Highly Efficient, Cost Effective, and Safe Sodiation Agent for High‐Performance Sodium‐Ion Batteries
The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreve...
Saved in:
Published in | ChemSusChem Vol. 11; no. 18; pp. 3286 - 3291 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na2C4O4) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na3(VO)2(PO4)2F cathode, the cathode delivered a highly stable capacity of 135 mAh g−1 and stable cycling performance. The water‐stable Na3(VO)2(PO4)2F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries.
A new added flavor: A new sodiation agent (Na2C4O4) demonstrates a capability to significantly improve the performance of cathode materials in sodium‐ion batteries. The as‐synthesized sodium salt can effectively replace other commercial salts (such as NaN3, Na3P, and Na2CO3) and exhibits superior efficiency compared to these salts in improving capacity and rate capability of sodium cathodes as well as compensating the first charge irreversibility of anodes. |
---|---|
AbstractList | The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na2C4O4) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na3(VO)2(PO4)2F cathode, the cathode delivered a highly stable capacity of 135 mAh g−1 and stable cycling performance. The water‐stable Na3(VO)2(PO4)2F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries.
A new added flavor: A new sodiation agent (Na2C4O4) demonstrates a capability to significantly improve the performance of cathode materials in sodium‐ion batteries. The as‐synthesized sodium salt can effectively replace other commercial salts (such as NaN3, Na3P, and Na2CO3) and exhibits superior efficiency compared to these salts in improving capacity and rate capability of sodium cathodes as well as compensating the first charge irreversibility of anodes. The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na 2 C 4 O 4 ) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na 3 (VO) 2 (PO 4 ) 2 F cathode, the cathode delivered a highly stable capacity of 135 mAh g −1 and stable cycling performance. The water‐stable Na 3 (VO) 2 (PO 4 ) 2 F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries. The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid-electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost-effective sodium salt (Na C O ) is reported that could be applied as additive in cathodes to solve the irreversible-capacity issues of anodes in sodium-ion batteries. When added to Na (VO) (PO ) F cathode, the cathode delivered a highly stable capacity of 135 mAh g and stable cycling performance. The water-stable Na (VO) (PO ) F cathode in combination with a water-soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full-cell configuration) has been observed when using the new sodium salt at a C-rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non-aqueous cathode-fabrication techniques for sodium-ion batteries. The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid-electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost-effective sodium salt (Na2 C4 O4 ) is reported that could be applied as additive in cathodes to solve the irreversible-capacity issues of anodes in sodium-ion batteries. When added to Na3 (VO)2 (PO4 )2 F cathode, the cathode delivered a highly stable capacity of 135 mAh g-1 and stable cycling performance. The water-stable Na3 (VO)2 (PO4 )2 F cathode in combination with a water-soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full-cell configuration) has been observed when using the new sodium salt at a C-rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non-aqueous cathode-fabrication techniques for sodium-ion batteries.The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid-electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost-effective sodium salt (Na2 C4 O4 ) is reported that could be applied as additive in cathodes to solve the irreversible-capacity issues of anodes in sodium-ion batteries. When added to Na3 (VO)2 (PO4 )2 F cathode, the cathode delivered a highly stable capacity of 135 mAh g-1 and stable cycling performance. The water-stable Na3 (VO)2 (PO4 )2 F cathode in combination with a water-soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full-cell configuration) has been observed when using the new sodium salt at a C-rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non-aqueous cathode-fabrication techniques for sodium-ion batteries. The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the initial few cycles, as sodium ions coming from cathode materials is consumed in the formation of the solid–electrolyte interface (SEI) and irreversibly trapped in anodes. Herein, the successful synthesis of an environmentally benign and cost‐effective sodium salt (Na2C4O4) is reported that could be applied as additive in cathodes to solve the irreversible‐capacity issues of anodes in sodium‐ion batteries. When added to Na3(VO)2(PO4)2F cathode, the cathode delivered a highly stable capacity of 135 mAh g−1 and stable cycling performance. The water‐stable Na3(VO)2(PO4)2F cathode in combination with a water‐soluble sacrificial salt eliminates the need for using any toxic solvents for laminate preparation, thus paving way for greener electrode fabrication techniques. A 100 % increase in capacity of sodium cells (full‐cell configuration) has been observed when using the new sodium salt at a C‐rate of 2C. Regardless of the electrode fabrication technique, this new salt finds use in both aqueous and non‐aqueous cathode‐fabrication techniques for sodium‐ion batteries. |
Author | Bao, Weizhai Shanmukaraj, Devaraj Armand, Michel Sahu, Tuhin Rojo, Teofilo Wang, Guoxiu Kretschmer, Katja |
Author_xml | – sequence: 1 givenname: Devaraj surname: Shanmukaraj fullname: Shanmukaraj, Devaraj organization: CIC Energigune – sequence: 2 givenname: Katja surname: Kretschmer fullname: Kretschmer, Katja organization: University of Technology, Sydney – sequence: 3 givenname: Tuhin surname: Sahu fullname: Sahu, Tuhin organization: University of Technology, Sydney – sequence: 4 givenname: Weizhai surname: Bao fullname: Bao, Weizhai organization: University of Technology, Sydney – sequence: 5 givenname: Teofilo surname: Rojo fullname: Rojo, Teofilo organization: CIC Energigune – sequence: 6 givenname: Guoxiu surname: Wang fullname: Wang, Guoxiu email: guoxiu.wang@uts.edu.au organization: University of Technology, Sydney – sequence: 7 givenname: Michel orcidid: 0000-0002-1303-9233 surname: Armand fullname: Armand, Michel email: marmand@cicenergigune.com organization: CIC Energigune |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29968282$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LHTEUhoNY_OzWZRlw04X3NslkMpOlDlYFoYWr0F3IxxmNzEw0ybTcXX9Cf2N_SXO9foBQXJ1zwvMcwnl30eboR0DogOA5wZh-MTGaOcWkwQQLsYF2SMPZrOLsx-ZLX5JttBvjHcYcC8630DYVgje0oTvo9tzd3PbL4rTrnHEwpqOi9TGtZjDJ_YSjQo22WKgOioW3TiXnx-L4JpNF50Ox0v_-_vMdQp4GNZo1Ng358SKTJyolCA7iPvrQqT7Cx6e6h66_nl6157PLb2cX7fHlzLCaixkjpS4tAUwbQ4AJA1SzUtuOE0O1Nppj0zWVsTVW2kJNK2NKxjQntLZVZcs99Hm99z74hwlikoOLBvpejeCnKCnmZU2IoHVGD9-gd34KY_6dpIRgSnlDykx9eqImPYCV98ENKizl8w0zwNaACT7GAJ00Lj3eKQXlekmwXEUlV1HJl6iyNn-jPW_-ryDWwi_Xw_IdWraLRfvq_gPl5Kgk |
CitedBy_id | crossref_primary_10_1021_acsaem_9b01458 crossref_primary_10_1002_batt_202300375 crossref_primary_10_1002_adfm_202404442 crossref_primary_10_1002_adma_202407720 crossref_primary_10_1149_1945_7111_ad3ebc crossref_primary_10_1039_D2QI02237K crossref_primary_10_1016_j_jcis_2022_08_096 crossref_primary_10_1016_j_esci_2023_100181 crossref_primary_10_1039_D5EE00136F crossref_primary_10_1016_j_ensm_2021_04_048 crossref_primary_10_1039_D0TA08186H crossref_primary_10_1039_D4SC03995E crossref_primary_10_1002_celc_202000029 crossref_primary_10_1088_2515_7655_ad064e crossref_primary_10_1021_acsami_0c20542 crossref_primary_10_1016_j_coelec_2021_100827 crossref_primary_10_1016_j_jechem_2022_10_001 crossref_primary_10_1039_D0EE00351D crossref_primary_10_1039_D2CP00798C crossref_primary_10_1016_j_ijhydene_2024_06_305 crossref_primary_10_1016_j_jechem_2024_01_029 crossref_primary_10_1016_j_mser_2024_100902 crossref_primary_10_1016_j_cej_2022_135275 crossref_primary_10_1016_j_est_2024_112566 crossref_primary_10_1093_oxfmat_itac019 crossref_primary_10_1002_batt_202400009 crossref_primary_10_1002_batt_202400207 crossref_primary_10_1002_smll_201900233 crossref_primary_10_1016_j_ensm_2021_12_014 crossref_primary_10_1021_acsami_0c20870 crossref_primary_10_1007_s11664_024_10938_9 crossref_primary_10_1002_adfm_201903795 crossref_primary_10_1002_aesr_202200009 crossref_primary_10_1016_j_mattod_2025_01_002 crossref_primary_10_1039_D4TA06341D crossref_primary_10_1016_j_electacta_2019_134693 crossref_primary_10_1016_j_mtsust_2023_100385 crossref_primary_10_1021_jacs_4c18168 crossref_primary_10_1002_adma_202001419 crossref_primary_10_1002_aenm_202002704 crossref_primary_10_1039_D5CC00738K crossref_primary_10_1002_advs_202201742 crossref_primary_10_2139_ssrn_3975251 crossref_primary_10_1016_j_jechem_2022_03_024 crossref_primary_10_1016_j_jpowsour_2019_227617 crossref_primary_10_1039_D0EE02782K crossref_primary_10_1002_chem_202102433 crossref_primary_10_1038_s41578_024_00657_2 crossref_primary_10_1016_j_jpowsour_2021_230633 crossref_primary_10_1021_acsami_4c02268 crossref_primary_10_1016_j_elecom_2021_107090 crossref_primary_10_1039_D0TA10880D crossref_primary_10_1088_0256_307X_38_11_118401 crossref_primary_10_3390_ma14040854 crossref_primary_10_1039_D1CC01292D crossref_primary_10_1002_aenm_202402720 crossref_primary_10_1038_s41467_021_23132_w crossref_primary_10_1039_D2CC01812H crossref_primary_10_1002_adfm_202005581 crossref_primary_10_1002_adfm_202409628 crossref_primary_10_1016_j_mattod_2024_01_002 crossref_primary_10_1021_acsenergylett_4c03323 crossref_primary_10_1038_s43246_024_00569_2 crossref_primary_10_20517_microstructures_2023_102 crossref_primary_10_1149_2_0072007JES crossref_primary_10_1002_inf2_12242 crossref_primary_10_1002_inf2_12288 crossref_primary_10_1002_smll_202304793 crossref_primary_10_1016_j_gee_2024_02_009 crossref_primary_10_1016_j_jpowsour_2020_228872 crossref_primary_10_1021_acsami_1c05144 crossref_primary_10_1088_1361_648X_ada70f crossref_primary_10_1016_j_matchemphys_2025_130512 |
Cites_doi | 10.1016/j.elecom.2010.07.016 10.1038/ncomms10308 10.1149/2.0091514jes 10.1021/acs.nanolett.5b05228 10.1021/jo00295a014 10.1039/c3ee41379a 10.1039/c2jm35293a 10.1039/C4EE03361B 10.1002/adfm.201400561 10.1016/0167-2738(88)90351-7 10.1038/nenergy.2015.8 10.1016/j.elecom.2013.10.008 10.1039/c3ee24086j 10.1039/C6CS00776G 10.1039/c2ee02781j 10.1021/op8000977 10.1149/1.1379565 10.1021/acs.chemmater.7b01542 10.1021/cm403679b 10.1002/aenm.201600154 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.201801099 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 3291 |
ExternalDocumentID | 29968282 10_1002_cssc_201801099 CSSC201801099 |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4769-413b3d1e028c1e49ce2b43bdf61c2bbcb60cf85cd70abde725cc344b6127d55d3 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 01:38:03 EDT 2025 Fri Jul 25 12:14:28 EDT 2025 Wed Feb 19 02:34:13 EST 2025 Tue Jul 01 00:36:04 EDT 2025 Thu Apr 24 23:12:32 EDT 2025 Wed Jan 22 16:21:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | sodium sodiation agents squarate salts batteries cathodes |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4769-413b3d1e028c1e49ce2b43bdf61c2bbcb60cf85cd70abde725cc344b6127d55d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1303-9233 |
PMID | 29968282 |
PQID | 2110226813 |
PQPubID | 986333 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2063711927 proquest_journals_2110226813 pubmed_primary_29968282 crossref_citationtrail_10_1002_cssc_201801099 crossref_primary_10_1002_cssc_201801099 wiley_primary_10_1002_cssc_201801099_CSSC201801099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 21, 2018 |
PublicationDateYYYYMMDD | 2018-09-21 |
PublicationDate_xml | – month: 09 year: 2018 text: September 21, 2018 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2010; 12 2016; 6 2016; 7 2013; 37 1990; 55 2013; 25 2016; 1 1988; 28–30 2017; 46 2008; 12 2014; 24 2016 2017; 29 1980 2015; 8 2016; 16 2013; 6 2012; 5 2012; 22 2001; 148 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 Serras P. (e_1_2_7_20_1) 2016 Armand M. B. (e_1_2_7_1_1) 1980 |
References_xml | – volume: 16 start-page: 1497 year: 2016 publication-title: Nano Lett. – volume: 8 start-page: 1237 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 2361 year: 2013 publication-title: Energy Environ. Sci. – volume: 1 start-page: 15008 year: 2016 publication-title: Nat. Energy – start-page: 145 year: 1980 end-page: 161 – volume: 5 start-page: 5884 year: 2012 publication-title: Energy Environ. Sci. – volume: 28–30 start-page: 1172 year: 1988 publication-title: Solid State Ionics – volume: 6 start-page: 1600154 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 10308 year: 2016 publication-title: Nat. Commun. – volume: 25 start-page: 4917 year: 2013 publication-title: Chem. Mater. – volume: 22 start-page: 22301 year: 2012 publication-title: J. Mater. Chem. – volume: 55 start-page: 2304 year: 1990 publication-title: Org. Chem. – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 148 start-page: 803 year: 2001 publication-title: J. Electrochem. Soc. – start-page: 155 year: 2016 end-page: 172 – volume: 12 start-page: 1344 year: 2010 publication-title: Electrochem. Commun. – volume: 6 start-page: 734 year: 2013 publication-title: Energy Environ. Sci. – volume: 29 start-page: 5948 year: 2017 publication-title: Chem. Mater. – volume: 162 start-page: 2476 year: 2015 publication-title: J. Electrochem. Soc. – volume: 24 start-page: 4603 year: 2014 publication-title: Adv. Funct. Mater. – volume: 37 start-page: 61 year: 2013 publication-title: Electrochem. Commun. – volume: 12 start-page: 1285 year: 2008 publication-title: Org. Process Res. Dev. – ident: e_1_2_7_16_1 doi: 10.1016/j.elecom.2010.07.016 – ident: e_1_2_7_18_1 doi: 10.1038/ncomms10308 – ident: e_1_2_7_7_1 doi: 10.1149/2.0091514jes – ident: e_1_2_7_14_1 doi: 10.1021/acs.nanolett.5b05228 – start-page: 155 volume-title: High-Voltage Cathodes for Na-Ion Batteries: Sodium—Vanadium Fluorophosphates, Alkali-ion Batteries year: 2016 ident: e_1_2_7_20_1 – ident: e_1_2_7_21_1 doi: 10.1021/jo00295a014 – ident: e_1_2_7_10_1 doi: 10.1039/c3ee41379a – start-page: 145 volume-title: Intercalation Electrodes, Vol. 2 year: 1980 ident: e_1_2_7_1_1 – ident: e_1_2_7_12_1 doi: 10.1039/c2jm35293a – ident: e_1_2_7_8_1 doi: 10.1039/C4EE03361B – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201400561 – ident: e_1_2_7_5_1 doi: 10.1016/0167-2738(88)90351-7 – ident: e_1_2_7_13_1 doi: 10.1038/nenergy.2015.8 – ident: e_1_2_7_17_1 doi: 10.1016/j.elecom.2013.10.008 – ident: e_1_2_7_3_1 doi: 10.1039/c3ee24086j – ident: e_1_2_7_2_1 doi: 10.1039/C6CS00776G – ident: e_1_2_7_4_1 doi: 10.1039/c2ee02781j – ident: e_1_2_7_22_1 doi: 10.1021/op8000977 – ident: e_1_2_7_6_1 doi: 10.1149/1.1379565 – ident: e_1_2_7_19_1 doi: 10.1021/acs.chemmater.7b01542 – ident: e_1_2_7_11_1 doi: 10.1021/cm403679b – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201600154 |
SSID | ssj0060966 |
Score | 2.5050619 |
Snippet | The development of sodium‐ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the... The development of sodium-ion batteries has been hindered so far by the large irreversible capacity of hard carbon anodes and other anode materials in the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3286 |
SubjectTerms | Anodes Batteries Cathodes Electrode materials Electrodes Electrolytic cells sodiation agents Sodium Sodium salts Sodium-ion batteries squarate salts |
Title | Highly Efficient, Cost Effective, and Safe Sodiation Agent for High‐Performance Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201801099 https://www.ncbi.nlm.nih.gov/pubmed/29968282 https://www.proquest.com/docview/2110226813 https://www.proquest.com/docview/2063711927 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuDC-xEolZGQuDRt_Ez2WEWtChIIsVTqLfIrQqLNIrJ7gBM_ob-xv4SZeJN2QQgJbkk8VhyPx_M5nvkM8NJWpdVYllPyQa685LlD1ec6FDy0cea8oeTkt-_M8Yl6c6pPr2XxJ36I6YcbWcYwX5OBW9fvX5GG-r4nCkJeDZs7OAlTwBahog8Tf5RBfD6kF1VG5dpIPrI2FmJ_s_qmV_oNam4i18H1HN0BOzY6RZx83lst3Z7__guf4_981V24vcal7CANpHtwI3b34WY9Hgf3AD5RRMjZN3Y4cE6gq9pl9aJfskR_jHPmLrNdYHPbRjZfhKRxdkCZWwyBMaPqlz8u3l8lKgxiq3N8-BolE9EnrtsfwsnR4cf6OF8f05B7VRraR5ZOBh4RqXge1cxH4ZR0oTXcC-e8M4VvK-1DWVgXYim091Iph9iqDFoH-Qi2ukUXnwArZ7ZqpdOxigjTCuXkzJoQLQ-h4laEDPJRTY1fc5jTURpnTWJfFg31XzP1XwavJvkvib3jj5Lbo9abtRX3DS2OEZ5WXGbwYirGfqdNFdvFxQplEOOVHHFymcHjNFqmV6GrN7iiFRmIQed_aUNTz-f1dPf0Xyo9g1t0TQEtgm_D1vLrKj5H1LR0O4Nl_ATVTRCo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLedNAC0ZC4tK08TPZYxW12kJbIbaVuEV-RUhts4jdPcCJn8Bv5JcwtjeptgghwTH2WEk8tucb2_MNwGtdlVpiXR6CD3JhOc0Nqj6XrqCu9SNjVQhOPjlV43Px9qPsbxOGWJjEDzFsuIWZEdfrMMHDhvTeNWuonc0CByGt4unObbgT0npHr-rDwCClEKHHAKNKiVwqTnvexoLtrbZftUu_gc1V7BqNz-E9MP1npzsnF7uLudm1324wOv7Xf92HjSU0JftpLD2AW757COt1nxHuEXwKl0Iuv5KDSDuB1mqH1NPZnCQGZFw2d4juHJno1pPJ1CWlk_0QvEUQG5PQ_Of3H--vYxWi2OIKC49QMnF9ouv-GM4PD87qcb7M1JBbUapwlMwNd9QjWLHUi5H1zAhuXKuoZcZYowrbVtK6stDG-ZJJa7kQBuFV6aR0_AmsddPObwIpR7pquZG-8ojUCmH4SCvnNXWuopq5DPJeT41d0piHbBqXTSJgZk3ov2bovwzeDPKfE4HHHyW3erU3y4k8a4J_jAi1ojyDV0M19ns4V9Gdny5QBmFeSREqlxk8TcNleBVae4VOLcuARaX_5RuaejKph6dn_9LoJayPz06Om-Oj03fP4W4oD_dbGN2CtfmXhd9GEDU3L-I0-QXTphTD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL79JAASMhcWna-BnvsUq7anlUFUul3iK_IiTabMXuHuDET-A38ksYx5uUBSEkOMYeK47H4_km9nwGeGF0aSTW5TH5IBeO09yi6nPpC-qbMLJOxeTkt0fq4ES8OpWnP2XxJ36I4YdbtIxuvY4GfuGbnUvSUDebRQpCqrvNnatwTahCx3m9924gkFII0Lv8Iq1ELhWnPW1jwXZW26-6pd-w5ip07XzP-DaYvtfpyMnH7cXcbrsvvxA6_s9n3YFbS2BKdtNMugtXQnsPblT9fXD34UM8EnL2mex3pBPoq7ZINZ3NSeI_xkVzi5jWk4lpAplMfVI52Y2pWwSRMYnNv3_9dnyZqdCJLc6x8BAlE9MnBu4P4GS8_746yJf3NOROlCpuJHPLPQ0IVRwNYuQCs4Jb3yjqmLXOqsI1WjpfFsb6UDLpHBfCIrgqvZSer8NaO23DBpByZHTDrQw6IE4rhOUjo3ww1HtNDfMZ5L2aarckMY93aZzViX6Z1XH86mH8Mng5yF8k-o4_Sm72Wq-XZjyrY3SM-FRTnsHzoRrHPe6qmDZMFyiDIK-kCJTLDB6m2TK8Cn29wpCWZcA6nf-lD3U1mVTD06N_afQMrh_vjes3h0evH8PNWBwPtzC6CWvzT4vwBBHU3D7tjOQHoPwTew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient%2C+Cost+Effective%2C+and+Safe+Sodiation+Agent+for+High-Performance+Sodium-Ion+Batteries&rft.jtitle=ChemSusChem&rft.au=Shanmukaraj%2C+Devaraj&rft.au=Kretschmer%2C+Katja&rft.au=Sahu%2C+Tuhin&rft.au=Bao%2C+Weizhai&rft.date=2018-09-21&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=11&rft.issue=18&rft.spage=3286&rft_id=info:doi/10.1002%2Fcssc.201801099&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |