Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations

Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 3; pp. 1256 - 1262
Main Authors Zhou, Zheng, Kawade, Rahul Kisan, Wei, Zheng, Kuriakose, Febin, Üngör, Ökten, Jo, Minyoung, Shatruk, Michael, Gershoni‐Poranne, Renana, Petrukhina, Marina A., Alabugin, Igor V.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 13.01.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K+(18‐crown‐6)(THF)} and {Cs+2(18‐crown‐6)3}. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion. Flat as a pancake: Relief of helicene strain, avoidance of antiaromaticity, and increase in charge delocalization assist in dehydrogenative ring closures that convert an anionic fused bis‐[5]helicene into a planarized decacyclic dianion where nine hexagonal units are fused to a single pentagon.
AbstractList Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red-shift in the absorbance spectrum and injects a charge into a helical conjugated π-system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co-crystallized with {K+ (18-crown-6)(THF)} and {Cs+ 2 (18-crown-6)3 }. UV/Vis-monitoring of these systems shows a time-dependent formation of mono- and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red-shift in the absorbance spectrum and injects a charge into a helical conjugated π-system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co-crystallized with {K+ (18-crown-6)(THF)} and {Cs+ 2 (18-crown-6)3 }. UV/Vis-monitoring of these systems shows a time-dependent formation of mono- and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.
Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K+(18‐crown‐6)(THF)} and {Cs+2(18‐crown‐6)3}. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion. Flat as a pancake: Relief of helicene strain, avoidance of antiaromaticity, and increase in charge delocalization assist in dehydrogenative ring closures that convert an anionic fused bis‐[5]helicene into a planarized decacyclic dianion where nine hexagonal units are fused to a single pentagon.
Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red-shift in the absorbance spectrum and injects a charge into a helical conjugated π-system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co-crystallized with {K (18-crown-6)(THF)} and {Cs (18-crown-6) }. UV/Vis-monitoring of these systems shows a time-dependent formation of mono- and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.
Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K + (18‐crown‐6)(THF)} and {Cs + 2 (18‐crown‐6) 3 }. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.
Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The deprotonation creates an anionic cyclopentadienyl unit, switches on conjugation, leads to a >200 nm red‐shift in the absorbance spectrum and injects a charge into a helical conjugated π‐system without injecting a spin. Structural consequences of deprotonation were revealed via analysis of a monoanionic helicene co‐crystallized with {K+(18‐crown‐6)(THF)} and {Cs+2(18‐crown‐6)3}. UV/Vis‐monitoring of these systems shows a time‐dependent formation of mono‐ and dianionic species, and the latter was isolated and crystallographically characterized. The ability of the twisted helicene frame to delocalize the negative charge was probed as a perturbation of aromaticity using NICS scans. Relief of strain, avoidance of antiaromaticity, and increase in charge delocalization assist in the additional dehydrogenative ring closures that yield a new planarized decacyclic dianion.
Author Shatruk, Michael
Alabugin, Igor V.
Kuriakose, Febin
Wei, Zheng
Jo, Minyoung
Üngör, Ökten
Petrukhina, Marina A.
Kawade, Rahul Kisan
Zhou, Zheng
Gershoni‐Poranne, Renana
Author_xml – sequence: 1
  givenname: Zheng
  surname: Zhou
  fullname: Zhou, Zheng
  organization: University at Albany
– sequence: 2
  givenname: Rahul Kisan
  surname: Kawade
  fullname: Kawade, Rahul Kisan
  organization: Florida State University
– sequence: 3
  givenname: Zheng
  surname: Wei
  fullname: Wei, Zheng
  organization: University at Albany
– sequence: 4
  givenname: Febin
  surname: Kuriakose
  fullname: Kuriakose, Febin
  organization: Florida State University
– sequence: 5
  givenname: Ökten
  surname: Üngör
  fullname: Üngör, Ökten
  organization: Florida State University
– sequence: 6
  givenname: Minyoung
  surname: Jo
  fullname: Jo, Minyoung
  organization: Florida State University
– sequence: 7
  givenname: Michael
  surname: Shatruk
  fullname: Shatruk, Michael
  organization: Florida State University
– sequence: 8
  givenname: Renana
  surname: Gershoni‐Poranne
  fullname: Gershoni‐Poranne, Renana
  email: renana.poranne@org.chem.ethz.ch
  organization: ETH Zürich
– sequence: 9
  givenname: Marina A.
  orcidid: 0000-0003-0221-7900
  surname: Petrukhina
  fullname: Petrukhina, Marina A.
  email: mpetrukhina@albany.edu
  organization: University at Albany
– sequence: 10
  givenname: Igor V.
  orcidid: 0000-0001-9289-3819
  surname: Alabugin
  fullname: Alabugin, Igor V.
  email: alabugin@chem.fsu.edu
  organization: Florida State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31715065$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URNuBLUtkiQ2bDHZsxw670VBopVFBgq6jG-dmcJWxi50BDavyHvByfRIcphSpEmLlH53zWf7uMTnwwSMhTzmbc8bKl-AdzkvGa84Frx-QI65KXgitxUHeSyEKbRQ_JMcpXWbeGFY9IoeCa65YpY7I93Ncw-i-IF1-grhGCokCXaFPtA-RLoO36MeYEb-mCz86iGGTT9aNu1f0Ik3XQN9nBtbBw0Bvrn-8xh7teHP9k4Lv6CkOLmcg_ZBjnN_H7uzgvuWY4NNj8rCHIeGT23VGLt6cfFyeFqt3b8-Wi1Vhpa7qogJurULGSzBKyMpwbLsWTKeEAWmU5iA6W2VAIWgjK2Gt7lRrWl21zPRiRl7sc69i-LzFNDYblywOA3gM29SUgstSyTqbM_L8HnoZtjH_bqJEyYQpZZ2pZ7fUtt1g11xFt4G4a_6Um4H5HrAxpBSxv0M4a6bpNdP0mrvpZUHeE3LNv1uaqhv-rdV77asbcPefR5rF-dnJX_cXkuOwgQ
CitedBy_id crossref_primary_10_1039_D4SC02116A
crossref_primary_10_1021_acs_orglett_1c01791
crossref_primary_10_1021_jacs_2c03681
crossref_primary_10_1021_jacs_0c01856
crossref_primary_10_1039_D2CC06144A
crossref_primary_10_1002_ange_202110748
crossref_primary_10_1002_ange_202115747
crossref_primary_10_1002_ange_202422994
crossref_primary_10_1039_D4SC06062H
crossref_primary_10_1039_D3QO01282D
crossref_primary_10_1039_D4CP01027B
crossref_primary_10_1002_anie_202110748
crossref_primary_10_1039_D2NJ05560K
crossref_primary_10_1021_acs_inorgchem_1c02139
crossref_primary_10_1039_D1SC00713K
crossref_primary_10_1021_prechem_4c00064
crossref_primary_10_1088_2516_1075_abd081
crossref_primary_10_1002_ange_202100942
crossref_primary_10_1002_anie_202004361
crossref_primary_10_1039_D2CC00971D
crossref_primary_10_1021_acs_orglett_0c02343
crossref_primary_10_1021_jacs_0c11053
crossref_primary_10_1002_chem_202304145
crossref_primary_10_1002_anie_202005852
crossref_primary_10_1021_acs_cgd_3c00019
crossref_primary_10_1002_anie_202115747
crossref_primary_10_1002_anie_202422994
crossref_primary_10_1002_ejic_202400222
crossref_primary_10_1021_acs_orglett_1c04233
crossref_primary_10_1021_jacs_3c13371
crossref_primary_10_1021_acs_orglett_4c03235
crossref_primary_10_1039_D0SC03072D
crossref_primary_10_1002_anie_202100942
crossref_primary_10_1021_acs_organomet_0c00688
crossref_primary_10_1021_acs_organomet_2c00583
crossref_primary_10_1021_acs_orglett_3c01107
crossref_primary_10_1002_ange_202005852
crossref_primary_10_1021_acs_organomet_1c00295
crossref_primary_10_1002_ange_202004361
crossref_primary_10_1038_s42004_023_00866_w
Cites_doi 10.1021/jacs.7b07622
10.1002/anie.199210931
10.1021/jo981562s
10.1002/asia.200600174
10.1002/anie.201610434
10.1002/ange.201301226
10.1002/ange.201301739
10.1038/ncomms9418
10.1002/anie.201108307
10.1021/jo101635z
10.1021/ja510563d
10.1021/ja304424t
10.1002/1521-3757(20020517)114:10<1788::AID-ANGE1788>3.0.CO;2-R
10.1002/ange.201700341
10.1021/acs.orglett.6b00747
10.1039/C2CS35134J
10.1002/ange.201711985
10.1002/chem.201304307
10.1002/anie.201605799
10.1016/S0040-4039(00)74221-3
10.1021/acs.joc.6b01052
10.1021/cr200087r
10.1038/nature09211
10.1002/chem.201405239
10.1002/anie.201801537
10.1002/anie.201709282
10.1021/jacs.9b05610
10.1002/adma.201204961
10.1002/ange.201906748
10.1126/science.1208686
10.1002/poc.3160
10.1002/ange.201108307
10.1002/ange.201812283
10.1002/ange.201606330
10.1126/science.1134231
10.1002/chem.201705407
10.1002/(SICI)1521-3757(19990802)111:15<2379::AID-ANGE2379>3.0.CO;2-0
10.1021/acs.chemrev.9b00033
10.1002/ange.201712783
10.1039/C2CS35154D
10.1021/jacs.7b07519
10.1021/ja500841f
10.1021/jacs.6b01303
10.1002/ange.201502436
10.1002/ange.201610434
10.1002/(SICI)1521-3773(19990802)38:15<2240::AID-ANIE2240>3.0.CO;2-C
10.1021/jacs.5b02373
10.1002/ange.200301667
10.1002/anie.201610793
10.1016/S0040-4039(01)99095-1
10.1002/ange.201507961
10.1038/nphoton.2013.176
10.1002/anie.201210238
10.1002/anie.200705463
10.1021/jacs.7b07113
10.1039/C5CS00620A
10.1002/anie.201700341
10.1021/jacs.8b09825
10.1021/ja960582d
10.1021/jo051746o
10.1021/ja503533y
10.1002/anie.200301667
10.1021/cr030088
10.1021/jacs.7b13412
10.1002/anie.201711985
10.1002/ange.201605799
10.1002/1521-3773(20020517)41:10<1712::AID-ANIE1712>3.0.CO;2-1
10.1002/1099-0690(200004)2000:7<1091::AID-EJOC1091>3.0.CO;2-W
10.1002/anie.201906748
10.1002/ange.201811706
10.1002/ange.19921040831
10.1021/jacs.5b07448
10.1002/anie.201301226
10.1038/nature17151
10.1021/jacs.8b01447
10.1021/acsami.8b15520
10.1021/ja981757h
10.1021/acs.joc.5b01014
10.1021/ja00061a019
10.1021/jacs.6b08664
10.1021/acs.joc.8b02870
10.1002/anie.201712783
10.1021/jo1000753
10.1002/anie.201502436
10.1021/ol502180y
10.1039/C2CS35111K
10.1002/ange.201610793
10.1021/acs.joc.8b00538
10.1021/cr00064a006
10.1021/ol302922t
10.1002/chem.201200416
10.1002/ange.201210238
10.1002/ange.200705463
10.1002/ange.201801537
10.1039/b603305a
10.1002/ange.201709282
10.1002/anie.201507961
10.1002/anie.201811706
10.1021/jacs.5b03118
10.1002/anie.201301739
10.1021/acs.accounts.8b00141
10.1002/celc.201800565
10.1021/ja035626e
10.1021/jo401807x
10.1039/C5CS00057B
10.1016/S0040-4039(00)90586-0
10.1021/jacs.8b11222
10.3390/molecules24010118
10.1002/anie.201606330
10.1021/nn401948e
10.1021/jacs.6b08540
10.1021/acs.accounts.8b00026
10.1021/ja000072q
10.1002/anie.201812283
10.1021/jacs.5b02794
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201911319
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1262
ExternalDocumentID 31715065
10_1002_anie_201911319
ANIE201911319
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CHE-1608628, MRI-1337594, MRI-1726724; CHE-1800329
– fundername: National Science Foundation
  grantid: CHE-1800329
– fundername: National Science Foundation
  grantid: CHE-1608628, MRI-1337594, MRI-1726724
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4769-6a1cc5e012a8534681ebdba8d538a48571a3dc6e015ea78463cc7d5b8b76b08f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:54:09 EDT 2025
Fri Jul 25 10:43:57 EDT 2025
Wed Feb 19 02:31:29 EST 2025
Tue Jul 01 02:27:02 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Wed Jan 22 16:37:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cyclizations
helicenes
benzannulation
reductive coupling
aromaticity
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-6a1cc5e012a8534681ebdba8d538a48571a3dc6e015ea78463cc7d5b8b76b08f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0221-7900
0000-0001-9289-3819
PMID 31715065
PQID 2332038249
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2314254946
proquest_journals_2332038249
pubmed_primary_31715065
crossref_primary_10_1002_anie_201911319
crossref_citationtrail_10_1002_anie_201911319
wiley_primary_10_1002_anie_201911319_ANIE201911319
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 13, 2020
PublicationDateYYYYMMDD 2020-01-13
PublicationDate_xml – month: 01
  year: 2020
  text: January 13, 2020
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006; 71
1968; 9
2013; 26
2013; 25
2019; 11
2010; 466
1999 1999; 38 111
2012; 18
2018; 83
2015; 80
2008 2008; 47 120
2013; 7
2012; 14
2014; 136
2013 2013; 52 125
2014; 20
2018; 5
2012; 134
2015; 137
2002 2002; 41 114
2000
2012 2012; 51 124
2018 2018; 57 130
2019; 24
2005; 105
2015; 44
2014; 16
2015 2015; 54 127
2019; 119
2016; 81
2000; 122
2003; 125
2016; 45
1998; 120
1984; 84
2010; 75
2011; 333
2015; 6
2018; 140
2013; 42
1999; 64
2006; 4
2003 2003; 42 115
2006; 1
2017 2017; 56 129
2006; 314
2016; 18
2019; 141
1992; 33
1992 1992; 31 104
2019 2019; 58 131
2017; 139
2018; 24
1967; 8
2016 2016; 55 128
2012; 112
2019; 84
2013; 78
2015; 21
2016; 531
2016; 138
2018; 51
1993; 115
1996; 118
e_1_2_6_72_2
e_1_2_6_95_1
e_1_2_6_53_2
e_1_2_6_30_3
e_1_2_6_30_2
e_1_2_6_91_1
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_15_3
e_1_2_6_53_3
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_99_2
e_1_2_6_83_3
e_1_2_6_102_2
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_106_1
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_9_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_49_3
e_1_2_6_87_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_26_1
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_73_3
e_1_2_6_96_1
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_31_3
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_54_3
e_1_2_6_77_3
e_1_2_6_84_2
e_1_2_6_42_2
e_1_2_6_84_3
e_1_2_6_105_2
e_1_2_6_80_2
e_1_2_6_61_1
e_1_2_6_109_2
e_1_2_6_101_1
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_42_3
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_46_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_51_2
e_1_2_6_70_1
e_1_2_6_93_2
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_62_3
e_1_2_6_85_3
e_1_2_6_104_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_108_2
e_1_2_6_81_2
(e_1_2_6_48_3) 2019; 131
e_1_2_6_100_1
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_89_1
e_1_2_6_43_3
e_1_2_6_66_2
e_1_2_6_71_3
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_94_2
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_90_1
e_1_2_6_18_2
e_1_2_6_33_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_37_3
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_98_2
e_1_2_6_103_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_63_3
e_1_2_6_107_2
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_8_2
e_1_2_6_29_3
e_1_2_6_8_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_67_1
e_1_2_6_86_3
e_1_2_6_25_2
References_xml – volume: 52 125
  start-page: 9900 10084
  year: 2013 2013
  end-page: 9930 10115
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 2518
  year: 2006
  end-page: 2524
  publication-title: Org. Biomol. Chem.
– volume: 134
  start-page: 15628
  year: 2012
  end-page: 15631
  publication-title: J. Am. Chem. Soc.
– volume: 38 111
  start-page: 2240 2379
  year: 1999 1999
  end-page: 2243 2382
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 8122
  year: 2014
  end-page: 8130
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 1165
  year: 2015
  end-page: 1180
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2118
  year: 2016
  end-page: 2121
  publication-title: Org. Lett.
– volume: 56 129
  start-page: 15363 15565
  year: 2017 2017
  end-page: 15367 15569
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 11633 11805
  year: 2016 2016
  end-page: 11637 11809
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 78
  start-page: 11147
  year: 2013
  end-page: 11154
  publication-title: J. Org. Chem.
– volume: 44
  start-page: 6472
  year: 2015
  end-page: 6493
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 4222
  year: 2018
  end-page: 4226
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 6007
  year: 2016
  end-page: 6017
  publication-title: J. Org. Chem.
– volume: 119
  start-page: 8846
  year: 2019
  end-page: 8953
  publication-title: Chem. Rev.
– volume: 51
  start-page: 1206
  year: 2018
  end-page: 1219
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 743
  year: 1967
  end-page: 744
  publication-title: Tetrahedron Lett.
– volume: 58 131
  start-page: 587 597
  year: 2019 2019
  end-page: 591 601
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 71
  start-page: 883
  year: 2006
  end-page: 893
  publication-title: J. Org. Chem.
– volume: 80
  start-page: 11706
  year: 2015
  end-page: 11717
  publication-title: J. Org. Chem.
– volume: 139
  start-page: 18508
  year: 2017
  end-page: 18511
  publication-title: J. Am. Chem. Soc.
– volume: 531
  start-page: 489
  year: 2016
  end-page: 492
  publication-title: Nature
– volume: 57 130
  start-page: 1337 1351
  year: 2018 2018
  end-page: 1341 1355
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 466
  start-page: 470
  year: 2010
  end-page: 473
  publication-title: Nature
– volume: 137
  start-page: 15441
  year: 2015
  end-page: 15450
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 2624
  year: 2013
  end-page: 2628
  publication-title: Adv. Mater.
– volume: 140
  start-page: 15461
  year: 2018
  end-page: 15469
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 16210
  year: 2017
  end-page: 16221
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 2391
  year: 2019
  end-page: 2397
  publication-title: J. Am. Chem. Soc.
– start-page: 1091
  year: 2000
  end-page: 1106
  publication-title: Eur. J. Org. Chem.
– volume: 14
  start-page: 6032
  year: 2012
  end-page: 6035
  publication-title: Org. Lett.
– volume: 18
  start-page: 6476
  year: 2012
  end-page: 6484
  publication-title: Chem. Eur. J.
– volume: 137
  start-page: 7763
  year: 2015
  end-page: 7768
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 6335
  year: 2015
  end-page: 6349
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 5033 5137
  year: 2013 2013
  end-page: 5036 5140
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 75
  start-page: 2281
  year: 2010
  end-page: 2288
  publication-title: J. Org. Chem.
– volume: 125
  start-page: 11808
  year: 2003
  end-page: 11809
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 2023 2045
  year: 2019 2019
  end-page: 2028 2050
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 12054 12233
  year: 2016 2016
  end-page: 12058 12237
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 42
  start-page: 968
  year: 2013
  end-page: 1006
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 8418
  year: 2015
  publication-title: Nat. Commun.
– volume: 51 124
  start-page: 5857 5959
  year: 2012 2012
  end-page: 5861 5963
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 3374 3423
  year: 2017 2017
  end-page: 3378 3427
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 6847 6951
  year: 2015 2015
  end-page: 6851 6955
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 75
  start-page: 7358
  year: 2010
  end-page: 7364
  publication-title: J. Org. Chem.
– volume: 138
  start-page: 15617
  year: 2016
  end-page: 15628
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 4165
  year: 2018
  end-page: 4172
  publication-title: Chem. Eur. J.
– volume: 41 114
  start-page: 1712 1788
  year: 2002 2002
  end-page: 1715 1791
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 678
  year: 2006
  end-page: 685
  publication-title: Chem. Asian J.
– volume: 31 104
  start-page: 1093 1081
  year: 1992 1992
  end-page: 1095 1082
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 84
  start-page: 1980
  year: 2019
  end-page: 1993
  publication-title: J. Org. Chem.
– volume: 47 120
  start-page: 3188 3232
  year: 2008 2008
  end-page: 3191 3235
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 4317
  year: 2018
  end-page: 4326
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 1183 1198
  year: 2016 2016
  end-page: 1186 1202
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 83
  start-page: 5523
  year: 2018
  end-page: 5538
  publication-title: J. Org. Chem.
– volume: 84
  start-page: 603
  year: 1984
  end-page: 646
  publication-title: Chem. Rev.
– volume: 52 125
  start-page: 9970 10154
  year: 2013 2013
  end-page: 9975 10159
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 118
  year: 2019
  publication-title: Molecules
– volume: 314
  start-page: 1437
  year: 2006
  end-page: 1439
  publication-title: Science
– volume: 56 129
  start-page: 3379 3428
  year: 2017 2017
  end-page: 3382 3431
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 6123
  year: 2013
  end-page: 6128
  publication-title: ACS Nano
– volume: 105
  start-page: 3842
  year: 2005
  end-page: 3888
  publication-title: Chem. Rev.
– volume: 26
  start-page: 742
  year: 2013
  end-page: 749
  publication-title: J. Phys. Org. Chem.
– volume: 122
  start-page: 12637
  year: 2000
  end-page: 12645
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 12797
  year: 2019
  end-page: 12803
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 634
  year: 2013
  end-page: 638
  publication-title: Nat. Photonics
– volume: 118
  start-page: 6317
  year: 1996
  end-page: 6318
  publication-title: J. Am. Chem. Soc.
– volume: 42 115
  start-page: 3986 4116
  year: 2003 2003
  end-page: 3989 4119
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 3587
  year: 2016
  end-page: 3595
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 1051
  year: 2013
  end-page: 1095
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 3651 3713
  year: 2018 2018
  end-page: 3655 3717
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 6171 6279
  year: 2018 2018
  end-page: 6175 6283
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 333
  start-page: 1008
  year: 2011
  end-page: 1011
  publication-title: Science
– volume: 115
  start-page: 3199
  year: 1993
  end-page: 3211
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2080
  year: 2018
  end-page: 2088
  publication-title: ChemElectroChem
– volume: 138
  start-page: 12783
  year: 2016
  end-page: 12786
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 1541
  year: 2018
  end-page: 1549
  publication-title: Acc. Chem. Res.
– volume: 64
  start-page: 644
  year: 1999
  end-page: 647
  publication-title: J. Org. Chem.
– volume: 16
  start-page: 4610
  year: 2014
  end-page: 4613
  publication-title: Org. Lett.
– volume: 112
  start-page: 1463
  year: 2012
  end-page: 1535
  publication-title: Chem. Rev.
– volume: 45
  start-page: 1542
  year: 2016
  end-page: 1556
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 8656
  year: 1998
  end-page: 8660
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 2343
  year: 2015
  end-page: 2347
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 1555
  year: 2019
  end-page: 1562
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 1007
  year: 2013
  end-page: 1050
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 5839 5933
  year: 2017 2017
  end-page: 5843 5937
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 5555
  year: 2014
  end-page: 5558
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 12107 12235
  year: 2019 2019
  end-page: 12111 12239
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  start-page: 2395
  year: 1992
  end-page: 2398
  publication-title: Tetrahedron Lett.
– volume: 139
  start-page: 18512
  year: 2017
  end-page: 18521
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3507
  year: 1968
  end-page: 3510
  publication-title: Tetrahedron Lett.
– volume: 137
  start-page: 8469
  year: 2015
  end-page: 8474
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 5673
  year: 2014
  end-page: 5688
  publication-title: Chem. Eur. J.
– ident: e_1_2_6_51_2
  doi: 10.1021/jacs.7b07622
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.199210931
– ident: e_1_2_6_78_2
  doi: 10.1021/jo981562s
– ident: e_1_2_6_101_1
– ident: e_1_2_6_72_2
  doi: 10.1002/asia.200600174
– ident: e_1_2_6_53_2
  doi: 10.1002/anie.201610434
– ident: e_1_2_6_86_3
  doi: 10.1002/ange.201301226
– ident: e_1_2_6_31_3
  doi: 10.1002/ange.201301739
– ident: e_1_2_6_16_2
  doi: 10.1038/ncomms9418
– ident: e_1_2_6_42_2
  doi: 10.1002/anie.201108307
– ident: e_1_2_6_76_2
  doi: 10.1021/jo101635z
– ident: e_1_2_6_68_2
  doi: 10.1021/ja510563d
– ident: e_1_2_6_22_2
  doi: 10.1021/ja304424t
– ident: e_1_2_6_73_3
  doi: 10.1002/1521-3757(20020517)114:10<1788::AID-ANGE1788>3.0.CO;2-R
– ident: e_1_2_6_37_3
  doi: 10.1002/ange.201700341
– ident: e_1_2_6_100_1
– ident: e_1_2_6_61_1
– ident: e_1_2_6_75_2
  doi: 10.1021/acs.orglett.6b00747
– ident: e_1_2_6_6_2
  doi: 10.1039/C2CS35134J
– ident: e_1_2_6_49_3
  doi: 10.1002/ange.201711985
– ident: e_1_2_6_105_2
  doi: 10.1002/chem.201304307
– ident: e_1_2_6_9_1
– ident: e_1_2_6_63_2
  doi: 10.1002/anie.201605799
– ident: e_1_2_6_89_1
  doi: 10.1016/S0040-4039(00)74221-3
– ident: e_1_2_6_69_2
  doi: 10.1021/acs.joc.6b01052
– ident: e_1_2_6_7_2
  doi: 10.1021/cr200087r
– ident: e_1_2_6_92_2
  doi: 10.1038/nature09211
– ident: e_1_2_6_17_2
  doi: 10.1002/chem.201405239
– ident: e_1_2_6_71_2
  doi: 10.1002/anie.201801537
– ident: e_1_2_6_85_2
  doi: 10.1002/anie.201709282
– ident: e_1_2_6_47_2
  doi: 10.1021/jacs.9b05610
– ident: e_1_2_6_96_1
– ident: e_1_2_6_20_2
  doi: 10.1002/adma.201204961
– ident: e_1_2_6_83_3
  doi: 10.1002/ange.201906748
– ident: e_1_2_6_82_2
  doi: 10.1126/science.1208686
– ident: e_1_2_6_60_2
  doi: 10.1002/poc.3160
– ident: e_1_2_6_42_3
  doi: 10.1002/ange.201108307
– ident: e_1_2_6_74_1
– ident: e_1_2_6_84_3
  doi: 10.1002/ange.201812283
– ident: e_1_2_6_29_3
  doi: 10.1002/ange.201606330
– ident: e_1_2_6_91_1
– ident: e_1_2_6_23_2
  doi: 10.1126/science.1134231
– ident: e_1_2_6_95_1
  doi: 10.1002/chem.201705407
– ident: e_1_2_6_77_3
  doi: 10.1002/(SICI)1521-3757(19990802)111:15<2379::AID-ANGE2379>3.0.CO;2-0
– ident: e_1_2_6_2_2
  doi: 10.1021/acs.chemrev.9b00033
– ident: e_1_2_6_62_3
  doi: 10.1002/ange.201712783
– ident: e_1_2_6_97_1
– ident: e_1_2_6_4_2
  doi: 10.1039/C2CS35154D
– ident: e_1_2_6_38_2
  doi: 10.1021/jacs.7b07519
– ident: e_1_2_6_40_2
  doi: 10.1021/ja500841f
– ident: e_1_2_6_55_2
  doi: 10.1021/jacs.6b01303
– ident: e_1_2_6_30_3
  doi: 10.1002/ange.201502436
– ident: e_1_2_6_53_3
  doi: 10.1002/ange.201610434
– ident: e_1_2_6_77_2
  doi: 10.1002/(SICI)1521-3773(19990802)38:15<2240::AID-ANIE2240>3.0.CO;2-C
– ident: e_1_2_6_65_2
  doi: 10.1021/jacs.5b02373
– ident: e_1_2_6_8_3
  doi: 10.1002/ange.200301667
– ident: e_1_2_6_54_2
  doi: 10.1002/anie.201610793
– ident: e_1_2_6_35_2
  doi: 10.1016/S0040-4039(01)99095-1
– ident: e_1_2_6_46_1
– ident: e_1_2_6_15_3
  doi: 10.1002/ange.201507961
– ident: e_1_2_6_21_2
  doi: 10.1038/nphoton.2013.176
– ident: e_1_2_6_90_1
  doi: 10.1002/anie.201210238
– ident: e_1_2_6_43_2
  doi: 10.1002/anie.200705463
– ident: e_1_2_6_52_2
  doi: 10.1021/jacs.7b07113
– ident: e_1_2_6_3_2
  doi: 10.1039/C5CS00620A
– ident: e_1_2_6_37_2
  doi: 10.1002/anie.201700341
– ident: e_1_2_6_27_2
  doi: 10.1021/jacs.8b09825
– ident: e_1_2_6_98_2
  doi: 10.1021/ja960582d
– ident: e_1_2_6_103_2
  doi: 10.1021/jo051746o
– ident: e_1_2_6_19_2
  doi: 10.1021/ja503533y
– ident: e_1_2_6_8_2
  doi: 10.1002/anie.200301667
– ident: e_1_2_6_99_2
  doi: 10.1021/cr030088
– ident: e_1_2_6_28_2
  doi: 10.1021/jacs.7b13412
– ident: e_1_2_6_49_2
  doi: 10.1002/anie.201711985
– ident: e_1_2_6_67_1
– ident: e_1_2_6_36_1
– ident: e_1_2_6_63_3
  doi: 10.1002/ange.201605799
– ident: e_1_2_6_73_2
  doi: 10.1002/1521-3773(20020517)41:10<1712::AID-ANIE1712>3.0.CO;2-1
– ident: e_1_2_6_80_2
  doi: 10.1002/1099-0690(200004)2000:7<1091::AID-EJOC1091>3.0.CO;2-W
– ident: e_1_2_6_83_2
  doi: 10.1002/anie.201906748
– volume: 131
  start-page: 597
  year: 2019
  ident: e_1_2_6_48_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201811706
– ident: e_1_2_6_33_3
  doi: 10.1002/ange.19921040831
– ident: e_1_2_6_109_2
  doi: 10.1021/jacs.5b07448
– ident: e_1_2_6_102_2
– ident: e_1_2_6_86_2
  doi: 10.1002/anie.201301226
– ident: e_1_2_6_94_2
  doi: 10.1038/nature17151
– ident: e_1_2_6_50_2
  doi: 10.1021/jacs.8b01447
– ident: e_1_2_6_11_2
  doi: 10.1021/acsami.8b15520
– ident: e_1_2_6_24_2
  doi: 10.1021/ja981757h
– ident: e_1_2_6_106_1
– ident: e_1_2_6_64_2
  doi: 10.1021/acs.joc.5b01014
– ident: e_1_2_6_25_2
  doi: 10.1021/ja00061a019
– ident: e_1_2_6_39_2
  doi: 10.1021/jacs.6b08664
– ident: e_1_2_6_10_2
  doi: 10.1021/acs.joc.8b02870
– ident: e_1_2_6_62_2
  doi: 10.1002/anie.201712783
– ident: e_1_2_6_26_1
– ident: e_1_2_6_104_2
  doi: 10.1021/jo1000753
– ident: e_1_2_6_1_1
– ident: e_1_2_6_30_2
  doi: 10.1002/anie.201502436
– ident: e_1_2_6_18_2
  doi: 10.1021/ol502180y
– ident: e_1_2_6_5_2
  doi: 10.1039/C2CS35111K
– ident: e_1_2_6_54_3
  doi: 10.1002/ange.201610793
– ident: e_1_2_6_13_2
  doi: 10.1021/acs.joc.8b00538
– ident: e_1_2_6_79_2
  doi: 10.1021/cr00064a006
– ident: e_1_2_6_66_2
  doi: 10.1021/ol302922t
– ident: e_1_2_6_87_2
  doi: 10.1002/chem.201200416
– ident: e_1_2_6_90_2
  doi: 10.1002/ange.201210238
– ident: e_1_2_6_43_3
  doi: 10.1002/ange.200705463
– ident: e_1_2_6_71_3
  doi: 10.1002/ange.201801537
– ident: e_1_2_6_44_2
  doi: 10.1039/b603305a
– ident: e_1_2_6_85_3
  doi: 10.1002/ange.201709282
– ident: e_1_2_6_15_2
  doi: 10.1002/anie.201507961
– ident: e_1_2_6_48_2
  doi: 10.1002/anie.201811706
– ident: e_1_2_6_56_2
  doi: 10.1021/jacs.5b03118
– ident: e_1_2_6_31_2
  doi: 10.1002/anie.201301739
– ident: e_1_2_6_81_2
  doi: 10.1021/acs.accounts.8b00141
– ident: e_1_2_6_14_2
  doi: 10.1002/celc.201800565
– ident: e_1_2_6_45_2
  doi: 10.1021/ja035626e
– ident: e_1_2_6_41_2
  doi: 10.1021/jo401807x
– ident: e_1_2_6_108_2
  doi: 10.1039/C5CS00057B
– ident: e_1_2_6_34_2
  doi: 10.1016/S0040-4039(00)90586-0
– ident: e_1_2_6_12_2
  doi: 10.1021/jacs.8b11222
– ident: e_1_2_6_57_1
– ident: e_1_2_6_58_2
  doi: 10.3390/molecules24010118
– ident: e_1_2_6_29_2
  doi: 10.1002/anie.201606330
– ident: e_1_2_6_70_1
– ident: e_1_2_6_93_2
  doi: 10.1021/nn401948e
– ident: e_1_2_6_107_2
  doi: 10.1021/jacs.6b08540
– ident: e_1_2_6_59_2
  doi: 10.1021/acs.accounts.8b00026
– ident: e_1_2_6_88_2
  doi: 10.1021/ja000072q
– ident: e_1_2_6_84_2
  doi: 10.1002/anie.201812283
– ident: e_1_2_6_32_2
  doi: 10.1021/jacs.5b02794
SSID ssj0028806
Score 2.4648583
Snippet Incorporation of a five‐membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The...
Incorporation of a five-membered ring into a helicene framework disrupts aromatic conjugation and provides a site for selective deprotonation. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1256
SubjectTerms Anions
Aromaticity
benzannulation
Closures
Conjugation
Crystallization
Crystallography
cyclizations
Dehydrogenation
helicenes
Perturbation
reductive coupling
Switches
Time dependence
Title Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201911319
https://www.ncbi.nlm.nih.gov/pubmed/31715065
https://www.proquest.com/docview/2332038249
https://www.proquest.com/docview/2314254946
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXNoLffFIC8iVKnEyxHGcR2-rBUSraoV4SNwi2_HuAeSt2N1De4L_Qf8cv4QZZ5N2ixASPVoZJ449Y39jz3wG-Jw4K4YuLbjVQnFi5OJaqYLHGn0JK4gUK7B9DrLDs_TbuTr_K4u_4YfoNtzIMsJ8TQauzWT3D2koZWBTaBZaqwy8nxSwRajouOOPSlA5m_QiKTndQt-yNsbJ7mL1xVXpAdRcRK5h6Tl4DbptdBNxcrEzm5od--sfPsf_-as3sDzHpazXKNJbeOH8O3jZb6-Dew83AzcKJOGMTuhHjukJ0-w7esEMcS_rU_qjDxy8fsR6HieOq3Ggg0WY_4WFyASUP6JQ9RGhf3Z3fbvnKJjk7vo3075muALirOUdOwn3VjSv_Wkv20zRFTg72D_tH_L5_Q3cpnlW8kwLa5XDJVAjKEizQjhTG13UOMnqtFC50LK2GQoop3MEQtLavFamMHlm4mIoV2HJj71bBzYsTTmUtrSKEm9jWdZ07KwlFkUemzwC3o5fZefk5tTWy6qhZU4q6tiq69gItjv5Hw2tx6OSG606VHPznlSJlEksC3RdI_jUPcYBodMW7d14RjIiJe87zSJYa9So-xSCNmJ2VBEkQRmeaEPVG3zd70ofnlPpI7xKaKcgFlzIDViaXs3cJsKpqdkKJnMPuC8W-w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcigXoDxDX0ZC4uQ2juM8elttW21hWSFoJW6R7Xj3QOVF7e6Bntr_0f65_pLOOJugpUJIcLQySZx4xv7GnvkG4F3irBi7tOBWC8WJkYtrpQoea_QlrCBSrMD2OcoGJ-mHb6qNJqRcmIYfottwI8sI8zUZOG1I7_5iDaUUbIrNQnOVRPz5kMp6E33-_peOQSpB9WwSjKTkVIe-5W2Mk93l-5fXpXtgcxm7hsXn8AmYtttNzMn3nfnM7NiL3xgd_-u7nsLjBTRlvUaX1uCB889gtd9WhHsOVyM3CTzhjA7pJ47pc6bZEB1hhtCX9SkD0gcaXj9hPY9zx9k0MMIi0t9jITgB5T9TtPqEHAB2e3m97yie5PbyhmlfM1wEceLyjn0NpSuax_60p22y6As4OTw47g_4ooQDt2melTzTwlrlcBXUiAvSrBDO1EYXNc6zOi1ULrSsbYYCyukcsZC0Nq-VKUyembgYy5ew4qfevQY2Lk05lra0inJvY1nWdPKsJTZFHps8At4OYGUX_ObU19OqYWZOKvqxVfdjI3jfyf9omD3-KLnR6kO1sPDzKpEyiWWB3msEb7vLOCB04KK9m85JRqTkgKdZBK8aPepehbiNyB1VBEnQhr_0oeqNjg661pt_uWkbVgfHn4bV8Gj0cR0eJbRxEAsu5AaszM7mbhPR1cxsBfu5AyEuGxc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hVgIuvB-BAkZC4uQ2juM8uK12u2qhWlVApd4i23H2QOWt2t1De2r_R_vn-kuYcTaBBSEkOFoZJ449Y3-2Z74BeJc4KxqXFtxqoTgxcnGtVMFjjXsJK4gUK7B9TrKdg_TjoTr8KYq_5YfoD9zIMsJ8TQZ-XDdbP0hDKQKbXLPQWiXxfq6nWVxS8obR555AKkHtbOOLpOSUhr6jbYyTrdX6q8vSb1hzFbqGtWd8H3TX6tbl5NvmYm427fkvhI7_81sP4N4SmLJBq0kP4Zbzj-DOsMsH9xguJ24aWMIZXdFPHdOnTLM93AYzBL5sSPGPPpDw-ikbeJw5TmaBDxZx_gcWXBNQfp981acE_9nNxdXIkTfJzcU1075muATitOUd-xISV7SvPbNHXajoEzgYb38d7vBlAgdu0zwreaaFtcrhGqgRFaRZIZypjS5qnGV1WqhcaFnbDAWU0zkiIWltXitTmDwzcdHIp7DmZ949B9aUpmykLa2iyNtYljXdO2uJRZHHJo-Ad-NX2SW7ObX1qGp5mZOKOrbqOzaC9738ccvr8UfJjU4dqqV9n1aJlEksC9y7RvC2f4wDQtct2rvZgmREStvvNIvgWatG_acQtRG1o4ogCcrwlzZUg8nudl968S-V3sDt_dG42tudfHoJdxM6NYgFF3ID1uYnC_cKodXcvA7W8x21nxnG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Negative+Charge+as+a+Lens+for+Concentrating+Antiaromaticity%3A+Using+a+Pentagonal+%E2%80%9CDefect%E2%80%9D+and+Helicene+Strain+for+Cyclizations&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Zheng&rft.au=Kawade%2C+Rahul+Kisan&rft.au=Wei%2C+Zheng&rft.au=Kuriakose%2C+Febin&rft.date=2020-01-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=3&rft.spage=1256&rft.epage=1262&rft_id=info:doi/10.1002%2Fanie.201911319&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201911319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon