Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities

The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 31; pp. 12636 - 12652
Main Authors Zhao, Meng, Li, Bo‐Quan, Peng, Hong‐Jie, Yuan, Hong, Wei, Jun‐Yu, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.07.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed. Lean on me: The challenges, recent progress, and perspectives for lean‐electrolyte Li–S batteries are discussed in terms of the two electrochemical processes for sulfur, that is, the dissolution–precipitation conversion and the solid–solid pathway.
AbstractList The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium-sulfur (Li-S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li-S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li-S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li-S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li-S battery design and engineering are discussed.
The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium-sulfur (Li-S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li-S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li-S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li-S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li-S battery design and engineering are discussed.The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium-sulfur (Li-S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li-S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li-S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li-S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li-S battery design and engineering are discussed.
The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed. Lean on me: The challenges, recent progress, and perspectives for lean‐electrolyte Li–S batteries are discussed in terms of the two electrochemical processes for sulfur, that is, the dissolution–precipitation conversion and the solid–solid pathway.
Author Zhao, Meng
Huang, Jia‐Qi
Wei, Jun‐Yu
Li, Bo‐Quan
Yuan, Hong
Peng, Hong‐Jie
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0001-8402-7697
  surname: Zhao
  fullname: Zhao, Meng
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Bo‐Quan
  orcidid: 0000-0002-9544-5795
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Tsinghua University
– sequence: 3
  givenname: Hong‐Jie
  orcidid: 0000-0002-4183-703X
  surname: Peng
  fullname: Peng, Hong‐Jie
  organization: Tsinghua University
– sequence: 4
  givenname: Hong
  orcidid: 0000-0001-7565-2204
  surname: Yuan
  fullname: Yuan, Hong
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Jun‐Yu
  orcidid: 0000-0001-5775-3589
  surname: Wei
  fullname: Wei, Jun‐Yu
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31490599$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrFEEQxxtJMA-9epQBL15m7cf0y1uyrBpYzMGcvDS9MzWmQ2_32g9kb_kO-Yb5JJllE4WA5FQF9fsVRf1P0EGIARB6R_CMYEw_2eBgRjHRWDOmX6FjwilpmZTsYOo7xlqpODlCJznfTLxSWLxGR4x0GnOtj9HPpSvXrq7vb-9-VD_W1JzbUiA5yE0NA6RmCTY0Cw99SdFvCzTzGAZXXAz5czO_tt5D-DXRNgzN5WYTU6lhGkN-gw5H6zO8fayn6OrL4mr-rV1efr2Yny3bvpNCtxQsV70e8AhWCMFB9hiPTNBeYsUVgBbdSLqVUnK0dqCDYtoyIli3koQqdoo-7tduUvxdIRezdrkH722AWLOhVAnNFCZyQj88Q29iTWE6ztCOcs6Z0mKi3j9SdbWGwWySW9u0NU9Pm4BuD_Qp5pxgNL0rdveRkqzzhmCzy8bssjF_s5m02TPtafN_Bb0X_jgP2xdoc_b9YvHPfQDCpaIk
CitedBy_id crossref_primary_10_1039_D2TA01107G
crossref_primary_10_1002_adfm_202104863
crossref_primary_10_1021_acsenergylett_1c02132
crossref_primary_10_1002_adma_202406594
crossref_primary_10_1002_ente_202300518
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1016_S1872_5805_23_60710_3
crossref_primary_10_1002_batt_202200097
crossref_primary_10_1016_j_est_2024_112310
crossref_primary_10_1021_acsami_1c17374
crossref_primary_10_1002_batt_202100359
crossref_primary_10_1021_acs_energyfuels_1c03319
crossref_primary_10_1002_ange_202106788
crossref_primary_10_1002_smll_202105866
crossref_primary_10_1007_s12274_024_6879_8
crossref_primary_10_1021_acsnano_2c09888
crossref_primary_10_1016_j_jmst_2024_03_005
crossref_primary_10_1021_acsami_1c04194
crossref_primary_10_1016_S1872_2067_21_63984_0
crossref_primary_10_1016_j_jclepro_2020_124528
crossref_primary_10_1016_j_nanoen_2021_106426
crossref_primary_10_1039_D1TA05734K
crossref_primary_10_1002_anie_202213863
crossref_primary_10_1002_batt_202400768
crossref_primary_10_1016_j_est_2024_114860
crossref_primary_10_1039_D2CS00606E
crossref_primary_10_1007_s12598_021_01750_z
crossref_primary_10_1016_j_jechem_2020_11_032
crossref_primary_10_1002_advs_202301006
crossref_primary_10_1088_2515_7655_ac4ee3
crossref_primary_10_1007_s11426_022_1421_7
crossref_primary_10_1016_j_jechem_2021_12_023
crossref_primary_10_1002_ange_202423046
crossref_primary_10_1016_j_jechem_2021_12_024
crossref_primary_10_1007_s12274_022_4134_8
crossref_primary_10_1002_asia_202400099
crossref_primary_10_1007_s10118_023_2915_5
crossref_primary_10_1039_D1SE00042J
crossref_primary_10_1007_s40820_022_00844_2
crossref_primary_10_1002_adfm_202309625
crossref_primary_10_1016_j_matlet_2021_129356
crossref_primary_10_1016_j_jallcom_2023_172059
crossref_primary_10_1016_j_apsusc_2023_157738
crossref_primary_10_1016_j_jpowsour_2021_229456
crossref_primary_10_1002_anie_202212744
crossref_primary_10_1007_s41918_023_00188_4
crossref_primary_10_1016_j_cej_2020_127688
crossref_primary_10_1021_acsenergylett_2c00874
crossref_primary_10_1016_j_electacta_2023_143033
crossref_primary_10_1021_acsnano_1c05536
crossref_primary_10_1007_s12274_022_4933_y
crossref_primary_10_1007_s12274_023_5945_y
crossref_primary_10_1016_j_jechem_2021_12_038
crossref_primary_10_1016_j_jechem_2024_10_026
crossref_primary_10_1016_j_xcrp_2024_102347
crossref_primary_10_1016_j_ensm_2020_09_009
crossref_primary_10_1002_aenm_202002180
crossref_primary_10_1039_D2RA02049A
crossref_primary_10_1002_smtd_202301335
crossref_primary_10_1039_D4GC05753H
crossref_primary_10_1002_adma_202307741
crossref_primary_10_1016_j_electacta_2021_139781
crossref_primary_10_1016_j_carbon_2024_119442
crossref_primary_10_1016_j_jpowsour_2022_231837
crossref_primary_10_1016_j_jpowsour_2024_235717
crossref_primary_10_54392_irjmt2521
crossref_primary_10_1002_aenm_202402072
crossref_primary_10_1002_smll_202202037
crossref_primary_10_1039_D1NR05489A
crossref_primary_10_1002_adma_202003012
crossref_primary_10_1002_smll_202307179
crossref_primary_10_1002_advs_202206057
crossref_primary_10_1038_s41467_021_27551_7
crossref_primary_10_1007_s12274_024_6481_0
crossref_primary_10_1016_j_jelechem_2024_118041
crossref_primary_10_1002_batt_202100323
crossref_primary_10_1021_acsaem_4c02856
crossref_primary_10_1002_eom2_12115
crossref_primary_10_1016_j_jallcom_2022_166144
crossref_primary_10_1007_s12598_021_01839_5
crossref_primary_10_1021_acsaem_2c01459
crossref_primary_10_1002_smll_202301755
crossref_primary_10_1007_s11581_022_04761_7
crossref_primary_10_1021_acs_chemrev_1c00838
crossref_primary_10_1021_acsenergylett_4c02049
crossref_primary_10_1021_acsenergylett_1c01091
crossref_primary_10_1002_batt_202200059
crossref_primary_10_1002_ece2_74
crossref_primary_10_1016_j_ensm_2022_04_004
crossref_primary_10_1039_D0EE02651D
crossref_primary_10_1038_s43246_024_00463_x
crossref_primary_10_1039_D0TA11919A
crossref_primary_10_1016_j_esci_2023_100135
crossref_primary_10_1016_j_cej_2023_141898
crossref_primary_10_1016_j_cej_2021_129707
crossref_primary_10_4028_www_scientific_net_AEF_44_87
crossref_primary_10_1016_j_jallcom_2022_166276
crossref_primary_10_1039_D0TA11049C
crossref_primary_10_1016_j_joule_2024_04_003
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_adfm_202008586
crossref_primary_10_1002_adma_202211168
crossref_primary_10_1002_smll_202104469
crossref_primary_10_1016_j_heliyon_2024_e36677
crossref_primary_10_1016_j_nanoen_2021_105891
crossref_primary_10_1016_j_mtcomm_2024_111302
crossref_primary_10_1016_j_matchemphys_2024_130236
crossref_primary_10_1021_jacs_2c04176
crossref_primary_10_1039_D1TA03621A
crossref_primary_10_1002_adma_202407741
crossref_primary_10_1007_s40820_021_00676_6
crossref_primary_10_1016_j_cej_2023_143706
crossref_primary_10_1016_j_jpowsour_2024_234833
crossref_primary_10_1021_jacs_4c05000
crossref_primary_10_1002_smll_202203140
crossref_primary_10_1002_smll_202204348
crossref_primary_10_1016_j_seppur_2022_121684
crossref_primary_10_1016_j_cej_2024_151978
crossref_primary_10_1002_admi_202300864
crossref_primary_10_1039_D4MH00200H
crossref_primary_10_1016_j_ensm_2021_03_023
crossref_primary_10_1021_acsnano_1c01250
crossref_primary_10_1002_adfm_202104858
crossref_primary_10_1016_j_est_2024_113998
crossref_primary_10_1002_cjoc_202000702
crossref_primary_10_1016_j_cej_2021_133099
crossref_primary_10_1021_acsnano_3c00377
crossref_primary_10_1016_j_jechem_2020_11_015
crossref_primary_10_3389_fchem_2022_888750
crossref_primary_10_1002_advs_202204192
crossref_primary_10_31763_ijrcs_v3i3_1091
crossref_primary_10_1002_cssc_202100973
crossref_primary_10_1007_s11581_021_04008_x
crossref_primary_10_1016_j_ensm_2024_103215
crossref_primary_10_1002_asia_202100176
crossref_primary_10_1039_D4TA08712G
crossref_primary_10_1039_D0CC08276G
crossref_primary_10_1016_j_nanoen_2024_110231
crossref_primary_10_3390_nano11061518
crossref_primary_10_1007_s40820_023_01137_y
crossref_primary_10_1063_5_0178707
crossref_primary_10_1002_batt_202200016
crossref_primary_10_1002_advs_202303830
crossref_primary_10_1007_s10934_022_01314_1
crossref_primary_10_1007_s11581_020_03860_7
crossref_primary_10_1007_s43938_024_00045_w
crossref_primary_10_1039_D4TA03620D
crossref_primary_10_26599_NRE_2022_9120012
crossref_primary_10_2139_ssrn_4095949
crossref_primary_10_1016_j_rser_2023_113487
crossref_primary_10_1002_anie_202423046
crossref_primary_10_1039_D0GC04033A
crossref_primary_10_1002_aenm_202406069
crossref_primary_10_1016_j_ensm_2023_103065
crossref_primary_10_1016_j_mtener_2022_101151
crossref_primary_10_1016_j_jechem_2022_08_027
crossref_primary_10_1002_batt_202100409
crossref_primary_10_1002_ange_202103303
crossref_primary_10_1039_D2TA01867E
crossref_primary_10_1016_j_ensm_2024_103439
crossref_primary_10_1002_aenm_202003690
crossref_primary_10_1016_j_ensm_2021_01_008
crossref_primary_10_3390_nano14120990
crossref_primary_10_1002_ange_202114671
crossref_primary_10_3390_batteries9010027
crossref_primary_10_1016_j_cej_2024_151129
crossref_primary_10_1016_j_ensm_2024_103315
crossref_primary_10_1038_s41598_024_67254_9
crossref_primary_10_1021_jacs_3c00628
crossref_primary_10_1039_D4EE02989E
crossref_primary_10_1002_adma_202206963
crossref_primary_10_1016_j_cej_2021_132254
crossref_primary_10_1002_sus2_42
crossref_primary_10_1021_acsanm_1c01876
crossref_primary_10_1002_ange_202213863
crossref_primary_10_1039_D1NR04357A
crossref_primary_10_1039_D1CE01170G
crossref_primary_10_1016_j_ceramint_2023_12_307
crossref_primary_10_1016_j_jpowsour_2021_230607
crossref_primary_10_1002_advs_202402497
crossref_primary_10_1016_j_jallcom_2020_157382
crossref_primary_10_1039_D0TA11180E
crossref_primary_10_1016_j_nxmate_2024_100395
crossref_primary_10_1021_acsami_1c08615
crossref_primary_10_1002_sus2_191
crossref_primary_10_1002_smll_202103001
crossref_primary_10_1002_adfm_202309345
crossref_primary_10_1039_D4TA01780C
crossref_primary_10_1007_s40820_022_00935_0
crossref_primary_10_1039_D1MH01546J
crossref_primary_10_1007_s11664_023_10355_4
crossref_primary_10_1038_s41467_022_31943_8
crossref_primary_10_1016_j_cej_2022_141139
crossref_primary_10_1002_adma_202212039
crossref_primary_10_1002_ange_202007159
crossref_primary_10_1002_adfm_202301736
crossref_primary_10_1016_j_jallcom_2023_170162
crossref_primary_10_1039_D1SE01060C
crossref_primary_10_1007_s12598_023_02417_7
crossref_primary_10_1016_j_mattod_2021_03_017
crossref_primary_10_1002_ange_202419446
crossref_primary_10_1016_j_cej_2023_145982
crossref_primary_10_1002_batt_202000273
crossref_primary_10_1016_j_jallcom_2022_164120
crossref_primary_10_1002_adma_202401263
crossref_primary_10_1002_anie_202423357
crossref_primary_10_1016_j_materresbull_2020_111129
crossref_primary_10_1002_adfm_202201038
crossref_primary_10_1002_celc_202001555
crossref_primary_10_1002_aenm_202201530
crossref_primary_10_1021_acsami_1c04788
crossref_primary_10_1016_j_jallcom_2023_173129
crossref_primary_10_1016_j_cclet_2022_04_025
crossref_primary_10_1016_j_jechem_2021_05_015
crossref_primary_10_1016_j_cej_2022_135825
crossref_primary_10_1016_j_jechem_2021_11_004
crossref_primary_10_1016_j_jechem_2024_01_072
crossref_primary_10_1021_acsami_1c01393
crossref_primary_10_1039_D4TA07639G
crossref_primary_10_1007_s11581_022_04535_1
crossref_primary_10_1039_D3TA00096F
crossref_primary_10_1016_j_micromeso_2023_112892
crossref_primary_10_1039_D1TA06499A
crossref_primary_10_1021_acsaem_0c01307
crossref_primary_10_1021_acsnano_2c00515
crossref_primary_10_1002_adma_202008654
crossref_primary_10_1016_j_jpowsour_2023_233382
crossref_primary_10_1039_D1SE01987B
crossref_primary_10_1021_acsami_1c16650
crossref_primary_10_1002_anie_202400343
crossref_primary_10_1002_inf2_12304
crossref_primary_10_1016_j_cej_2024_153647
crossref_primary_10_1002_smsc_202300088
crossref_primary_10_1016_j_jechem_2021_05_023
crossref_primary_10_1016_j_mtcomm_2024_108780
crossref_primary_10_1002_ange_202212744
crossref_primary_10_1002_adma_202300861
crossref_primary_10_1002_advs_202207442
crossref_primary_10_1016_j_nanoen_2024_109265
crossref_primary_10_1002_bte2_20220008
crossref_primary_10_1002_bte2_20220006
crossref_primary_10_1016_j_ensm_2022_10_053
crossref_primary_10_1016_j_cej_2023_143303
crossref_primary_10_1016_j_joule_2021_06_009
crossref_primary_10_1002_anie_202212151
crossref_primary_10_1002_celc_202200416
crossref_primary_10_1016_j_cej_2025_159333
crossref_primary_10_1021_acsaem_0c01655
crossref_primary_10_1016_j_materresbull_2024_113249
crossref_primary_10_1021_acsaem_0c00568
crossref_primary_10_1039_C9EE02049G
crossref_primary_10_1002_smll_202206375
crossref_primary_10_1016_j_jallcom_2021_159952
crossref_primary_10_1002_adma_202402337
crossref_primary_10_1007_s10853_022_07082_2
crossref_primary_10_1021_acsami_4c02109
crossref_primary_10_1016_j_ensm_2023_103040
crossref_primary_10_1016_j_ensm_2024_103222
crossref_primary_10_1002_admt_202001136
crossref_primary_10_1016_j_cej_2020_127769
crossref_primary_10_1016_j_jechem_2021_05_039
crossref_primary_10_1039_D0EE03005H
crossref_primary_10_1002_anie_202315087
crossref_primary_10_1016_S1872_2067_24_60096_3
crossref_primary_10_1039_D1TA01091C
crossref_primary_10_1039_D2EE00007E
crossref_primary_10_1016_j_jpowsour_2021_230764
crossref_primary_10_1039_D3CP02857G
crossref_primary_10_1016_j_jcis_2022_01_148
crossref_primary_10_1002_eem2_12187
crossref_primary_10_1016_j_ensm_2022_02_037
crossref_primary_10_1039_D4FD00024B
crossref_primary_10_1021_acsami_4c18988
crossref_primary_10_1002_adfm_202108669
crossref_primary_10_1016_j_electacta_2022_141465
crossref_primary_10_1016_j_surfin_2022_101869
crossref_primary_10_1002_ange_202212151
crossref_primary_10_3390_electrochem3020020
crossref_primary_10_1002_adfm_202306933
crossref_primary_10_1002_adfm_202313107
crossref_primary_10_3390_batteries10040124
crossref_primary_10_1016_j_ensm_2024_103727
crossref_primary_10_1016_j_jechem_2023_05_052
crossref_primary_10_1002_anie_202007159
crossref_primary_10_1002_adma_202300771
crossref_primary_10_1007_s11581_021_04100_2
crossref_primary_10_1016_j_apsusc_2021_149908
crossref_primary_10_1002_aenm_202102024
crossref_primary_10_1016_j_jallcom_2023_171427
crossref_primary_10_3390_nano14131155
crossref_primary_10_1016_j_cclet_2021_12_064
crossref_primary_10_1002_adma_202203194
crossref_primary_10_1016_j_cej_2024_158856
crossref_primary_10_1039_D3TA07591E
crossref_primary_10_1039_D4RA04740K
crossref_primary_10_1007_s12598_024_02646_4
crossref_primary_10_1021_acsami_4c13183
crossref_primary_10_1016_j_ensm_2024_103711
crossref_primary_10_1016_j_ensm_2024_103832
crossref_primary_10_26599_NRE_2024_9120126
crossref_primary_10_1002_aenm_202400035
crossref_primary_10_1007_s11426_020_9915_y
crossref_primary_10_1016_j_apt_2022_103530
crossref_primary_10_1021_acs_energyfuels_1c00990
crossref_primary_10_1016_j_cej_2022_139566
crossref_primary_10_1002_adma_202003955
crossref_primary_10_1016_j_jechem_2021_08_045
crossref_primary_10_1002_anie_202103303
crossref_primary_10_1002_adma_202102034
crossref_primary_10_1002_ente_202300092
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1002_anie_202114671
crossref_primary_10_1002_eem2_12197
crossref_primary_10_1007_s40820_021_00648_w
crossref_primary_10_1002_nano_202100177
crossref_primary_10_1016_j_apenergy_2022_120543
crossref_primary_10_1016_j_mtcomm_2021_102323
crossref_primary_10_1021_jacs_2c13776
crossref_primary_10_1016_j_jpowsour_2023_232783
crossref_primary_10_1016_j_scib_2024_03_043
crossref_primary_10_1021_acsnano_2c01390
crossref_primary_10_1002_smll_202303781
crossref_primary_10_1016_j_est_2023_108102
crossref_primary_10_1016_j_matt_2021_01_012
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1016_j_jechem_2020_07_054
crossref_primary_10_1002_smll_202303490
crossref_primary_10_1016_j_cej_2021_130129
crossref_primary_10_1021_acsnano_0c06944
crossref_primary_10_1021_acsami_2c10917
crossref_primary_10_1021_cbe_4c00040
crossref_primary_10_1016_j_cej_2022_139344
crossref_primary_10_1016_j_rser_2025_115453
crossref_primary_10_1039_D4TA08756A
crossref_primary_10_1016_j_mser_2025_100955
crossref_primary_10_1021_acsanm_3c00777
crossref_primary_10_1002_eem2_12257
crossref_primary_10_1002_ange_202302276
crossref_primary_10_1016_j_jiec_2023_01_027
crossref_primary_10_1016_j_mtener_2022_101069
crossref_primary_10_1002_adfm_202414009
crossref_primary_10_1039_D3EE01677C
crossref_primary_10_1002_adma_202101006
crossref_primary_10_1007_s11771_024_5562_2
crossref_primary_10_1038_s41467_021_24873_4
crossref_primary_10_1039_D1MA00121C
crossref_primary_10_1007_s11426_022_1398_5
crossref_primary_10_3390_nano11082083
crossref_primary_10_1016_j_chempr_2020_09_015
crossref_primary_10_1016_j_ensm_2022_11_048
crossref_primary_10_1021_acsami_3c10163
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1016_j_micromeso_2021_111558
crossref_primary_10_1002_adma_202310245
crossref_primary_10_1016_j_jechem_2021_01_004
crossref_primary_10_1002_aenm_202103304
crossref_primary_10_1016_j_diamond_2022_108851
crossref_primary_10_1016_j_jechem_2021_07_010
crossref_primary_10_1002_adfm_202302888
crossref_primary_10_1002_eem2_12369
crossref_primary_10_1021_acs_energyfuels_2c02981
crossref_primary_10_1007_s12274_022_5017_8
crossref_primary_10_1016_j_heliyon_2024_e36083
crossref_primary_10_1002_batt_202400284
crossref_primary_10_1002_adma_202100171
crossref_primary_10_1016_j_compositesb_2020_108004
crossref_primary_10_1002_idm2_12118
crossref_primary_10_1002_anie_202408026
crossref_primary_10_1016_j_ijhydene_2025_02_367
crossref_primary_10_1002_ange_202407042
crossref_primary_10_1021_acsami_2c20616
crossref_primary_10_1039_D1EE00271F
crossref_primary_10_1002_smll_202411744
crossref_primary_10_1021_acs_nanolett_4c04519
crossref_primary_10_1021_acsaem_1c00257
crossref_primary_10_1002_ente_202100721
crossref_primary_10_1002_smll_202307951
crossref_primary_10_1039_D0NR06732F
crossref_primary_10_1002_adfm_202312550
crossref_primary_10_1002_smll_202300089
crossref_primary_10_1016_j_cej_2025_160285
crossref_primary_10_1002_adfm_202110857
crossref_primary_10_1016_j_ensm_2023_02_023
crossref_primary_10_1021_acscentsci_0c00449
crossref_primary_10_1021_acsami_2c04284
crossref_primary_10_1002_idm2_12007
crossref_primary_10_1016_j_ensm_2024_103744
crossref_primary_10_1002_batt_202400155
crossref_primary_10_1016_j_cej_2022_138287
crossref_primary_10_1016_j_jpowsour_2024_235365
crossref_primary_10_3390_molecules27010228
crossref_primary_10_1002_ange_202408026
crossref_primary_10_1002_anie_202407042
crossref_primary_10_1039_D1TA09408D
crossref_primary_10_1002_cey2_585
crossref_primary_10_1021_acsami_1c00494
crossref_primary_10_1016_j_est_2023_108423
crossref_primary_10_1002_adma_202302771
crossref_primary_10_1016_j_jallcom_2022_165838
crossref_primary_10_1016_j_nanoen_2022_107794
crossref_primary_10_1016_j_ccr_2024_215909
crossref_primary_10_1021_jacs_4c05827
crossref_primary_10_1016_j_xcrp_2022_101186
crossref_primary_10_1002_ange_202400343
crossref_primary_10_1016_S1872_5805_24_60838_3
crossref_primary_10_1021_acs_energyfuels_4c02588
crossref_primary_10_1007_s40843_020_1552_7
crossref_primary_10_1016_j_electacta_2022_140531
crossref_primary_10_3389_fchem_2021_830485
crossref_primary_10_34133_2021_1205324
crossref_primary_10_1016_j_electacta_2021_139013
crossref_primary_10_1007_s40820_023_01306_z
crossref_primary_10_1002_aenm_202201056
crossref_primary_10_1002_eem2_12215
crossref_primary_10_1021_acs_energyfuels_3c00088
crossref_primary_10_1002_inf2_12291
crossref_primary_10_1016_j_cej_2024_151938
crossref_primary_10_1103_PhysRevApplied_18_044072
crossref_primary_10_1016_j_ensm_2022_07_001
crossref_primary_10_1021_acsami_2c12507
crossref_primary_10_1002_adma_202303520
crossref_primary_10_1002_eem2_12451
crossref_primary_10_1002_aenm_202101449
crossref_primary_10_1016_j_jiec_2023_04_025
crossref_primary_10_1016_j_patter_2023_100799
crossref_primary_10_1016_j_cej_2024_157246
crossref_primary_10_1016_j_electacta_2022_140402
crossref_primary_10_1002_aenm_202102774
crossref_primary_10_1039_D2TA09310C
crossref_primary_10_1002_advs_202103910
crossref_primary_10_1039_D0TA00800A
crossref_primary_10_1002_anie_202302276
crossref_primary_10_1016_j_electacta_2024_144794
crossref_primary_10_1016_j_jallcom_2021_161794
crossref_primary_10_1002_slct_202302876
crossref_primary_10_1016_j_fmre_2021_06_011
crossref_primary_10_1002_smll_202102962
crossref_primary_10_1039_D1GC02872C
crossref_primary_10_1016_j_electacta_2022_140430
crossref_primary_10_1002_celc_202100365
crossref_primary_10_1016_j_cej_2022_140948
crossref_primary_10_1002_adma_202100810
crossref_primary_10_1007_s12274_022_5156_y
crossref_primary_10_1002_adfm_202406290
crossref_primary_10_1016_j_jcis_2025_01_167
crossref_primary_10_1039_C9TA13191D
crossref_primary_10_1039_D1RA08566B
crossref_primary_10_1002_smll_202304122
crossref_primary_10_1016_j_cej_2021_132931
crossref_primary_10_1002_adfm_202408113
crossref_primary_10_1016_j_est_2021_103824
crossref_primary_10_1002_anie_202419446
crossref_primary_10_1016_j_jallcom_2021_163608
crossref_primary_10_1021_acs_inorgchem_4c00777
crossref_primary_10_1073_pnas_2301260120
crossref_primary_10_1002_adfm_202210987
crossref_primary_10_1002_batt_202100192
crossref_primary_10_1002_smtd_202300523
crossref_primary_10_1016_j_apcatb_2022_121934
crossref_primary_10_1039_D2TA07806F
crossref_primary_10_1002_smll_202202006
crossref_primary_10_1007_s11581_021_04202_x
crossref_primary_10_1021_acsenergylett_4c00859
crossref_primary_10_1021_acs_nanolett_4c01618
crossref_primary_10_1039_D3NJ05050E
crossref_primary_10_1002_anie_202106788
crossref_primary_10_1016_j_ensm_2022_12_016
crossref_primary_10_1002_adfm_202304568
crossref_primary_10_1002_adma_202303780
crossref_primary_10_1039_D0EE02620D
crossref_primary_10_1016_j_mattod_2020_10_021
crossref_primary_10_1002_adfm_202106966
crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1039_D2TA04095F
crossref_primary_10_1039_D3TA00210A
crossref_primary_10_1039_D2SE00587E
crossref_primary_10_1016_j_est_2024_111023
crossref_primary_10_3390_molecules26216341
crossref_primary_10_1021_acsaem_0c03189
crossref_primary_10_1002_ange_202315087
crossref_primary_10_1002_aenm_202403439
crossref_primary_10_1016_j_cej_2021_128562
crossref_primary_10_1016_j_electacta_2021_139572
crossref_primary_10_2139_ssrn_4172911
crossref_primary_10_1021_acsaem_3c00177
crossref_primary_10_1002_wene_461
crossref_primary_10_1016_j_colsurfa_2024_134824
crossref_primary_10_1039_D1TA10444F
crossref_primary_10_1016_j_est_2023_107601
crossref_primary_10_1002_wene_464
crossref_primary_10_1002_smtd_202400475
crossref_primary_10_1021_acsami_4c18159
crossref_primary_10_1016_j_elecom_2021_106971
crossref_primary_10_1016_j_nanoen_2021_105928
crossref_primary_10_1039_D1TA05657C
crossref_primary_10_1016_j_ensm_2021_05_031
crossref_primary_10_1002_adfm_202316838
crossref_primary_10_1016_j_jcis_2021_10_015
crossref_primary_10_1039_D2TA02217F
crossref_primary_10_1007_s12598_022_01989_0
crossref_primary_10_1016_j_ensm_2023_102842
crossref_primary_10_1021_acsaem_3c00067
crossref_primary_10_2139_ssrn_4133339
crossref_primary_10_1002_aenm_202102739
crossref_primary_10_1016_j_coelec_2020_100652
crossref_primary_10_1021_acsami_2c02713
crossref_primary_10_1016_j_ensm_2022_07_035
crossref_primary_10_1016_j_joule_2025_101878
crossref_primary_10_1016_j_apsusc_2020_148632
crossref_primary_10_1016_j_cej_2022_140991
crossref_primary_10_1016_j_jechem_2021_09_036
crossref_primary_10_1016_j_jelechem_2024_118229
crossref_primary_10_1021_acsaem_3c01284
crossref_primary_10_1016_j_jallcom_2021_162556
crossref_primary_10_1021_acsami_2c06067
crossref_primary_10_1007_s12274_023_5443_2
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1039_D1TA09371A
crossref_primary_10_1039_D4CC05450D
crossref_primary_10_1016_j_chempr_2022_01_002
crossref_primary_10_1021_acsenergylett_3c00709
crossref_primary_10_1002_ange_202423357
crossref_primary_10_1016_j_jechem_2020_08_056
crossref_primary_10_1002_smll_202106144
crossref_primary_10_1002_aenm_202100332
crossref_primary_10_1039_D1CP03030B
crossref_primary_10_1007_s10008_022_05215_w
Cites_doi 10.1002/aenm.201500117
10.1016/j.ensm.2018.05.018
10.1002/aenm.201501636
10.1021/jacs.8b00411
10.5796/electrochemistry.19-00021
10.1002/aenm.201800590
10.1002/adma.201805571
10.1149/2.0981714jes
10.1038/s41560-019-0351-0
10.1038/nmat4778
10.1016/j.isci.2018.07.021
10.1021/jacs.7b11434
10.1149/08513.0295ecst
10.1002/adma.201804271
10.1002/smtd.201700134
10.1016/j.gee.2017.08.002
10.1002/aenm.201602923
10.1038/srep32433
10.1002/ange.201812062
10.1016/j.nantod.2018.02.006
10.1002/ange.201605676
10.1002/ange.201810132
10.1021/acs.jpcc.8b01507
10.1016/S1474-4422(08)70158-3
10.1038/s41560-019-0405-3
10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
10.1021/acscentsci.7b00123
10.1016/j.jpowsour.2013.12.031
10.1002/adfm.201801323
10.1126/science.1212741
10.1038/451652a
10.1016/j.jechem.2018.06.001
10.1021/acs.nanolett.5b04166
10.1002/smll.201801536
10.1021/acsnano.7b08778
10.1039/C8TA08159J
10.1021/acs.nanolett.5b04189
10.1002/aenm.201501808
10.1039/C4TA06748G
10.1002/ange.201603897
10.1016/j.jpowsour.2011.11.007
10.1002/aenm.201401986
10.1016/0013-4686(81)85170-5
10.1002/adfm.201801791
10.1038/s41560-018-0214-0
10.1002/anie.201304762
10.1002/anie.201808311
10.1002/aenm.201500124
10.1021/acs.nanolett.5b00367
10.1002/aenm.201800933
10.1002/aenm.201700260
10.1021/jacs.5b08113
10.1002/aenm.201601630
10.1002/ange.201808311
10.1016/j.nanoen.2016.06.036
10.1002/aenm.201400981
10.1002/adma.201603401
10.1002/pssa.201330569
10.1016/0013-4686(76)85048-7
10.1021/jz401763d
10.1149/2.106311jes
10.1002/aenm.201301473
10.1016/j.joule.2018.09.024
10.1021/cr500062v
10.1021/jacs.6b12358
10.1016/j.ensm.2018.05.014
10.1016/j.est.2017.11.008
10.1021/nl502331f
10.1002/aenm.201802107
10.1016/j.carbon.2018.09.067
10.1002/adma.201303166
10.1016/j.jechem.2019.02.001
10.1021/acsami.8b17393
10.1021/acsenergylett.6b00033
10.1039/c2cp40808b
10.1021/acs.chemmater.7b03654
10.1149/2.0071801jes
10.1016/j.joule.2018.08.010
10.1021/acsami.8b21395
10.1002/smll.201900690
10.1002/adma.201705951
10.1073/pnas.1615837114
10.1038/s41560-017-0005-z
10.1002/adfm.201707533
10.1002/ente.201900197
10.1002/anie.201812062
10.1002/anie.201603897
10.1021/acsenergylett.8b01945
10.1016/j.ensm.2018.03.017
10.1002/aenm.201502459
10.1002/aenm.201702348
10.1002/anie.201810132
10.1149/1.2086571
10.1002/adfm.201504294
10.1002/smtd.201900344
10.1002/aenm.201701082
10.1002/aenm.201800813
10.1149/2.0051706jes
10.1038/nmat3237
10.1002/chem.201600040
10.1149/2.0611506jes
10.1039/C8TA07194B
10.1016/j.nanoen.2016.11.057
10.1039/C8TA08188C
10.1002/aenm.201500285
10.1021/jp408037e
10.1002/ente.201900625
10.1039/C7TA05277D
10.1002/aenm.201802423
10.1149/1.3479828
10.1149/2.0361810jes
10.1038/s41467-018-07975-4
10.1021/acsami.8b05166
10.1039/C8CC07623E
10.1002/aenm.201702839
10.1021/acs.jpcc.9b02625
10.1002/ange.201511830
10.1016/j.ensm.2018.08.009
10.1002/adfm.201707536
10.1002/ange.201812611
10.1126/science.aas9343
10.1149/1.1837963
10.1021/acsenergylett.7b01249
10.1039/C4EE02192D
10.1039/C7EE01004D
10.1021/acs.nanolett.7b03831
10.1039/C8TA08361D
10.1039/C4EE00372A
10.1039/C7TA07460C
10.1038/498416a
10.1021/acs.chemmater.5b02955
10.1021/acsomega.8b01681
10.1002/aenm.201802235
10.1021/acsami.6b05647
10.1016/j.nanoen.2018.05.065
10.1002/adfm.201801188
10.1002/adfm.201800508
10.1002/adma.201506014
10.1002/adfm.201707234
10.1002/ange.201300680
10.1038/s41467-018-06629-9
10.1002/anie.201511830
10.1021/acsnano.8b05534
10.1002/adma.201603040
10.1002/9781119297895
10.1016/j.joule.2018.01.002
10.1021/acs.nanolett.5b00521
10.1039/C7TA06781J
10.1002/aenm.201802207
10.1039/C7TA00035A
10.1038/nenergy.2016.132
10.1002/adma.201705590
10.1007/s41918-018-0010-3
10.1002/anie.201505444
10.1002/cssc.201700977
10.1002/admt.201700233
10.1039/C8TA01483C
10.1002/adfm.201707520
10.1038/nmat2460
10.1002/smtd.201800038
10.1039/C9TA02877C
10.1021/jacs.5b04472
10.31635/ccschem.019.20180016
10.1002/aenm.201803477
10.1021/acs.nanolett.7b00417
10.1021/acsenergylett.6b00194
10.1002/anie.201300680
10.1039/C6EE00789A
10.1021/jz500222f
10.1002/adma.201501559
10.1021/acsnano.5b07347
10.1016/S1388-2481(02)00358-2
10.1002/aenm.201402290
10.1002/anie.201812611
10.1002/aenm.201801560
10.1002/adfm.201704865
10.1002/smll.201802516
10.1039/C7TA06657K
10.1038/s41560-019-0338-x
10.1002/ange.201304762
10.1021/acs.jpcc.8b09378
10.1002/anie.201605676
10.1016/j.jechem.2018.04.014
10.1016/j.jpowsour.2018.10.060
10.1039/C7EE01430A
10.1039/C8TA03358G
10.1149/2.0071803jes
10.1021/acs.chemmater.7b02339
10.1038/nenergy.2017.96
10.1016/j.jenvman.2018.08.008
10.1021/acsnano.7b01945
10.1021/acsnano.6b06369
10.1021/acs.chemmater.7b03870
10.1002/ange.201505444
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201909339
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 12652
ExternalDocumentID 31490599
10_1002_anie_201909339
ANIE201909339
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21776019; 21808124
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2016YFA0202500
– fundername: Beijing Municipal Science & Technology Commission
  funderid: Z181100004518001
– fundername: National Natural Science Foundation of China
  grantid: 21776019
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21808124
– fundername: Beijing Municipal Science & Technology Commission
  grantid: Z181100004518001
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
EJD
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4769-2ea58c9d0fea6665e7c00f362c70858ee964f14b887faad2d839a31634b71283
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:47:30 EDT 2025
Wed Aug 06 16:33:17 EDT 2025
Thu Apr 03 07:02:05 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Wed Aug 06 19:12:47 EDT 2025
Wed Jan 22 16:35:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords lean electrolyte
electrochemistry
lithium-sulfur batteries
batteries
energy storage
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-2ea58c9d0fea6665e7c00f362c70858ee964f14b887faad2d839a31634b71283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7565-2204
0000-0002-4183-703X
0000-0001-8402-7697
0000-0001-5775-3589
0000-0002-9544-5795
0000-0001-7394-9186
PMID 31490599
PQID 2425553896
PQPubID 946352
PageCount 17
ParticipantIDs proquest_miscellaneous_2286938017
proquest_journals_2425553896
pubmed_primary_31490599
crossref_citationtrail_10_1002_anie_201909339
crossref_primary_10_1002_anie_201909339
wiley_primary_10_1002_anie_201909339_ANIE201909339
PublicationCentury 2000
PublicationDate July 27, 2020
PublicationDateYYYYMMDD 2020-07-27
PublicationDate_xml – month: 07
  year: 2020
  text: July 27, 2020
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2018; 122
2018; 165
2017; 1
2017; 3
2019; 11
2019; 10
2014 2015 2018 2016; 7 5 10 6
1997 2018; 144 15
2018 2013 2013; 122 52 125
2017 2015 2015 2019 2019; 2 15 5 58 131
2017 2018; 17 6
2018; 407
2018; 85
2013 2018; 25 2
2016 2014; 9 253
2016 2015; 16 27
2016 2017 2018 2017 2018; 6 29 140 10 140
2011 2018 2008; 334 361 451
2013; 160
2013 2013; 52 125
2014; 211
2018; 6
2019 2015 2015; 31 54 127
2018; 9
2017; 31
2018; 8
2018; 3
2014; 5
2014; 4
2018; 2
2015; 137
2018; 1
2016 2018; 10 28
2018 2018; 57 130
2019 2018 2017; 15 12 11
2016 2015 2018; 6 5 30
2012 2019; 14 141
2017 2012; 16 11
2018; 30
2018 2016 2018 2019; 8 26 6 39
2018 2018; 8 8
2017; 164
2014; 7
2017 2015; 114 15
2009 2008 2016 2016 2018 2017 2018; 8 22 26 14 5 28
1976 1981; 21 26
2015; 162
2019; 7
2017 2017 2017 2018 2019; 10 29 7 28 9
2018; 28
2019; 9
2019; 4
2002 2002; 4 14
2015; 5
2019; 3
2015; 3
2018; 226
2019; 1
2016; 10
2018 2018; 28 30
1990 2012; 137 203
2017; 29
2016; 16
2013 2017 1970 2014 2019; 498 2 117 114
2018; 27
2019 2019; 58 131
2018; 19
2016; 1
2016 2016; 55 128
2015; 27
2017; 17
2018 2016 2016; 2 55 128
2019 2019 2019 2013; 87 123 117
2018 2015; 28 5
2017; 10
2018 2018; 6 50
2019
2019 2014; 9 14
2017 2018; 139 10
2018; 12
2013 2010; 4 157
2016; 28
2018; 54
2016; 8
2018; 15
2018; 14
e_1_2_7_127_5
e_1_2_7_127_4
e_1_2_7_127_3
e_1_2_7_3_1
e_1_2_7_127_2
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_83_2
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_116_3
e_1_2_7_116_2
e_1_2_7_116_1
e_1_2_7_94_2
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_56_1
e_1_2_7_56_4
e_1_2_7_56_3
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_4_1
e_1_2_7_105_2
e_1_2_7_128_2
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_12_3
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_93_3
e_1_2_7_93_2
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_70_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_1_3
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_9_6
e_1_2_7_9_5
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_9_7
e_1_2_7_118_1
e_1_2_7_92_2
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_77_2
e_1_2_7_39_1
e_1_2_7_2_2
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_80_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_88_2
e_1_2_7_88_3
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_91_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_53_2
Yao N. P. (e_1_2_7_5_3) 1970; 117
e_1_2_7_38_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_87_2
e_1_2_7_64_3
e_1_2_7_64_2
e_1_2_7_64_4
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_37_1
e_1_2_7_109_1
e_1_2_7_124_4
e_1_2_7_124_3
e_1_2_7_8_1
e_1_2_7_124_2
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_40_2
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_48_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_97_2
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_5_5
e_1_2_7_5_4
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
Fang R. P. (e_1_2_7_45_2) 2018; 30
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_85_2
e_1_2_7_47_1
e_1_2_7_114_2
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_4
e_1_2_7_96_3
e_1_2_7_96_2
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_96_5
Xu G. L. (e_1_2_7_119_1) 2018; 8
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_46_2
e_1_2_7_46_3
e_1_2_7_69_1
e_1_2_7_115_2
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_72_2
e_1_2_7_72_5
e_1_2_7_72_3
e_1_2_7_72_4
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
References_xml – volume: 5
  start-page: 25005
  year: 2017
  end-page: 25013
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 53
  year: 2018
  end-page: 64
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 19924
  year: 2017
  end-page: 19933
  publication-title: J. Mater. Chem. A
– volume: 85
  start-page: 295
  year: 2018
  end-page: 302
  publication-title: ECS Trans.
– volume: 3
  start-page: 2
  year: 2018
  end-page: 19
  publication-title: Green Energy Environ.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 87 123 117
  start-page: 254 14229 20531
  year: 2019 2019 2019 2013
  end-page: 259 14238 20541
  publication-title: Electrochemistry J. Phys. Chem. C Energy Technol. J. Phys. Chem. C
– volume: 16 11
  start-page: 70 172
  year: 2017 2012
  end-page: 81 172
  publication-title: Nat. Mater. Nat. Mater.
– volume: 28 5
  year: 2018 2015
  publication-title: Adv. Funct. Mater. Adv. Energy Mater.
– volume: 2 15 5 58 131
  start-page: 813 3309 5557 5613
  year: 2017 2015 2015 2019 2019
  end-page: 820 3316 5561 5617
  publication-title: Nat. Energy Nano Lett. Adv. Energy Mater. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 3061
  year: 2017
  end-page: 3067
  publication-title: Nano Lett.
– volume: 165
  start-page: A6029
  year: 2018
  end-page: A6033
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 5203
  year: 2015
  end-page: 5209
  publication-title: Adv. Mater.
– volume: 211
  start-page: 1895
  year: 2014
  end-page: 1899
  publication-title: Phys. Status Solidi A
– volume: 16 27
  start-page: 549 6765
  year: 2016 2015
  end-page: 554 6770
  publication-title: Nano Lett. Chem. Mater.
– volume: 9 253
  start-page: 2603 263
  year: 2016 2014
  end-page: 2608 268
  publication-title: Energy Environ. Sci. J. Power Sources
– volume: 137
  start-page: 11542
  year: 2015
  end-page: 11545
  publication-title: J. Am. Chem. Soc.
– volume: 4 157
  start-page: 3227 A1131
  year: 2013 2010
  end-page: 3232 A1138
  publication-title: J. Phys. Chem. Lett. J. Electrochem. Soc.
– volume: 6
  start-page: 23396
  year: 2018
  end-page: 23407
  publication-title: J. Mater. Chem. A
– volume: 10 28
  start-page: 4111
  year: 2016 2018
  end-page: 4118
  publication-title: ACS Nano Adv. Funct. Mater.
– volume: 11
  start-page: 6136
  year: 2019
  end-page: 6142
  publication-title: ACS Appl. Mater. Interfaces
– volume: 162
  start-page: A982
  year: 2015
  end-page: A990
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 2697
  year: 2014
  end-page: 2705
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 8
  start-page: 25193
  year: 2016
  end-page: 25201
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8 26 6 39
  start-page: 722 18660 88
  year: 2018 2016 2018 2019
  end-page: 728 18668 100
  publication-title: Adv. Energy Mater. Nano Energy J. Mater. Chem. A J. Energy Chem.
– volume: 1
  start-page: 128
  year: 2019
  end-page: 137
  publication-title: CCS Chemistry
– volume: 1
  start-page: 239
  year: 2018
  end-page: 293
  publication-title: Electrochem. Energy Rev.
– volume: 3
  start-page: 11290
  year: 2018
  end-page: 11299
  publication-title: ACS Omega
– volume: 5
  start-page: 915
  year: 2014
  end-page: 918
  publication-title: J. Phys. Chem. Lett.
– volume: 28 30
  year: 2018 2018
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 6 29 140 10 140
  start-page: 1455 1694 3134
  year: 2016 2017 2018 2017 2018
  end-page: 1459 1703 3138
  publication-title: Adv. Energy Mater. Adv. Mater. J. Am. Chem. Soc. Energy Environ. Sci. J. Am. Chem. Soc.
– volume: 28
  start-page: 3374
  year: 2016
  end-page: 3382
  publication-title: Adv. Mater.
– volume: 25 2
  start-page: 6547 2681
  year: 2013 2018
  end-page: 6553 2693
  publication-title: Adv. Mater. Joule
– volume: 6
  start-page: 23062
  year: 2018
  end-page: 23070
  publication-title: J. Mater. Chem. A
– volume: 164
  start-page: A3766
  year: 2017
  end-page: A3771
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 420
  year: 2018
  end-page: 427
  publication-title: ACS Energy Lett.
– volume: 114 15
  start-page: 840 3780
  year: 2017 2015
  end-page: 845 3786
  publication-title: Proc. Natl. Acad. Sci. USA Nano Lett.
– volume: 3
  start-page: 783
  year: 2018
  end-page: 791
  publication-title: Nat. Energy
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 21435
  year: 2017
  end-page: 21441
  publication-title: J. Mater. Chem. A
– volume: 9 14
  start-page: 5288
  year: 2019 2014
  end-page: 5294
  publication-title: Adv. Energy Mater. Nano Lett.
– volume: 3
  start-page: 605
  year: 2017
  end-page: 613
  publication-title: ACS Cent. Sci.
– volume: 165
  start-page: A2093
  year: 2018
  end-page: A2095
  publication-title: J. Electrochem. Soc.
– volume: 58 131
  start-page: 3779 3819
  year: 2019 2019
  end-page: 3783 3823
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 188
  year: 2019
  publication-title: Nat. Commun.
– volume: 31 54 127
  start-page: 119 11018 11170
  year: 2019 2015 2015
  end-page: 124 11020 11172
  publication-title: J. Energy Chem. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 3490
  year: 2017
  end-page: 3496
  publication-title: ChemSusChem
– volume: 7 5 10 6
  start-page: 3902 43749
  year: 2014 2015 2018 2016
  end-page: 3920 43759
  publication-title: Energy Environ. Sci. Adv. Energy Mater. ACS Appl. Mater. Interfaces Adv. Energy Mater.
– volume: 407
  start-page: 53
  year: 2018
  end-page: 62
  publication-title: J. Power Sources
– volume: 2
  start-page: 710
  year: 2018
  end-page: 724
  publication-title: Joule
– volume: 122 52 125
  start-page: 15264 7460 7608
  year: 2018 2013 2013
  end-page: 15275 7463 7611
  publication-title: J. Phys. Chem. C Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 3808
  year: 2015
  end-page: 3820
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 10462
  year: 2016
  end-page: 10470
  publication-title: ACS Nano
– volume: 164
  start-page: A917
  year: 2017
  end-page: A922
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 418
  year: 2017
  end-page: 423
  publication-title: Nano Energy
– volume: 15
  start-page: 458
  year: 2018
  end-page: 464
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 15002
  year: 2017
  end-page: 15007
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 12143
  year: 2015
  end-page: 12152
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 14093
  year: 2018
  end-page: 14096
  publication-title: Chem. Commun.
– volume: 1
  start-page: 16132
  year: 2016
  publication-title: Nat. Energy
– volume: 27
  start-page: 1555
  year: 2018
  end-page: 1565
  publication-title: J. Energy Chem.
– volume: 57 130
  start-page: 16732 16974
  year: 2018 2018
  end-page: 16736 16978
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 226
  start-page: 1
  year: 2018
  end-page: 12
  publication-title: J. Environ. Manage.
– volume: 15
  start-page: 282
  year: 2018
  end-page: 290
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  publication-title: Nat. Energy
– volume: 6 5 30
  start-page: 32433 685
  year: 2016 2015 2018
  end-page: 691
  publication-title: Sci. Rep. Adv. Energy Mater. Chem. Mater.
– volume: 1
  start-page: 46
  year: 2016
  end-page: 51
  publication-title: ACS Energy Lett.
– volume: 55 128
  start-page: 4231 4303
  year: 2016 2016
  end-page: 4235 4307
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 503
  year: 2016
  end-page: 509
  publication-title: ACS Energy Lett.
– volume: 165
  start-page: A416
  year: 2018
  end-page: A423
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 374
  year: 2019
  end-page: 382
  publication-title: Nat. Energy
– volume: 334 361 451
  start-page: 928 777 652
  year: 2011 2018 2008
  end-page: 935 781
  publication-title: Science Science Nature
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 2 55 128
  start-page: 10027 10181
  year: 2018 2016 2016
  end-page: 10031 10185
  publication-title: Small Methods Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8 22 26 14 5 28
  start-page: 500 7324 1112 11788
  year: 2009 2008 2016 2016 2018 2017 2018
  end-page: 506 7351 1119 11793
  publication-title: Nat. Mater. Chem. Eur. J. Adv. Funct. Mater. Small J. Mater. Chem. A Adv. Funct. Mater.
– volume: 122
  start-page: 25917
  year: 2018
  end-page: 25929
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 9551
  year: 2016
  end-page: 9558
  publication-title: Adv. Mater.
– volume: 4 14
  start-page: 499 963
  year: 2002 2002
  end-page: 502 965
  publication-title: Electrochem. Commun. Adv. Mater.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 84
  year: 2018
  end-page: 107
  publication-title: Nano Today
– volume: 16
  start-page: 519
  year: 2016
  end-page: 527
  publication-title: Nano Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10 29 7 28 9
  start-page: 1568 8037
  year: 2017 2017 2017 2018 2019
  end-page: 1575 8041
  publication-title: Energy Environ. Sci. Chem. Mater. Adv. Energy Mater. Adv. Funct. Mater. Adv. Energy Mater.
– volume: 137 203
  start-page: 876 211
  year: 1990 2012
  end-page: 833 221
  publication-title: J. Electrochem. Soc. J. Power Sources
– volume: 144 15
  start-page: 3081 145
  year: 1997 2018
  end-page: 3091 157
  publication-title: J. Electrochem. Soc. J. Energy Storage
– volume: 9
  start-page: 4164
  year: 2018
  publication-title: Nat. Commun.
– volume: 17 6
  start-page: 7086 22958
  year: 2017 2018
  end-page: 7094 22965
  publication-title: Nano Lett. J. Mater. Chem. A
– volume: 52 125
  start-page: 13186 13426
  year: 2013 2013
  end-page: 13200 13441
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 299
  year: 2018
  end-page: 307
  publication-title: Energy Storage Mater.
– volume: 160
  start-page: A2288
  year: 2013
  end-page: A2292
  publication-title: J. Electrochem. Soc.
– volume: 8 8
  year: 2018 2018
  publication-title: Adv. Energy Mater. Adv. Energy Mater.
– volume: 7
  start-page: 12498
  year: 2019
  end-page: 12506
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2899
  year: 2018
  end-page: 2907
  publication-title: ACS Energy Lett.
– volume: 21 26
  start-page: 119 1823
  year: 1976 1981
  end-page: 131 1829
  publication-title: Electrochim. Acta Electrochim. Acta
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  publication-title: Nat. Energy
– volume: 6
  start-page: 151
  year: 2018
  end-page: 198
  publication-title: iScience
– volume: 55 128
  start-page: 12990 13184
  year: 2016 2016
  end-page: 12995 13189
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15 12 11
  start-page: 11120 6031
  year: 2019 2018 2017
  end-page: 11129 6039
  publication-title: Small ACS Nano ACS Nano
– volume: 498 2 117 114
  start-page: 416 17096 C247 11751
  year: 2013 2017 1970 2014 2019
  end-page: 11787
  publication-title: Nature Nat. Energy J. Electrochem. Soc. Chem. Rev.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 136
  year: 2019
  end-page: 148
  publication-title: Joule
– volume: 29
  start-page: 10037
  year: 2017
  end-page: 10044
  publication-title: Chem. Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 14 141
  start-page: 8703 400
  year: 2012 2019
  end-page: 8710 416
  publication-title: Phys. Chem. Chem. Phys. Carbon
– volume: 57 130
  start-page: 15549 15775
  year: 2018 2018
  end-page: 15552 15778
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6 50
  start-page: 11631 431
  year: 2018 2018
  end-page: 11663 440
  publication-title: J. Mater. Chem. A Nano Energy
– volume: 139 10
  start-page: 8458 23094
  year: 2017 2018
  end-page: 8466 23102
  publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 9775
  year: 2018
  end-page: 9784
  publication-title: ACS Nano
– year: 2019
  publication-title: Energy Technol.
– volume: 6
  start-page: 11582
  year: 2018
  end-page: 11605
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.201500117
– ident: e_1_2_7_42_1
  doi: 10.1016/j.ensm.2018.05.018
– ident: e_1_2_7_72_1
  doi: 10.1002/aenm.201501636
– ident: e_1_2_7_72_5
  doi: 10.1021/jacs.8b00411
– ident: e_1_2_7_124_1
  doi: 10.5796/electrochemistry.19-00021
– ident: e_1_2_7_111_1
  doi: 10.1002/aenm.201800590
– ident: e_1_2_7_58_1
  doi: 10.1002/adma.201805571
– ident: e_1_2_7_122_1
  doi: 10.1149/2.0981714jes
– ident: e_1_2_7_63_1
  doi: 10.1038/s41560-019-0351-0
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat4778
– ident: e_1_2_7_104_1
  doi: 10.1016/j.isci.2018.07.021
– ident: e_1_2_7_72_3
  doi: 10.1021/jacs.7b11434
– volume: 30
  year: 2018
  ident: e_1_2_7_45_2
  publication-title: Adv. Mater.
– ident: e_1_2_7_54_1
  doi: 10.1149/08513.0295ecst
– ident: e_1_2_7_60_1
  doi: 10.1002/adma.201804271
– ident: e_1_2_7_34_1
  doi: 10.1002/smtd.201700134
– ident: e_1_2_7_7_1
  doi: 10.1016/j.gee.2017.08.002
– ident: e_1_2_7_127_3
  doi: 10.1002/aenm.201602923
– ident: e_1_2_7_88_1
  doi: 10.1038/srep32433
– ident: e_1_2_7_81_2
  doi: 10.1002/ange.201812062
– ident: e_1_2_7_48_1
  doi: 10.1016/j.nantod.2018.02.006
– ident: e_1_2_7_70_2
  doi: 10.1002/ange.201605676
– ident: e_1_2_7_91_2
  doi: 10.1002/ange.201810132
– ident: e_1_2_7_116_1
  doi: 10.1021/acs.jpcc.8b01507
– ident: e_1_2_7_9_2
  doi: 10.1016/S1474-4422(08)70158-3
– ident: e_1_2_7_3_1
  doi: 10.1038/s41560-019-0405-3
– ident: e_1_2_7_40_2
  doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
– ident: e_1_2_7_117_1
  doi: 10.1021/acscentsci.7b00123
– ident: e_1_2_7_15_2
  doi: 10.1016/j.jpowsour.2013.12.031
– ident: e_1_2_7_45_1
  doi: 10.1002/adfm.201801323
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_1_3
  doi: 10.1038/451652a
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jechem.2018.06.001
– ident: e_1_2_7_69_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_7_67_1
  doi: 10.1002/smll.201801536
– ident: e_1_2_7_39_1
  doi: 10.1021/acsnano.7b08778
– ident: e_1_2_7_125_1
  doi: 10.1039/C8TA08159J
– ident: e_1_2_7_87_1
  doi: 10.1021/acs.nanolett.5b04189
– ident: e_1_2_7_88_2
  doi: 10.1002/aenm.201501808
– ident: e_1_2_7_13_1
  doi: 10.1039/C4TA06748G
– ident: e_1_2_7_93_3
  doi: 10.1002/ange.201603897
– ident: e_1_2_7_115_2
  doi: 10.1016/j.jpowsour.2011.11.007
– ident: e_1_2_7_14_2
  doi: 10.1002/aenm.201401986
– ident: e_1_2_7_97_2
  doi: 10.1016/0013-4686(81)85170-5
– ident: e_1_2_7_112_1
  doi: 10.1002/adfm.201801791
– ident: e_1_2_7_118_1
  doi: 10.1038/s41560-018-0214-0
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_7_80_1
  doi: 10.1002/anie.201808311
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201500124
– ident: e_1_2_7_83_2
  doi: 10.1021/acs.nanolett.5b00367
– ident: e_1_2_7_94_2
  doi: 10.1002/aenm.201800933
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_102_1
  doi: 10.1021/jacs.5b08113
– ident: e_1_2_7_66_1
  doi: 10.1002/aenm.201601630
– ident: e_1_2_7_80_2
  doi: 10.1002/ange.201808311
– ident: e_1_2_7_64_2
  doi: 10.1016/j.nanoen.2016.06.036
– ident: e_1_2_7_56_2
  doi: 10.1002/aenm.201400981
– ident: e_1_2_7_74_1
  doi: 10.1002/adma.201603401
– ident: e_1_2_7_43_1
  doi: 10.1002/pssa.201330569
– ident: e_1_2_7_97_1
  doi: 10.1016/0013-4686(76)85048-7
– ident: e_1_2_7_33_1
  doi: 10.1021/jz401763d
– ident: e_1_2_7_22_1
  doi: 10.1149/2.106311jes
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.201301473
– ident: e_1_2_7_79_1
  doi: 10.1016/j.joule.2018.09.024
– ident: e_1_2_7_5_4
  doi: 10.1021/cr500062v
– ident: e_1_2_7_85_1
  doi: 10.1021/jacs.6b12358
– ident: e_1_2_7_106_1
  doi: 10.1016/j.ensm.2018.05.014
– ident: e_1_2_7_114_2
  doi: 10.1016/j.est.2017.11.008
– ident: e_1_2_7_77_2
  doi: 10.1021/nl502331f
– ident: e_1_2_7_64_1
  doi: 10.1002/aenm.201802107
– ident: e_1_2_7_105_2
  doi: 10.1016/j.carbon.2018.09.067
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201303166
– ident: e_1_2_7_64_4
  doi: 10.1016/j.jechem.2019.02.001
– ident: e_1_2_7_56_3
  doi: 10.1021/acsami.8b17393
– ident: e_1_2_7_59_1
  doi: 10.1021/acsenergylett.6b00033
– ident: e_1_2_7_105_1
  doi: 10.1039/c2cp40808b
– ident: e_1_2_7_121_1
  doi: 10.1021/acs.chemmater.7b03654
– ident: e_1_2_7_19_1
  doi: 10.1149/2.0071801jes
– ident: e_1_2_7_10_2
  doi: 10.1016/j.joule.2018.08.010
– ident: e_1_2_7_113_1
  doi: 10.1021/acsami.8b21395
– ident: e_1_2_7_12_1
  doi: 10.1002/smll.201900690
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.201705951
– ident: e_1_2_7_83_1
  doi: 10.1073/pnas.1615837114
– ident: e_1_2_7_96_1
  doi: 10.1038/s41560-017-0005-z
– ident: e_1_2_7_127_4
  doi: 10.1002/adfm.201707533
– ident: e_1_2_7_124_3
  doi: 10.1002/ente.201900197
– ident: e_1_2_7_81_1
  doi: 10.1002/anie.201812062
– ident: e_1_2_7_93_2
  doi: 10.1002/anie.201603897
– ident: e_1_2_7_107_1
  doi: 10.1021/acsenergylett.8b01945
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ensm.2018.03.017
– ident: e_1_2_7_56_4
  doi: 10.1002/aenm.201502459
– ident: e_1_2_7_94_1
  doi: 10.1002/aenm.201702348
– ident: e_1_2_7_91_1
  doi: 10.1002/anie.201810132
– ident: e_1_2_7_115_1
  doi: 10.1149/1.2086571
– ident: e_1_2_7_9_4
  doi: 10.1002/adfm.201504294
– ident: e_1_2_7_89_1
  doi: 10.1002/smtd.201900344
– ident: e_1_2_7_62_1
  doi: 10.1002/aenm.201701082
– ident: e_1_2_7_131_1
  doi: 10.1002/aenm.201800813
– ident: e_1_2_7_78_1
  doi: 10.1149/2.0051706jes
– ident: e_1_2_7_2_2
  doi: 10.1038/nmat3237
– ident: e_1_2_7_9_3
  doi: 10.1002/chem.201600040
– ident: e_1_2_7_17_1
  doi: 10.1149/2.0611506jes
– ident: e_1_2_7_64_3
  doi: 10.1039/C8TA07194B
– ident: e_1_2_7_90_1
  doi: 10.1016/j.nanoen.2016.11.057
– ident: e_1_2_7_53_2
  doi: 10.1039/C8TA08188C
– ident: e_1_2_7_96_3
  doi: 10.1002/aenm.201500285
– ident: e_1_2_7_124_4
  doi: 10.1021/jp408037e
– ident: e_1_2_7_120_1
  doi: 10.1002/ente.201900625
– ident: e_1_2_7_76_1
  doi: 10.1039/C7TA05277D
– volume: 117
  start-page: C247
  year: 1970
  ident: e_1_2_7_5_3
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_7_108_1
  doi: 10.1002/aenm.201802423
– ident: e_1_2_7_33_2
  doi: 10.1149/1.3479828
– ident: e_1_2_7_41_1
  doi: 10.1149/2.0361810jes
– ident: e_1_2_7_99_1
  doi: 10.1038/s41467-018-07975-4
– ident: e_1_2_7_85_2
  doi: 10.1021/acsami.8b05166
– ident: e_1_2_7_103_1
  doi: 10.1039/C8CC07623E
– ident: e_1_2_7_47_1
  doi: 10.1002/aenm.201702839
– ident: e_1_2_7_124_2
  doi: 10.1021/acs.jpcc.9b02625
– ident: e_1_2_7_92_2
  doi: 10.1002/ange.201511830
– ident: e_1_2_7_36_1
  doi: 10.1016/j.ensm.2018.08.009
– ident: e_1_2_7_84_1
  doi: 10.1002/adfm.201707536
– ident: e_1_2_7_96_5
  doi: 10.1002/ange.201812611
– ident: e_1_2_7_1_2
  doi: 10.1126/science.aas9343
– ident: e_1_2_7_114_1
  doi: 10.1149/1.1837963
– ident: e_1_2_7_73_1
  doi: 10.1021/acsenergylett.7b01249
– ident: e_1_2_7_56_1
  doi: 10.1039/C4EE02192D
– ident: e_1_2_7_127_1
  doi: 10.1039/C7EE01004D
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.nanolett.7b03831
– ident: e_1_2_7_101_1
  doi: 10.1039/C8TA08361D
– ident: e_1_2_7_123_1
  doi: 10.1039/C4EE00372A
– ident: e_1_2_7_109_1
  doi: 10.1039/C7TA07460C
– ident: e_1_2_7_5_1
  doi: 10.1038/498416a
– ident: e_1_2_7_87_2
  doi: 10.1021/acs.chemmater.5b02955
– ident: e_1_2_7_110_1
  doi: 10.1021/acsomega.8b01681
– ident: e_1_2_7_127_5
  doi: 10.1002/aenm.201802235
– ident: e_1_2_7_71_1
  doi: 10.1021/acsami.6b05647
– ident: e_1_2_7_9_7
  doi: 10.1002/adfm.201801791
– ident: e_1_2_7_128_2
  doi: 10.1016/j.nanoen.2018.05.065
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201801188
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201800508
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.201506014
– volume: 8
  year: 2018
  ident: e_1_2_7_119_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_100_1
  doi: 10.1002/adfm.201707234
– ident: e_1_2_7_116_3
  doi: 10.1002/ange.201300680
– ident: e_1_2_7_82_1
  doi: 10.1038/s41467-018-06629-9
– ident: e_1_2_7_92_1
  doi: 10.1002/anie.201511830
– ident: e_1_2_7_12_2
  doi: 10.1021/acsnano.8b05534
– ident: e_1_2_7_72_2
  doi: 10.1002/adma.201603040
– ident: e_1_2_7_5_5
  doi: 10.1002/9781119297895
– ident: e_1_2_7_57_1
  doi: 10.1016/j.joule.2018.01.002
– ident: e_1_2_7_96_2
  doi: 10.1021/acs.nanolett.5b00521
– ident: e_1_2_7_52_1
  doi: 10.1039/C7TA06781J
– ident: e_1_2_7_98_1
  doi: 10.1002/aenm.201802207
– ident: e_1_2_7_9_6
  doi: 10.1039/C7TA00035A
– ident: e_1_2_7_8_1
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201705590
– ident: e_1_2_7_35_1
  doi: 10.1007/s41918-018-0010-3
– ident: e_1_2_7_46_2
  doi: 10.1002/anie.201505444
– ident: e_1_2_7_129_1
  doi: 10.1002/cssc.201700977
– ident: e_1_2_7_30_1
  doi: 10.1002/admt.201700233
– ident: e_1_2_7_26_1
  doi: 10.1039/C8TA01483C
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.201707520
– ident: e_1_2_7_9_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_93_1
  doi: 10.1002/smtd.201800038
– ident: e_1_2_7_126_1
  doi: 10.1039/C9TA02877C
– ident: e_1_2_7_68_1
  doi: 10.1021/jacs.5b04472
– ident: e_1_2_7_75_1
  doi: 10.31635/ccschem.019.20180016
– ident: e_1_2_7_77_1
  doi: 10.1002/aenm.201803477
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201705590
– ident: e_1_2_7_130_1
  doi: 10.1021/acs.nanolett.7b00417
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.6b00194
– ident: e_1_2_7_116_2
  doi: 10.1002/anie.201300680
– ident: e_1_2_7_15_1
  doi: 10.1039/C6EE00789A
– ident: e_1_2_7_86_1
  doi: 10.1021/jz500222f
– ident: e_1_2_7_95_1
  doi: 10.1002/adma.201501559
– ident: e_1_2_7_11_1
  doi: 10.1021/acsnano.5b07347
– ident: e_1_2_7_40_1
  doi: 10.1016/S1388-2481(02)00358-2
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201402290
– ident: e_1_2_7_96_4
  doi: 10.1002/anie.201812611
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.201801560
– ident: e_1_2_7_11_2
  doi: 10.1002/adfm.201704865
– ident: e_1_2_7_9_5
  doi: 10.1002/smll.201802516
– ident: e_1_2_7_61_1
  doi: 10.1039/C7TA06657K
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_27_2
  doi: 10.1002/ange.201304762
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.jpcc.8b09378
– ident: e_1_2_7_70_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jechem.2018.04.014
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jpowsour.2018.10.060
– ident: e_1_2_7_72_4
  doi: 10.1039/C7EE01430A
– ident: e_1_2_7_128_1
  doi: 10.1039/C8TA03358G
– ident: e_1_2_7_44_1
  doi: 10.1149/2.0071803jes
– ident: e_1_2_7_127_2
  doi: 10.1021/acs.chemmater.7b02339
– ident: e_1_2_7_5_2
  doi: 10.1038/nenergy.2017.96
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jenvman.2018.08.008
– ident: e_1_2_7_12_3
  doi: 10.1021/acsnano.7b01945
– ident: e_1_2_7_55_1
  doi: 10.1021/acsnano.6b06369
– ident: e_1_2_7_88_3
  doi: 10.1021/acs.chemmater.7b03870
– ident: e_1_2_7_46_3
  doi: 10.1002/ange.201505444
SSID ssj0028806
Score 2.7150993
SecondaryResourceType review_article
Snippet The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable...
The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12636
SubjectTerms batteries
Cathodes
Chemical precipitation
Conversion
Economic impact
Electrochemistry
Electrolytes
Electrolytic cells
Energy
Energy storage
Flux density
lean electrolyte
Lithium
Lithium sulfur batteries
Sulfur
Sustainable energy
Title Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201909339
https://www.ncbi.nlm.nih.gov/pubmed/31490599
https://www.proquest.com/docview/2425553896
https://www.proquest.com/docview/2286938017
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VvcCFn9KWQKmMhNSTt1k7iTfcqtVWbdUuUruVVr1ETmyLiiVb7SYHOPEOvCFPwky8CWwrhATHKLbieGY839iebwDeCaWlsqLPjS4wQMlTx3WahxyFbYq8j2tmw85_MU5OrqOzaTz9LYvf80N0G25kGc16TQau8-XhL9JQysCmq1kpxeSUwUcXtggVXXb8UQKV06cXScmpCn3L2hiKw_Xu617pAdRcR66N6zl-CrodtL9x8qlXV3mv-HqPz_F__uoZPFnhUnbkFek5bNhyCx4N23JwL-Dm_Lb6eFt__vHt-1U9c_WCeWpOjLQZJaIt2LnVJRv5sjqzL5Vlwzmdh5Nev2fDtmjLkunSsA93hPvrsuFz3YbJ8WgyPOGrwgy8iFSScmF1PChSEzqrMfyJrSrC0KErLBQiuIG1aRK5fpTjAua0NsIgCtMSkV-UK_SHcgc2y3lpXwLr2ziRQtqIwkyMTLUWSghtlHPGutgEwFu5ZMWKtJxqZ8wyT7csMpqwrJuwAA669neeruOPLfdaMWcrs11mFH_F6ALSJIC33WucaDpF0aWd19hGDJJUomNXAex69eg-JTHeJMKbAEQj5L-MITsan466p1f_0uk1PBa0AxAqLtQebFaL2r5BmFTl-40p_AQvOAnt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiX8k8DBYwE4pQ26_x4jdRDtd1ql24XCRap4mI5sSNW3War3USonHgHXoRX6SvwJMzkDy0IISH1wDGKkzieH39je74BeM6F9oXlHdfoBAOUWKaulrHnorBNEnfQZ5bs_MfjaPA-eH0SnqzBtyYXpuKHaBfcyDJKf00GTgvSuz9ZQykFm85mSQrKZX2u8shefMKobbk3PEARv-D8sD_pDdy6sICbBCKSLrc67CbSeKnVCN9DKxLPS9GVJwIRSNdaGQVpJ4jRAFOtDTeIIrSPyCWIBfpzH197Da5TFXFi6z942xJWcbSGKp_J910qe9_QRHp8d7W7q9Pgb9h2FSqXc93hTbhsRqk64nK6U-TxTvL5FwLJ_2kYb8FmDbzZfmUpt2HNZndgo9fUu7sLH0bT_OO0OPv-5eu7YpYWC1Zxj07tklGm3YKNrM5Yv6obNLvILevNacOfDPcV6zVVaZZMZ4a9OafApshKwtp7MLmKP7sP69k8s1vAOjaMfO7bgOJoDL215oJzbUSaGpuGxgG30QOV1KzsVBxkpio-aa5IPqqVjwMv2_bnFR_JH1tuN2qlar-0VBRghjjHyciBZ-1tHGjaJtKZnRfYhncj6SNyEQ48qNSx_ZSPATUx-jjAS6X6Sx_U_njYb68e_stDT2FjMDkeqdFwfPQIbnBa7vCEy8U2rOeLwj5GTJjHT0ozZKCuWF9_AOH9ZcI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRYJuyrukFDASiFXajJ3EYyQW1TzUocOAoEgVG8uJbTFiyIxmEqGy4h_4EH6Fb-BLuM4LDQghIXXBMoqTOL4Pn2v7ngvwkHLFuKEdX6sUA5REWF-JJPBR2DpNOugzS3b-55P46E347DQ63YCvTS5MxQ_RLrg5yyj9tTPwhbYHP0lDXQa2O5olXEwu6mOVx-bsIwZtq6ejPkr4EaXDwUnvyK_rCvhpyGPhU6Oibip0YI1C9B4ZngaBRU-ecgQgXWNEHNpOmKD9WaU01QgiFEPgEiYc3TnD116Ai2EcCFcrov-q5auiaAxVOhNjvqt637BEBvRgvbvrs-Bv0HYdKZdT3fAKfGsGqTrh8n6_yJP99NMv_JH_0Shehe0adpPDyk6uwYbJrsPlXlPt7ga8HU_zd9Piw_fPX14XM1ssScU8OjUr4vLslmRsVEYGVdWg2VluSG_utvud2T4hvaYmzYqoTJMXCxfWFFlJV3sTTs7jz27BZjbPzG0gHRPFjDITuigaA2-lKKdUaW6tNjbSHviNGsi05mR3pUFmsmKTptLJR7by8eBx235RsZH8seVeo1Wy9kor6cLLCGc4EXvwoL2NA-02iVRm5gW2od1YMMQt3IOdShvbTzEMpx2fjwe01Km_9EEeTkaD9mr3Xx66D5de9odyPJoc34Et6tY6Au5Tvgeb-bIwdxEQ5sm90ggJyHNW1x8pu2Rx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium%E2%80%93Sulfur+Batteries+under+Lean+Electrolyte+Conditions%3A+Challenges+and+Opportunities&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Meng&rft.au=Li%2C+Bo%E2%80%90Quan&rft.au=Peng%2C+Hong%E2%80%90Jie&rft.au=Yuan%2C+Hong&rft.date=2020-07-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=31&rft.spage=12636&rft.epage=12652&rft_id=info:doi/10.1002%2Fanie.201909339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201909339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon