Renewable Castor‐Oil‐based Waterborne Polyurethane Networks: Simultaneously Showing High Strength, Self‐Healing, Processability and Tunable Multishape Memory
Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fi...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 8; pp. 4289 - 4299 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
19.02.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect.
A castor‐oil‐based waterborne polyurethane (WPU) with high strength was developed. The PU networks demonstrated high tensile strength up to 38 MPa, excellent self‐healing with a tensile strength of 100 %, and a maximum recovery of 100 % of the original mechanical strength after reprocessing four times. The broad glass‐transition temperature of the samples endows the films with shape‐memory effects. |
---|---|
AbstractList | Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable-oil-based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self-healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor-oil-based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self-healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass-transition temperature of the samples endowed the films with a versatile shape-memory effect, including a dual-to-quadruple shape-memory effect.Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable-oil-based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self-healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor-oil-based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self-healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass-transition temperature of the samples endowed the films with a versatile shape-memory effect, including a dual-to-quadruple shape-memory effect. Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect. Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect. A castor‐oil‐based waterborne polyurethane (WPU) with high strength was developed. The PU networks demonstrated high tensile strength up to 38 MPa, excellent self‐healing with a tensile strength of 100 %, and a maximum recovery of 100 % of the original mechanical strength after reprocessing four times. The broad glass‐transition temperature of the samples endows the films with shape‐memory effects. |
Author | Feng, Pengju Lin, Zirun Liang, Haiyan Zhang, Chaoqun Liang, Dunsheng Wang, Qingwen Chen, Qian |
Author_xml | – sequence: 1 givenname: Chaoqun surname: Zhang fullname: Zhang, Chaoqun email: zhangcq@scau.edu.cn, nwpuzcq@gmail.com organization: Guangdong Laboratory for Lingnan Modern Agriculture – sequence: 2 givenname: Haiyan surname: Liang fullname: Liang, Haiyan organization: Guangdong Laboratory for Lingnan Modern Agriculture – sequence: 3 givenname: Dunsheng surname: Liang fullname: Liang, Dunsheng organization: Guangdong Laboratory for Lingnan Modern Agriculture – sequence: 4 givenname: Zirun surname: Lin fullname: Lin, Zirun organization: Jinan University and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications – sequence: 5 givenname: Qian surname: Chen fullname: Chen, Qian organization: South China Agricultural University, National Engineering Research Center for Breeding Swine Industry and Guangdong Provincial Key Laboratory of Agro-Animal Genomics – sequence: 6 givenname: Pengju orcidid: 0000-0002-5470-0403 surname: Feng fullname: Feng, Pengju email: pfeng@jnu.edu.cn organization: Jinan University and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications – sequence: 7 givenname: Qingwen surname: Wang fullname: Wang, Qingwen organization: Guangdong Laboratory for Lingnan Modern Agriculture |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33140558$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhSNURH9gyxJZYsOiGRw7jh121agwlUpbMUUsI8e5mbh47MF2NMqOR-AdeDOeBLfTglQJsbGP7e8cX_seZnvWWciylwWeFRiTt9JqmBFMcFGSun6SHRSMFDnlnO4lXVKac8GK_ewwhJvEC4GrZ9k-pUWJGRMH2c9PYGErWwNoLkN0_tf3H5fapLGVATr0RUbwrfMW0JUz0-ghDjItLiBunf8a3qGlXo8mpj03BjOh5eC22q7QQq8GtIwe7CoOx2gJpk-hC5AmnR6jK-8UhCBbbXSckLQduh7tXR0fU5wOg9wkCWvnp-fZ016aAC_u56Ps8_vT6_kiP7_8cDY_Oc9Vyas6pxWvoK1LUmKhSim6vi5aThVTkjHCO1ox3AvaJdWJRMmWYMbbTiraKsUIPcre7HI33n0bIcRmrYMCY3aPa0jJOOGi5Dihrx-hN270NlWXKCHSdfwu8NU9NbZr6JqN12vpp-bh-xNQ7gDlXQge-kbpKKN2NnqpTVPg5rbLzW2Xmz9dTrbZI9tD8j8N9c6w1Qam_9DNycXZ6V_vb_vRv5A |
CitedBy_id | crossref_primary_10_1021_acs_macromol_4c02732 crossref_primary_10_1002_adfm_202413083 crossref_primary_10_1016_j_ijbiomac_2024_138471 crossref_primary_10_1016_j_cej_2022_137124 crossref_primary_10_3390_polym14224948 crossref_primary_10_1016_j_ijbiomac_2024_130063 crossref_primary_10_1016_j_polymer_2024_126760 crossref_primary_10_1021_acsapm_4c00218 crossref_primary_10_1007_s10118_021_2538_7 crossref_primary_10_1002_app_55544 crossref_primary_10_1002_pc_28349 crossref_primary_10_1038_s41467_023_42838_7 crossref_primary_10_1016_j_cej_2023_147797 crossref_primary_10_1021_acssuschemeng_4c07183 crossref_primary_10_1016_j_indcrop_2021_113956 crossref_primary_10_1039_D1TA05148B crossref_primary_10_1002_clem_13 crossref_primary_10_1021_acs_macromol_2c01599 crossref_primary_10_1016_j_cej_2023_146584 crossref_primary_10_1021_acssuschemeng_4c09232 crossref_primary_10_1016_j_porgcoat_2023_108051 crossref_primary_10_1016_j_eurpolymj_2024_113499 crossref_primary_10_1016_j_polymdegradstab_2024_110943 crossref_primary_10_3390_su14148657 crossref_primary_10_1002_macp_202400493 crossref_primary_10_1007_s10570_022_04705_4 crossref_primary_10_1002_app_53705 crossref_primary_10_1016_j_compscitech_2022_109573 crossref_primary_10_1021_acs_biomac_3c00805 crossref_primary_10_1016_j_indcrop_2024_118371 crossref_primary_10_1016_j_mtchem_2023_101881 crossref_primary_10_1021_acsmacrolett_2c00204 crossref_primary_10_1016_j_cej_2023_147537 crossref_primary_10_1021_acsami_1c15428 crossref_primary_10_1016_j_indcrop_2022_115739 crossref_primary_10_1016_j_eurpolymj_2024_113709 crossref_primary_10_1016_j_gresc_2024_08_001 crossref_primary_10_1007_s11998_022_00634_w crossref_primary_10_1016_j_porgcoat_2023_107895 crossref_primary_10_1016_j_porgcoat_2022_106940 crossref_primary_10_1016_j_conbuildmat_2024_136430 crossref_primary_10_1016_j_jclepro_2025_145291 crossref_primary_10_1016_j_cej_2024_156414 crossref_primary_10_1016_j_porgcoat_2023_108190 crossref_primary_10_1016_j_porgcoat_2023_108191 crossref_primary_10_1088_1748_605X_ad5260 crossref_primary_10_1007_s12221_023_00052_8 crossref_primary_10_1016_j_ijbiomac_2022_03_066 crossref_primary_10_1016_j_indcrop_2023_116699 crossref_primary_10_1016_j_cej_2023_144263 crossref_primary_10_1021_acssuschemeng_3c02634 crossref_primary_10_1021_acssuschemeng_2c02877 crossref_primary_10_1016_j_cej_2024_151506 crossref_primary_10_1016_j_colsurfa_2023_131556 crossref_primary_10_1039_D4MH01414F crossref_primary_10_1002_advs_202207268 crossref_primary_10_1002_smll_202411040 crossref_primary_10_1007_s10853_021_06052_4 crossref_primary_10_1039_D2TA06884B crossref_primary_10_1021_acsami_4c18429 crossref_primary_10_1002_adfm_202212455 crossref_primary_10_1039_D2PY01422J crossref_primary_10_1021_acsami_3c11027 crossref_primary_10_1016_j_polymertesting_2023_108026 crossref_primary_10_1021_acsapm_2c00881 crossref_primary_10_1002_pc_26008 crossref_primary_10_1002_adfm_202316550 crossref_primary_10_1016_j_porgcoat_2022_107250 crossref_primary_10_1002_pol_20220690 crossref_primary_10_1002_pol_20230437 crossref_primary_10_1021_acsnano_1c05952 crossref_primary_10_1007_s10118_025_3290_1 crossref_primary_10_1021_acsapm_4c00129 crossref_primary_10_1002_marc_202300263 crossref_primary_10_1007_s13726_021_00968_z crossref_primary_10_1016_j_porgcoat_2024_108863 crossref_primary_10_1016_j_compositesb_2025_112287 crossref_primary_10_1002_admi_202101544 crossref_primary_10_3210_fst_42_17 crossref_primary_10_1016_j_ces_2022_118027 crossref_primary_10_1016_j_cej_2023_142060 crossref_primary_10_1021_acsnano_2c11809 crossref_primary_10_1016_j_indcrop_2024_118315 crossref_primary_10_1002_app_53857 crossref_primary_10_1016_j_indcrop_2022_116016 crossref_primary_10_1016_j_porgcoat_2023_108095 crossref_primary_10_1016_j_porgcoat_2022_107163 crossref_primary_10_1016_j_cej_2023_143702 crossref_primary_10_1016_j_porgcoat_2024_108731 crossref_primary_10_3390_polym16152217 crossref_primary_10_1016_j_cclet_2021_09_018 crossref_primary_10_1039_D3MA00607G crossref_primary_10_1002_adma_202311242 crossref_primary_10_1016_j_compositesb_2024_111460 crossref_primary_10_1021_acssuschemeng_4c10308 crossref_primary_10_1021_acsami_1c04962 crossref_primary_10_1016_j_eurpolymj_2024_113296 crossref_primary_10_1016_j_bioactmat_2024_03_012 crossref_primary_10_1002_metm_70000 crossref_primary_10_1016_j_indcrop_2023_117060 crossref_primary_10_1016_j_mtcomm_2025_111863 crossref_primary_10_1007_s00289_022_04320_0 crossref_primary_10_1016_j_cej_2022_137071 crossref_primary_10_1021_acsapm_1c00199 crossref_primary_10_1016_j_porgcoat_2022_106742 crossref_primary_10_1016_j_eurpolymj_2021_110804 crossref_primary_10_1021_acssuschemeng_4c05777 crossref_primary_10_1515_psr_2020_0075 crossref_primary_10_1016_j_porgcoat_2024_108608 crossref_primary_10_1016_j_jhazmat_2024_133662 crossref_primary_10_1016_j_mtcomm_2021_102880 crossref_primary_10_1016_j_indcrop_2023_117628 crossref_primary_10_1016_j_compositesb_2022_110462 crossref_primary_10_1021_acsami_5c01535 crossref_primary_10_1039_D4GC06103A crossref_primary_10_32604_jrm_2022_017790 crossref_primary_10_3390_polym13111722 crossref_primary_10_3390_polym14193953 crossref_primary_10_1016_j_eurpolymj_2022_111133 crossref_primary_10_1016_j_porgcoat_2023_107460 crossref_primary_10_6023_A21120593 crossref_primary_10_1016_j_indcrop_2024_120027 crossref_primary_10_1016_j_polymer_2024_127578 crossref_primary_10_1002_advs_202407596 crossref_primary_10_1002_pol_20240435 crossref_primary_10_1002_marc_202400915 crossref_primary_10_1021_acssuschemeng_3c08467 crossref_primary_10_1039_D3GC03249C crossref_primary_10_1021_acs_jpcb_1c03205 crossref_primary_10_1021_acs_jafc_1c01885 crossref_primary_10_1002_app_52437 crossref_primary_10_1016_j_porgcoat_2024_108386 crossref_primary_10_2115_fiberst_2023_0013 crossref_primary_10_1016_j_compscitech_2024_111014 crossref_primary_10_1016_j_indcrop_2023_116392 crossref_primary_10_1016_j_polymer_2023_126657 crossref_primary_10_1016_j_porgcoat_2022_106880 crossref_primary_10_1016_j_cej_2024_157361 crossref_primary_10_1021_acsapm_3c01627 crossref_primary_10_1016_j_polymer_2025_128020 crossref_primary_10_1021_polymscitech_4c00035 crossref_primary_10_1002_pat_6580 crossref_primary_10_1016_j_cej_2022_136204 crossref_primary_10_1039_D1MH01217G crossref_primary_10_1016_j_cej_2022_140268 crossref_primary_10_1021_acsapm_2c00794 crossref_primary_10_1016_j_indcrop_2022_115241 crossref_primary_10_1002_app_50822 crossref_primary_10_3390_polym15183780 crossref_primary_10_1021_acsapm_3c00749 crossref_primary_10_1021_acsami_3c10747 crossref_primary_10_1016_j_polymertesting_2022_107740 crossref_primary_10_3390_ma17194770 crossref_primary_10_1038_s41598_022_11540_x crossref_primary_10_1016_j_jclepro_2022_133767 crossref_primary_10_1016_j_indcrop_2023_116865 crossref_primary_10_1021_acsami_2c13294 crossref_primary_10_1021_acssuschemeng_4c09540 crossref_primary_10_1016_j_cej_2021_131848 crossref_primary_10_1016_j_cej_2023_146840 crossref_primary_10_1039_D1TA06299A crossref_primary_10_1002_adfm_202402233 crossref_primary_10_1016_j_cej_2023_148229 crossref_primary_10_1039_D2GC02910C crossref_primary_10_1002_pen_26951 crossref_primary_10_1016_j_porgcoat_2023_107499 crossref_primary_10_1016_j_cej_2024_154990 crossref_primary_10_1016_j_indcrop_2024_120299 crossref_primary_10_1039_D3MH00274H crossref_primary_10_1016_j_indcrop_2021_114198 crossref_primary_10_1039_D4GC01771D crossref_primary_10_1016_j_porgcoat_2023_107816 crossref_primary_10_1002_pol_20230423 crossref_primary_10_1016_j_mcat_2024_114693 crossref_primary_10_1002_adma_202417193 crossref_primary_10_1021_acsami_2c12535 crossref_primary_10_1021_acsapm_2c01866 crossref_primary_10_1016_j_compositesb_2023_110704 crossref_primary_10_32604_jrm_2022_023371 crossref_primary_10_1002_smll_202303095 crossref_primary_10_1039_D2RA07825B crossref_primary_10_1021_acsapm_4c02718 crossref_primary_10_1016_j_mser_2024_100830 crossref_primary_10_1016_j_porgcoat_2023_108117 crossref_primary_10_1016_j_porgcoat_2022_107309 crossref_primary_10_1016_j_porgcoat_2021_106615 crossref_primary_10_1002_app_54539 crossref_primary_10_1039_D1QM00765C crossref_primary_10_1016_j_polymer_2022_125227 crossref_primary_10_1016_j_porgcoat_2023_108001 crossref_primary_10_1002_app_53331 crossref_primary_10_1016_j_porgcoat_2024_108340 crossref_primary_10_1039_D3MA00464C crossref_primary_10_1021_acs_iecr_4c04135 crossref_primary_10_1016_j_nxener_2025_100261 crossref_primary_10_1021_acs_macromol_2c00104 crossref_primary_10_1016_j_colsurfa_2024_134038 crossref_primary_10_1021_acsapm_3c00225 crossref_primary_10_1016_j_indcrop_2024_119247 crossref_primary_10_1002_tcr_202200075 crossref_primary_10_1016_j_chempr_2023_04_024 crossref_primary_10_1016_j_mtcomm_2024_110978 crossref_primary_10_1016_j_porgcoat_2021_106391 crossref_primary_10_1016_j_porgcoat_2024_108576 crossref_primary_10_1016_j_porgcoat_2024_108212 crossref_primary_10_1002_pol_20240095 crossref_primary_10_1021_acssuschemeng_2c06932 crossref_primary_10_1039_D1NJ06054F crossref_primary_10_1016_j_cej_2021_134470 crossref_primary_10_1021_acsapm_4c00444 crossref_primary_10_1021_acs_macromol_2c01401 crossref_primary_10_1002_smll_202205286 crossref_primary_10_1002_chem_202401481 crossref_primary_10_1021_acssuschemeng_3c02667 crossref_primary_10_1016_j_eurpolymj_2024_113228 crossref_primary_10_1016_j_indcrop_2024_118177 crossref_primary_10_1016_j_eurpolymj_2022_111125 crossref_primary_10_1002_mame_202100933 crossref_primary_10_1016_j_carbpol_2022_120313 crossref_primary_10_1016_j_porgcoat_2023_107853 crossref_primary_10_1016_j_indcrop_2021_114276 crossref_primary_10_1021_acsapm_4c01886 crossref_primary_10_1039_D1GC01936H crossref_primary_10_32604_jrm_2021_015593 crossref_primary_10_1016_j_indcrop_2023_116816 crossref_primary_10_1016_j_indcrop_2024_118733 crossref_primary_10_1016_j_mtchem_2022_100855 crossref_primary_10_1002_app_51977 |
Cites_doi | 10.1039/C3MH00061C 10.1038/nature21001 10.1021/acs.macromol.9b01413 10.1002/ange.201606003 10.1016/j.progpolymsci.2006.07.001 10.1002/ange.201501360 10.1007/s00396-015-3787-1 10.1002/ange.201602847 10.1002/adfm.201902467 10.1002/marc.201400039 10.1021/jacs.9b06668 10.1021/acssuschemeng.7b00327 10.1021/acssuschemeng.9b01239 10.1039/C8GC03560A 10.1021/bm700522z 10.1021/acs.chemmater.9b00750 10.1039/C5TA02537K 10.1002/anie.201606003 10.1016/j.progpolymsci.2016.12.009 10.1016/j.porgcoat.2019.04.053 10.1021/acssuschemeng.6b00768 10.1016/j.progpolymsci.2006.05.003 10.1016/j.polymer.2005.08.022 10.1021/acs.jpca.7b08838 10.1016/j.porgcoat.2018.12.015 10.1002/adma.201202884 10.1002/anie.201501360 10.1002/marc.201500123 10.1002/anie.201602847 10.1021/acsapm.9b00589 10.1007/s40843-019-9422-7 10.1016/j.porgcoat.2012.11.011 10.1016/j.cej.2020.124142 10.1021/acsmacrolett.8b00667 10.1021/acssuschemeng.9b03956 10.1007/s11998-016-9863-8 10.4028/www.scientific.net/AMR.690-693.1620 10.1002/marc.200900409 10.1039/C6CP04028D 10.1002/adma.201706237 10.1039/c0gc00264j 10.1021/ma2001492 10.1002/marc.201800733 10.1016/j.porgcoat.2014.11.017 10.1021/am5001344 10.1002/cssc.201000411 10.1039/c3ta14927g 10.1016/j.indcrop.2019.01.017 10.1038/srep34574 10.1021/bm801030g 10.1016/j.polymdegradstab.2018.02.014 10.1039/C4TA06304J 10.1016/j.indcrop.2014.10.046 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202014299 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 4299 |
ExternalDocumentID | 33140558 10_1002_anie_202014299 ANIE202014299 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2019YFD1101202;2019YFD1101203 – fundername: Program of the Science & Technology Department of Guangzhou, China funderid: 201803020039 – fundername: Guangzhou Municipal Key Laboratory of Woody Biomass Functional New Materials funderid: 201905010005 – fundername: Guangdong Province Science & Technology Program funderid: 2018B030306016 – fundername: Guangdong Provincial Innovation Team for General Key Technologies in Modern Agricultural Industry funderid: 2019KJ133 – fundername: Key Projects of Basic Research and Applied Basic Research of the Higher Education Institutions of Guangdong Province funderid: 2018KZDXM014 – fundername: National Natural Science Foundation funderid: 21602078; 51703068 – fundername: Guangzhou Municipal Key Laboratory of Woody Biomass Functional New Materials grantid: 201905010005 – fundername: National Key Research and Development Program of China grantid: 2019YFD1101202;2019YFD1101203 – fundername: Guangdong Province Science & Technology Program grantid: 2018B030306016 – fundername: Guangdong Provincial Innovation Team for General Key Technologies in Modern Agricultural Industry grantid: 2019KJ133 – fundername: Key Projects of Basic Research and Applied Basic Research of the Higher Education Institutions of Guangdong Province grantid: 2018KZDXM014 – fundername: Program of the Science & Technology Department of Guangzhou, China grantid: 201803020039 – fundername: National Natural Science Foundation grantid: 21602078; 51703068 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4769-3676eb942408c4a8df91b73c5ca5527d3650f83d7d3d8424ab2057bdac3bcc523 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:32:34 EDT 2025 Fri Jul 25 12:05:18 EDT 2025 Wed Feb 19 02:29:06 EST 2025 Tue Jul 01 01:17:51 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Wed Jan 22 16:30:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | waterborne polyurethane processability simultaneous self-healing plant oil multishape memory |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4769-3676eb942408c4a8df91b73c5ca5527d3650f83d7d3d8424ab2057bdac3bcc523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5470-0403 |
PMID | 33140558 |
PQID | 2488527752 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2457278470 proquest_journals_2488527752 pubmed_primary_33140558 crossref_citationtrail_10_1002_anie_202014299 crossref_primary_10_1002_anie_202014299 wiley_primary_10_1002_anie_202014299_ANIE202014299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 19, 2021 |
PublicationDateYYYYMMDD | 2021-02-19 |
PublicationDate_xml | – month: 02 year: 2021 text: February 19, 2021 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 5 2019; 7 2018; 122 2015; 36 2006; 31 2013; 25 2015; 3 2019; 31 2019; 52 2019; 1 2008; 9 2016; 540 2020; 387 2015; 80 2019; 129 2011; 4 2016; 18 2007; 32 2019; 141 2005; 46 2014; 1 2016; 4 2018; 7 2016; 6 2013; 690–693 2009; 30 2016 2016; 55 128 2017; 71 2019; 62 2019; 40 2014; 2 2018; 150 2013; 76 2017; 14 2019; 21 2015; 64 2007; 8 2015 2015; 54 127 2011; 44 2019; 29 2014; 35 2018; 30 2019; 130 2014; 6 2019; 133 2016; 294 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_34_3 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_38_2 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_50_2 e_1_2_6_52_1 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_18_2 e_1_2_6_35_2 e_1_2_6_33_3 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_58_1 e_1_2_6_42_2 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_46_2 |
References_xml | – volume: 3 start-page: 2924 year: 2015 end-page: 2933 publication-title: J. Mater. Chem. A – volume: 3 start-page: 13435 year: 2015 end-page: 13444 publication-title: J. Mater. Chem. A – volume: 690–693 start-page: 1620 year: 2013 end-page: 1623 publication-title: Adv. Mater. Res. – volume: 122 start-page: 239 year: 2018 end-page: 248 publication-title: J. Phys. Chem. A – volume: 36 start-page: 1255 year: 2015 end-page: 1260 publication-title: Macromol. Rapid Commun. – volume: 32 start-page: 352 year: 2007 end-page: 418 publication-title: Prog. Polym. Sci. – volume: 55 128 start-page: 13028 13222 year: 2016 2016 end-page: 13032 13226 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 540 start-page: 354 year: 2016 end-page: 362 publication-title: Nature – volume: 387 year: 2020 publication-title: Chem. Eng. J. – volume: 5 start-page: 6447 year: 2017 end-page: 6455 publication-title: ACS Sustainable Chem. Eng. – volume: 14 start-page: 367 year: 2017 end-page: 375 publication-title: J. Coat. Technol. Res. – volume: 133 start-page: 267 year: 2019 end-page: 275 publication-title: Prog. Org. Coat. – volume: 64 start-page: 194 year: 2015 end-page: 200 publication-title: Ind. Crops Prod. – volume: 21 start-page: 526 year: 2019 end-page: 537 publication-title: Green Chem. – volume: 294 start-page: 347 year: 2016 end-page: 355 publication-title: Colloid Polym. Sci. – volume: 30 start-page: 1823 year: 2009 end-page: 1827 publication-title: Macromol. Rapid Commun. – volume: 55 128 start-page: 11421 11593 year: 2016 2016 end-page: 11425 11597 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3108 year: 2007 end-page: 3114 publication-title: Biomacromolecules – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 130 start-page: 562 year: 2019 end-page: 570 publication-title: Ind. Crops Prod. – volume: 2 start-page: 5710 year: 2014 publication-title: J. Mater. Chem. A – volume: 54 127 start-page: 6516 6616 year: 2015 2015 end-page: 6520 6620 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 3736 year: 2019 end-page: 3744 publication-title: Chem. Mater. – volume: 129 start-page: 21 year: 2019 end-page: 25 publication-title: Prog. Org. Coat. – volume: 6 start-page: 6545 year: 2014 end-page: 6554 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1226 year: 2018 end-page: 1231 publication-title: ACS Macro Lett. – volume: 7 start-page: 15147 year: 2019 end-page: 15153 publication-title: ACS Sustainable Chem. Eng. – volume: 44 start-page: 2536 year: 2011 end-page: 2541 publication-title: Macromolecules – volume: 141 start-page: 13753 year: 2019 end-page: 13757 publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 91 year: 2017 end-page: 143 publication-title: Prog. Polym. Sci. – volume: 35 start-page: 1068 year: 2014 end-page: 1074 publication-title: Macromol. Rapid Commun. – volume: 12 start-page: 1893 year: 2010 end-page: 1909 publication-title: Green Chem. – volume: 31 start-page: 633 year: 2006 end-page: 670 publication-title: Prog. Polym. Sci. – volume: 52 start-page: 6474 year: 2019 end-page: 6484 publication-title: Macromolecules – volume: 4 start-page: 386 year: 2011 end-page: 391 publication-title: ChemSusChem – volume: 150 start-page: 122 year: 2018 end-page: 132 publication-title: Polym. Degrad. Stab. – volume: 25 start-page: 743 year: 2013 end-page: 748 publication-title: Adv. Mater. – volume: 6 start-page: 34574 year: 2016 end-page: 34587 publication-title: Sci. Rep. – volume: 1 start-page: 2472 year: 2019 end-page: 2481 publication-title: ACS Appl. Polym. Mater. – volume: 80 start-page: 39 year: 2015 end-page: 48 publication-title: Prog. Org. Coat. – volume: 76 start-page: 609 year: 2013 end-page: 615 publication-title: Prog. Org. Coat. – volume: 62 start-page: 1188 year: 2019 end-page: 1198 publication-title: Sci. China Mater. – volume: 7 start-page: 10025 year: 2019 end-page: 10034 publication-title: ACS Sustainable Chem. Eng. – volume: 46 start-page: 9674 year: 2005 end-page: 9685 publication-title: Polymer – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 4 start-page: 4645 year: 2016 end-page: 4653 publication-title: ACS Sustainable Chem. Eng. – volume: 18 start-page: 27577 year: 2016 end-page: 27583 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 237 year: 2014 end-page: 240 publication-title: Mater. Horiz. – volume: 30 start-page: 1706237 year: 2018 end-page: 1706244 publication-title: Adv. Mater. – volume: 9 start-page: 3332 year: 2008 end-page: 3340 publication-title: Biomacromolecules – ident: e_1_2_6_16_2 doi: 10.1039/C3MH00061C – ident: e_1_2_6_1_1 doi: 10.1038/nature21001 – ident: e_1_2_6_40_1 doi: 10.1021/acs.macromol.9b01413 – ident: e_1_2_6_52_2 doi: 10.1002/ange.201606003 – ident: e_1_2_6_45_1 – ident: e_1_2_6_4_2 doi: 10.1016/j.progpolymsci.2006.07.001 – ident: e_1_2_6_34_3 doi: 10.1002/ange.201501360 – ident: e_1_2_6_36_1 – ident: e_1_2_6_28_2 doi: 10.1007/s00396-015-3787-1 – ident: e_1_2_6_33_3 doi: 10.1002/ange.201602847 – ident: e_1_2_6_14_2 doi: 10.1002/adfm.201902467 – ident: e_1_2_6_44_1 doi: 10.1002/marc.201400039 – ident: e_1_2_6_19_2 doi: 10.1021/jacs.9b06668 – ident: e_1_2_6_11_1 doi: 10.1021/acssuschemeng.7b00327 – ident: e_1_2_6_23_1 doi: 10.1021/acssuschemeng.9b01239 – ident: e_1_2_6_5_2 doi: 10.1039/C8GC03560A – ident: e_1_2_6_49_2 doi: 10.1021/bm700522z – ident: e_1_2_6_15_2 doi: 10.1021/acs.chemmater.9b00750 – ident: e_1_2_6_47_2 doi: 10.1039/C5TA02537K – ident: e_1_2_6_52_1 doi: 10.1002/anie.201606003 – ident: e_1_2_6_10_1 doi: 10.1016/j.progpolymsci.2016.12.009 – ident: e_1_2_6_12_1 doi: 10.1016/j.porgcoat.2019.04.053 – ident: e_1_2_6_31_1 doi: 10.1021/acssuschemeng.6b00768 – ident: e_1_2_6_8_2 doi: 10.1016/j.progpolymsci.2006.05.003 – ident: e_1_2_6_51_1 doi: 10.1016/j.polymer.2005.08.022 – ident: e_1_2_6_22_2 doi: 10.1021/acs.jpca.7b08838 – ident: e_1_2_6_37_2 doi: 10.1016/j.porgcoat.2018.12.015 – ident: e_1_2_6_46_2 doi: 10.1002/adma.201202884 – ident: e_1_2_6_6_1 – ident: e_1_2_6_34_2 doi: 10.1002/anie.201501360 – ident: e_1_2_6_21_2 doi: 10.1002/marc.201500123 – ident: e_1_2_6_33_2 doi: 10.1002/anie.201602847 – ident: e_1_2_6_24_1 doi: 10.1021/acsapm.9b00589 – ident: e_1_2_6_38_2 doi: 10.1007/s40843-019-9422-7 – ident: e_1_2_6_9_2 doi: 10.1016/j.porgcoat.2012.11.011 – ident: e_1_2_6_57_1 doi: 10.1016/j.cej.2020.124142 – ident: e_1_2_6_20_1 – ident: e_1_2_6_50_2 doi: 10.1021/acsmacrolett.8b00667 – ident: e_1_2_6_53_1 doi: 10.1021/acssuschemeng.9b03956 – ident: e_1_2_6_48_1 – ident: e_1_2_6_39_1 doi: 10.1007/s11998-016-9863-8 – ident: e_1_2_6_35_2 doi: 10.4028/www.scientific.net/AMR.690-693.1620 – ident: e_1_2_6_61_1 doi: 10.1002/marc.200900409 – ident: e_1_2_6_54_1 doi: 10.1039/C6CP04028D – ident: e_1_2_6_17_1 – ident: e_1_2_6_25_1 – ident: e_1_2_6_7_2 doi: 10.1002/adma.201706237 – ident: e_1_2_6_3_2 doi: 10.1039/c0gc00264j – ident: e_1_2_6_41_1 – ident: e_1_2_6_58_1 doi: 10.1021/ma2001492 – ident: e_1_2_6_2_1 – ident: e_1_2_6_56_1 doi: 10.1002/marc.201800733 – ident: e_1_2_6_30_1 doi: 10.1016/j.porgcoat.2014.11.017 – ident: e_1_2_6_13_1 – ident: e_1_2_6_32_1 – ident: e_1_2_6_60_1 doi: 10.1021/am5001344 – ident: e_1_2_6_27_2 doi: 10.1002/cssc.201000411 – ident: e_1_2_6_18_2 doi: 10.1039/c3ta14927g – ident: e_1_2_6_55_1 doi: 10.1016/j.indcrop.2019.01.017 – ident: e_1_2_6_29_1 doi: 10.1038/srep34574 – ident: e_1_2_6_26_2 doi: 10.1021/bm801030g – ident: e_1_2_6_42_2 doi: 10.1016/j.polymdegradstab.2018.02.014 – ident: e_1_2_6_59_1 doi: 10.1039/C4TA06304J – ident: e_1_2_6_43_2 doi: 10.1016/j.indcrop.2014.10.046 |
SSID | ssj0028806 |
Score | 2.6838477 |
Snippet | Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4289 |
SubjectTerms | Healing High strength Mechanical properties multishape memory plant oil Polymers Polyurethane Polyurethane resins processability Reprocessing Shape effects Shape memory simultaneous self-healing Tensile strength Transition temperature Transition temperatures Vegetable oils waterborne polyurethane |
Title | Renewable Castor‐Oil‐based Waterborne Polyurethane Networks: Simultaneously Showing High Strength, Self‐Healing, Processability and Tunable Multishape Memory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202014299 https://www.ncbi.nlm.nih.gov/pubmed/33140558 https://www.proquest.com/docview/2488527752 https://www.proquest.com/docview/2457278470 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl3Lhv-0CRUZC4oIhOMkm6Q2tQLQSW8SCyi3yX1hElKDNRmg59RH6DrwZT9KZOAldKlQJLlF-nMSxxzPjeL5vCNmWQoAhSRSTYJyYF-mIyQOesABMWSKU62sXwcmn_e7Jpff9yr_6C8Vv-SHaH244Mip9jQNcyGL_mTQUEdgwvwMDhioVlDAGbKFXdN7yR3EQTgsvcl2GWegb1kaH70_fPm2V_nE1pz3XyvQcLxDRVNpGnNzulWO5px5e8Dm-56sWyXztl9JDK0hLZMZky-RDr0kHt0Iez0Er3iPQivYEhlQ-_fr94yaFLRpCTX8K7KF8lBl6lqeTcmTwp7yhfRtnXnylgxuMXoRzeVmkEzoY5vdgNylGmlBcHM-ux8NdOjBpAg9FeBRc3aU1ksHSiU-oyDS9KCvAF63Aw8VQ3MEuBgxPVsnl8dFF74TVGR6Y8oJuxJAuzsjIQ5415YlQJ9GBDFzlK4HMcBp61ElCV8OeDqGUkBz8S6lBiKRSMIf-SGazPDOfCYVpGQhaVwjUME6iQicyoURyIcNl2A07hDU9HKua_hyzcKSxJW7mMTZ93DZ9h-y05e8s8cerJTcagYlrBVDEHBQjfEHg8w7Zai9Dl-F6jG1pKOMHuO4bOB3yyQpa-yrXhZmv70O1eSUu_6lDfNj_dtQerb3lpnUyxzFeB5PdRBtkdjwqzRdwuMZysxpUfwAZQCcv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcanbrZ1sEm7VqtUW2gV1t4Jb5FfYiiipdjeqlhM_gf_AP-OXMBMnQQtCSHCJnMRJHHs8D3vmG4AXWikUJJnhGoUTDxKbcL0nMh6hKMuUkaGVFJx8Mh6MzoLXH8LWm5BiYTw-RLfgRjOj5tc0wWlBevcnaiiFYKOBhxKMeOpVuEZpvWur6rRDkBJInj7ASEpOeehb3Ma-2F1_fl0u_aZsruuutfA5vAm6bbb3Ofm0Uy31jvn8C6Ljf_3XLbjRqKZs39PSbbjiijuwOWwzwt2Fb6fIGC8p1ooNFXlVfv_y9e15jkeShZa9VzRI5bxw7F2Zr6q5o3V5x8be1Xzxik3OyYERr5XVIl-xyay8RNHJyNmE0f548XE522YTl2f4UoqQwrvbrAlm8IjiK6YKy6ZVHfPF6vjhxUxdYJF8hlf34OzwYDoc8SbJAzdBNEg4IcY5nQQEtWYCFdss2dORNKFRBA5nJaqQWSwtlmyMtZQWqGJqi3SkjUEz-j5sFGXhHgJDywxpbaAUMZl-ZuJ-4mJN-EJO6HgQ94C3Q5yaBgGdEnHkqcduFil1fdp1fQ9edvUvPPbHH2tutRSTNjxgkQrkjfgHUSh68Ly7jUNGWzK-p7FOGNHWb9TvwQNPad2npETjNwyx2aKml7-0Id0fHx10Z4_-5aFnsDmanhynx0fjN4_huiD3Hcp9k2zBxnJeuSeofy3103qG_QBsWitK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVKKwEv3AsLBYyExEvdpnaufau2XbVclqrbir5FvoWtiJLV7kbV8sQn8A_9M76EmTgJLAghwUuUi5M49nhmHM85Q8hLJSUYkkwzBcaJ-YlJmNrhGYvAlGVSi8AIBCe_G4aHZ_7r8-D8JxS_44fofrjhyKj1NQ7wicm2f5CGIgIb5ndgwFClXiNrfujFKNf7Jx2BFAfpdPgiIRimoW9pGz2-vXz_sln6zddcdl1r2zO4TWRbaxdy8mmrmqst_fkXQsf_-aw75FbjmNI9J0l3yYot7pEb_TYf3H1ydQJq8RKRVrQvMaby25ev7y9y2KIlNPSDxC4qp4Wlx2W-qKYW_8pbOnSB5rNdOrrA8EU4V1azfEFH4_ISDCfFUBOKq-PFx_l4k45snsFDER8FVzdpA2VwfOILKgtDT6sa8UVr9PBsLCewixHDiwfkbHBw2j9kTYoHpv0oTBjyxVmV-Ei0pn0ZmyzZUZHQgZZIDWcEOJBZLAzsmRhKScXBwVQGpEhpDZPodbJalIV9RCjMy0DSQilRxXiZjr3ExgrZhSxXcRj3CGt7ONUN_zmm4chTx9zMU2z6tGv6HnnVlZ845o8_ltxoBSZtNMAs5aAZ4QuigPfIi-4ydBkuyLiWhjJBhAu_kdcjD52gda8SAqa-QQDV5rW4_KUO6d7w6KA7evwvNz0n14_3B-nbo-GbJ-Qmx9gdTHyTbJDV-bSyT8H5mqtn9fj6DuzVKgI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewable+Castor-Oil-based+Waterborne+Polyurethane+Networks%3A+Simultaneously+Showing+High+Strength%2C+Self-Healing%2C+Processability+and+Tunable+Multishape+Memory&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Chaoqun&rft.au=Liang%2C+Haiyan&rft.au=Liang%2C+Dunsheng&rft.au=Lin%2C+Zirun&rft.date=2021-02-19&rft.eissn=1521-3773&rft.volume=60&rft.issue=8&rft.spage=4289&rft_id=info:doi/10.1002%2Fanie.202014299&rft_id=info%3Apmid%2F33140558&rft.externalDocID=33140558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |