
Water splitting
Title Transition‐Metal‐Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201704179
https://www.ncbi.nlm.nih.gov/pubmed/29575653
https://www.proquest.com/docview/2051151740
https://www.proquest.com/docview/2018668106
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuBQHn0QaCtXQurJbeLENuFWqlYV6iLUh9pbZDu2qChZtMke4MRP4DfySxjb2bDbqkIqp8jyWHHsGc8Xe_wNwBtWWJnXrKCSOUER32ZU57WhIpVSl2mJXtffRh59FMcXxYcrfjV3iz_yQwwbbt4ywnrtDVzpdu8vaWj79cYfHWQy9Um0cBH2AVseFZ0O_FE5Oq-QXQV9FvXEWzPWxpTtLTZf9Ep3oOYicg2u5-gpqFmnY8TJl91pp3fNj1t8jv_zVc9gucelZD8q0nN4ZJsX8GSOrXAFJsGvhRCv3z9_jSzCdny-RzdYk8OYTSdsBn1vu5aolhzMFREak0-fx924T7tjep4CcolYd0LOEAqHAOx3ZJ-MrptrEs8sVuHi6PD84Jj2KRuoKaQoqbLo8Kx2HH_EhDal0y57q02heapqgWjDGM5cqVAdnHO5c0JL7uosUzkvFKvzNVhqxo19CURIqRAvaX9XtrBcKplbgbIcZ7PkjiVAZ1NWmZ7P3KfVuKkiEzOr_FhWw1gmsDPIf4tMHvdKbsw0oOotusVahKae1jtNYHuoRlv0ByyqseOpl_H0gahnIoH1qDnDq1iJwFjwPAEW5v8ffajORicnQ-nVQxq9hse-QzGubQOWusnUbiKC6vRWsJI_nH0VpQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQCH8lsaKGAkJE5uEye2CbdStVpgUyHaCm6Rndiios1Wm-wBTjwCz9gn6dhOQheEkOAUWR4rjj2T-WyPvwF4zjIj05plVDIrKOLbhOq0rqiIpdR5nKPXdbeRi30xOcrefuJDNKG7CxP4IcYNN2cZ_n_tDNxtSG_9ZA1tT0_c2UEiY5dF6ypcc2m9_arqw8gglaL78vlV0GtRR7018DbGbGu5_bJf-g1sLmNX73z2boEeuh1iTr5sLjq9WX37hdHxv77rNqz20JRsB126A1dMcxduXiIsvAdz79p8lNf59x-FQeSOz9foCWuyGxLq-P2gr23XEtWSnUtFRMfk_edZN-sz71Q9VQH5iHB3Tg4QDfsY7FdkmxTHzTEJxxb34Whv93BnQvusDbTKpMipMujzjLYc12JCV7nVNnmpq0zzWNUCAUdVcWZzhRphrU2tFVpyWyeJSnmmWJ2uwUoza8w6ECGlQsik3XXZzHCpZGoEynKczpxbFgEd5qysekpzl1njpAxkzKx0Y1mOYxnBi1H-LJB5_FFyY1CBsjfqFmsRnTpm7ziCZ2M1mqM7Y1GNmS2cjGMQREUTETwIqjO-iuWIjQVPI2BeAf7Sh_KgmE7H0sN_afQUrk8Oi2k5fbP_7hHccJ0LYW4bsNLNF-YxAqpOP_EmcwHiChnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkRAc-P4IFDASEie3iRPbDbfSdlVgt6ooFb1FtmOLipKtNtkDnPgJ_EZ-CWM7G3ZBCAlOkRVbceyZvBd7_AbgGSuszGtWUMmcoMhvM6rz2lCRSqnLtETU9aeRJwdi_7h4fcJPlk7xR32IYcHNe0b4XnsHP6_d5k_R0PbTmd86yGTqk2hdhEuFSLe8Xe--HQSkckSvkF4FQYt65a2FbGPKNlfbr8LSb1xzlboG7BldB7XodQw5-bgx7_SG-fKLoOP_vNYNuNYTU7IdLekmXLDNLbi6JFd4G2YB2EKM1_ev3yYWeTteXyIO1mQvptMJq0Gf264lqiU7S0XkxuTww7Sb9nl3TC9UQN4j2Z2RI-TCIQL7Bdkmk9PmlMRNiztwPNp7t7NP-5wN1BRSlFRZRDyrHcc_MaFN6bTLtrQpNE9VLZBuGMOZKxXag3Mud05oyV2dZSrnhWJ1fhfWmmlj7wMRUiokTNofli0sl0rmVmBdjrNZcscSoIspq0wvaO7zapxVUYqZVX4sq2EsE3g-1D-PUh5_rLm-sICqd-kW7yI39breaQJPh9vojH6HRTV2Ovd1vH4g2plI4F60nOFRrERmLHieAAvz_5c-VEeT8XgoPfiXRk_g8uHuqBq_OnjzEK74vsUYt3VY62Zz-wjZVKcfB4f5AaF0GHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-Metal-Based+Electrocatalysts+as+Cocatalysts+for+Photoelectrochemical+Water+Splitting%3A+A+Mini+Review&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Deng&rft.au=Shi%2C+Jingying&rft.au=Li%2C+Can&rft.date=2018-06-01&rft.eissn=1613-6829&rft.volume=14&rft.issue=23&rft.spage=e1704179&rft_id=info:doi/10.1002%2Fsmll.201704179&rft_id=info%3Apmid%2F29575653&rft.externalDocID=29575653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon