Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities
The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 31; pp. 12636 - 12652 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.07.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed.
Lean on me: The challenges, recent progress, and perspectives for lean‐electrolyte Li–S batteries are discussed in terms of the two electrochemical processes for sulfur, that is, the dissolution–precipitation conversion and the solid–solid pathway. |
---|---|
AbstractList | The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium-sulfur (Li-S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li-S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li-S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li-S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li-S battery design and engineering are discussed. The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium-sulfur (Li-S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li-S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li-S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li-S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li-S battery design and engineering are discussed.The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium-sulfur (Li-S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li-S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li-S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li-S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li-S battery design and engineering are discussed. The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed. Lean on me: The challenges, recent progress, and perspectives for lean‐electrolyte Li–S batteries are discussed in terms of the two electrochemical processes for sulfur, that is, the dissolution–precipitation conversion and the solid–solid pathway. |
Author | Zhao, Meng Huang, Jia‐Qi Wei, Jun‐Yu Li, Bo‐Quan Yuan, Hong Peng, Hong‐Jie |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0001-8402-7697 surname: Zhao fullname: Zhao, Meng organization: Beijing Institute of Technology – sequence: 2 givenname: Bo‐Quan orcidid: 0000-0002-9544-5795 surname: Li fullname: Li, Bo‐Quan organization: Tsinghua University – sequence: 3 givenname: Hong‐Jie orcidid: 0000-0002-4183-703X surname: Peng fullname: Peng, Hong‐Jie organization: Tsinghua University – sequence: 4 givenname: Hong orcidid: 0000-0001-7565-2204 surname: Yuan fullname: Yuan, Hong organization: Beijing Institute of Technology – sequence: 5 givenname: Jun‐Yu orcidid: 0000-0001-5775-3589 surname: Wei fullname: Wei, Jun‐Yu organization: Beijing Institute of Technology – sequence: 6 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31490599$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrFEEQxxtJMA-9epQBL15m7cf0y1uyrBpYzMGcvDS9MzWmQ2_32g9kb_kO-Yb5JJllE4WA5FQF9fsVRf1P0EGIARB6R_CMYEw_2eBgRjHRWDOmX6FjwilpmZTsYOo7xlqpODlCJznfTLxSWLxGR4x0GnOtj9HPpSvXrq7vb-9-VD_W1JzbUiA5yE0NA6RmCTY0Cw99SdFvCzTzGAZXXAz5czO_tt5D-DXRNgzN5WYTU6lhGkN-gw5H6zO8fayn6OrL4mr-rV1efr2Yny3bvpNCtxQsV70e8AhWCMFB9hiPTNBeYsUVgBbdSLqVUnK0dqCDYtoyIli3koQqdoo-7tduUvxdIRezdrkH722AWLOhVAnNFCZyQj88Q29iTWE6ztCOcs6Z0mKi3j9SdbWGwWySW9u0NU9Pm4BuD_Qp5pxgNL0rdveRkqzzhmCzy8bssjF_s5m02TPtafN_Bb0X_jgP2xdoc_b9YvHPfQDCpaIk |
CitedBy_id | crossref_primary_10_1039_D2TA01107G crossref_primary_10_1002_adfm_202104863 crossref_primary_10_1021_acsenergylett_1c02132 crossref_primary_10_1002_adma_202406594 crossref_primary_10_1002_ente_202300518 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1016_S1872_5805_23_60710_3 crossref_primary_10_1002_batt_202200097 crossref_primary_10_1016_j_est_2024_112310 crossref_primary_10_1021_acsami_1c17374 crossref_primary_10_1002_batt_202100359 crossref_primary_10_1021_acs_energyfuels_1c03319 crossref_primary_10_1002_ange_202106788 crossref_primary_10_1002_smll_202105866 crossref_primary_10_1007_s12274_024_6879_8 crossref_primary_10_1021_acsnano_2c09888 crossref_primary_10_1016_j_jmst_2024_03_005 crossref_primary_10_1021_acsami_1c04194 crossref_primary_10_1016_S1872_2067_21_63984_0 crossref_primary_10_1016_j_jclepro_2020_124528 crossref_primary_10_1016_j_nanoen_2021_106426 crossref_primary_10_1039_D1TA05734K crossref_primary_10_1002_anie_202213863 crossref_primary_10_1002_batt_202400768 crossref_primary_10_1016_j_est_2024_114860 crossref_primary_10_1039_D2CS00606E crossref_primary_10_1007_s12598_021_01750_z crossref_primary_10_1016_j_jechem_2020_11_032 crossref_primary_10_1002_advs_202301006 crossref_primary_10_1088_2515_7655_ac4ee3 crossref_primary_10_1007_s11426_022_1421_7 crossref_primary_10_1016_j_jechem_2021_12_023 crossref_primary_10_1002_ange_202423046 crossref_primary_10_1016_j_jechem_2021_12_024 crossref_primary_10_1007_s12274_022_4134_8 crossref_primary_10_1002_asia_202400099 crossref_primary_10_1007_s10118_023_2915_5 crossref_primary_10_1039_D1SE00042J crossref_primary_10_1007_s40820_022_00844_2 crossref_primary_10_1002_adfm_202309625 crossref_primary_10_1016_j_matlet_2021_129356 crossref_primary_10_1016_j_jallcom_2023_172059 crossref_primary_10_1016_j_apsusc_2023_157738 crossref_primary_10_1016_j_jpowsour_2021_229456 crossref_primary_10_1002_anie_202212744 crossref_primary_10_1007_s41918_023_00188_4 crossref_primary_10_1016_j_cej_2020_127688 crossref_primary_10_1021_acsenergylett_2c00874 crossref_primary_10_1016_j_electacta_2023_143033 crossref_primary_10_1021_acsnano_1c05536 crossref_primary_10_1007_s12274_022_4933_y crossref_primary_10_1007_s12274_023_5945_y crossref_primary_10_1016_j_jechem_2021_12_038 crossref_primary_10_1016_j_jechem_2024_10_026 crossref_primary_10_1016_j_xcrp_2024_102347 crossref_primary_10_1016_j_ensm_2020_09_009 crossref_primary_10_1002_aenm_202002180 crossref_primary_10_1039_D2RA02049A crossref_primary_10_1002_smtd_202301335 crossref_primary_10_1039_D4GC05753H crossref_primary_10_1002_adma_202307741 crossref_primary_10_1016_j_electacta_2021_139781 crossref_primary_10_1016_j_carbon_2024_119442 crossref_primary_10_1016_j_jpowsour_2022_231837 crossref_primary_10_1016_j_jpowsour_2024_235717 crossref_primary_10_54392_irjmt2521 crossref_primary_10_1002_aenm_202402072 crossref_primary_10_1002_smll_202202037 crossref_primary_10_1039_D1NR05489A crossref_primary_10_1002_adma_202003012 crossref_primary_10_1002_smll_202307179 crossref_primary_10_1002_advs_202206057 crossref_primary_10_1038_s41467_021_27551_7 crossref_primary_10_1007_s12274_024_6481_0 crossref_primary_10_1016_j_jelechem_2024_118041 crossref_primary_10_1002_batt_202100323 crossref_primary_10_1021_acsaem_4c02856 crossref_primary_10_1002_eom2_12115 crossref_primary_10_1016_j_jallcom_2022_166144 crossref_primary_10_1007_s12598_021_01839_5 crossref_primary_10_1021_acsaem_2c01459 crossref_primary_10_1002_smll_202301755 crossref_primary_10_1007_s11581_022_04761_7 crossref_primary_10_1021_acs_chemrev_1c00838 crossref_primary_10_1021_acsenergylett_4c02049 crossref_primary_10_1021_acsenergylett_1c01091 crossref_primary_10_1002_batt_202200059 crossref_primary_10_1002_ece2_74 crossref_primary_10_1016_j_ensm_2022_04_004 crossref_primary_10_1039_D0EE02651D crossref_primary_10_1038_s43246_024_00463_x crossref_primary_10_1039_D0TA11919A crossref_primary_10_1016_j_esci_2023_100135 crossref_primary_10_1016_j_cej_2023_141898 crossref_primary_10_1016_j_cej_2021_129707 crossref_primary_10_4028_www_scientific_net_AEF_44_87 crossref_primary_10_1016_j_jallcom_2022_166276 crossref_primary_10_1039_D0TA11049C crossref_primary_10_1016_j_joule_2024_04_003 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_adfm_202008586 crossref_primary_10_1002_adma_202211168 crossref_primary_10_1002_smll_202104469 crossref_primary_10_1016_j_heliyon_2024_e36677 crossref_primary_10_1016_j_nanoen_2021_105891 crossref_primary_10_1016_j_mtcomm_2024_111302 crossref_primary_10_1016_j_matchemphys_2024_130236 crossref_primary_10_1021_jacs_2c04176 crossref_primary_10_1039_D1TA03621A crossref_primary_10_1002_adma_202407741 crossref_primary_10_1007_s40820_021_00676_6 crossref_primary_10_1016_j_cej_2023_143706 crossref_primary_10_1016_j_jpowsour_2024_234833 crossref_primary_10_1021_jacs_4c05000 crossref_primary_10_1002_smll_202203140 crossref_primary_10_1002_smll_202204348 crossref_primary_10_1016_j_seppur_2022_121684 crossref_primary_10_1016_j_cej_2024_151978 crossref_primary_10_1002_admi_202300864 crossref_primary_10_1039_D4MH00200H crossref_primary_10_1016_j_ensm_2021_03_023 crossref_primary_10_1021_acsnano_1c01250 crossref_primary_10_1002_adfm_202104858 crossref_primary_10_1016_j_est_2024_113998 crossref_primary_10_1002_cjoc_202000702 crossref_primary_10_1016_j_cej_2021_133099 crossref_primary_10_1021_acsnano_3c00377 crossref_primary_10_1016_j_jechem_2020_11_015 crossref_primary_10_3389_fchem_2022_888750 crossref_primary_10_1002_advs_202204192 crossref_primary_10_31763_ijrcs_v3i3_1091 crossref_primary_10_1002_cssc_202100973 crossref_primary_10_1007_s11581_021_04008_x crossref_primary_10_1016_j_ensm_2024_103215 crossref_primary_10_1002_asia_202100176 crossref_primary_10_1039_D4TA08712G crossref_primary_10_1039_D0CC08276G crossref_primary_10_1016_j_nanoen_2024_110231 crossref_primary_10_3390_nano11061518 crossref_primary_10_1007_s40820_023_01137_y crossref_primary_10_1063_5_0178707 crossref_primary_10_1002_batt_202200016 crossref_primary_10_1002_advs_202303830 crossref_primary_10_1007_s10934_022_01314_1 crossref_primary_10_1007_s11581_020_03860_7 crossref_primary_10_1007_s43938_024_00045_w crossref_primary_10_1039_D4TA03620D crossref_primary_10_26599_NRE_2022_9120012 crossref_primary_10_2139_ssrn_4095949 crossref_primary_10_1016_j_rser_2023_113487 crossref_primary_10_1002_anie_202423046 crossref_primary_10_1039_D0GC04033A crossref_primary_10_1002_aenm_202406069 crossref_primary_10_1016_j_ensm_2023_103065 crossref_primary_10_1016_j_mtener_2022_101151 crossref_primary_10_1016_j_jechem_2022_08_027 crossref_primary_10_1002_batt_202100409 crossref_primary_10_1002_ange_202103303 crossref_primary_10_1039_D2TA01867E crossref_primary_10_1016_j_ensm_2024_103439 crossref_primary_10_1002_aenm_202003690 crossref_primary_10_1016_j_ensm_2021_01_008 crossref_primary_10_3390_nano14120990 crossref_primary_10_1002_ange_202114671 crossref_primary_10_3390_batteries9010027 crossref_primary_10_1016_j_cej_2024_151129 crossref_primary_10_1016_j_ensm_2024_103315 crossref_primary_10_1038_s41598_024_67254_9 crossref_primary_10_1021_jacs_3c00628 crossref_primary_10_1039_D4EE02989E crossref_primary_10_1002_adma_202206963 crossref_primary_10_1016_j_cej_2021_132254 crossref_primary_10_1002_sus2_42 crossref_primary_10_1021_acsanm_1c01876 crossref_primary_10_1002_ange_202213863 crossref_primary_10_1039_D1NR04357A crossref_primary_10_1039_D1CE01170G crossref_primary_10_1016_j_ceramint_2023_12_307 crossref_primary_10_1016_j_jpowsour_2021_230607 crossref_primary_10_1002_advs_202402497 crossref_primary_10_1016_j_jallcom_2020_157382 crossref_primary_10_1039_D0TA11180E crossref_primary_10_1016_j_nxmate_2024_100395 crossref_primary_10_1021_acsami_1c08615 crossref_primary_10_1002_sus2_191 crossref_primary_10_1002_smll_202103001 crossref_primary_10_1002_adfm_202309345 crossref_primary_10_1039_D4TA01780C crossref_primary_10_1007_s40820_022_00935_0 crossref_primary_10_1039_D1MH01546J crossref_primary_10_1007_s11664_023_10355_4 crossref_primary_10_1038_s41467_022_31943_8 crossref_primary_10_1016_j_cej_2022_141139 crossref_primary_10_1002_adma_202212039 crossref_primary_10_1002_ange_202007159 crossref_primary_10_1002_adfm_202301736 crossref_primary_10_1016_j_jallcom_2023_170162 crossref_primary_10_1039_D1SE01060C crossref_primary_10_1007_s12598_023_02417_7 crossref_primary_10_1016_j_mattod_2021_03_017 crossref_primary_10_1002_ange_202419446 crossref_primary_10_1016_j_cej_2023_145982 crossref_primary_10_1002_batt_202000273 crossref_primary_10_1016_j_jallcom_2022_164120 crossref_primary_10_1002_adma_202401263 crossref_primary_10_1002_anie_202423357 crossref_primary_10_1016_j_materresbull_2020_111129 crossref_primary_10_1002_adfm_202201038 crossref_primary_10_1002_celc_202001555 crossref_primary_10_1002_aenm_202201530 crossref_primary_10_1021_acsami_1c04788 crossref_primary_10_1016_j_jallcom_2023_173129 crossref_primary_10_1016_j_cclet_2022_04_025 crossref_primary_10_1016_j_jechem_2021_05_015 crossref_primary_10_1016_j_cej_2022_135825 crossref_primary_10_1016_j_jechem_2021_11_004 crossref_primary_10_1016_j_jechem_2024_01_072 crossref_primary_10_1021_acsami_1c01393 crossref_primary_10_1039_D4TA07639G crossref_primary_10_1007_s11581_022_04535_1 crossref_primary_10_1039_D3TA00096F crossref_primary_10_1016_j_micromeso_2023_112892 crossref_primary_10_1039_D1TA06499A crossref_primary_10_1021_acsaem_0c01307 crossref_primary_10_1021_acsnano_2c00515 crossref_primary_10_1002_adma_202008654 crossref_primary_10_1016_j_jpowsour_2023_233382 crossref_primary_10_1039_D1SE01987B crossref_primary_10_1021_acsami_1c16650 crossref_primary_10_1002_anie_202400343 crossref_primary_10_1002_inf2_12304 crossref_primary_10_1016_j_cej_2024_153647 crossref_primary_10_1002_smsc_202300088 crossref_primary_10_1016_j_jechem_2021_05_023 crossref_primary_10_1016_j_mtcomm_2024_108780 crossref_primary_10_1002_ange_202212744 crossref_primary_10_1002_adma_202300861 crossref_primary_10_1002_advs_202207442 crossref_primary_10_1016_j_nanoen_2024_109265 crossref_primary_10_1002_bte2_20220008 crossref_primary_10_1002_bte2_20220006 crossref_primary_10_1016_j_ensm_2022_10_053 crossref_primary_10_1016_j_cej_2023_143303 crossref_primary_10_1016_j_joule_2021_06_009 crossref_primary_10_1002_anie_202212151 crossref_primary_10_1002_celc_202200416 crossref_primary_10_1016_j_cej_2025_159333 crossref_primary_10_1021_acsaem_0c01655 crossref_primary_10_1016_j_materresbull_2024_113249 crossref_primary_10_1021_acsaem_0c00568 crossref_primary_10_1039_C9EE02049G crossref_primary_10_1002_smll_202206375 crossref_primary_10_1016_j_jallcom_2021_159952 crossref_primary_10_1002_adma_202402337 crossref_primary_10_1007_s10853_022_07082_2 crossref_primary_10_1021_acsami_4c02109 crossref_primary_10_1016_j_ensm_2023_103040 crossref_primary_10_1016_j_ensm_2024_103222 crossref_primary_10_1002_admt_202001136 crossref_primary_10_1016_j_cej_2020_127769 crossref_primary_10_1016_j_jechem_2021_05_039 crossref_primary_10_1039_D0EE03005H crossref_primary_10_1002_anie_202315087 crossref_primary_10_1016_S1872_2067_24_60096_3 crossref_primary_10_1039_D1TA01091C crossref_primary_10_1039_D2EE00007E crossref_primary_10_1016_j_jpowsour_2021_230764 crossref_primary_10_1039_D3CP02857G crossref_primary_10_1016_j_jcis_2022_01_148 crossref_primary_10_1002_eem2_12187 crossref_primary_10_1016_j_ensm_2022_02_037 crossref_primary_10_1039_D4FD00024B crossref_primary_10_1021_acsami_4c18988 crossref_primary_10_1002_adfm_202108669 crossref_primary_10_1016_j_electacta_2022_141465 crossref_primary_10_1016_j_surfin_2022_101869 crossref_primary_10_1002_ange_202212151 crossref_primary_10_3390_electrochem3020020 crossref_primary_10_1002_adfm_202306933 crossref_primary_10_1002_adfm_202313107 crossref_primary_10_3390_batteries10040124 crossref_primary_10_1016_j_ensm_2024_103727 crossref_primary_10_1016_j_jechem_2023_05_052 crossref_primary_10_1002_anie_202007159 crossref_primary_10_1002_adma_202300771 crossref_primary_10_1007_s11581_021_04100_2 crossref_primary_10_1016_j_apsusc_2021_149908 crossref_primary_10_1002_aenm_202102024 crossref_primary_10_1016_j_jallcom_2023_171427 crossref_primary_10_3390_nano14131155 crossref_primary_10_1016_j_cclet_2021_12_064 crossref_primary_10_1002_adma_202203194 crossref_primary_10_1016_j_cej_2024_158856 crossref_primary_10_1039_D3TA07591E crossref_primary_10_1039_D4RA04740K crossref_primary_10_1007_s12598_024_02646_4 crossref_primary_10_1021_acsami_4c13183 crossref_primary_10_1016_j_ensm_2024_103711 crossref_primary_10_1016_j_ensm_2024_103832 crossref_primary_10_26599_NRE_2024_9120126 crossref_primary_10_1002_aenm_202400035 crossref_primary_10_1007_s11426_020_9915_y crossref_primary_10_1016_j_apt_2022_103530 crossref_primary_10_1021_acs_energyfuels_1c00990 crossref_primary_10_1016_j_cej_2022_139566 crossref_primary_10_1002_adma_202003955 crossref_primary_10_1016_j_jechem_2021_08_045 crossref_primary_10_1002_anie_202103303 crossref_primary_10_1002_adma_202102034 crossref_primary_10_1002_ente_202300092 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1002_anie_202114671 crossref_primary_10_1002_eem2_12197 crossref_primary_10_1007_s40820_021_00648_w crossref_primary_10_1002_nano_202100177 crossref_primary_10_1016_j_apenergy_2022_120543 crossref_primary_10_1016_j_mtcomm_2021_102323 crossref_primary_10_1021_jacs_2c13776 crossref_primary_10_1016_j_jpowsour_2023_232783 crossref_primary_10_1016_j_scib_2024_03_043 crossref_primary_10_1021_acsnano_2c01390 crossref_primary_10_1002_smll_202303781 crossref_primary_10_1016_j_est_2023_108102 crossref_primary_10_1016_j_matt_2021_01_012 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1016_j_jechem_2020_07_054 crossref_primary_10_1002_smll_202303490 crossref_primary_10_1016_j_cej_2021_130129 crossref_primary_10_1021_acsnano_0c06944 crossref_primary_10_1021_acsami_2c10917 crossref_primary_10_1021_cbe_4c00040 crossref_primary_10_1016_j_cej_2022_139344 crossref_primary_10_1016_j_rser_2025_115453 crossref_primary_10_1039_D4TA08756A crossref_primary_10_1016_j_mser_2025_100955 crossref_primary_10_1021_acsanm_3c00777 crossref_primary_10_1002_eem2_12257 crossref_primary_10_1002_ange_202302276 crossref_primary_10_1016_j_jiec_2023_01_027 crossref_primary_10_1016_j_mtener_2022_101069 crossref_primary_10_1002_adfm_202414009 crossref_primary_10_1039_D3EE01677C crossref_primary_10_1002_adma_202101006 crossref_primary_10_1007_s11771_024_5562_2 crossref_primary_10_1038_s41467_021_24873_4 crossref_primary_10_1039_D1MA00121C crossref_primary_10_1007_s11426_022_1398_5 crossref_primary_10_3390_nano11082083 crossref_primary_10_1016_j_chempr_2020_09_015 crossref_primary_10_1016_j_ensm_2022_11_048 crossref_primary_10_1021_acsami_3c10163 crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1016_j_micromeso_2021_111558 crossref_primary_10_1002_adma_202310245 crossref_primary_10_1016_j_jechem_2021_01_004 crossref_primary_10_1002_aenm_202103304 crossref_primary_10_1016_j_diamond_2022_108851 crossref_primary_10_1016_j_jechem_2021_07_010 crossref_primary_10_1002_adfm_202302888 crossref_primary_10_1002_eem2_12369 crossref_primary_10_1021_acs_energyfuels_2c02981 crossref_primary_10_1007_s12274_022_5017_8 crossref_primary_10_1016_j_heliyon_2024_e36083 crossref_primary_10_1002_batt_202400284 crossref_primary_10_1002_adma_202100171 crossref_primary_10_1016_j_compositesb_2020_108004 crossref_primary_10_1002_idm2_12118 crossref_primary_10_1002_anie_202408026 crossref_primary_10_1016_j_ijhydene_2025_02_367 crossref_primary_10_1002_ange_202407042 crossref_primary_10_1021_acsami_2c20616 crossref_primary_10_1039_D1EE00271F crossref_primary_10_1002_smll_202411744 crossref_primary_10_1021_acs_nanolett_4c04519 crossref_primary_10_1021_acsaem_1c00257 crossref_primary_10_1002_ente_202100721 crossref_primary_10_1002_smll_202307951 crossref_primary_10_1039_D0NR06732F crossref_primary_10_1002_adfm_202312550 crossref_primary_10_1002_smll_202300089 crossref_primary_10_1016_j_cej_2025_160285 crossref_primary_10_1002_adfm_202110857 crossref_primary_10_1016_j_ensm_2023_02_023 crossref_primary_10_1021_acscentsci_0c00449 crossref_primary_10_1021_acsami_2c04284 crossref_primary_10_1002_idm2_12007 crossref_primary_10_1016_j_ensm_2024_103744 crossref_primary_10_1002_batt_202400155 crossref_primary_10_1016_j_cej_2022_138287 crossref_primary_10_1016_j_jpowsour_2024_235365 crossref_primary_10_3390_molecules27010228 crossref_primary_10_1002_ange_202408026 crossref_primary_10_1002_anie_202407042 crossref_primary_10_1039_D1TA09408D crossref_primary_10_1002_cey2_585 crossref_primary_10_1021_acsami_1c00494 crossref_primary_10_1016_j_est_2023_108423 crossref_primary_10_1002_adma_202302771 crossref_primary_10_1016_j_jallcom_2022_165838 crossref_primary_10_1016_j_nanoen_2022_107794 crossref_primary_10_1016_j_ccr_2024_215909 crossref_primary_10_1021_jacs_4c05827 crossref_primary_10_1016_j_xcrp_2022_101186 crossref_primary_10_1002_ange_202400343 crossref_primary_10_1016_S1872_5805_24_60838_3 crossref_primary_10_1021_acs_energyfuels_4c02588 crossref_primary_10_1007_s40843_020_1552_7 crossref_primary_10_1016_j_electacta_2022_140531 crossref_primary_10_3389_fchem_2021_830485 crossref_primary_10_34133_2021_1205324 crossref_primary_10_1016_j_electacta_2021_139013 crossref_primary_10_1007_s40820_023_01306_z crossref_primary_10_1002_aenm_202201056 crossref_primary_10_1002_eem2_12215 crossref_primary_10_1021_acs_energyfuels_3c00088 crossref_primary_10_1002_inf2_12291 crossref_primary_10_1016_j_cej_2024_151938 crossref_primary_10_1103_PhysRevApplied_18_044072 crossref_primary_10_1016_j_ensm_2022_07_001 crossref_primary_10_1021_acsami_2c12507 crossref_primary_10_1002_adma_202303520 crossref_primary_10_1002_eem2_12451 crossref_primary_10_1002_aenm_202101449 crossref_primary_10_1016_j_jiec_2023_04_025 crossref_primary_10_1016_j_patter_2023_100799 crossref_primary_10_1016_j_cej_2024_157246 crossref_primary_10_1016_j_electacta_2022_140402 crossref_primary_10_1002_aenm_202102774 crossref_primary_10_1039_D2TA09310C crossref_primary_10_1002_advs_202103910 crossref_primary_10_1039_D0TA00800A crossref_primary_10_1002_anie_202302276 crossref_primary_10_1016_j_electacta_2024_144794 crossref_primary_10_1016_j_jallcom_2021_161794 crossref_primary_10_1002_slct_202302876 crossref_primary_10_1016_j_fmre_2021_06_011 crossref_primary_10_1002_smll_202102962 crossref_primary_10_1039_D1GC02872C crossref_primary_10_1016_j_electacta_2022_140430 crossref_primary_10_1002_celc_202100365 crossref_primary_10_1016_j_cej_2022_140948 crossref_primary_10_1002_adma_202100810 crossref_primary_10_1007_s12274_022_5156_y crossref_primary_10_1002_adfm_202406290 crossref_primary_10_1016_j_jcis_2025_01_167 crossref_primary_10_1039_C9TA13191D crossref_primary_10_1039_D1RA08566B crossref_primary_10_1002_smll_202304122 crossref_primary_10_1016_j_cej_2021_132931 crossref_primary_10_1002_adfm_202408113 crossref_primary_10_1016_j_est_2021_103824 crossref_primary_10_1002_anie_202419446 crossref_primary_10_1016_j_jallcom_2021_163608 crossref_primary_10_1021_acs_inorgchem_4c00777 crossref_primary_10_1073_pnas_2301260120 crossref_primary_10_1002_adfm_202210987 crossref_primary_10_1002_batt_202100192 crossref_primary_10_1002_smtd_202300523 crossref_primary_10_1016_j_apcatb_2022_121934 crossref_primary_10_1039_D2TA07806F crossref_primary_10_1002_smll_202202006 crossref_primary_10_1007_s11581_021_04202_x crossref_primary_10_1021_acsenergylett_4c00859 crossref_primary_10_1021_acs_nanolett_4c01618 crossref_primary_10_1039_D3NJ05050E crossref_primary_10_1002_anie_202106788 crossref_primary_10_1016_j_ensm_2022_12_016 crossref_primary_10_1002_adfm_202304568 crossref_primary_10_1002_adma_202303780 crossref_primary_10_1039_D0EE02620D crossref_primary_10_1016_j_mattod_2020_10_021 crossref_primary_10_1002_adfm_202106966 crossref_primary_10_1039_D4QM00180J crossref_primary_10_1039_D2TA04095F crossref_primary_10_1039_D3TA00210A crossref_primary_10_1039_D2SE00587E crossref_primary_10_1016_j_est_2024_111023 crossref_primary_10_3390_molecules26216341 crossref_primary_10_1021_acsaem_0c03189 crossref_primary_10_1002_ange_202315087 crossref_primary_10_1002_aenm_202403439 crossref_primary_10_1016_j_cej_2021_128562 crossref_primary_10_1016_j_electacta_2021_139572 crossref_primary_10_2139_ssrn_4172911 crossref_primary_10_1021_acsaem_3c00177 crossref_primary_10_1002_wene_461 crossref_primary_10_1016_j_colsurfa_2024_134824 crossref_primary_10_1039_D1TA10444F crossref_primary_10_1016_j_est_2023_107601 crossref_primary_10_1002_wene_464 crossref_primary_10_1002_smtd_202400475 crossref_primary_10_1021_acsami_4c18159 crossref_primary_10_1016_j_elecom_2021_106971 crossref_primary_10_1016_j_nanoen_2021_105928 crossref_primary_10_1039_D1TA05657C crossref_primary_10_1016_j_ensm_2021_05_031 crossref_primary_10_1002_adfm_202316838 crossref_primary_10_1016_j_jcis_2021_10_015 crossref_primary_10_1039_D2TA02217F crossref_primary_10_1007_s12598_022_01989_0 crossref_primary_10_1016_j_ensm_2023_102842 crossref_primary_10_1021_acsaem_3c00067 crossref_primary_10_2139_ssrn_4133339 crossref_primary_10_1002_aenm_202102739 crossref_primary_10_1016_j_coelec_2020_100652 crossref_primary_10_1021_acsami_2c02713 crossref_primary_10_1016_j_ensm_2022_07_035 crossref_primary_10_1016_j_joule_2025_101878 crossref_primary_10_1016_j_apsusc_2020_148632 crossref_primary_10_1016_j_cej_2022_140991 crossref_primary_10_1016_j_jechem_2021_09_036 crossref_primary_10_1016_j_jelechem_2024_118229 crossref_primary_10_1021_acsaem_3c01284 crossref_primary_10_1016_j_jallcom_2021_162556 crossref_primary_10_1021_acsami_2c06067 crossref_primary_10_1007_s12274_023_5443_2 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1039_D1TA09371A crossref_primary_10_1039_D4CC05450D crossref_primary_10_1016_j_chempr_2022_01_002 crossref_primary_10_1021_acsenergylett_3c00709 crossref_primary_10_1002_ange_202423357 crossref_primary_10_1016_j_jechem_2020_08_056 crossref_primary_10_1002_smll_202106144 crossref_primary_10_1002_aenm_202100332 crossref_primary_10_1039_D1CP03030B crossref_primary_10_1007_s10008_022_05215_w |
Cites_doi | 10.1002/aenm.201500117 10.1016/j.ensm.2018.05.018 10.1002/aenm.201501636 10.1021/jacs.8b00411 10.5796/electrochemistry.19-00021 10.1002/aenm.201800590 10.1002/adma.201805571 10.1149/2.0981714jes 10.1038/s41560-019-0351-0 10.1038/nmat4778 10.1016/j.isci.2018.07.021 10.1021/jacs.7b11434 10.1149/08513.0295ecst 10.1002/adma.201804271 10.1002/smtd.201700134 10.1016/j.gee.2017.08.002 10.1002/aenm.201602923 10.1038/srep32433 10.1002/ange.201812062 10.1016/j.nantod.2018.02.006 10.1002/ange.201605676 10.1002/ange.201810132 10.1021/acs.jpcc.8b01507 10.1016/S1474-4422(08)70158-3 10.1038/s41560-019-0405-3 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P 10.1021/acscentsci.7b00123 10.1016/j.jpowsour.2013.12.031 10.1002/adfm.201801323 10.1126/science.1212741 10.1038/451652a 10.1016/j.jechem.2018.06.001 10.1021/acs.nanolett.5b04166 10.1002/smll.201801536 10.1021/acsnano.7b08778 10.1039/C8TA08159J 10.1021/acs.nanolett.5b04189 10.1002/aenm.201501808 10.1039/C4TA06748G 10.1002/ange.201603897 10.1016/j.jpowsour.2011.11.007 10.1002/aenm.201401986 10.1016/0013-4686(81)85170-5 10.1002/adfm.201801791 10.1038/s41560-018-0214-0 10.1002/anie.201304762 10.1002/anie.201808311 10.1002/aenm.201500124 10.1021/acs.nanolett.5b00367 10.1002/aenm.201800933 10.1002/aenm.201700260 10.1021/jacs.5b08113 10.1002/aenm.201601630 10.1002/ange.201808311 10.1016/j.nanoen.2016.06.036 10.1002/aenm.201400981 10.1002/adma.201603401 10.1002/pssa.201330569 10.1016/0013-4686(76)85048-7 10.1021/jz401763d 10.1149/2.106311jes 10.1002/aenm.201301473 10.1016/j.joule.2018.09.024 10.1021/cr500062v 10.1021/jacs.6b12358 10.1016/j.ensm.2018.05.014 10.1016/j.est.2017.11.008 10.1021/nl502331f 10.1002/aenm.201802107 10.1016/j.carbon.2018.09.067 10.1002/adma.201303166 10.1016/j.jechem.2019.02.001 10.1021/acsami.8b17393 10.1021/acsenergylett.6b00033 10.1039/c2cp40808b 10.1021/acs.chemmater.7b03654 10.1149/2.0071801jes 10.1016/j.joule.2018.08.010 10.1021/acsami.8b21395 10.1002/smll.201900690 10.1002/adma.201705951 10.1073/pnas.1615837114 10.1038/s41560-017-0005-z 10.1002/adfm.201707533 10.1002/ente.201900197 10.1002/anie.201812062 10.1002/anie.201603897 10.1021/acsenergylett.8b01945 10.1016/j.ensm.2018.03.017 10.1002/aenm.201502459 10.1002/aenm.201702348 10.1002/anie.201810132 10.1149/1.2086571 10.1002/adfm.201504294 10.1002/smtd.201900344 10.1002/aenm.201701082 10.1002/aenm.201800813 10.1149/2.0051706jes 10.1038/nmat3237 10.1002/chem.201600040 10.1149/2.0611506jes 10.1039/C8TA07194B 10.1016/j.nanoen.2016.11.057 10.1039/C8TA08188C 10.1002/aenm.201500285 10.1021/jp408037e 10.1002/ente.201900625 10.1039/C7TA05277D 10.1002/aenm.201802423 10.1149/1.3479828 10.1149/2.0361810jes 10.1038/s41467-018-07975-4 10.1021/acsami.8b05166 10.1039/C8CC07623E 10.1002/aenm.201702839 10.1021/acs.jpcc.9b02625 10.1002/ange.201511830 10.1016/j.ensm.2018.08.009 10.1002/adfm.201707536 10.1002/ange.201812611 10.1126/science.aas9343 10.1149/1.1837963 10.1021/acsenergylett.7b01249 10.1039/C4EE02192D 10.1039/C7EE01004D 10.1021/acs.nanolett.7b03831 10.1039/C8TA08361D 10.1039/C4EE00372A 10.1039/C7TA07460C 10.1038/498416a 10.1021/acs.chemmater.5b02955 10.1021/acsomega.8b01681 10.1002/aenm.201802235 10.1021/acsami.6b05647 10.1016/j.nanoen.2018.05.065 10.1002/adfm.201801188 10.1002/adfm.201800508 10.1002/adma.201506014 10.1002/adfm.201707234 10.1002/ange.201300680 10.1038/s41467-018-06629-9 10.1002/anie.201511830 10.1021/acsnano.8b05534 10.1002/adma.201603040 10.1002/9781119297895 10.1016/j.joule.2018.01.002 10.1021/acs.nanolett.5b00521 10.1039/C7TA06781J 10.1002/aenm.201802207 10.1039/C7TA00035A 10.1038/nenergy.2016.132 10.1002/adma.201705590 10.1007/s41918-018-0010-3 10.1002/anie.201505444 10.1002/cssc.201700977 10.1002/admt.201700233 10.1039/C8TA01483C 10.1002/adfm.201707520 10.1038/nmat2460 10.1002/smtd.201800038 10.1039/C9TA02877C 10.1021/jacs.5b04472 10.31635/ccschem.019.20180016 10.1002/aenm.201803477 10.1021/acs.nanolett.7b00417 10.1021/acsenergylett.6b00194 10.1002/anie.201300680 10.1039/C6EE00789A 10.1021/jz500222f 10.1002/adma.201501559 10.1021/acsnano.5b07347 10.1016/S1388-2481(02)00358-2 10.1002/aenm.201402290 10.1002/anie.201812611 10.1002/aenm.201801560 10.1002/adfm.201704865 10.1002/smll.201802516 10.1039/C7TA06657K 10.1038/s41560-019-0338-x 10.1002/ange.201304762 10.1021/acs.jpcc.8b09378 10.1002/anie.201605676 10.1016/j.jechem.2018.04.014 10.1016/j.jpowsour.2018.10.060 10.1039/C7EE01430A 10.1039/C8TA03358G 10.1149/2.0071803jes 10.1021/acs.chemmater.7b02339 10.1038/nenergy.2017.96 10.1016/j.jenvman.2018.08.008 10.1021/acsnano.7b01945 10.1021/acsnano.6b06369 10.1021/acs.chemmater.7b03870 10.1002/ange.201505444 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201909339 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 12652 |
ExternalDocumentID | 31490599 10_1002_anie_201909339 ANIE201909339 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21776019; 21808124 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2016YFA0202500 – fundername: Beijing Municipal Science & Technology Commission funderid: Z181100004518001 – fundername: National Natural Science Foundation of China grantid: 21776019 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21808124 – fundername: Beijing Municipal Science & Technology Commission grantid: Z181100004518001 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION EJD NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4769-2ea58c9d0fea6665e7c00f362c70858ee964f14b887faad2d839a31634b71283 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:47:30 EDT 2025 Wed Aug 06 16:33:17 EDT 2025 Thu Apr 03 07:02:05 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Wed Aug 06 19:12:47 EDT 2025 Wed Jan 22 16:35:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | lean electrolyte electrochemistry lithium-sulfur batteries batteries energy storage |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4769-2ea58c9d0fea6665e7c00f362c70858ee964f14b887faad2d839a31634b71283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7565-2204 0000-0002-4183-703X 0000-0001-8402-7697 0000-0001-5775-3589 0000-0002-9544-5795 0000-0001-7394-9186 |
PMID | 31490599 |
PQID | 2425553896 |
PQPubID | 946352 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2286938017 proquest_journals_2425553896 pubmed_primary_31490599 crossref_citationtrail_10_1002_anie_201909339 crossref_primary_10_1002_anie_201909339 wiley_primary_10_1002_anie_201909339_ANIE201909339 |
PublicationCentury | 2000 |
PublicationDate | July 27, 2020 |
PublicationDateYYYYMMDD | 2020-07-27 |
PublicationDate_xml | – month: 07 year: 2020 text: July 27, 2020 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2018; 122 2018; 165 2017; 1 2017; 3 2019; 11 2019; 10 2014 2015 2018 2016; 7 5 10 6 1997 2018; 144 15 2018 2013 2013; 122 52 125 2017 2015 2015 2019 2019; 2 15 5 58 131 2017 2018; 17 6 2018; 407 2018; 85 2013 2018; 25 2 2016 2014; 9 253 2016 2015; 16 27 2016 2017 2018 2017 2018; 6 29 140 10 140 2011 2018 2008; 334 361 451 2013; 160 2013 2013; 52 125 2014; 211 2018; 6 2019 2015 2015; 31 54 127 2018; 9 2017; 31 2018; 8 2018; 3 2014; 5 2014; 4 2018; 2 2015; 137 2018; 1 2016 2018; 10 28 2018 2018; 57 130 2019 2018 2017; 15 12 11 2016 2015 2018; 6 5 30 2012 2019; 14 141 2017 2012; 16 11 2018; 30 2018 2016 2018 2019; 8 26 6 39 2018 2018; 8 8 2017; 164 2014; 7 2017 2015; 114 15 2009 2008 2016 2016 2018 2017 2018; 8 22 26 14 5 28 1976 1981; 21 26 2015; 162 2019; 7 2017 2017 2017 2018 2019; 10 29 7 28 9 2018; 28 2019; 9 2019; 4 2002 2002; 4 14 2015; 5 2019; 3 2015; 3 2018; 226 2019; 1 2016; 10 2018 2018; 28 30 1990 2012; 137 203 2017; 29 2016; 16 2013 2017 1970 2014 2019; 498 2 117 114 2018; 27 2019 2019; 58 131 2018; 19 2016; 1 2016 2016; 55 128 2015; 27 2017; 17 2018 2016 2016; 2 55 128 2019 2019 2019 2013; 87 123 117 2018 2015; 28 5 2017; 10 2018 2018; 6 50 2019 2019 2014; 9 14 2017 2018; 139 10 2018; 12 2013 2010; 4 157 2016; 28 2018; 54 2016; 8 2018; 15 2018; 14 e_1_2_7_127_5 e_1_2_7_127_4 e_1_2_7_127_3 e_1_2_7_3_1 e_1_2_7_127_2 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_83_2 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_116_3 e_1_2_7_116_2 e_1_2_7_116_1 e_1_2_7_94_2 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_56_1 e_1_2_7_56_4 e_1_2_7_56_3 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_4_1 e_1_2_7_105_2 e_1_2_7_128_2 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_12_3 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_93_3 e_1_2_7_93_2 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_1_3 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_9_6 e_1_2_7_9_5 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_9_7 e_1_2_7_118_1 e_1_2_7_92_2 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_77_2 e_1_2_7_39_1 e_1_2_7_2_2 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_80_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_88_2 e_1_2_7_88_3 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_91_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_53_2 Yao N. P. (e_1_2_7_5_3) 1970; 117 e_1_2_7_38_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_87_2 e_1_2_7_64_3 e_1_2_7_64_2 e_1_2_7_64_4 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_37_1 e_1_2_7_109_1 e_1_2_7_124_4 e_1_2_7_124_3 e_1_2_7_8_1 e_1_2_7_124_2 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_40_2 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_48_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_97_2 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_5_5 e_1_2_7_5_4 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 Fang R. P. (e_1_2_7_45_2) 2018; 30 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_85_2 e_1_2_7_47_1 e_1_2_7_114_2 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_4 e_1_2_7_96_3 e_1_2_7_96_2 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_96_5 Xu G. L. (e_1_2_7_119_1) 2018; 8 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_46_2 e_1_2_7_46_3 e_1_2_7_69_1 e_1_2_7_115_2 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_72_5 e_1_2_7_72_3 e_1_2_7_72_4 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 |
References_xml | – volume: 5 start-page: 25005 year: 2017 end-page: 25013 publication-title: J. Mater. Chem. A – volume: 15 start-page: 53 year: 2018 end-page: 64 publication-title: Energy Storage Mater. – volume: 5 start-page: 19924 year: 2017 end-page: 19933 publication-title: J. Mater. Chem. A – volume: 85 start-page: 295 year: 2018 end-page: 302 publication-title: ECS Trans. – volume: 3 start-page: 2 year: 2018 end-page: 19 publication-title: Green Energy Environ. – volume: 14 year: 2018 publication-title: Small – volume: 87 123 117 start-page: 254 14229 20531 year: 2019 2019 2019 2013 end-page: 259 14238 20541 publication-title: Electrochemistry J. Phys. Chem. C Energy Technol. J. Phys. Chem. C – volume: 16 11 start-page: 70 172 year: 2017 2012 end-page: 81 172 publication-title: Nat. Mater. Nat. Mater. – volume: 28 5 year: 2018 2015 publication-title: Adv. Funct. Mater. Adv. Energy Mater. – volume: 2 15 5 58 131 start-page: 813 3309 5557 5613 year: 2017 2015 2015 2019 2019 end-page: 820 3316 5561 5617 publication-title: Nat. Energy Nano Lett. Adv. Energy Mater. Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 3061 year: 2017 end-page: 3067 publication-title: Nano Lett. – volume: 165 start-page: A6029 year: 2018 end-page: A6033 publication-title: J. Electrochem. Soc. – volume: 27 start-page: 5203 year: 2015 end-page: 5209 publication-title: Adv. Mater. – volume: 211 start-page: 1895 year: 2014 end-page: 1899 publication-title: Phys. Status Solidi A – volume: 16 27 start-page: 549 6765 year: 2016 2015 end-page: 554 6770 publication-title: Nano Lett. Chem. Mater. – volume: 9 253 start-page: 2603 263 year: 2016 2014 end-page: 2608 268 publication-title: Energy Environ. Sci. J. Power Sources – volume: 137 start-page: 11542 year: 2015 end-page: 11545 publication-title: J. Am. Chem. Soc. – volume: 4 157 start-page: 3227 A1131 year: 2013 2010 end-page: 3232 A1138 publication-title: J. Phys. Chem. Lett. J. Electrochem. Soc. – volume: 6 start-page: 23396 year: 2018 end-page: 23407 publication-title: J. Mater. Chem. A – volume: 10 28 start-page: 4111 year: 2016 2018 end-page: 4118 publication-title: ACS Nano Adv. Funct. Mater. – volume: 11 start-page: 6136 year: 2019 end-page: 6142 publication-title: ACS Appl. Mater. Interfaces – volume: 162 start-page: A982 year: 2015 end-page: A990 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 2697 year: 2014 end-page: 2705 publication-title: Energy Environ. Sci. – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 8 start-page: 25193 year: 2016 end-page: 25201 publication-title: ACS Appl. Mater. Interfaces – volume: 8 26 6 39 start-page: 722 18660 88 year: 2018 2016 2018 2019 end-page: 728 18668 100 publication-title: Adv. Energy Mater. Nano Energy J. Mater. Chem. A J. Energy Chem. – volume: 1 start-page: 128 year: 2019 end-page: 137 publication-title: CCS Chemistry – volume: 1 start-page: 239 year: 2018 end-page: 293 publication-title: Electrochem. Energy Rev. – volume: 3 start-page: 11290 year: 2018 end-page: 11299 publication-title: ACS Omega – volume: 5 start-page: 915 year: 2014 end-page: 918 publication-title: J. Phys. Chem. Lett. – volume: 28 30 year: 2018 2018 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 6 29 140 10 140 start-page: 1455 1694 3134 year: 2016 2017 2018 2017 2018 end-page: 1459 1703 3138 publication-title: Adv. Energy Mater. Adv. Mater. J. Am. Chem. Soc. Energy Environ. Sci. J. Am. Chem. Soc. – volume: 28 start-page: 3374 year: 2016 end-page: 3382 publication-title: Adv. Mater. – volume: 25 2 start-page: 6547 2681 year: 2013 2018 end-page: 6553 2693 publication-title: Adv. Mater. Joule – volume: 6 start-page: 23062 year: 2018 end-page: 23070 publication-title: J. Mater. Chem. A – volume: 164 start-page: A3766 year: 2017 end-page: A3771 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 420 year: 2018 end-page: 427 publication-title: ACS Energy Lett. – volume: 114 15 start-page: 840 3780 year: 2017 2015 end-page: 845 3786 publication-title: Proc. Natl. Acad. Sci. USA Nano Lett. – volume: 3 start-page: 783 year: 2018 end-page: 791 publication-title: Nat. Energy – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 21435 year: 2017 end-page: 21441 publication-title: J. Mater. Chem. A – volume: 9 14 start-page: 5288 year: 2019 2014 end-page: 5294 publication-title: Adv. Energy Mater. Nano Lett. – volume: 3 start-page: 605 year: 2017 end-page: 613 publication-title: ACS Cent. Sci. – volume: 165 start-page: A2093 year: 2018 end-page: A2095 publication-title: J. Electrochem. Soc. – volume: 58 131 start-page: 3779 3819 year: 2019 2019 end-page: 3783 3823 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 188 year: 2019 publication-title: Nat. Commun. – volume: 31 54 127 start-page: 119 11018 11170 year: 2019 2015 2015 end-page: 124 11020 11172 publication-title: J. Energy Chem. Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 3490 year: 2017 end-page: 3496 publication-title: ChemSusChem – volume: 7 5 10 6 start-page: 3902 43749 year: 2014 2015 2018 2016 end-page: 3920 43759 publication-title: Energy Environ. Sci. Adv. Energy Mater. ACS Appl. Mater. Interfaces Adv. Energy Mater. – volume: 407 start-page: 53 year: 2018 end-page: 62 publication-title: J. Power Sources – volume: 2 start-page: 710 year: 2018 end-page: 724 publication-title: Joule – volume: 122 52 125 start-page: 15264 7460 7608 year: 2018 2013 2013 end-page: 15275 7463 7611 publication-title: J. Phys. Chem. C Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 3808 year: 2015 end-page: 3820 publication-title: J. Mater. Chem. A – volume: 10 start-page: 10462 year: 2016 end-page: 10470 publication-title: ACS Nano – volume: 164 start-page: A917 year: 2017 end-page: A922 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 418 year: 2017 end-page: 423 publication-title: Nano Energy – volume: 15 start-page: 458 year: 2018 end-page: 464 publication-title: Energy Storage Mater. – volume: 5 start-page: 15002 year: 2017 end-page: 15007 publication-title: J. Mater. Chem. A – volume: 137 start-page: 12143 year: 2015 end-page: 12152 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 14093 year: 2018 end-page: 14096 publication-title: Chem. Commun. – volume: 1 start-page: 16132 year: 2016 publication-title: Nat. Energy – volume: 27 start-page: 1555 year: 2018 end-page: 1565 publication-title: J. Energy Chem. – volume: 57 130 start-page: 16732 16974 year: 2018 2018 end-page: 16736 16978 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 226 start-page: 1 year: 2018 end-page: 12 publication-title: J. Environ. Manage. – volume: 15 start-page: 282 year: 2018 end-page: 290 publication-title: Energy Storage Mater. – volume: 4 start-page: 540 year: 2019 end-page: 550 publication-title: Nat. Energy – volume: 6 5 30 start-page: 32433 685 year: 2016 2015 2018 end-page: 691 publication-title: Sci. Rep. Adv. Energy Mater. Chem. Mater. – volume: 1 start-page: 46 year: 2016 end-page: 51 publication-title: ACS Energy Lett. – volume: 55 128 start-page: 4231 4303 year: 2016 2016 end-page: 4235 4307 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 503 year: 2016 end-page: 509 publication-title: ACS Energy Lett. – volume: 165 start-page: A416 year: 2018 end-page: A423 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 374 year: 2019 end-page: 382 publication-title: Nat. Energy – volume: 334 361 451 start-page: 928 777 652 year: 2011 2018 2008 end-page: 935 781 publication-title: Science Science Nature – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 2 55 128 start-page: 10027 10181 year: 2018 2016 2016 end-page: 10031 10185 publication-title: Small Methods Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 22 26 14 5 28 start-page: 500 7324 1112 11788 year: 2009 2008 2016 2016 2018 2017 2018 end-page: 506 7351 1119 11793 publication-title: Nat. Mater. Chem. Eur. J. Adv. Funct. Mater. Small J. Mater. Chem. A Adv. Funct. Mater. – volume: 122 start-page: 25917 year: 2018 end-page: 25929 publication-title: J. Phys. Chem. C – volume: 28 start-page: 9551 year: 2016 end-page: 9558 publication-title: Adv. Mater. – volume: 4 14 start-page: 499 963 year: 2002 2002 end-page: 502 965 publication-title: Electrochem. Commun. Adv. Mater. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 19 start-page: 84 year: 2018 end-page: 107 publication-title: Nano Today – volume: 16 start-page: 519 year: 2016 end-page: 527 publication-title: Nano Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 29 7 28 9 start-page: 1568 8037 year: 2017 2017 2017 2018 2019 end-page: 1575 8041 publication-title: Energy Environ. Sci. Chem. Mater. Adv. Energy Mater. Adv. Funct. Mater. Adv. Energy Mater. – volume: 137 203 start-page: 876 211 year: 1990 2012 end-page: 833 221 publication-title: J. Electrochem. Soc. J. Power Sources – volume: 144 15 start-page: 3081 145 year: 1997 2018 end-page: 3091 157 publication-title: J. Electrochem. Soc. J. Energy Storage – volume: 9 start-page: 4164 year: 2018 publication-title: Nat. Commun. – volume: 17 6 start-page: 7086 22958 year: 2017 2018 end-page: 7094 22965 publication-title: Nano Lett. J. Mater. Chem. A – volume: 52 125 start-page: 13186 13426 year: 2013 2013 end-page: 13200 13441 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 299 year: 2018 end-page: 307 publication-title: Energy Storage Mater. – volume: 160 start-page: A2288 year: 2013 end-page: A2292 publication-title: J. Electrochem. Soc. – volume: 8 8 year: 2018 2018 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 7 start-page: 12498 year: 2019 end-page: 12506 publication-title: J. Mater. Chem. A – volume: 3 start-page: 2899 year: 2018 end-page: 2907 publication-title: ACS Energy Lett. – volume: 21 26 start-page: 119 1823 year: 1976 1981 end-page: 131 1829 publication-title: Electrochim. Acta Electrochim. Acta – volume: 4 start-page: 180 year: 2019 end-page: 186 publication-title: Nat. Energy – volume: 6 start-page: 151 year: 2018 end-page: 198 publication-title: iScience – volume: 55 128 start-page: 12990 13184 year: 2016 2016 end-page: 12995 13189 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 12 11 start-page: 11120 6031 year: 2019 2018 2017 end-page: 11129 6039 publication-title: Small ACS Nano ACS Nano – volume: 498 2 117 114 start-page: 416 17096 C247 11751 year: 2013 2017 1970 2014 2019 end-page: 11787 publication-title: Nature Nat. Energy J. Electrochem. Soc. Chem. Rev. – volume: 1 year: 2017 publication-title: Small Methods – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 3 start-page: 136 year: 2019 end-page: 148 publication-title: Joule – volume: 29 start-page: 10037 year: 2017 end-page: 10044 publication-title: Chem. Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 14 141 start-page: 8703 400 year: 2012 2019 end-page: 8710 416 publication-title: Phys. Chem. Chem. Phys. Carbon – volume: 57 130 start-page: 15549 15775 year: 2018 2018 end-page: 15552 15778 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 50 start-page: 11631 431 year: 2018 2018 end-page: 11663 440 publication-title: J. Mater. Chem. A Nano Energy – volume: 139 10 start-page: 8458 23094 year: 2017 2018 end-page: 8466 23102 publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 12 start-page: 9775 year: 2018 end-page: 9784 publication-title: ACS Nano – year: 2019 publication-title: Energy Technol. – volume: 6 start-page: 11582 year: 2018 end-page: 11605 publication-title: J. Mater. Chem. A – ident: e_1_2_7_32_1 doi: 10.1002/aenm.201500117 – ident: e_1_2_7_42_1 doi: 10.1016/j.ensm.2018.05.018 – ident: e_1_2_7_72_1 doi: 10.1002/aenm.201501636 – ident: e_1_2_7_72_5 doi: 10.1021/jacs.8b00411 – ident: e_1_2_7_124_1 doi: 10.5796/electrochemistry.19-00021 – ident: e_1_2_7_111_1 doi: 10.1002/aenm.201800590 – ident: e_1_2_7_58_1 doi: 10.1002/adma.201805571 – ident: e_1_2_7_122_1 doi: 10.1149/2.0981714jes – ident: e_1_2_7_63_1 doi: 10.1038/s41560-019-0351-0 – ident: e_1_2_7_2_1 doi: 10.1038/nmat4778 – ident: e_1_2_7_104_1 doi: 10.1016/j.isci.2018.07.021 – ident: e_1_2_7_72_3 doi: 10.1021/jacs.7b11434 – volume: 30 year: 2018 ident: e_1_2_7_45_2 publication-title: Adv. Mater. – ident: e_1_2_7_54_1 doi: 10.1149/08513.0295ecst – ident: e_1_2_7_60_1 doi: 10.1002/adma.201804271 – ident: e_1_2_7_34_1 doi: 10.1002/smtd.201700134 – ident: e_1_2_7_7_1 doi: 10.1016/j.gee.2017.08.002 – ident: e_1_2_7_127_3 doi: 10.1002/aenm.201602923 – ident: e_1_2_7_88_1 doi: 10.1038/srep32433 – ident: e_1_2_7_81_2 doi: 10.1002/ange.201812062 – ident: e_1_2_7_48_1 doi: 10.1016/j.nantod.2018.02.006 – ident: e_1_2_7_70_2 doi: 10.1002/ange.201605676 – ident: e_1_2_7_91_2 doi: 10.1002/ange.201810132 – ident: e_1_2_7_116_1 doi: 10.1021/acs.jpcc.8b01507 – ident: e_1_2_7_9_2 doi: 10.1016/S1474-4422(08)70158-3 – ident: e_1_2_7_3_1 doi: 10.1038/s41560-019-0405-3 – ident: e_1_2_7_40_2 doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P – ident: e_1_2_7_117_1 doi: 10.1021/acscentsci.7b00123 – ident: e_1_2_7_15_2 doi: 10.1016/j.jpowsour.2013.12.031 – ident: e_1_2_7_45_1 doi: 10.1002/adfm.201801323 – ident: e_1_2_7_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_1_3 doi: 10.1038/451652a – ident: e_1_2_7_46_1 doi: 10.1016/j.jechem.2018.06.001 – ident: e_1_2_7_69_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_7_67_1 doi: 10.1002/smll.201801536 – ident: e_1_2_7_39_1 doi: 10.1021/acsnano.7b08778 – ident: e_1_2_7_125_1 doi: 10.1039/C8TA08159J – ident: e_1_2_7_87_1 doi: 10.1021/acs.nanolett.5b04189 – ident: e_1_2_7_88_2 doi: 10.1002/aenm.201501808 – ident: e_1_2_7_13_1 doi: 10.1039/C4TA06748G – ident: e_1_2_7_93_3 doi: 10.1002/ange.201603897 – ident: e_1_2_7_115_2 doi: 10.1016/j.jpowsour.2011.11.007 – ident: e_1_2_7_14_2 doi: 10.1002/aenm.201401986 – ident: e_1_2_7_97_2 doi: 10.1016/0013-4686(81)85170-5 – ident: e_1_2_7_112_1 doi: 10.1002/adfm.201801791 – ident: e_1_2_7_118_1 doi: 10.1038/s41560-018-0214-0 – ident: e_1_2_7_27_1 doi: 10.1002/anie.201304762 – ident: e_1_2_7_80_1 doi: 10.1002/anie.201808311 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201500124 – ident: e_1_2_7_83_2 doi: 10.1021/acs.nanolett.5b00367 – ident: e_1_2_7_94_2 doi: 10.1002/aenm.201800933 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_102_1 doi: 10.1021/jacs.5b08113 – ident: e_1_2_7_66_1 doi: 10.1002/aenm.201601630 – ident: e_1_2_7_80_2 doi: 10.1002/ange.201808311 – ident: e_1_2_7_64_2 doi: 10.1016/j.nanoen.2016.06.036 – ident: e_1_2_7_56_2 doi: 10.1002/aenm.201400981 – ident: e_1_2_7_74_1 doi: 10.1002/adma.201603401 – ident: e_1_2_7_43_1 doi: 10.1002/pssa.201330569 – ident: e_1_2_7_97_1 doi: 10.1016/0013-4686(76)85048-7 – ident: e_1_2_7_33_1 doi: 10.1021/jz401763d – ident: e_1_2_7_22_1 doi: 10.1149/2.106311jes – ident: e_1_2_7_37_1 doi: 10.1002/aenm.201301473 – ident: e_1_2_7_79_1 doi: 10.1016/j.joule.2018.09.024 – ident: e_1_2_7_5_4 doi: 10.1021/cr500062v – ident: e_1_2_7_85_1 doi: 10.1021/jacs.6b12358 – ident: e_1_2_7_106_1 doi: 10.1016/j.ensm.2018.05.014 – ident: e_1_2_7_114_2 doi: 10.1016/j.est.2017.11.008 – ident: e_1_2_7_77_2 doi: 10.1021/nl502331f – ident: e_1_2_7_64_1 doi: 10.1002/aenm.201802107 – ident: e_1_2_7_105_2 doi: 10.1016/j.carbon.2018.09.067 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201303166 – ident: e_1_2_7_64_4 doi: 10.1016/j.jechem.2019.02.001 – ident: e_1_2_7_56_3 doi: 10.1021/acsami.8b17393 – ident: e_1_2_7_59_1 doi: 10.1021/acsenergylett.6b00033 – ident: e_1_2_7_105_1 doi: 10.1039/c2cp40808b – ident: e_1_2_7_121_1 doi: 10.1021/acs.chemmater.7b03654 – ident: e_1_2_7_19_1 doi: 10.1149/2.0071801jes – ident: e_1_2_7_10_2 doi: 10.1016/j.joule.2018.08.010 – ident: e_1_2_7_113_1 doi: 10.1021/acsami.8b21395 – ident: e_1_2_7_12_1 doi: 10.1002/smll.201900690 – ident: e_1_2_7_51_1 doi: 10.1002/adma.201705951 – ident: e_1_2_7_83_1 doi: 10.1073/pnas.1615837114 – ident: e_1_2_7_96_1 doi: 10.1038/s41560-017-0005-z – ident: e_1_2_7_127_4 doi: 10.1002/adfm.201707533 – ident: e_1_2_7_124_3 doi: 10.1002/ente.201900197 – ident: e_1_2_7_81_1 doi: 10.1002/anie.201812062 – ident: e_1_2_7_93_2 doi: 10.1002/anie.201603897 – ident: e_1_2_7_107_1 doi: 10.1021/acsenergylett.8b01945 – ident: e_1_2_7_38_1 doi: 10.1016/j.ensm.2018.03.017 – ident: e_1_2_7_56_4 doi: 10.1002/aenm.201502459 – ident: e_1_2_7_94_1 doi: 10.1002/aenm.201702348 – ident: e_1_2_7_91_1 doi: 10.1002/anie.201810132 – ident: e_1_2_7_115_1 doi: 10.1149/1.2086571 – ident: e_1_2_7_9_4 doi: 10.1002/adfm.201504294 – ident: e_1_2_7_89_1 doi: 10.1002/smtd.201900344 – ident: e_1_2_7_62_1 doi: 10.1002/aenm.201701082 – ident: e_1_2_7_131_1 doi: 10.1002/aenm.201800813 – ident: e_1_2_7_78_1 doi: 10.1149/2.0051706jes – ident: e_1_2_7_2_2 doi: 10.1038/nmat3237 – ident: e_1_2_7_9_3 doi: 10.1002/chem.201600040 – ident: e_1_2_7_17_1 doi: 10.1149/2.0611506jes – ident: e_1_2_7_64_3 doi: 10.1039/C8TA07194B – ident: e_1_2_7_90_1 doi: 10.1016/j.nanoen.2016.11.057 – ident: e_1_2_7_53_2 doi: 10.1039/C8TA08188C – ident: e_1_2_7_96_3 doi: 10.1002/aenm.201500285 – ident: e_1_2_7_124_4 doi: 10.1021/jp408037e – ident: e_1_2_7_120_1 doi: 10.1002/ente.201900625 – ident: e_1_2_7_76_1 doi: 10.1039/C7TA05277D – volume: 117 start-page: C247 year: 1970 ident: e_1_2_7_5_3 publication-title: J. Electrochem. Soc. – ident: e_1_2_7_108_1 doi: 10.1002/aenm.201802423 – ident: e_1_2_7_33_2 doi: 10.1149/1.3479828 – ident: e_1_2_7_41_1 doi: 10.1149/2.0361810jes – ident: e_1_2_7_99_1 doi: 10.1038/s41467-018-07975-4 – ident: e_1_2_7_85_2 doi: 10.1021/acsami.8b05166 – ident: e_1_2_7_103_1 doi: 10.1039/C8CC07623E – ident: e_1_2_7_47_1 doi: 10.1002/aenm.201702839 – ident: e_1_2_7_124_2 doi: 10.1021/acs.jpcc.9b02625 – ident: e_1_2_7_92_2 doi: 10.1002/ange.201511830 – ident: e_1_2_7_36_1 doi: 10.1016/j.ensm.2018.08.009 – ident: e_1_2_7_84_1 doi: 10.1002/adfm.201707536 – ident: e_1_2_7_96_5 doi: 10.1002/ange.201812611 – ident: e_1_2_7_1_2 doi: 10.1126/science.aas9343 – ident: e_1_2_7_114_1 doi: 10.1149/1.1837963 – ident: e_1_2_7_73_1 doi: 10.1021/acsenergylett.7b01249 – ident: e_1_2_7_56_1 doi: 10.1039/C4EE02192D – ident: e_1_2_7_127_1 doi: 10.1039/C7EE01004D – ident: e_1_2_7_53_1 doi: 10.1021/acs.nanolett.7b03831 – ident: e_1_2_7_101_1 doi: 10.1039/C8TA08361D – ident: e_1_2_7_123_1 doi: 10.1039/C4EE00372A – ident: e_1_2_7_109_1 doi: 10.1039/C7TA07460C – ident: e_1_2_7_5_1 doi: 10.1038/498416a – ident: e_1_2_7_87_2 doi: 10.1021/acs.chemmater.5b02955 – ident: e_1_2_7_110_1 doi: 10.1021/acsomega.8b01681 – ident: e_1_2_7_127_5 doi: 10.1002/aenm.201802235 – ident: e_1_2_7_71_1 doi: 10.1021/acsami.6b05647 – ident: e_1_2_7_9_7 doi: 10.1002/adfm.201801791 – ident: e_1_2_7_128_2 doi: 10.1016/j.nanoen.2018.05.065 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201801188 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201800508 – ident: e_1_2_7_49_1 doi: 10.1002/adma.201506014 – volume: 8 year: 2018 ident: e_1_2_7_119_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_100_1 doi: 10.1002/adfm.201707234 – ident: e_1_2_7_116_3 doi: 10.1002/ange.201300680 – ident: e_1_2_7_82_1 doi: 10.1038/s41467-018-06629-9 – ident: e_1_2_7_92_1 doi: 10.1002/anie.201511830 – ident: e_1_2_7_12_2 doi: 10.1021/acsnano.8b05534 – ident: e_1_2_7_72_2 doi: 10.1002/adma.201603040 – ident: e_1_2_7_5_5 doi: 10.1002/9781119297895 – ident: e_1_2_7_57_1 doi: 10.1016/j.joule.2018.01.002 – ident: e_1_2_7_96_2 doi: 10.1021/acs.nanolett.5b00521 – ident: e_1_2_7_52_1 doi: 10.1039/C7TA06781J – ident: e_1_2_7_98_1 doi: 10.1002/aenm.201802207 – ident: e_1_2_7_9_6 doi: 10.1039/C7TA00035A – ident: e_1_2_7_8_1 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201705590 – ident: e_1_2_7_35_1 doi: 10.1007/s41918-018-0010-3 – ident: e_1_2_7_46_2 doi: 10.1002/anie.201505444 – ident: e_1_2_7_129_1 doi: 10.1002/cssc.201700977 – ident: e_1_2_7_30_1 doi: 10.1002/admt.201700233 – ident: e_1_2_7_26_1 doi: 10.1039/C8TA01483C – ident: e_1_2_7_28_1 doi: 10.1002/adfm.201707520 – ident: e_1_2_7_9_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_93_1 doi: 10.1002/smtd.201800038 – ident: e_1_2_7_126_1 doi: 10.1039/C9TA02877C – ident: e_1_2_7_68_1 doi: 10.1021/jacs.5b04472 – ident: e_1_2_7_75_1 doi: 10.31635/ccschem.019.20180016 – ident: e_1_2_7_77_1 doi: 10.1002/aenm.201803477 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201705590 – ident: e_1_2_7_130_1 doi: 10.1021/acs.nanolett.7b00417 – ident: e_1_2_7_24_1 doi: 10.1021/acsenergylett.6b00194 – ident: e_1_2_7_116_2 doi: 10.1002/anie.201300680 – ident: e_1_2_7_15_1 doi: 10.1039/C6EE00789A – ident: e_1_2_7_86_1 doi: 10.1021/jz500222f – ident: e_1_2_7_95_1 doi: 10.1002/adma.201501559 – ident: e_1_2_7_11_1 doi: 10.1021/acsnano.5b07347 – ident: e_1_2_7_40_1 doi: 10.1016/S1388-2481(02)00358-2 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201402290 – ident: e_1_2_7_96_4 doi: 10.1002/anie.201812611 – ident: e_1_2_7_50_1 doi: 10.1002/aenm.201801560 – ident: e_1_2_7_11_2 doi: 10.1002/adfm.201704865 – ident: e_1_2_7_9_5 doi: 10.1002/smll.201802516 – ident: e_1_2_7_61_1 doi: 10.1039/C7TA06657K – ident: e_1_2_7_4_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_27_2 doi: 10.1002/ange.201304762 – ident: e_1_2_7_65_1 doi: 10.1021/acs.jpcc.8b09378 – ident: e_1_2_7_70_1 doi: 10.1002/anie.201605676 – ident: e_1_2_7_31_1 doi: 10.1016/j.jechem.2018.04.014 – ident: e_1_2_7_23_1 doi: 10.1016/j.jpowsour.2018.10.060 – ident: e_1_2_7_72_4 doi: 10.1039/C7EE01430A – ident: e_1_2_7_128_1 doi: 10.1039/C8TA03358G – ident: e_1_2_7_44_1 doi: 10.1149/2.0071803jes – ident: e_1_2_7_127_2 doi: 10.1021/acs.chemmater.7b02339 – ident: e_1_2_7_5_2 doi: 10.1038/nenergy.2017.96 – ident: e_1_2_7_20_1 doi: 10.1016/j.jenvman.2018.08.008 – ident: e_1_2_7_12_3 doi: 10.1021/acsnano.7b01945 – ident: e_1_2_7_55_1 doi: 10.1021/acsnano.6b06369 – ident: e_1_2_7_88_3 doi: 10.1021/acs.chemmater.7b03870 – ident: e_1_2_7_46_3 doi: 10.1002/ange.201505444 |
SSID | ssj0028806 |
Score | 2.7150993 |
SecondaryResourceType | review_article |
Snippet | The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable... The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12636 |
SubjectTerms | batteries Cathodes Chemical precipitation Conversion Economic impact Electrochemistry Electrolytes Electrolytic cells Energy Energy storage Flux density lean electrolyte Lithium Lithium sulfur batteries Sulfur Sustainable energy |
Title | Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201909339 https://www.ncbi.nlm.nih.gov/pubmed/31490599 https://www.proquest.com/docview/2425553896 https://www.proquest.com/docview/2286938017 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VvcCFn9KWQKmMhNSTt1k7iTfcqtVWbdUuUruVVr1ETmyLiiVb7SYHOPEOvCFPwky8CWwrhATHKLbieGY839iebwDeCaWlsqLPjS4wQMlTx3WahxyFbYq8j2tmw85_MU5OrqOzaTz9LYvf80N0G25kGc16TQau8-XhL9JQysCmq1kpxeSUwUcXtggVXXb8UQKV06cXScmpCn3L2hiKw_Xu617pAdRcR66N6zl-CrodtL9x8qlXV3mv-HqPz_F__uoZPFnhUnbkFek5bNhyCx4N23JwL-Dm_Lb6eFt__vHt-1U9c_WCeWpOjLQZJaIt2LnVJRv5sjqzL5Vlwzmdh5Nev2fDtmjLkunSsA93hPvrsuFz3YbJ8WgyPOGrwgy8iFSScmF1PChSEzqrMfyJrSrC0KErLBQiuIG1aRK5fpTjAua0NsIgCtMSkV-UK_SHcgc2y3lpXwLr2ziRQtqIwkyMTLUWSghtlHPGutgEwFu5ZMWKtJxqZ8wyT7csMpqwrJuwAA669neeruOPLfdaMWcrs11mFH_F6ALSJIC33WucaDpF0aWd19hGDJJUomNXAex69eg-JTHeJMKbAEQj5L-MITsan466p1f_0uk1PBa0AxAqLtQebFaL2r5BmFTl-40p_AQvOAnt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiX8k8DBYwE4pQ26_x4jdRDtd1ql24XCRap4mI5sSNW3War3USonHgHXoRX6SvwJMzkDy0IISH1wDGKkzieH39je74BeM6F9oXlHdfoBAOUWKaulrHnorBNEnfQZ5bs_MfjaPA-eH0SnqzBtyYXpuKHaBfcyDJKf00GTgvSuz9ZQykFm85mSQrKZX2u8shefMKobbk3PEARv-D8sD_pDdy6sICbBCKSLrc67CbSeKnVCN9DKxLPS9GVJwIRSNdaGQVpJ4jRAFOtDTeIIrSPyCWIBfpzH197Da5TFXFi6z942xJWcbSGKp_J910qe9_QRHp8d7W7q9Pgb9h2FSqXc93hTbhsRqk64nK6U-TxTvL5FwLJ_2kYb8FmDbzZfmUpt2HNZndgo9fUu7sLH0bT_OO0OPv-5eu7YpYWC1Zxj07tklGm3YKNrM5Yv6obNLvILevNacOfDPcV6zVVaZZMZ4a9OafApshKwtp7MLmKP7sP69k8s1vAOjaMfO7bgOJoDL215oJzbUSaGpuGxgG30QOV1KzsVBxkpio-aa5IPqqVjwMv2_bnFR_JH1tuN2qlar-0VBRghjjHyciBZ-1tHGjaJtKZnRfYhncj6SNyEQ48qNSx_ZSPATUx-jjAS6X6Sx_U_njYb68e_stDT2FjMDkeqdFwfPQIbnBa7vCEy8U2rOeLwj5GTJjHT0ozZKCuWF9_AOH9ZcI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRYJuyrukFDASiFXajJ3EYyQW1TzUocOAoEgVG8uJbTFiyIxmEqGy4h_4EH6Fb-BLuM4LDQghIXXBMoqTOL4Pn2v7ngvwkHLFuKEdX6sUA5REWF-JJPBR2DpNOugzS3b-55P46E347DQ63YCvTS5MxQ_RLrg5yyj9tTPwhbYHP0lDXQa2O5olXEwu6mOVx-bsIwZtq6ejPkr4EaXDwUnvyK_rCvhpyGPhU6Oibip0YI1C9B4ZngaBRU-ecgQgXWNEHNpOmKD9WaU01QgiFEPgEiYc3TnD116Ai2EcCFcrov-q5auiaAxVOhNjvqt637BEBvRgvbvrs-Bv0HYdKZdT3fAKfGsGqTrh8n6_yJP99NMv_JH_0Shehe0adpPDyk6uwYbJrsPlXlPt7ga8HU_zd9Piw_fPX14XM1ssScU8OjUr4vLslmRsVEYGVdWg2VluSG_utvud2T4hvaYmzYqoTJMXCxfWFFlJV3sTTs7jz27BZjbPzG0gHRPFjDITuigaA2-lKKdUaW6tNjbSHviNGsi05mR3pUFmsmKTptLJR7by8eBx235RsZH8seVeo1Wy9kor6cLLCGc4EXvwoL2NA-02iVRm5gW2od1YMMQt3IOdShvbTzEMpx2fjwe01Km_9EEeTkaD9mr3Xx66D5de9odyPJoc34Et6tY6Au5Tvgeb-bIwdxEQ5sm90ggJyHNW1x8pu2Rx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium%E2%80%93Sulfur+Batteries+under+Lean+Electrolyte+Conditions%3A+Challenges+and+Opportunities&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Meng&rft.au=Li%2C+Bo%E2%80%90Quan&rft.au=Peng%2C+Hong%E2%80%90Jie&rft.au=Yuan%2C+Hong&rft.date=2020-07-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=31&rft.spage=12636&rft.epage=12652&rft_id=info:doi/10.1002%2Fanie.201909339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201909339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |