Highly Efficient, Cost Effective, and Safe Sodiation Agent for High‐Performance Sodium‐Ion Batteries

The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreve...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 11; no. 18; pp. 3286 - 3291
Main Authors Shanmukaraj, Devaraj, Kretschmer, Katja, Sahu, Tuhin, Bao, Weizhai, Rojo, Teofilo, Wang, Guoxiu, Armand, Michel
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na2C4O4) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na3(VO)2(PO4)2F cathode, the cathode delivered a highly stable capacity of 135 mAh g−1 and stable cycling performance. The water‐stable Na3(VO)2(PO4)2F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries. A new added flavor: A new sodiation agent (Na2C4O4) demonstrates a capability to significantly improve the performance of cathode materials in sodium‐ion batteries. The as‐synthesized sodium salt can effectively replace other commercial salts (such as NaN3, Na3P, and Na2CO3) and exhibits superior efficiency compared to these salts in improving capacity and rate capability of sodium cathodes as well as compensating the first charge irreversibility of anodes.
AbstractList The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na2C4O4) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na3(VO)2(PO4)2F cathode, the cathode delivered a highly stable capacity of 135 mAh g−1 and stable cycling performance. The water‐stable Na3(VO)2(PO4)2F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries. A new added flavor: A new sodiation agent (Na2C4O4) demonstrates a capability to significantly improve the performance of cathode materials in sodium‐ion batteries. The as‐synthesized sodium salt can effectively replace other commercial salts (such as NaN3, Na3P, and Na2CO3) and exhibits superior efficiency compared to these salts in improving capacity and rate capability of sodium cathodes as well as compensating the first charge irreversibility of anodes.
The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na 2 C 4 O 4 ) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na 3 (VO) 2 (PO 4 ) 2 F cathode, the cathode delivered a highly stable capacity of 135 mAh g −1 and stable cycling performance. The water‐stable Na 3 (VO) 2 (PO 4 ) 2 F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries.
The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid-electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost-effective sodium salt (Na C O ) is reported that could be applied as additive in cathodes to solve the irreversible-capacity issues of anodes in sodium-ion batteries. When added to Na (VO) (PO ) F cathode, the cathode delivered a highly stable capacity of 135 mAh g and stable cycling performance. The water-stable Na (VO) (PO ) F cathode in combination with a water-soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full-cell configuration) has been observed when using the new sodium salt at a C-rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non-aqueous cathode-fabrication techniques for sodium-ion batteries.
The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid-electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost-effective sodium salt (Na2 C4 O4 ) is reported that could be applied as additive in cathodes to solve the irreversible-capacity issues of anodes in sodium-ion batteries. When added to Na3 (VO)2 (PO4 )2 F cathode, the cathode delivered a highly stable capacity of 135 mAh g-1 and stable cycling performance. The water-stable Na3 (VO)2 (PO4 )2 F cathode in combination with a water-soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full-cell configuration) has been observed when using the new sodium salt at a C-rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non-aqueous cathode-fabrication techniques for sodium-ion batteries.The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid-electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost-effective sodium salt (Na2 C4 O4 ) is reported that could be applied as additive in cathodes to solve the irreversible-capacity issues of anodes in sodium-ion batteries. When added to Na3 (VO)2 (PO4 )2 F cathode, the cathode delivered a highly stable capacity of 135 mAh g-1 and stable cycling performance. The water-stable Na3 (VO)2 (PO4 )2 F cathode in combination with a water-soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full-cell configuration) has been observed when using the new sodium salt at a C-rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non-aqueous cathode-fabrication techniques for sodium-ion batteries.
The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na2C4O4) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na3(VO)2(PO4)2F cathode, the cathode delivered a highly stable capacity of 135 mAh g−1 and stable cycling performance. The water‐stable Na3(VO)2(PO4)2F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries.
Author Bao, Weizhai
Shanmukaraj, Devaraj
Armand, Michel
Sahu, Tuhin
Rojo, Teofilo
Wang, Guoxiu
Kretschmer, Katja
Author_xml – sequence: 1
  givenname: Devaraj
  surname: Shanmukaraj
  fullname: Shanmukaraj, Devaraj
  organization: CIC Energigune
– sequence: 2
  givenname: Katja
  surname: Kretschmer
  fullname: Kretschmer, Katja
  organization: University of Technology, Sydney
– sequence: 3
  givenname: Tuhin
  surname: Sahu
  fullname: Sahu, Tuhin
  organization: University of Technology, Sydney
– sequence: 4
  givenname: Weizhai
  surname: Bao
  fullname: Bao, Weizhai
  organization: University of Technology, Sydney
– sequence: 5
  givenname: Teofilo
  surname: Rojo
  fullname: Rojo, Teofilo
  organization: CIC Energigune
– sequence: 6
  givenname: Guoxiu
  surname: Wang
  fullname: Wang, Guoxiu
  email: guoxiu.wang@uts.edu.au
  organization: University of Technology, Sydney
– sequence: 7
  givenname: Michel
  orcidid: 0000-0002-1303-9233
  surname: Armand
  fullname: Armand, Michel
  email: marmand@cicenergigune.com
  organization: CIC Energigune
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29968282$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LHTEUhoNY_OzWZRlw04X3NslkMpOlDlYFoYWr0F3IxxmNzEw0ybTcXX9Cf2N_SXO9foBQXJ1zwvMcwnl30eboR0DogOA5wZh-MTGaOcWkwQQLsYF2SMPZrOLsx-ZLX5JttBvjHcYcC8630DYVgje0oTvo9tzd3PbL4rTrnHEwpqOi9TGtZjDJ_YSjQo22WKgOioW3TiXnx-L4JpNF50Ox0v_-_vMdQp4GNZo1Ng358SKTJyolCA7iPvrQqT7Cx6e6h66_nl6157PLb2cX7fHlzLCaixkjpS4tAUwbQ4AJA1SzUtuOE0O1Nppj0zWVsTVW2kJNK2NKxjQntLZVZcs99Hm99z74hwlikoOLBvpejeCnKCnmZU2IoHVGD9-gd34KY_6dpIRgSnlDykx9eqImPYCV98ENKizl8w0zwNaACT7GAJ00Lj3eKQXlekmwXEUlV1HJl6iyNn-jPW_-ryDWwi_Xw_IdWraLRfvq_gPl5Kgk
CitedBy_id crossref_primary_10_1021_acsaem_9b01458
crossref_primary_10_1002_batt_202300375
crossref_primary_10_1002_adfm_202404442
crossref_primary_10_1002_adma_202407720
crossref_primary_10_1149_1945_7111_ad3ebc
crossref_primary_10_1039_D2QI02237K
crossref_primary_10_1016_j_jcis_2022_08_096
crossref_primary_10_1016_j_esci_2023_100181
crossref_primary_10_1039_D5EE00136F
crossref_primary_10_1016_j_ensm_2021_04_048
crossref_primary_10_1039_D0TA08186H
crossref_primary_10_1039_D4SC03995E
crossref_primary_10_1002_celc_202000029
crossref_primary_10_1088_2515_7655_ad064e
crossref_primary_10_1021_acsami_0c20542
crossref_primary_10_1016_j_coelec_2021_100827
crossref_primary_10_1016_j_jechem_2022_10_001
crossref_primary_10_1039_D0EE00351D
crossref_primary_10_1039_D2CP00798C
crossref_primary_10_1016_j_ijhydene_2024_06_305
crossref_primary_10_1016_j_jechem_2024_01_029
crossref_primary_10_1016_j_mser_2024_100902
crossref_primary_10_1016_j_cej_2022_135275
crossref_primary_10_1016_j_est_2024_112566
crossref_primary_10_1093_oxfmat_itac019
crossref_primary_10_1002_batt_202400009
crossref_primary_10_1002_batt_202400207
crossref_primary_10_1002_smll_201900233
crossref_primary_10_1016_j_ensm_2021_12_014
crossref_primary_10_1021_acsami_0c20870
crossref_primary_10_1007_s11664_024_10938_9
crossref_primary_10_1002_adfm_201903795
crossref_primary_10_1002_aesr_202200009
crossref_primary_10_1016_j_mattod_2025_01_002
crossref_primary_10_1039_D4TA06341D
crossref_primary_10_1016_j_electacta_2019_134693
crossref_primary_10_1016_j_mtsust_2023_100385
crossref_primary_10_1021_jacs_4c18168
crossref_primary_10_1002_adma_202001419
crossref_primary_10_1002_aenm_202002704
crossref_primary_10_1039_D5CC00738K
crossref_primary_10_1002_advs_202201742
crossref_primary_10_2139_ssrn_3975251
crossref_primary_10_1016_j_jechem_2022_03_024
crossref_primary_10_1016_j_jpowsour_2019_227617
crossref_primary_10_1039_D0EE02782K
crossref_primary_10_1002_chem_202102433
crossref_primary_10_1038_s41578_024_00657_2
crossref_primary_10_1016_j_jpowsour_2021_230633
crossref_primary_10_1021_acsami_4c02268
crossref_primary_10_1016_j_elecom_2021_107090
crossref_primary_10_1039_D0TA10880D
crossref_primary_10_1088_0256_307X_38_11_118401
crossref_primary_10_3390_ma14040854
crossref_primary_10_1039_D1CC01292D
crossref_primary_10_1002_aenm_202402720
crossref_primary_10_1038_s41467_021_23132_w
crossref_primary_10_1039_D2CC01812H
crossref_primary_10_1002_adfm_202005581
crossref_primary_10_1002_adfm_202409628
crossref_primary_10_1016_j_mattod_2024_01_002
crossref_primary_10_1021_acsenergylett_4c03323
crossref_primary_10_1038_s43246_024_00569_2
crossref_primary_10_20517_microstructures_2023_102
crossref_primary_10_1149_2_0072007JES
crossref_primary_10_1002_inf2_12242
crossref_primary_10_1002_inf2_12288
crossref_primary_10_1002_smll_202304793
crossref_primary_10_1016_j_gee_2024_02_009
crossref_primary_10_1016_j_jpowsour_2020_228872
crossref_primary_10_1021_acsami_1c05144
crossref_primary_10_1088_1361_648X_ada70f
crossref_primary_10_1016_j_matchemphys_2025_130512
Cites_doi 10.1016/j.elecom.2010.07.016
10.1038/ncomms10308
10.1149/2.0091514jes
10.1021/acs.nanolett.5b05228
10.1021/jo00295a014
10.1039/c3ee41379a
10.1039/c2jm35293a
10.1039/C4EE03361B
10.1002/adfm.201400561
10.1016/0167-2738(88)90351-7
10.1038/nenergy.2015.8
10.1016/j.elecom.2013.10.008
10.1039/c3ee24086j
10.1039/C6CS00776G
10.1039/c2ee02781j
10.1021/op8000977
10.1149/1.1379565
10.1021/acs.chemmater.7b01542
10.1021/cm403679b
10.1002/aenm.201600154
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201801099
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 3291
ExternalDocumentID 29968282
10_1002_cssc_201801099
CSSC201801099
Genre article
Journal Article
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c4769-413b3d1e028c1e49ce2b43bdf61c2bbcb60cf85cd70abde725cc344b6127d55d3
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 01:38:03 EDT 2025
Fri Jul 25 12:14:28 EDT 2025
Wed Feb 19 02:34:13 EST 2025
Tue Jul 01 00:36:04 EDT 2025
Thu Apr 24 23:12:32 EDT 2025
Wed Jan 22 16:21:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords sodium
sodiation agents
squarate salts
batteries
cathodes
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-413b3d1e028c1e49ce2b43bdf61c2bbcb60cf85cd70abde725cc344b6127d55d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1303-9233
PMID 29968282
PQID 2110226813
PQPubID 986333
PageCount 6
ParticipantIDs proquest_miscellaneous_2063711927
proquest_journals_2110226813
pubmed_primary_29968282
crossref_citationtrail_10_1002_cssc_201801099
crossref_primary_10_1002_cssc_201801099
wiley_primary_10_1002_cssc_201801099_CSSC201801099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 21, 2018
PublicationDateYYYYMMDD 2018-09-21
PublicationDate_xml – month: 09
  year: 2018
  text: September 21, 2018
  day: 21
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2010; 12
2016; 6
2016; 7
2013; 37
1990; 55
2013; 25
2016; 1
1988; 28–30
2017; 46
2008; 12
2014; 24
2016
2017; 29
1980
2015; 8
2016; 16
2013; 6
2012; 5
2012; 22
2001; 148
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
Serras P. (e_1_2_7_20_1) 2016
Armand M. B. (e_1_2_7_1_1) 1980
References_xml – volume: 16
  start-page: 1497
  year: 2016
  publication-title: Nano Lett.
– volume: 8
  start-page: 1237
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 2361
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 15008
  year: 2016
  publication-title: Nat. Energy
– start-page: 145
  year: 1980
  end-page: 161
– volume: 5
  start-page: 5884
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 28–30
  start-page: 1172
  year: 1988
  publication-title: Solid State Ionics
– volume: 6
  start-page: 1600154
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 10308
  year: 2016
  publication-title: Nat. Commun.
– volume: 25
  start-page: 4917
  year: 2013
  publication-title: Chem. Mater.
– volume: 22
  start-page: 22301
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 55
  start-page: 2304
  year: 1990
  publication-title: Org. Chem.
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 148
  start-page: 803
  year: 2001
  publication-title: J. Electrochem. Soc.
– start-page: 155
  year: 2016
  end-page: 172
– volume: 12
  start-page: 1344
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 734
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 5948
  year: 2017
  publication-title: Chem. Mater.
– volume: 162
  start-page: 2476
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 24
  start-page: 4603
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 61
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 12
  start-page: 1285
  year: 2008
  publication-title: Org. Process Res. Dev.
– ident: e_1_2_7_16_1
  doi: 10.1016/j.elecom.2010.07.016
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms10308
– ident: e_1_2_7_7_1
  doi: 10.1149/2.0091514jes
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.nanolett.5b05228
– start-page: 155
  volume-title: High-Voltage Cathodes for Na-Ion Batteries: Sodium—Vanadium Fluorophosphates, Alkali-ion Batteries
  year: 2016
  ident: e_1_2_7_20_1
– ident: e_1_2_7_21_1
  doi: 10.1021/jo00295a014
– ident: e_1_2_7_10_1
  doi: 10.1039/c3ee41379a
– start-page: 145
  volume-title: Intercalation Electrodes, Vol. 2
  year: 1980
  ident: e_1_2_7_1_1
– ident: e_1_2_7_12_1
  doi: 10.1039/c2jm35293a
– ident: e_1_2_7_8_1
  doi: 10.1039/C4EE03361B
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201400561
– ident: e_1_2_7_5_1
  doi: 10.1016/0167-2738(88)90351-7
– ident: e_1_2_7_13_1
  doi: 10.1038/nenergy.2015.8
– ident: e_1_2_7_17_1
  doi: 10.1016/j.elecom.2013.10.008
– ident: e_1_2_7_3_1
  doi: 10.1039/c3ee24086j
– ident: e_1_2_7_2_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_7_4_1
  doi: 10.1039/c2ee02781j
– ident: e_1_2_7_22_1
  doi: 10.1021/op8000977
– ident: e_1_2_7_6_1
  doi: 10.1149/1.1379565
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.chemmater.7b01542
– ident: e_1_2_7_11_1
  doi: 10.1021/cm403679b
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201600154
SSID ssj0060966
Score 2.5050619
Snippet The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the...
The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3286
SubjectTerms Anodes
Batteries
Cathodes
Electrode materials
Electrodes
Electrolytic cells
sodiation agents
Sodium
Sodium salts
Sodium-ion batteries
squarate salts
Title Highly Efficient, Cost Effective, and Safe Sodiation Agent for High‐Performance Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201801099
https://www.ncbi.nlm.nih.gov/pubmed/29968282
https://www.proquest.com/docview/2110226813
https://www.proquest.com/docview/2063711927
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuDC-xEolZGQuDRt_Ez2WEWtChIIsVTqLfIrQqLNIrJ7gBM_ob-xv4SZeJN2QQgJbkk8VhyPx_M5nvkM8NJWpdVYllPyQa685LlD1ec6FDy0cea8oeTkt-_M8Yl6c6pPr2XxJ36I6YcbWcYwX5OBW9fvX5GG-r4nCkJeDZs7OAlTwBahog8Tf5RBfD6kF1VG5dpIPrI2FmJ_s_qmV_oNam4i18H1HN0BOzY6RZx83lst3Z7__guf4_981V24vcal7CANpHtwI3b34WY9Hgf3AD5RRMjZN3Y4cE6gq9pl9aJfskR_jHPmLrNdYHPbRjZfhKRxdkCZWwyBMaPqlz8u3l8lKgxiq3N8-BolE9EnrtsfwsnR4cf6OF8f05B7VRraR5ZOBh4RqXge1cxH4ZR0oTXcC-e8M4VvK-1DWVgXYim091Iph9iqDFoH-Qi2ukUXnwArZ7ZqpdOxigjTCuXkzJoQLQ-h4laEDPJRTY1fc5jTURpnTWJfFg31XzP1XwavJvkvib3jj5Lbo9abtRX3DS2OEZ5WXGbwYirGfqdNFdvFxQplEOOVHHFymcHjNFqmV6GrN7iiFRmIQed_aUNTz-f1dPf0Xyo9g1t0TQEtgm_D1vLrKj5H1LR0O4Nl_ATVTRCo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLedNAC0ZC4tK08TPZYxW12kJbIbaVuEV-RUhts4jdPcCJn8Bv5JcwtjeptgghwTH2WEk8tucb2_MNwGtdlVpiXR6CD3JhOc0Nqj6XrqCu9SNjVQhOPjlV43Px9qPsbxOGWJjEDzFsuIWZEdfrMMHDhvTeNWuonc0CByGt4unObbgT0npHr-rDwCClEKHHAKNKiVwqTnvexoLtrbZftUu_gc1V7BqNz-E9MP1npzsnF7uLudm1324wOv7Xf92HjSU0JftpLD2AW757COt1nxHuEXwKl0Iuv5KDSDuB1mqH1NPZnCQGZFw2d4juHJno1pPJ1CWlk_0QvEUQG5PQ_Of3H--vYxWi2OIKC49QMnF9ouv-GM4PD87qcb7M1JBbUapwlMwNd9QjWLHUi5H1zAhuXKuoZcZYowrbVtK6stDG-ZJJa7kQBuFV6aR0_AmsddPObwIpR7pquZG-8ojUCmH4SCvnNXWuopq5DPJeT41d0piHbBqXTSJgZk3ov2bovwzeDPKfE4HHHyW3erU3y4k8a4J_jAi1ojyDV0M19ns4V9Gdny5QBmFeSREqlxk8TcNleBVae4VOLcuARaX_5RuaejKph6dn_9LoJayPz06Om-Oj03fP4W4oD_dbGN2CtfmXhd9GEDU3L-I0-QXTphTD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL79JAASMhcWna-BnvsUq7anlUFUul3iK_IiTabMXuHuDET-A38ksYx5uUBSEkOMYeK47H4_km9nwGeGF0aSTW5TH5IBeO09yi6nPpC-qbMLJOxeTkt0fq4ES8OpWnP2XxJ36I4YdbtIxuvY4GfuGbnUvSUDebRQpCqrvNnatwTahCx3m9924gkFII0Lv8Iq1ELhWnPW1jwXZW26-6pd-w5ip07XzP-DaYvtfpyMnH7cXcbrsvvxA6_s9n3YFbS2BKdtNMugtXQnsPblT9fXD34UM8EnL2mex3pBPoq7ZINZ3NSeI_xkVzi5jWk4lpAplMfVI52Y2pWwSRMYnNv3_9dnyZqdCJLc6x8BAlE9MnBu4P4GS8_746yJf3NOROlCpuJHPLPQ0IVRwNYuQCs4Jb3yjqmLXOqsI1WjpfFsb6UDLpHBfCIrgqvZSer8NaO23DBpByZHTDrQw6IE4rhOUjo3ww1HtNDfMZ5L2aarckMY93aZzViX6Z1XH86mH8Mng5yF8k-o4_Sm72Wq-XZjyrY3SM-FRTnsHzoRrHPe6qmDZMFyiDIK-kCJTLDB6m2TK8Cn29wpCWZcA6nf-lD3U1mVTD06N_afQMrh_vjes3h0evH8PNWBwPtzC6CWvzT4vwBBHU3D7tjOQHoPwTew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient%2C+Cost+Effective%2C+and+Safe+Sodiation+Agent+for+High-Performance+Sodium-Ion+Batteries&rft.jtitle=ChemSusChem&rft.au=Shanmukaraj%2C+Devaraj&rft.au=Kretschmer%2C+Katja&rft.au=Sahu%2C+Tuhin&rft.au=Bao%2C+Weizhai&rft.date=2018-09-21&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=11&rft.issue=18&rft.spage=3286&rft_id=info:doi/10.1002%2Fcssc.201801099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon