Renewable Castor‐Oil‐based Waterborne Polyurethane Networks: Simultaneously Showing High Strength, Self‐Healing, Processability and Tunable Multishape Memory

Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fi...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 8; pp. 4289 - 4299
Main Authors Zhang, Chaoqun, Liang, Haiyan, Liang, Dunsheng, Lin, Zirun, Chen, Qian, Feng, Pengju, Wang, Qingwen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.02.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect. A castor‐oil‐based waterborne polyurethane (WPU) with high strength was developed. The PU networks demonstrated high tensile strength up to 38 MPa, excellent self‐healing with a tensile strength of 100 %, and a maximum recovery of 100 % of the original mechanical strength after reprocessing four times. The broad glass‐transition temperature of the samples endows the films with shape‐memory effects.
AbstractList Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable-oil-based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self-healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor-oil-based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self-healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass-transition temperature of the samples endowed the films with a versatile shape-memory effect, including a dual-to-quadruple shape-memory effect.Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable-oil-based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self-healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor-oil-based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self-healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass-transition temperature of the samples endowed the films with a versatile shape-memory effect, including a dual-to-quadruple shape-memory effect.
Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect.
Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant attention resulting from their technological impact. Nowadays, vegetable‐oil‐based waterborne polyurethanes (WPUs) are widely used in various fields, while strategies for simultaneous realization of their self‐healing, reprocessing, shape memory as well as high mechanical properties are still highly anticipated. We report development of a multifunctional castor‐oil‐based waterborne polyurethane with high strength using controlled amounts of dithiodiphenylamine. The polymer networks possessed high tensile strength up to 38 MPa as well as excellent self‐healing efficiency. Moreover, the WPU film exhibited a maximum recovery of 100 % of the original mechanical properties after reprocessing four times. The broad glass‐transition temperature of the samples endowed the films with a versatile shape‐memory effect, including a dual‐to‐quadruple shape‐memory effect. A castor‐oil‐based waterborne polyurethane (WPU) with high strength was developed. The PU networks demonstrated high tensile strength up to 38 MPa, excellent self‐healing with a tensile strength of 100 %, and a maximum recovery of 100 % of the original mechanical strength after reprocessing four times. The broad glass‐transition temperature of the samples endows the films with shape‐memory effects.
Author Feng, Pengju
Lin, Zirun
Liang, Haiyan
Zhang, Chaoqun
Liang, Dunsheng
Wang, Qingwen
Chen, Qian
Author_xml – sequence: 1
  givenname: Chaoqun
  surname: Zhang
  fullname: Zhang, Chaoqun
  email: zhangcq@scau.edu.cn, nwpuzcq@gmail.com
  organization: Guangdong Laboratory for Lingnan Modern Agriculture
– sequence: 2
  givenname: Haiyan
  surname: Liang
  fullname: Liang, Haiyan
  organization: Guangdong Laboratory for Lingnan Modern Agriculture
– sequence: 3
  givenname: Dunsheng
  surname: Liang
  fullname: Liang, Dunsheng
  organization: Guangdong Laboratory for Lingnan Modern Agriculture
– sequence: 4
  givenname: Zirun
  surname: Lin
  fullname: Lin, Zirun
  organization: Jinan University and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
– sequence: 5
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: South China Agricultural University, National Engineering Research Center for Breeding Swine Industry and Guangdong Provincial Key Laboratory of Agro-Animal Genomics
– sequence: 6
  givenname: Pengju
  orcidid: 0000-0002-5470-0403
  surname: Feng
  fullname: Feng, Pengju
  email: pfeng@jnu.edu.cn
  organization: Jinan University and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
– sequence: 7
  givenname: Qingwen
  surname: Wang
  fullname: Wang, Qingwen
  organization: Guangdong Laboratory for Lingnan Modern Agriculture
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33140558$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhSNURH9gyxJZYsOiGRw7jh121agwlUpbMUUsI8e5mbh47MF2NMqOR-AdeDOeBLfTglQJsbGP7e8cX_seZnvWWciylwWeFRiTt9JqmBFMcFGSun6SHRSMFDnlnO4lXVKac8GK_ewwhJvEC4GrZ9k-pUWJGRMH2c9PYGErWwNoLkN0_tf3H5fapLGVATr0RUbwrfMW0JUz0-ghDjItLiBunf8a3qGlXo8mpj03BjOh5eC22q7QQq8GtIwe7CoOx2gJpk-hC5AmnR6jK-8UhCBbbXSckLQduh7tXR0fU5wOg9wkCWvnp-fZ016aAC_u56Ps8_vT6_kiP7_8cDY_Oc9Vyas6pxWvoK1LUmKhSim6vi5aThVTkjHCO1ox3AvaJdWJRMmWYMbbTiraKsUIPcre7HI33n0bIcRmrYMCY3aPa0jJOOGi5Dihrx-hN270NlWXKCHSdfwu8NU9NbZr6JqN12vpp-bh-xNQ7gDlXQge-kbpKKN2NnqpTVPg5rbLzW2Xmz9dTrbZI9tD8j8N9c6w1Qam_9DNycXZ6V_vb_vRv5A
CitedBy_id crossref_primary_10_1021_acs_macromol_4c02732
crossref_primary_10_1002_adfm_202413083
crossref_primary_10_1016_j_ijbiomac_2024_138471
crossref_primary_10_1016_j_cej_2022_137124
crossref_primary_10_3390_polym14224948
crossref_primary_10_1016_j_ijbiomac_2024_130063
crossref_primary_10_1016_j_polymer_2024_126760
crossref_primary_10_1021_acsapm_4c00218
crossref_primary_10_1007_s10118_021_2538_7
crossref_primary_10_1002_app_55544
crossref_primary_10_1002_pc_28349
crossref_primary_10_1038_s41467_023_42838_7
crossref_primary_10_1016_j_cej_2023_147797
crossref_primary_10_1021_acssuschemeng_4c07183
crossref_primary_10_1016_j_indcrop_2021_113956
crossref_primary_10_1039_D1TA05148B
crossref_primary_10_1002_clem_13
crossref_primary_10_1021_acs_macromol_2c01599
crossref_primary_10_1016_j_cej_2023_146584
crossref_primary_10_1021_acssuschemeng_4c09232
crossref_primary_10_1016_j_porgcoat_2023_108051
crossref_primary_10_1016_j_eurpolymj_2024_113499
crossref_primary_10_1016_j_polymdegradstab_2024_110943
crossref_primary_10_3390_su14148657
crossref_primary_10_1002_macp_202400493
crossref_primary_10_1007_s10570_022_04705_4
crossref_primary_10_1002_app_53705
crossref_primary_10_1016_j_compscitech_2022_109573
crossref_primary_10_1021_acs_biomac_3c00805
crossref_primary_10_1016_j_indcrop_2024_118371
crossref_primary_10_1016_j_mtchem_2023_101881
crossref_primary_10_1021_acsmacrolett_2c00204
crossref_primary_10_1016_j_cej_2023_147537
crossref_primary_10_1021_acsami_1c15428
crossref_primary_10_1016_j_indcrop_2022_115739
crossref_primary_10_1016_j_eurpolymj_2024_113709
crossref_primary_10_1016_j_gresc_2024_08_001
crossref_primary_10_1007_s11998_022_00634_w
crossref_primary_10_1016_j_porgcoat_2023_107895
crossref_primary_10_1016_j_porgcoat_2022_106940
crossref_primary_10_1016_j_conbuildmat_2024_136430
crossref_primary_10_1016_j_jclepro_2025_145291
crossref_primary_10_1016_j_cej_2024_156414
crossref_primary_10_1016_j_porgcoat_2023_108190
crossref_primary_10_1016_j_porgcoat_2023_108191
crossref_primary_10_1088_1748_605X_ad5260
crossref_primary_10_1007_s12221_023_00052_8
crossref_primary_10_1016_j_ijbiomac_2022_03_066
crossref_primary_10_1016_j_indcrop_2023_116699
crossref_primary_10_1016_j_cej_2023_144263
crossref_primary_10_1021_acssuschemeng_3c02634
crossref_primary_10_1021_acssuschemeng_2c02877
crossref_primary_10_1016_j_cej_2024_151506
crossref_primary_10_1016_j_colsurfa_2023_131556
crossref_primary_10_1039_D4MH01414F
crossref_primary_10_1002_advs_202207268
crossref_primary_10_1002_smll_202411040
crossref_primary_10_1007_s10853_021_06052_4
crossref_primary_10_1039_D2TA06884B
crossref_primary_10_1021_acsami_4c18429
crossref_primary_10_1002_adfm_202212455
crossref_primary_10_1039_D2PY01422J
crossref_primary_10_1021_acsami_3c11027
crossref_primary_10_1016_j_polymertesting_2023_108026
crossref_primary_10_1021_acsapm_2c00881
crossref_primary_10_1002_pc_26008
crossref_primary_10_1002_adfm_202316550
crossref_primary_10_1016_j_porgcoat_2022_107250
crossref_primary_10_1002_pol_20220690
crossref_primary_10_1002_pol_20230437
crossref_primary_10_1021_acsnano_1c05952
crossref_primary_10_1007_s10118_025_3290_1
crossref_primary_10_1021_acsapm_4c00129
crossref_primary_10_1002_marc_202300263
crossref_primary_10_1007_s13726_021_00968_z
crossref_primary_10_1016_j_porgcoat_2024_108863
crossref_primary_10_1016_j_compositesb_2025_112287
crossref_primary_10_1002_admi_202101544
crossref_primary_10_3210_fst_42_17
crossref_primary_10_1016_j_ces_2022_118027
crossref_primary_10_1016_j_cej_2023_142060
crossref_primary_10_1021_acsnano_2c11809
crossref_primary_10_1016_j_indcrop_2024_118315
crossref_primary_10_1002_app_53857
crossref_primary_10_1016_j_indcrop_2022_116016
crossref_primary_10_1016_j_porgcoat_2023_108095
crossref_primary_10_1016_j_porgcoat_2022_107163
crossref_primary_10_1016_j_cej_2023_143702
crossref_primary_10_1016_j_porgcoat_2024_108731
crossref_primary_10_3390_polym16152217
crossref_primary_10_1016_j_cclet_2021_09_018
crossref_primary_10_1039_D3MA00607G
crossref_primary_10_1002_adma_202311242
crossref_primary_10_1016_j_compositesb_2024_111460
crossref_primary_10_1021_acssuschemeng_4c10308
crossref_primary_10_1021_acsami_1c04962
crossref_primary_10_1016_j_eurpolymj_2024_113296
crossref_primary_10_1016_j_bioactmat_2024_03_012
crossref_primary_10_1002_metm_70000
crossref_primary_10_1016_j_indcrop_2023_117060
crossref_primary_10_1016_j_mtcomm_2025_111863
crossref_primary_10_1007_s00289_022_04320_0
crossref_primary_10_1016_j_cej_2022_137071
crossref_primary_10_1021_acsapm_1c00199
crossref_primary_10_1016_j_porgcoat_2022_106742
crossref_primary_10_1016_j_eurpolymj_2021_110804
crossref_primary_10_1021_acssuschemeng_4c05777
crossref_primary_10_1515_psr_2020_0075
crossref_primary_10_1016_j_porgcoat_2024_108608
crossref_primary_10_1016_j_jhazmat_2024_133662
crossref_primary_10_1016_j_mtcomm_2021_102880
crossref_primary_10_1016_j_indcrop_2023_117628
crossref_primary_10_1016_j_compositesb_2022_110462
crossref_primary_10_1021_acsami_5c01535
crossref_primary_10_1039_D4GC06103A
crossref_primary_10_32604_jrm_2022_017790
crossref_primary_10_3390_polym13111722
crossref_primary_10_3390_polym14193953
crossref_primary_10_1016_j_eurpolymj_2022_111133
crossref_primary_10_1016_j_porgcoat_2023_107460
crossref_primary_10_6023_A21120593
crossref_primary_10_1016_j_indcrop_2024_120027
crossref_primary_10_1016_j_polymer_2024_127578
crossref_primary_10_1002_advs_202407596
crossref_primary_10_1002_pol_20240435
crossref_primary_10_1002_marc_202400915
crossref_primary_10_1021_acssuschemeng_3c08467
crossref_primary_10_1039_D3GC03249C
crossref_primary_10_1021_acs_jpcb_1c03205
crossref_primary_10_1021_acs_jafc_1c01885
crossref_primary_10_1002_app_52437
crossref_primary_10_1016_j_porgcoat_2024_108386
crossref_primary_10_2115_fiberst_2023_0013
crossref_primary_10_1016_j_compscitech_2024_111014
crossref_primary_10_1016_j_indcrop_2023_116392
crossref_primary_10_1016_j_polymer_2023_126657
crossref_primary_10_1016_j_porgcoat_2022_106880
crossref_primary_10_1016_j_cej_2024_157361
crossref_primary_10_1021_acsapm_3c01627
crossref_primary_10_1016_j_polymer_2025_128020
crossref_primary_10_1021_polymscitech_4c00035
crossref_primary_10_1002_pat_6580
crossref_primary_10_1016_j_cej_2022_136204
crossref_primary_10_1039_D1MH01217G
crossref_primary_10_1016_j_cej_2022_140268
crossref_primary_10_1021_acsapm_2c00794
crossref_primary_10_1016_j_indcrop_2022_115241
crossref_primary_10_1002_app_50822
crossref_primary_10_3390_polym15183780
crossref_primary_10_1021_acsapm_3c00749
crossref_primary_10_1021_acsami_3c10747
crossref_primary_10_1016_j_polymertesting_2022_107740
crossref_primary_10_3390_ma17194770
crossref_primary_10_1038_s41598_022_11540_x
crossref_primary_10_1016_j_jclepro_2022_133767
crossref_primary_10_1016_j_indcrop_2023_116865
crossref_primary_10_1021_acsami_2c13294
crossref_primary_10_1021_acssuschemeng_4c09540
crossref_primary_10_1016_j_cej_2021_131848
crossref_primary_10_1016_j_cej_2023_146840
crossref_primary_10_1039_D1TA06299A
crossref_primary_10_1002_adfm_202402233
crossref_primary_10_1016_j_cej_2023_148229
crossref_primary_10_1039_D2GC02910C
crossref_primary_10_1002_pen_26951
crossref_primary_10_1016_j_porgcoat_2023_107499
crossref_primary_10_1016_j_cej_2024_154990
crossref_primary_10_1016_j_indcrop_2024_120299
crossref_primary_10_1039_D3MH00274H
crossref_primary_10_1016_j_indcrop_2021_114198
crossref_primary_10_1039_D4GC01771D
crossref_primary_10_1016_j_porgcoat_2023_107816
crossref_primary_10_1002_pol_20230423
crossref_primary_10_1016_j_mcat_2024_114693
crossref_primary_10_1002_adma_202417193
crossref_primary_10_1021_acsami_2c12535
crossref_primary_10_1021_acsapm_2c01866
crossref_primary_10_1016_j_compositesb_2023_110704
crossref_primary_10_32604_jrm_2022_023371
crossref_primary_10_1002_smll_202303095
crossref_primary_10_1039_D2RA07825B
crossref_primary_10_1021_acsapm_4c02718
crossref_primary_10_1016_j_mser_2024_100830
crossref_primary_10_1016_j_porgcoat_2023_108117
crossref_primary_10_1016_j_porgcoat_2022_107309
crossref_primary_10_1016_j_porgcoat_2021_106615
crossref_primary_10_1002_app_54539
crossref_primary_10_1039_D1QM00765C
crossref_primary_10_1016_j_polymer_2022_125227
crossref_primary_10_1016_j_porgcoat_2023_108001
crossref_primary_10_1002_app_53331
crossref_primary_10_1016_j_porgcoat_2024_108340
crossref_primary_10_1039_D3MA00464C
crossref_primary_10_1021_acs_iecr_4c04135
crossref_primary_10_1016_j_nxener_2025_100261
crossref_primary_10_1021_acs_macromol_2c00104
crossref_primary_10_1016_j_colsurfa_2024_134038
crossref_primary_10_1021_acsapm_3c00225
crossref_primary_10_1016_j_indcrop_2024_119247
crossref_primary_10_1002_tcr_202200075
crossref_primary_10_1016_j_chempr_2023_04_024
crossref_primary_10_1016_j_mtcomm_2024_110978
crossref_primary_10_1016_j_porgcoat_2021_106391
crossref_primary_10_1016_j_porgcoat_2024_108576
crossref_primary_10_1016_j_porgcoat_2024_108212
crossref_primary_10_1002_pol_20240095
crossref_primary_10_1021_acssuschemeng_2c06932
crossref_primary_10_1039_D1NJ06054F
crossref_primary_10_1016_j_cej_2021_134470
crossref_primary_10_1021_acsapm_4c00444
crossref_primary_10_1021_acs_macromol_2c01401
crossref_primary_10_1002_smll_202205286
crossref_primary_10_1002_chem_202401481
crossref_primary_10_1021_acssuschemeng_3c02667
crossref_primary_10_1016_j_eurpolymj_2024_113228
crossref_primary_10_1016_j_indcrop_2024_118177
crossref_primary_10_1016_j_eurpolymj_2022_111125
crossref_primary_10_1002_mame_202100933
crossref_primary_10_1016_j_carbpol_2022_120313
crossref_primary_10_1016_j_porgcoat_2023_107853
crossref_primary_10_1016_j_indcrop_2021_114276
crossref_primary_10_1021_acsapm_4c01886
crossref_primary_10_1039_D1GC01936H
crossref_primary_10_32604_jrm_2021_015593
crossref_primary_10_1016_j_indcrop_2023_116816
crossref_primary_10_1016_j_indcrop_2024_118733
crossref_primary_10_1016_j_mtchem_2022_100855
crossref_primary_10_1002_app_51977
Cites_doi 10.1039/C3MH00061C
10.1038/nature21001
10.1021/acs.macromol.9b01413
10.1002/ange.201606003
10.1016/j.progpolymsci.2006.07.001
10.1002/ange.201501360
10.1007/s00396-015-3787-1
10.1002/ange.201602847
10.1002/adfm.201902467
10.1002/marc.201400039
10.1021/jacs.9b06668
10.1021/acssuschemeng.7b00327
10.1021/acssuschemeng.9b01239
10.1039/C8GC03560A
10.1021/bm700522z
10.1021/acs.chemmater.9b00750
10.1039/C5TA02537K
10.1002/anie.201606003
10.1016/j.progpolymsci.2016.12.009
10.1016/j.porgcoat.2019.04.053
10.1021/acssuschemeng.6b00768
10.1016/j.progpolymsci.2006.05.003
10.1016/j.polymer.2005.08.022
10.1021/acs.jpca.7b08838
10.1016/j.porgcoat.2018.12.015
10.1002/adma.201202884
10.1002/anie.201501360
10.1002/marc.201500123
10.1002/anie.201602847
10.1021/acsapm.9b00589
10.1007/s40843-019-9422-7
10.1016/j.porgcoat.2012.11.011
10.1016/j.cej.2020.124142
10.1021/acsmacrolett.8b00667
10.1021/acssuschemeng.9b03956
10.1007/s11998-016-9863-8
10.4028/www.scientific.net/AMR.690-693.1620
10.1002/marc.200900409
10.1039/C6CP04028D
10.1002/adma.201706237
10.1039/c0gc00264j
10.1021/ma2001492
10.1002/marc.201800733
10.1016/j.porgcoat.2014.11.017
10.1021/am5001344
10.1002/cssc.201000411
10.1039/c3ta14927g
10.1016/j.indcrop.2019.01.017
10.1038/srep34574
10.1021/bm801030g
10.1016/j.polymdegradstab.2018.02.014
10.1039/C4TA06304J
10.1016/j.indcrop.2014.10.046
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202014299
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4299
ExternalDocumentID 33140558
10_1002_anie_202014299
ANIE202014299
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2019YFD1101202;2019YFD1101203
– fundername: Program of the Science & Technology Department of Guangzhou, China
  funderid: 201803020039
– fundername: Guangzhou Municipal Key Laboratory of Woody Biomass Functional New Materials
  funderid: 201905010005
– fundername: Guangdong Province Science & Technology Program
  funderid: 2018B030306016
– fundername: Guangdong Provincial Innovation Team for General Key Technologies in Modern Agricultural Industry
  funderid: 2019KJ133
– fundername: Key Projects of Basic Research and Applied Basic Research of the Higher Education Institutions of Guangdong Province
  funderid: 2018KZDXM014
– fundername: National Natural Science Foundation
  funderid: 21602078; 51703068
– fundername: Guangzhou Municipal Key Laboratory of Woody Biomass Functional New Materials
  grantid: 201905010005
– fundername: National Key Research and Development Program of China
  grantid: 2019YFD1101202;2019YFD1101203
– fundername: Guangdong Province Science & Technology Program
  grantid: 2018B030306016
– fundername: Guangdong Provincial Innovation Team for General Key Technologies in Modern Agricultural Industry
  grantid: 2019KJ133
– fundername: Key Projects of Basic Research and Applied Basic Research of the Higher Education Institutions of Guangdong Province
  grantid: 2018KZDXM014
– fundername: Program of the Science & Technology Department of Guangzhou, China
  grantid: 201803020039
– fundername: National Natural Science Foundation
  grantid: 21602078; 51703068
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4769-3676eb942408c4a8df91b73c5ca5527d3650f83d7d3d8424ab2057bdac3bcc523
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:32:34 EDT 2025
Fri Jul 25 12:05:18 EDT 2025
Wed Feb 19 02:29:06 EST 2025
Tue Jul 01 01:17:51 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Wed Jan 22 16:30:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords waterborne polyurethane
processability
simultaneous self-healing
plant oil
multishape memory
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-3676eb942408c4a8df91b73c5ca5527d3650f83d7d3d8424ab2057bdac3bcc523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5470-0403
PMID 33140558
PQID 2488527752
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_2457278470
proquest_journals_2488527752
pubmed_primary_33140558
crossref_citationtrail_10_1002_anie_202014299
crossref_primary_10_1002_anie_202014299
wiley_primary_10_1002_anie_202014299_ANIE202014299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 19, 2021
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 02
  year: 2021
  text: February 19, 2021
  day: 19
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2017; 5
2019; 7
2018; 122
2015; 36
2006; 31
2013; 25
2015; 3
2019; 31
2019; 52
2019; 1
2008; 9
2016; 540
2020; 387
2015; 80
2019; 129
2011; 4
2016; 18
2007; 32
2019; 141
2005; 46
2014; 1
2016; 4
2018; 7
2016; 6
2013; 690–693
2009; 30
2016 2016; 55 128
2017; 71
2019; 62
2019; 40
2014; 2
2018; 150
2013; 76
2017; 14
2019; 21
2015; 64
2007; 8
2015 2015; 54 127
2011; 44
2019; 29
2014; 35
2018; 30
2019; 130
2014; 6
2019; 133
2016; 294
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_34_3
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_38_2
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_47_2
e_1_2_6_24_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_50_2
e_1_2_6_52_1
e_1_2_6_52_2
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_18_2
e_1_2_6_35_2
e_1_2_6_33_3
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_58_1
e_1_2_6_42_2
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_2
e_1_2_6_4_2
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_2
e_1_2_6_46_2
References_xml – volume: 3
  start-page: 2924
  year: 2015
  end-page: 2933
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 13435
  year: 2015
  end-page: 13444
  publication-title: J. Mater. Chem. A
– volume: 690–693
  start-page: 1620
  year: 2013
  end-page: 1623
  publication-title: Adv. Mater. Res.
– volume: 122
  start-page: 239
  year: 2018
  end-page: 248
  publication-title: J. Phys. Chem. A
– volume: 36
  start-page: 1255
  year: 2015
  end-page: 1260
  publication-title: Macromol. Rapid Commun.
– volume: 32
  start-page: 352
  year: 2007
  end-page: 418
  publication-title: Prog. Polym. Sci.
– volume: 55 128
  start-page: 13028 13222
  year: 2016 2016
  end-page: 13032 13226
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 540
  start-page: 354
  year: 2016
  end-page: 362
  publication-title: Nature
– volume: 387
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 6447
  year: 2017
  end-page: 6455
  publication-title: ACS Sustainable Chem. Eng.
– volume: 14
  start-page: 367
  year: 2017
  end-page: 375
  publication-title: J. Coat. Technol. Res.
– volume: 133
  start-page: 267
  year: 2019
  end-page: 275
  publication-title: Prog. Org. Coat.
– volume: 64
  start-page: 194
  year: 2015
  end-page: 200
  publication-title: Ind. Crops Prod.
– volume: 21
  start-page: 526
  year: 2019
  end-page: 537
  publication-title: Green Chem.
– volume: 294
  start-page: 347
  year: 2016
  end-page: 355
  publication-title: Colloid Polym. Sci.
– volume: 30
  start-page: 1823
  year: 2009
  end-page: 1827
  publication-title: Macromol. Rapid Commun.
– volume: 55 128
  start-page: 11421 11593
  year: 2016 2016
  end-page: 11425 11597
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 3108
  year: 2007
  end-page: 3114
  publication-title: Biomacromolecules
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 130
  start-page: 562
  year: 2019
  end-page: 570
  publication-title: Ind. Crops Prod.
– volume: 2
  start-page: 5710
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 54 127
  start-page: 6516 6616
  year: 2015 2015
  end-page: 6520 6620
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 3736
  year: 2019
  end-page: 3744
  publication-title: Chem. Mater.
– volume: 129
  start-page: 21
  year: 2019
  end-page: 25
  publication-title: Prog. Org. Coat.
– volume: 6
  start-page: 6545
  year: 2014
  end-page: 6554
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1226
  year: 2018
  end-page: 1231
  publication-title: ACS Macro Lett.
– volume: 7
  start-page: 15147
  year: 2019
  end-page: 15153
  publication-title: ACS Sustainable Chem. Eng.
– volume: 44
  start-page: 2536
  year: 2011
  end-page: 2541
  publication-title: Macromolecules
– volume: 141
  start-page: 13753
  year: 2019
  end-page: 13757
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 91
  year: 2017
  end-page: 143
  publication-title: Prog. Polym. Sci.
– volume: 35
  start-page: 1068
  year: 2014
  end-page: 1074
  publication-title: Macromol. Rapid Commun.
– volume: 12
  start-page: 1893
  year: 2010
  end-page: 1909
  publication-title: Green Chem.
– volume: 31
  start-page: 633
  year: 2006
  end-page: 670
  publication-title: Prog. Polym. Sci.
– volume: 52
  start-page: 6474
  year: 2019
  end-page: 6484
  publication-title: Macromolecules
– volume: 4
  start-page: 386
  year: 2011
  end-page: 391
  publication-title: ChemSusChem
– volume: 150
  start-page: 122
  year: 2018
  end-page: 132
  publication-title: Polym. Degrad. Stab.
– volume: 25
  start-page: 743
  year: 2013
  end-page: 748
  publication-title: Adv. Mater.
– volume: 6
  start-page: 34574
  year: 2016
  end-page: 34587
  publication-title: Sci. Rep.
– volume: 1
  start-page: 2472
  year: 2019
  end-page: 2481
  publication-title: ACS Appl. Polym. Mater.
– volume: 80
  start-page: 39
  year: 2015
  end-page: 48
  publication-title: Prog. Org. Coat.
– volume: 76
  start-page: 609
  year: 2013
  end-page: 615
  publication-title: Prog. Org. Coat.
– volume: 62
  start-page: 1188
  year: 2019
  end-page: 1198
  publication-title: Sci. China Mater.
– volume: 7
  start-page: 10025
  year: 2019
  end-page: 10034
  publication-title: ACS Sustainable Chem. Eng.
– volume: 46
  start-page: 9674
  year: 2005
  end-page: 9685
  publication-title: Polymer
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– volume: 4
  start-page: 4645
  year: 2016
  end-page: 4653
  publication-title: ACS Sustainable Chem. Eng.
– volume: 18
  start-page: 27577
  year: 2016
  end-page: 27583
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 237
  year: 2014
  end-page: 240
  publication-title: Mater. Horiz.
– volume: 30
  start-page: 1706237
  year: 2018
  end-page: 1706244
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3332
  year: 2008
  end-page: 3340
  publication-title: Biomacromolecules
– ident: e_1_2_6_16_2
  doi: 10.1039/C3MH00061C
– ident: e_1_2_6_1_1
  doi: 10.1038/nature21001
– ident: e_1_2_6_40_1
  doi: 10.1021/acs.macromol.9b01413
– ident: e_1_2_6_52_2
  doi: 10.1002/ange.201606003
– ident: e_1_2_6_45_1
– ident: e_1_2_6_4_2
  doi: 10.1016/j.progpolymsci.2006.07.001
– ident: e_1_2_6_34_3
  doi: 10.1002/ange.201501360
– ident: e_1_2_6_36_1
– ident: e_1_2_6_28_2
  doi: 10.1007/s00396-015-3787-1
– ident: e_1_2_6_33_3
  doi: 10.1002/ange.201602847
– ident: e_1_2_6_14_2
  doi: 10.1002/adfm.201902467
– ident: e_1_2_6_44_1
  doi: 10.1002/marc.201400039
– ident: e_1_2_6_19_2
  doi: 10.1021/jacs.9b06668
– ident: e_1_2_6_11_1
  doi: 10.1021/acssuschemeng.7b00327
– ident: e_1_2_6_23_1
  doi: 10.1021/acssuschemeng.9b01239
– ident: e_1_2_6_5_2
  doi: 10.1039/C8GC03560A
– ident: e_1_2_6_49_2
  doi: 10.1021/bm700522z
– ident: e_1_2_6_15_2
  doi: 10.1021/acs.chemmater.9b00750
– ident: e_1_2_6_47_2
  doi: 10.1039/C5TA02537K
– ident: e_1_2_6_52_1
  doi: 10.1002/anie.201606003
– ident: e_1_2_6_10_1
  doi: 10.1016/j.progpolymsci.2016.12.009
– ident: e_1_2_6_12_1
  doi: 10.1016/j.porgcoat.2019.04.053
– ident: e_1_2_6_31_1
  doi: 10.1021/acssuschemeng.6b00768
– ident: e_1_2_6_8_2
  doi: 10.1016/j.progpolymsci.2006.05.003
– ident: e_1_2_6_51_1
  doi: 10.1016/j.polymer.2005.08.022
– ident: e_1_2_6_22_2
  doi: 10.1021/acs.jpca.7b08838
– ident: e_1_2_6_37_2
  doi: 10.1016/j.porgcoat.2018.12.015
– ident: e_1_2_6_46_2
  doi: 10.1002/adma.201202884
– ident: e_1_2_6_6_1
– ident: e_1_2_6_34_2
  doi: 10.1002/anie.201501360
– ident: e_1_2_6_21_2
  doi: 10.1002/marc.201500123
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.201602847
– ident: e_1_2_6_24_1
  doi: 10.1021/acsapm.9b00589
– ident: e_1_2_6_38_2
  doi: 10.1007/s40843-019-9422-7
– ident: e_1_2_6_9_2
  doi: 10.1016/j.porgcoat.2012.11.011
– ident: e_1_2_6_57_1
  doi: 10.1016/j.cej.2020.124142
– ident: e_1_2_6_20_1
– ident: e_1_2_6_50_2
  doi: 10.1021/acsmacrolett.8b00667
– ident: e_1_2_6_53_1
  doi: 10.1021/acssuschemeng.9b03956
– ident: e_1_2_6_48_1
– ident: e_1_2_6_39_1
  doi: 10.1007/s11998-016-9863-8
– ident: e_1_2_6_35_2
  doi: 10.4028/www.scientific.net/AMR.690-693.1620
– ident: e_1_2_6_61_1
  doi: 10.1002/marc.200900409
– ident: e_1_2_6_54_1
  doi: 10.1039/C6CP04028D
– ident: e_1_2_6_17_1
– ident: e_1_2_6_25_1
– ident: e_1_2_6_7_2
  doi: 10.1002/adma.201706237
– ident: e_1_2_6_3_2
  doi: 10.1039/c0gc00264j
– ident: e_1_2_6_41_1
– ident: e_1_2_6_58_1
  doi: 10.1021/ma2001492
– ident: e_1_2_6_2_1
– ident: e_1_2_6_56_1
  doi: 10.1002/marc.201800733
– ident: e_1_2_6_30_1
  doi: 10.1016/j.porgcoat.2014.11.017
– ident: e_1_2_6_13_1
– ident: e_1_2_6_32_1
– ident: e_1_2_6_60_1
  doi: 10.1021/am5001344
– ident: e_1_2_6_27_2
  doi: 10.1002/cssc.201000411
– ident: e_1_2_6_18_2
  doi: 10.1039/c3ta14927g
– ident: e_1_2_6_55_1
  doi: 10.1016/j.indcrop.2019.01.017
– ident: e_1_2_6_29_1
  doi: 10.1038/srep34574
– ident: e_1_2_6_26_2
  doi: 10.1021/bm801030g
– ident: e_1_2_6_42_2
  doi: 10.1016/j.polymdegradstab.2018.02.014
– ident: e_1_2_6_59_1
  doi: 10.1039/C4TA06304J
– ident: e_1_2_6_43_2
  doi: 10.1016/j.indcrop.2014.10.046
SSID ssj0028806
Score 2.6838477
Snippet Materials with multifunctionality or multiresponsiveness, especially polymers derived from green, renewable precursors, have recently attracted significant...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4289
SubjectTerms Healing
High strength
Mechanical properties
multishape memory
plant oil
Polymers
Polyurethane
Polyurethane resins
processability
Reprocessing
Shape effects
Shape memory
simultaneous self-healing
Tensile strength
Transition temperature
Transition temperatures
Vegetable oils
waterborne polyurethane
Title Renewable Castor‐Oil‐based Waterborne Polyurethane Networks: Simultaneously Showing High Strength, Self‐Healing, Processability and Tunable Multishape Memory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202014299
https://www.ncbi.nlm.nih.gov/pubmed/33140558
https://www.proquest.com/docview/2488527752
https://www.proquest.com/docview/2457278470
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl3Lhv-0CRUZC4oIhOMkm6Q2tQLQSW8SCyi3yX1hElKDNRmg59RH6DrwZT9KZOAldKlQJLlF-nMSxxzPjeL5vCNmWQoAhSRSTYJyYF-mIyQOesABMWSKU62sXwcmn_e7Jpff9yr_6C8Vv-SHaH244Mip9jQNcyGL_mTQUEdgwvwMDhioVlDAGbKFXdN7yR3EQTgsvcl2GWegb1kaH70_fPm2V_nE1pz3XyvQcLxDRVNpGnNzulWO5px5e8Dm-56sWyXztl9JDK0hLZMZky-RDr0kHt0Iez0Er3iPQivYEhlQ-_fr94yaFLRpCTX8K7KF8lBl6lqeTcmTwp7yhfRtnXnylgxuMXoRzeVmkEzoY5vdgNylGmlBcHM-ux8NdOjBpAg9FeBRc3aU1ksHSiU-oyDS9KCvAF63Aw8VQ3MEuBgxPVsnl8dFF74TVGR6Y8oJuxJAuzsjIQ5415YlQJ9GBDFzlK4HMcBp61ElCV8OeDqGUkBz8S6lBiKRSMIf-SGazPDOfCYVpGQhaVwjUME6iQicyoURyIcNl2A07hDU9HKua_hyzcKSxJW7mMTZ93DZ9h-y05e8s8cerJTcagYlrBVDEHBQjfEHg8w7Zai9Dl-F6jG1pKOMHuO4bOB3yyQpa-yrXhZmv70O1eSUu_6lDfNj_dtQerb3lpnUyxzFeB5PdRBtkdjwqzRdwuMZysxpUfwAZQCcv
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcanbrZ1sEm7VqtUW2gV1t4Jb5FfYiiipdjeqlhM_gf_AP-OXMBMnQQtCSHCJnMRJHHs8D3vmG4AXWikUJJnhGoUTDxKbcL0nMh6hKMuUkaGVFJx8Mh6MzoLXH8LWm5BiYTw-RLfgRjOj5tc0wWlBevcnaiiFYKOBhxKMeOpVuEZpvWur6rRDkBJInj7ASEpOeehb3Ma-2F1_fl0u_aZsruuutfA5vAm6bbb3Ofm0Uy31jvn8C6Ljf_3XLbjRqKZs39PSbbjiijuwOWwzwt2Fb6fIGC8p1ooNFXlVfv_y9e15jkeShZa9VzRI5bxw7F2Zr6q5o3V5x8be1Xzxik3OyYERr5XVIl-xyay8RNHJyNmE0f548XE522YTl2f4UoqQwrvbrAlm8IjiK6YKy6ZVHfPF6vjhxUxdYJF8hlf34OzwYDoc8SbJAzdBNEg4IcY5nQQEtWYCFdss2dORNKFRBA5nJaqQWSwtlmyMtZQWqGJqi3SkjUEz-j5sFGXhHgJDywxpbaAUMZl-ZuJ-4mJN-EJO6HgQ94C3Q5yaBgGdEnHkqcduFil1fdp1fQ9edvUvPPbHH2tutRSTNjxgkQrkjfgHUSh68Ly7jUNGWzK-p7FOGNHWb9TvwQNPad2npETjNwyx2aKml7-0Id0fHx10Z4_-5aFnsDmanhynx0fjN4_huiD3Hcp9k2zBxnJeuSeofy3103qG_QBsWitK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVKKwEv3AsLBYyExEvdpnaufau2XbVclqrbir5FvoWtiJLV7kbV8sQn8A_9M76EmTgJLAghwUuUi5M49nhmHM85Q8hLJSUYkkwzBcaJ-YlJmNrhGYvAlGVSi8AIBCe_G4aHZ_7r8-D8JxS_44fofrjhyKj1NQ7wicm2f5CGIgIb5ndgwFClXiNrfujFKNf7Jx2BFAfpdPgiIRimoW9pGz2-vXz_sln6zddcdl1r2zO4TWRbaxdy8mmrmqst_fkXQsf_-aw75FbjmNI9J0l3yYot7pEb_TYf3H1ydQJq8RKRVrQvMaby25ev7y9y2KIlNPSDxC4qp4Wlx2W-qKYW_8pbOnSB5rNdOrrA8EU4V1azfEFH4_ISDCfFUBOKq-PFx_l4k45snsFDER8FVzdpA2VwfOILKgtDT6sa8UVr9PBsLCewixHDiwfkbHBw2j9kTYoHpv0oTBjyxVmV-Ei0pn0ZmyzZUZHQgZZIDWcEOJBZLAzsmRhKScXBwVQGpEhpDZPodbJalIV9RCjMy0DSQilRxXiZjr3ExgrZhSxXcRj3CGt7ONUN_zmm4chTx9zMU2z6tGv6HnnVlZ845o8_ltxoBSZtNMAs5aAZ4QuigPfIi-4ydBkuyLiWhjJBhAu_kdcjD52gda8SAqa-QQDV5rW4_KUO6d7w6KA7evwvNz0n14_3B-nbo-GbJ-Qmx9gdTHyTbJDV-bSyT8H5mqtn9fj6DuzVKgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renewable+Castor-Oil-based+Waterborne+Polyurethane+Networks%3A+Simultaneously+Showing+High+Strength%2C+Self-Healing%2C+Processability+and+Tunable+Multishape+Memory&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Chaoqun&rft.au=Liang%2C+Haiyan&rft.au=Liang%2C+Dunsheng&rft.au=Lin%2C+Zirun&rft.date=2021-02-19&rft.eissn=1521-3773&rft.volume=60&rft.issue=8&rft.spage=4289&rft_id=info:doi/10.1002%2Fanie.202014299&rft_id=info%3Apmid%2F33140558&rft.externalDocID=33140558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon