Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations
Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 3; pp. 1256 - 1262 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
13.01.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K+(18‐crown‐6)(THF)} and {Cs+2(18‐crown‐6)3}. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.
Flat as a pancake: Relief of helicene strain, avoidance of antiaromaticity, and increase in charge delocalization assist in dehydrogenative ring closures that convert an anionic fused bis‐[5]helicene into a planarized decacyclic dianion where nine hexagonal units are fused to a single pentagon. |
---|---|
AbstractList | Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red-shift in the absorbance spectrum and injects a charge into a helical conjugated π-system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co-crystallized with {K+ (18-crown-6)(THF)} and {Cs+ 2 (18-crown-6)3 }. UV/Vis-monitoring of these systems shows a time-dependent formation of mono- and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red-shift in the absorbance spectrum and injects a charge into a helical conjugated π-system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co-crystallized with {K+ (18-crown-6)(THF)} and {Cs+ 2 (18-crown-6)3 }. UV/Vis-monitoring of these systems shows a time-dependent formation of mono- and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion. Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K+(18‐crown‐6)(THF)} and {Cs+2(18‐crown‐6)3}. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion. Flat as a pancake: Relief of helicene strain, avoidance of antiaromaticity, and increase in charge delocalization assist in dehydrogenative ring closures that convert an anionic fused bis‐[5]helicene into a planarized decacyclic dianion where nine hexagonal units are fused to a single pentagon. Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red-shift in the absorbance spectrum and injects a charge into a helical conjugated π-system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co-crystallized with {K (18-crown-6)(THF)} and {Cs (18-crown-6) }. UV/Vis-monitoring of these systems shows a time-dependent formation of mono- and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion. Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K + (18‐crown‐6)(THF)} and {Cs + 2 (18‐crown‐6) 3 }. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion. Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K+(18‐crown‐6)(THF)} and {Cs+2(18‐crown‐6)3}. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion. |
Author | Shatruk, Michael Alabugin, Igor V. Kuriakose, Febin Wei, Zheng Jo, Minyoung Üngör, Ökten Petrukhina, Marina A. Kawade, Rahul Kisan Zhou, Zheng Gershoni‐Poranne, Renana |
Author_xml | – sequence: 1 givenname: Zheng surname: Zhou fullname: Zhou, Zheng organization: University at Albany – sequence: 2 givenname: Rahul Kisan surname: Kawade fullname: Kawade, Rahul Kisan organization: Florida State University – sequence: 3 givenname: Zheng surname: Wei fullname: Wei, Zheng organization: University at Albany – sequence: 4 givenname: Febin surname: Kuriakose fullname: Kuriakose, Febin organization: Florida State University – sequence: 5 givenname: Ökten surname: Üngör fullname: Üngör, Ökten organization: Florida State University – sequence: 6 givenname: Minyoung surname: Jo fullname: Jo, Minyoung organization: Florida State University – sequence: 7 givenname: Michael surname: Shatruk fullname: Shatruk, Michael organization: Florida State University – sequence: 8 givenname: Renana surname: Gershoni‐Poranne fullname: Gershoni‐Poranne, Renana email: renana.poranne@org.chem.ethz.ch organization: ETH Zürich – sequence: 9 givenname: Marina A. orcidid: 0000-0003-0221-7900 surname: Petrukhina fullname: Petrukhina, Marina A. email: mpetrukhina@albany.edu organization: University at Albany – sequence: 10 givenname: Igor V. orcidid: 0000-0001-9289-3819 surname: Alabugin fullname: Alabugin, Igor V. email: alabugin@chem.fsu.edu organization: Florida State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31715065$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URNuBLUtkiQ2bDHZsxw670VBopVFBgq6jG-dmcJWxi50BDavyHvByfRIcphSpEmLlH53zWf7uMTnwwSMhTzmbc8bKl-AdzkvGa84Frx-QI65KXgitxUHeSyEKbRQ_JMcpXWbeGFY9IoeCa65YpY7I93Ncw-i-IF1-grhGCokCXaFPtA-RLoO36MeYEb-mCz86iGGTT9aNu1f0Ik3XQN9nBtbBw0Bvrn-8xh7teHP9k4Lv6CkOLmcg_ZBjnN_H7uzgvuWY4NNj8rCHIeGT23VGLt6cfFyeFqt3b8-Wi1Vhpa7qogJurULGSzBKyMpwbLsWTKeEAWmU5iA6W2VAIWgjK2Gt7lRrWl21zPRiRl7sc69i-LzFNDYblywOA3gM29SUgstSyTqbM_L8HnoZtjH_bqJEyYQpZZ2pZ7fUtt1g11xFt4G4a_6Um4H5HrAxpBSxv0M4a6bpNdP0mrvpZUHeE3LNv1uaqhv-rdV77asbcPefR5rF-dnJX_cXkuOwgQ |
CitedBy_id | crossref_primary_10_1039_D4SC02116A crossref_primary_10_1021_acs_orglett_1c01791 crossref_primary_10_1021_jacs_2c03681 crossref_primary_10_1021_jacs_0c01856 crossref_primary_10_1039_D2CC06144A crossref_primary_10_1002_ange_202110748 crossref_primary_10_1002_ange_202115747 crossref_primary_10_1002_ange_202422994 crossref_primary_10_1039_D4SC06062H crossref_primary_10_1039_D3QO01282D crossref_primary_10_1039_D4CP01027B crossref_primary_10_1002_anie_202110748 crossref_primary_10_1039_D2NJ05560K crossref_primary_10_1021_acs_inorgchem_1c02139 crossref_primary_10_1039_D1SC00713K crossref_primary_10_1021_prechem_4c00064 crossref_primary_10_1088_2516_1075_abd081 crossref_primary_10_1002_ange_202100942 crossref_primary_10_1002_anie_202004361 crossref_primary_10_1039_D2CC00971D crossref_primary_10_1021_acs_orglett_0c02343 crossref_primary_10_1021_jacs_0c11053 crossref_primary_10_1002_chem_202304145 crossref_primary_10_1002_anie_202005852 crossref_primary_10_1021_acs_cgd_3c00019 crossref_primary_10_1002_anie_202115747 crossref_primary_10_1002_anie_202422994 crossref_primary_10_1002_ejic_202400222 crossref_primary_10_1021_acs_orglett_1c04233 crossref_primary_10_1021_jacs_3c13371 crossref_primary_10_1021_acs_orglett_4c03235 crossref_primary_10_1039_D0SC03072D crossref_primary_10_1002_anie_202100942 crossref_primary_10_1021_acs_organomet_0c00688 crossref_primary_10_1021_acs_organomet_2c00583 crossref_primary_10_1021_acs_orglett_3c01107 crossref_primary_10_1002_ange_202005852 crossref_primary_10_1021_acs_organomet_1c00295 crossref_primary_10_1002_ange_202004361 crossref_primary_10_1038_s42004_023_00866_w |
Cites_doi | 10.1021/jacs.7b07622 10.1002/anie.199210931 10.1021/jo981562s 10.1002/asia.200600174 10.1002/anie.201610434 10.1002/ange.201301226 10.1002/ange.201301739 10.1038/ncomms9418 10.1002/anie.201108307 10.1021/jo101635z 10.1021/ja510563d 10.1021/ja304424t 10.1002/1521-3757(20020517)114:10<1788::AID-ANGE1788>3.0.CO;2-R 10.1002/ange.201700341 10.1021/acs.orglett.6b00747 10.1039/C2CS35134J 10.1002/ange.201711985 10.1002/chem.201304307 10.1002/anie.201605799 10.1016/S0040-4039(00)74221-3 10.1021/acs.joc.6b01052 10.1021/cr200087r 10.1038/nature09211 10.1002/chem.201405239 10.1002/anie.201801537 10.1002/anie.201709282 10.1021/jacs.9b05610 10.1002/adma.201204961 10.1002/ange.201906748 10.1126/science.1208686 10.1002/poc.3160 10.1002/ange.201108307 10.1002/ange.201812283 10.1002/ange.201606330 10.1126/science.1134231 10.1002/chem.201705407 10.1002/(SICI)1521-3757(19990802)111:15<2379::AID-ANGE2379>3.0.CO;2-0 10.1021/acs.chemrev.9b00033 10.1002/ange.201712783 10.1039/C2CS35154D 10.1021/jacs.7b07519 10.1021/ja500841f 10.1021/jacs.6b01303 10.1002/ange.201502436 10.1002/ange.201610434 10.1002/(SICI)1521-3773(19990802)38:15<2240::AID-ANIE2240>3.0.CO;2-C 10.1021/jacs.5b02373 10.1002/ange.200301667 10.1002/anie.201610793 10.1016/S0040-4039(01)99095-1 10.1002/ange.201507961 10.1038/nphoton.2013.176 10.1002/anie.201210238 10.1002/anie.200705463 10.1021/jacs.7b07113 10.1039/C5CS00620A 10.1002/anie.201700341 10.1021/jacs.8b09825 10.1021/ja960582d 10.1021/jo051746o 10.1021/ja503533y 10.1002/anie.200301667 10.1021/cr030088 10.1021/jacs.7b13412 10.1002/anie.201711985 10.1002/ange.201605799 10.1002/1521-3773(20020517)41:10<1712::AID-ANIE1712>3.0.CO;2-1 10.1002/1099-0690(200004)2000:7<1091::AID-EJOC1091>3.0.CO;2-W 10.1002/anie.201906748 10.1002/ange.201811706 10.1002/ange.19921040831 10.1021/jacs.5b07448 10.1002/anie.201301226 10.1038/nature17151 10.1021/jacs.8b01447 10.1021/acsami.8b15520 10.1021/ja981757h 10.1021/acs.joc.5b01014 10.1021/ja00061a019 10.1021/jacs.6b08664 10.1021/acs.joc.8b02870 10.1002/anie.201712783 10.1021/jo1000753 10.1002/anie.201502436 10.1021/ol502180y 10.1039/C2CS35111K 10.1002/ange.201610793 10.1021/acs.joc.8b00538 10.1021/cr00064a006 10.1021/ol302922t 10.1002/chem.201200416 10.1002/ange.201210238 10.1002/ange.200705463 10.1002/ange.201801537 10.1039/b603305a 10.1002/ange.201709282 10.1002/anie.201507961 10.1002/anie.201811706 10.1021/jacs.5b03118 10.1002/anie.201301739 10.1021/acs.accounts.8b00141 10.1002/celc.201800565 10.1021/ja035626e 10.1021/jo401807x 10.1039/C5CS00057B 10.1016/S0040-4039(00)90586-0 10.1021/jacs.8b11222 10.3390/molecules24010118 10.1002/anie.201606330 10.1021/nn401948e 10.1021/jacs.6b08540 10.1021/acs.accounts.8b00026 10.1021/ja000072q 10.1002/anie.201812283 10.1021/jacs.5b02794 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201911319 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 1262 |
ExternalDocumentID | 31715065 10_1002_anie_201911319 ANIE201911319 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CHE-1608628, MRI-1337594, MRI-1726724; CHE-1800329 – fundername: National Science Foundation grantid: CHE-1800329 – fundername: National Science Foundation grantid: CHE-1608628, MRI-1337594, MRI-1726724 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4769-6a1cc5e012a8534681ebdba8d538a48571a3dc6e015ea78463cc7d5b8b76b08f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:54:09 EDT 2025 Fri Jul 25 10:43:57 EDT 2025 Wed Feb 19 02:31:29 EST 2025 Tue Jul 01 02:27:02 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Wed Jan 22 16:37:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cyclizations helicenes benzannulation reductive coupling aromaticity |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4769-6a1cc5e012a8534681ebdba8d538a48571a3dc6e015ea78463cc7d5b8b76b08f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0221-7900 0000-0001-9289-3819 |
PMID | 31715065 |
PQID | 2332038249 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2314254946 proquest_journals_2332038249 pubmed_primary_31715065 crossref_primary_10_1002_anie_201911319 crossref_citationtrail_10_1002_anie_201911319 wiley_primary_10_1002_anie_201911319_ANIE201911319 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 13, 2020 |
PublicationDateYYYYMMDD | 2020-01-13 |
PublicationDate_xml | – month: 01 year: 2020 text: January 13, 2020 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2006; 71 1968; 9 2013; 26 2013; 25 2019; 11 2010; 466 1999 1999; 38 111 2012; 18 2018; 83 2015; 80 2008 2008; 47 120 2013; 7 2012; 14 2014; 136 2013 2013; 52 125 2014; 20 2018; 5 2012; 134 2015; 137 2002 2002; 41 114 2000 2012 2012; 51 124 2018 2018; 57 130 2019; 24 2005; 105 2015; 44 2014; 16 2015 2015; 54 127 2019; 119 2016; 81 2000; 122 2003; 125 2016; 45 1998; 120 1984; 84 2010; 75 2011; 333 2015; 6 2018; 140 2013; 42 1999; 64 2006; 4 2003 2003; 42 115 2006; 1 2017 2017; 56 129 2006; 314 2016; 18 2019; 141 1992; 33 1992 1992; 31 104 2019 2019; 58 131 2017; 139 2018; 24 1967; 8 2016 2016; 55 128 2012; 112 2019; 84 2013; 78 2015; 21 2016; 531 2016; 138 2018; 51 1993; 115 1996; 118 e_1_2_6_72_2 e_1_2_6_95_1 e_1_2_6_53_2 e_1_2_6_30_3 e_1_2_6_30_2 e_1_2_6_91_1 e_1_2_6_19_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_15_3 e_1_2_6_53_3 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_99_2 e_1_2_6_83_3 e_1_2_6_102_2 e_1_2_6_83_2 e_1_2_6_64_2 e_1_2_6_106_1 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_9_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_49_3 e_1_2_6_87_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_26_1 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_73_3 e_1_2_6_96_1 e_1_2_6_31_2 e_1_2_6_92_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_31_3 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_54_3 e_1_2_6_77_3 e_1_2_6_84_2 e_1_2_6_42_2 e_1_2_6_84_3 e_1_2_6_105_2 e_1_2_6_80_2 e_1_2_6_61_1 e_1_2_6_109_2 e_1_2_6_101_1 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_42_3 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_46_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_51_2 e_1_2_6_70_1 e_1_2_6_93_2 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_78_2 e_1_2_6_62_2 e_1_2_6_62_3 e_1_2_6_85_3 e_1_2_6_104_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_108_2 e_1_2_6_81_2 (e_1_2_6_48_3) 2019; 131 e_1_2_6_100_1 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_89_1 e_1_2_6_43_3 e_1_2_6_66_2 e_1_2_6_71_3 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_94_2 e_1_2_6_71_2 e_1_2_6_90_2 e_1_2_6_90_1 e_1_2_6_18_2 e_1_2_6_33_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_37_3 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_98_2 e_1_2_6_103_2 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_63_3 e_1_2_6_107_2 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_8_2 e_1_2_6_29_3 e_1_2_6_8_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_48_2 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_67_1 e_1_2_6_86_3 e_1_2_6_25_2 |
References_xml | – volume: 52 125 start-page: 9900 10084 year: 2013 2013 end-page: 9930 10115 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 2518 year: 2006 end-page: 2524 publication-title: Org. Biomol. Chem. – volume: 134 start-page: 15628 year: 2012 end-page: 15631 publication-title: J. Am. Chem. Soc. – volume: 38 111 start-page: 2240 2379 year: 1999 1999 end-page: 2243 2382 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 8122 year: 2014 end-page: 8130 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1165 year: 2015 end-page: 1180 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2118 year: 2016 end-page: 2121 publication-title: Org. Lett. – volume: 56 129 start-page: 15363 15565 year: 2017 2017 end-page: 15367 15569 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 11633 11805 year: 2016 2016 end-page: 11637 11809 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 78 start-page: 11147 year: 2013 end-page: 11154 publication-title: J. Org. Chem. – volume: 44 start-page: 6472 year: 2015 end-page: 6493 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 4222 year: 2018 end-page: 4226 publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 6007 year: 2016 end-page: 6017 publication-title: J. Org. Chem. – volume: 119 start-page: 8846 year: 2019 end-page: 8953 publication-title: Chem. Rev. – volume: 51 start-page: 1206 year: 2018 end-page: 1219 publication-title: Acc. Chem. Res. – volume: 8 start-page: 743 year: 1967 end-page: 744 publication-title: Tetrahedron Lett. – volume: 58 131 start-page: 587 597 year: 2019 2019 end-page: 591 601 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 71 start-page: 883 year: 2006 end-page: 893 publication-title: J. Org. Chem. – volume: 80 start-page: 11706 year: 2015 end-page: 11717 publication-title: J. Org. Chem. – volume: 139 start-page: 18508 year: 2017 end-page: 18511 publication-title: J. Am. Chem. Soc. – volume: 531 start-page: 489 year: 2016 end-page: 492 publication-title: Nature – volume: 57 130 start-page: 1337 1351 year: 2018 2018 end-page: 1341 1355 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 466 start-page: 470 year: 2010 end-page: 473 publication-title: Nature – volume: 137 start-page: 15441 year: 2015 end-page: 15450 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 2624 year: 2013 end-page: 2628 publication-title: Adv. Mater. – volume: 140 start-page: 15461 year: 2018 end-page: 15469 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 16210 year: 2017 end-page: 16221 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 2391 year: 2019 end-page: 2397 publication-title: J. Am. Chem. Soc. – start-page: 1091 year: 2000 end-page: 1106 publication-title: Eur. J. Org. Chem. – volume: 14 start-page: 6032 year: 2012 end-page: 6035 publication-title: Org. Lett. – volume: 18 start-page: 6476 year: 2012 end-page: 6484 publication-title: Chem. Eur. J. – volume: 137 start-page: 7763 year: 2015 end-page: 7768 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 6335 year: 2015 end-page: 6349 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 5033 5137 year: 2013 2013 end-page: 5036 5140 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 75 start-page: 2281 year: 2010 end-page: 2288 publication-title: J. Org. Chem. – volume: 125 start-page: 11808 year: 2003 end-page: 11809 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 2023 2045 year: 2019 2019 end-page: 2028 2050 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 12054 12233 year: 2016 2016 end-page: 12058 12237 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 start-page: 968 year: 2013 end-page: 1006 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 8418 year: 2015 publication-title: Nat. Commun. – volume: 51 124 start-page: 5857 5959 year: 2012 2012 end-page: 5861 5963 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 3374 3423 year: 2017 2017 end-page: 3378 3427 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 6847 6951 year: 2015 2015 end-page: 6851 6955 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 75 start-page: 7358 year: 2010 end-page: 7364 publication-title: J. Org. Chem. – volume: 138 start-page: 15617 year: 2016 end-page: 15628 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 4165 year: 2018 end-page: 4172 publication-title: Chem. Eur. J. – volume: 41 114 start-page: 1712 1788 year: 2002 2002 end-page: 1715 1791 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 678 year: 2006 end-page: 685 publication-title: Chem. Asian J. – volume: 31 104 start-page: 1093 1081 year: 1992 1992 end-page: 1095 1082 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 84 start-page: 1980 year: 2019 end-page: 1993 publication-title: J. Org. Chem. – volume: 47 120 start-page: 3188 3232 year: 2008 2008 end-page: 3191 3235 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 4317 year: 2018 end-page: 4326 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 1183 1198 year: 2016 2016 end-page: 1186 1202 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 83 start-page: 5523 year: 2018 end-page: 5538 publication-title: J. Org. Chem. – volume: 84 start-page: 603 year: 1984 end-page: 646 publication-title: Chem. Rev. – volume: 52 125 start-page: 9970 10154 year: 2013 2013 end-page: 9975 10159 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 118 year: 2019 publication-title: Molecules – volume: 314 start-page: 1437 year: 2006 end-page: 1439 publication-title: Science – volume: 56 129 start-page: 3379 3428 year: 2017 2017 end-page: 3382 3431 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 6123 year: 2013 end-page: 6128 publication-title: ACS Nano – volume: 105 start-page: 3842 year: 2005 end-page: 3888 publication-title: Chem. Rev. – volume: 26 start-page: 742 year: 2013 end-page: 749 publication-title: J. Phys. Org. Chem. – volume: 122 start-page: 12637 year: 2000 end-page: 12645 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 12797 year: 2019 end-page: 12803 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 634 year: 2013 end-page: 638 publication-title: Nat. Photonics – volume: 118 start-page: 6317 year: 1996 end-page: 6318 publication-title: J. Am. Chem. Soc. – volume: 42 115 start-page: 3986 4116 year: 2003 2003 end-page: 3989 4119 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 3587 year: 2016 end-page: 3595 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 1051 year: 2013 end-page: 1095 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 3651 3713 year: 2018 2018 end-page: 3655 3717 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 6171 6279 year: 2018 2018 end-page: 6175 6283 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 333 start-page: 1008 year: 2011 end-page: 1011 publication-title: Science – volume: 115 start-page: 3199 year: 1993 end-page: 3211 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2080 year: 2018 end-page: 2088 publication-title: ChemElectroChem – volume: 138 start-page: 12783 year: 2016 end-page: 12786 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 1541 year: 2018 end-page: 1549 publication-title: Acc. Chem. Res. – volume: 64 start-page: 644 year: 1999 end-page: 647 publication-title: J. Org. Chem. – volume: 16 start-page: 4610 year: 2014 end-page: 4613 publication-title: Org. Lett. – volume: 112 start-page: 1463 year: 2012 end-page: 1535 publication-title: Chem. Rev. – volume: 45 start-page: 1542 year: 2016 end-page: 1556 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 8656 year: 1998 end-page: 8660 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 2343 year: 2015 end-page: 2347 publication-title: Chem. Eur. J. – volume: 11 start-page: 1555 year: 2019 end-page: 1562 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 1007 year: 2013 end-page: 1050 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 5839 5933 year: 2017 2017 end-page: 5843 5937 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 5555 year: 2014 end-page: 5558 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 12107 12235 year: 2019 2019 end-page: 12111 12239 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 start-page: 2395 year: 1992 end-page: 2398 publication-title: Tetrahedron Lett. – volume: 139 start-page: 18512 year: 2017 end-page: 18521 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3507 year: 1968 end-page: 3510 publication-title: Tetrahedron Lett. – volume: 137 start-page: 8469 year: 2015 end-page: 8474 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 5673 year: 2014 end-page: 5688 publication-title: Chem. Eur. J. – ident: e_1_2_6_51_2 doi: 10.1021/jacs.7b07622 – ident: e_1_2_6_33_2 doi: 10.1002/anie.199210931 – ident: e_1_2_6_78_2 doi: 10.1021/jo981562s – ident: e_1_2_6_101_1 – ident: e_1_2_6_72_2 doi: 10.1002/asia.200600174 – ident: e_1_2_6_53_2 doi: 10.1002/anie.201610434 – ident: e_1_2_6_86_3 doi: 10.1002/ange.201301226 – ident: e_1_2_6_31_3 doi: 10.1002/ange.201301739 – ident: e_1_2_6_16_2 doi: 10.1038/ncomms9418 – ident: e_1_2_6_42_2 doi: 10.1002/anie.201108307 – ident: e_1_2_6_76_2 doi: 10.1021/jo101635z – ident: e_1_2_6_68_2 doi: 10.1021/ja510563d – ident: e_1_2_6_22_2 doi: 10.1021/ja304424t – ident: e_1_2_6_73_3 doi: 10.1002/1521-3757(20020517)114:10<1788::AID-ANGE1788>3.0.CO;2-R – ident: e_1_2_6_37_3 doi: 10.1002/ange.201700341 – ident: e_1_2_6_100_1 – ident: e_1_2_6_61_1 – ident: e_1_2_6_75_2 doi: 10.1021/acs.orglett.6b00747 – ident: e_1_2_6_6_2 doi: 10.1039/C2CS35134J – ident: e_1_2_6_49_3 doi: 10.1002/ange.201711985 – ident: e_1_2_6_105_2 doi: 10.1002/chem.201304307 – ident: e_1_2_6_9_1 – ident: e_1_2_6_63_2 doi: 10.1002/anie.201605799 – ident: e_1_2_6_89_1 doi: 10.1016/S0040-4039(00)74221-3 – ident: e_1_2_6_69_2 doi: 10.1021/acs.joc.6b01052 – ident: e_1_2_6_7_2 doi: 10.1021/cr200087r – ident: e_1_2_6_92_2 doi: 10.1038/nature09211 – ident: e_1_2_6_17_2 doi: 10.1002/chem.201405239 – ident: e_1_2_6_71_2 doi: 10.1002/anie.201801537 – ident: e_1_2_6_85_2 doi: 10.1002/anie.201709282 – ident: e_1_2_6_47_2 doi: 10.1021/jacs.9b05610 – ident: e_1_2_6_96_1 – ident: e_1_2_6_20_2 doi: 10.1002/adma.201204961 – ident: e_1_2_6_83_3 doi: 10.1002/ange.201906748 – ident: e_1_2_6_82_2 doi: 10.1126/science.1208686 – ident: e_1_2_6_60_2 doi: 10.1002/poc.3160 – ident: e_1_2_6_42_3 doi: 10.1002/ange.201108307 – ident: e_1_2_6_74_1 – ident: e_1_2_6_84_3 doi: 10.1002/ange.201812283 – ident: e_1_2_6_29_3 doi: 10.1002/ange.201606330 – ident: e_1_2_6_91_1 – ident: e_1_2_6_23_2 doi: 10.1126/science.1134231 – ident: e_1_2_6_95_1 doi: 10.1002/chem.201705407 – ident: e_1_2_6_77_3 doi: 10.1002/(SICI)1521-3757(19990802)111:15<2379::AID-ANGE2379>3.0.CO;2-0 – ident: e_1_2_6_2_2 doi: 10.1021/acs.chemrev.9b00033 – ident: e_1_2_6_62_3 doi: 10.1002/ange.201712783 – ident: e_1_2_6_97_1 – ident: e_1_2_6_4_2 doi: 10.1039/C2CS35154D – ident: e_1_2_6_38_2 doi: 10.1021/jacs.7b07519 – ident: e_1_2_6_40_2 doi: 10.1021/ja500841f – ident: e_1_2_6_55_2 doi: 10.1021/jacs.6b01303 – ident: e_1_2_6_30_3 doi: 10.1002/ange.201502436 – ident: e_1_2_6_53_3 doi: 10.1002/ange.201610434 – ident: e_1_2_6_77_2 doi: 10.1002/(SICI)1521-3773(19990802)38:15<2240::AID-ANIE2240>3.0.CO;2-C – ident: e_1_2_6_65_2 doi: 10.1021/jacs.5b02373 – ident: e_1_2_6_8_3 doi: 10.1002/ange.200301667 – ident: e_1_2_6_54_2 doi: 10.1002/anie.201610793 – ident: e_1_2_6_35_2 doi: 10.1016/S0040-4039(01)99095-1 – ident: e_1_2_6_46_1 – ident: e_1_2_6_15_3 doi: 10.1002/ange.201507961 – ident: e_1_2_6_21_2 doi: 10.1038/nphoton.2013.176 – ident: e_1_2_6_90_1 doi: 10.1002/anie.201210238 – ident: e_1_2_6_43_2 doi: 10.1002/anie.200705463 – ident: e_1_2_6_52_2 doi: 10.1021/jacs.7b07113 – ident: e_1_2_6_3_2 doi: 10.1039/C5CS00620A – ident: e_1_2_6_37_2 doi: 10.1002/anie.201700341 – ident: e_1_2_6_27_2 doi: 10.1021/jacs.8b09825 – ident: e_1_2_6_98_2 doi: 10.1021/ja960582d – ident: e_1_2_6_103_2 doi: 10.1021/jo051746o – ident: e_1_2_6_19_2 doi: 10.1021/ja503533y – ident: e_1_2_6_8_2 doi: 10.1002/anie.200301667 – ident: e_1_2_6_99_2 doi: 10.1021/cr030088 – ident: e_1_2_6_28_2 doi: 10.1021/jacs.7b13412 – ident: e_1_2_6_49_2 doi: 10.1002/anie.201711985 – ident: e_1_2_6_67_1 – ident: e_1_2_6_36_1 – ident: e_1_2_6_63_3 doi: 10.1002/ange.201605799 – ident: e_1_2_6_73_2 doi: 10.1002/1521-3773(20020517)41:10<1712::AID-ANIE1712>3.0.CO;2-1 – ident: e_1_2_6_80_2 doi: 10.1002/1099-0690(200004)2000:7<1091::AID-EJOC1091>3.0.CO;2-W – ident: e_1_2_6_83_2 doi: 10.1002/anie.201906748 – volume: 131 start-page: 597 year: 2019 ident: e_1_2_6_48_3 publication-title: Angew. Chem. doi: 10.1002/ange.201811706 – ident: e_1_2_6_33_3 doi: 10.1002/ange.19921040831 – ident: e_1_2_6_109_2 doi: 10.1021/jacs.5b07448 – ident: e_1_2_6_102_2 – ident: e_1_2_6_86_2 doi: 10.1002/anie.201301226 – ident: e_1_2_6_94_2 doi: 10.1038/nature17151 – ident: e_1_2_6_50_2 doi: 10.1021/jacs.8b01447 – ident: e_1_2_6_11_2 doi: 10.1021/acsami.8b15520 – ident: e_1_2_6_24_2 doi: 10.1021/ja981757h – ident: e_1_2_6_106_1 – ident: e_1_2_6_64_2 doi: 10.1021/acs.joc.5b01014 – ident: e_1_2_6_25_2 doi: 10.1021/ja00061a019 – ident: e_1_2_6_39_2 doi: 10.1021/jacs.6b08664 – ident: e_1_2_6_10_2 doi: 10.1021/acs.joc.8b02870 – ident: e_1_2_6_62_2 doi: 10.1002/anie.201712783 – ident: e_1_2_6_26_1 – ident: e_1_2_6_104_2 doi: 10.1021/jo1000753 – ident: e_1_2_6_1_1 – ident: e_1_2_6_30_2 doi: 10.1002/anie.201502436 – ident: e_1_2_6_18_2 doi: 10.1021/ol502180y – ident: e_1_2_6_5_2 doi: 10.1039/C2CS35111K – ident: e_1_2_6_54_3 doi: 10.1002/ange.201610793 – ident: e_1_2_6_13_2 doi: 10.1021/acs.joc.8b00538 – ident: e_1_2_6_79_2 doi: 10.1021/cr00064a006 – ident: e_1_2_6_66_2 doi: 10.1021/ol302922t – ident: e_1_2_6_87_2 doi: 10.1002/chem.201200416 – ident: e_1_2_6_90_2 doi: 10.1002/ange.201210238 – ident: e_1_2_6_43_3 doi: 10.1002/ange.200705463 – ident: e_1_2_6_71_3 doi: 10.1002/ange.201801537 – ident: e_1_2_6_44_2 doi: 10.1039/b603305a – ident: e_1_2_6_85_3 doi: 10.1002/ange.201709282 – ident: e_1_2_6_15_2 doi: 10.1002/anie.201507961 – ident: e_1_2_6_48_2 doi: 10.1002/anie.201811706 – ident: e_1_2_6_56_2 doi: 10.1021/jacs.5b03118 – ident: e_1_2_6_31_2 doi: 10.1002/anie.201301739 – ident: e_1_2_6_81_2 doi: 10.1021/acs.accounts.8b00141 – ident: e_1_2_6_14_2 doi: 10.1002/celc.201800565 – ident: e_1_2_6_45_2 doi: 10.1021/ja035626e – ident: e_1_2_6_41_2 doi: 10.1021/jo401807x – ident: e_1_2_6_108_2 doi: 10.1039/C5CS00057B – ident: e_1_2_6_34_2 doi: 10.1016/S0040-4039(00)90586-0 – ident: e_1_2_6_12_2 doi: 10.1021/jacs.8b11222 – ident: e_1_2_6_57_1 – ident: e_1_2_6_58_2 doi: 10.3390/molecules24010118 – ident: e_1_2_6_29_2 doi: 10.1002/anie.201606330 – ident: e_1_2_6_70_1 – ident: e_1_2_6_93_2 doi: 10.1021/nn401948e – ident: e_1_2_6_107_2 doi: 10.1021/jacs.6b08540 – ident: e_1_2_6_59_2 doi: 10.1021/acs.accounts.8b00026 – ident: e_1_2_6_88_2 doi: 10.1021/ja000072q – ident: e_1_2_6_84_2 doi: 10.1002/anie.201812283 – ident: e_1_2_6_32_2 doi: 10.1021/jacs.5b02794 |
SSID | ssj0028806 |
Score | 2.4648583 |
Snippet | Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The... Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1256 |
SubjectTerms | Anions Aromaticity benzannulation Closures Conjugation Crystallization Crystallography cyclizations Dehydrogenation helicenes Perturbation reductive coupling Switches Time dependence |
Title | Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201911319 https://www.ncbi.nlm.nih.gov/pubmed/31715065 https://www.proquest.com/docview/2332038249 https://www.proquest.com/docview/2314254946 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXNoLffFIC8iVKnEyxHGcR2-rBUSraoV4SNwi2_HuAeSt2N1De4L_Qf8cv4QZZ5N2ixASPVoZJ449Y39jz3wG-Jw4K4YuLbjVQnFi5OJaqYLHGn0JK4gUK7B9DrLDs_TbuTr_K4u_4YfoNtzIMsJ8TQauzWT3D2koZWBTaBZaqwy8nxSwRajouOOPSlA5m_QiKTndQt-yNsbJ7mL1xVXpAdRcRK5h6Tl4DbptdBNxcrEzm5od--sfPsf_-as3sDzHpazXKNJbeOH8O3jZb6-Dew83AzcKJOGMTuhHjukJ0-w7esEMcS_rU_qjDxy8fsR6HieOq3Ggg0WY_4WFyASUP6JQ9RGhf3Z3fbvnKJjk7vo3075muALirOUdOwn3VjSv_Wkv20zRFTg72D_tH_L5_Q3cpnlW8kwLa5XDJVAjKEizQjhTG13UOMnqtFC50LK2GQoop3MEQtLavFamMHlm4mIoV2HJj71bBzYsTTmUtrSKEm9jWdZ07KwlFkUemzwC3o5fZefk5tTWy6qhZU4q6tiq69gItjv5Hw2tx6OSG606VHPznlSJlEksC3RdI_jUPcYBodMW7d14RjIiJe87zSJYa9So-xSCNmJ2VBEkQRmeaEPVG3zd70ofnlPpI7xKaKcgFlzIDViaXs3cJsKpqdkKJnMPuC8W-w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcigXoDxDX0ZC4uQ2juM8elttW21hWSFoJW6R7Xj3QOVF7e6Bntr_0f65_pLOOJugpUJIcLQySZx4xv7GnvkG4F3irBi7tOBWC8WJkYtrpQoea_QlrCBSrMD2OcoGJ-mHb6qNJqRcmIYfottwI8sI8zUZOG1I7_5iDaUUbIrNQnOVRPz5kMp6E33-_peOQSpB9WwSjKTkVIe-5W2Mk93l-5fXpXtgcxm7hsXn8AmYtttNzMn3nfnM7NiL3xgd_-u7nsLjBTRlvUaX1uCB889gtd9WhHsOVyM3CTzhjA7pJ47pc6bZEB1hhtCX9SkD0gcaXj9hPY9zx9k0MMIi0t9jITgB5T9TtPqEHAB2e3m97yie5PbyhmlfM1wEceLyjn0NpSuax_60p22y6As4OTw47g_4ooQDt2melTzTwlrlcBXUiAvSrBDO1EYXNc6zOi1ULrSsbYYCyukcsZC0Nq-VKUyembgYy5ew4qfevQY2Lk05lra0inJvY1nWdPKsJTZFHps8At4OYGUX_ObU19OqYWZOKvqxVfdjI3jfyf9omD3-KLnR6kO1sPDzKpEyiWWB3msEb7vLOCB04KK9m85JRqTkgKdZBK8aPepehbiNyB1VBEnQhr_0oeqNjg661pt_uWkbVgfHn4bV8Gj0cR0eJbRxEAsu5AaszM7mbhPR1cxsBfu5AyEuGxc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hVgIuvB-BAkZC4uQ2juM8uK12u2qhWlVApd4i23H2QOWt2t1De2r_R_vn-kuYcTaBBSEkOFoZJ449Y3-2Z74BeJc4KxqXFtxqoTgxcnGtVMFjjXsJK4gUK7B9TrKdg_TjoTr8KYq_5YfoD9zIMsJ8TQZ-XDdbP0hDKQKbXLPQWiXxfq6nWVxS8obR555AKkHtbOOLpOSUhr6jbYyTrdX6q8vSb1hzFbqGtWd8H3TX6tbl5NvmYm427fkvhI7_81sP4N4SmLJBq0kP4Zbzj-DOsMsH9xguJ24aWMIZXdFPHdOnTLM93AYzBL5sSPGPPpDw-ikbeJw5TmaBDxZx_gcWXBNQfp981acE_9nNxdXIkTfJzcU1075muATitOUd-xISV7SvPbNHXajoEzgYb38d7vBlAgdu0zwreaaFtcrhGqgRFaRZIZypjS5qnGV1WqhcaFnbDAWU0zkiIWltXitTmDwzcdHIp7DmZ949B9aUpmykLa2iyNtYljXdO2uJRZHHJo-Ad-NX2SW7ObX1qGp5mZOKOrbqOzaC9738ccvr8UfJjU4dqqV9n1aJlEksC9y7RvC2f4wDQtct2rvZgmREStvvNIvgWatG_acQtRG1o4ogCcrwlzZUg8nudl968S-V3sDt_dG42tudfHoJdxM6NYgFF3ID1uYnC_cKodXcvA7W8x21nxnG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+Charge+as+a+Lens+for+Concentrating+Antiaromaticity%3A+Using+a+Pentagonal+%E2%80%9CDefect%E2%80%9D+and+Helicene+Strain+for+Cyclizations&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Zheng&rft.au=Kawade%2C+Rahul+Kisan&rft.au=Wei%2C+Zheng&rft.au=Kuriakose%2C+Febin&rft.date=2020-01-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=3&rft.spage=1256&rft.epage=1262&rft_id=info:doi/10.1002%2Fanie.201911319&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201911319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |