Iridium‐Catalyzed Asymmetric Allylic Dearomatization by a Desymmetrization Strategy

A desymmetrization strategy was developed involving iridium‐catalyzed allylic dearomatization of indoles. The six‐membered‐ring spiroindolenines contain three contiguous stereogenic centers, including an all‐carbon quaternary center, and were obtained in up to 99 % yield with 99 % ee and >95:5 d....

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 47; pp. 15093 - 15097
Main Authors Wang, Ye, Zheng, Chao, You, Shu‐Li
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 20.11.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A desymmetrization strategy was developed involving iridium‐catalyzed allylic dearomatization of indoles. The six‐membered‐ring spiroindolenines contain three contiguous stereogenic centers, including an all‐carbon quaternary center, and were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six‐membered spiroindolenine undergoes an unprecedented six‐to‐seven‐membered ring expansion, affording the corresponding hexahydroazepino[4,5‐b]indole. The Legend of Spiro: An iridium‐catalyzed desymmetrization reaction involving allylic dearomatization of indoles was developed. The six‐membered‐ring spiroindolenines were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six‐membered spiroindolenine undergoes six‐to‐seven‐membered ring expansion, yielding hexahydroazepino[4,5‐b]indole.
AbstractList A desymmetrization strategy was developed involving iridium-catalyzed allylic dearomatization of indoles. The six-membered-ring spiroindolenines contain three contiguous stereogenic centers, including an all-carbon quaternary center, and were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six-membered spiroindolenine undergoes an unprecedented six-to-seven-membered ring expansion, affording the corresponding hexahydroazepino[4,5-b]indole.
A desymmetrization strategy was developed involving iridium‐catalyzed allylic dearomatization of indoles. The six‐membered‐ring spiroindolenines contain three contiguous stereogenic centers, including an all‐carbon quaternary center, and were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six‐membered spiroindolenine undergoes an unprecedented six‐to‐seven‐membered ring expansion, affording the corresponding hexahydroazepino[4,5‐ b ]indole.
A desymmetrization strategy was developed involving iridium-catalyzed allylic dearomatization of indoles. The six-membered-ring spiroindolenines contain three contiguous stereogenic centers, including an all-carbon quaternary center, and were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six-membered spiroindolenine undergoes an unprecedented six-to-seven-membered ring expansion, affording the corresponding hexahydroazepino[4,5-b]indole.A desymmetrization strategy was developed involving iridium-catalyzed allylic dearomatization of indoles. The six-membered-ring spiroindolenines contain three contiguous stereogenic centers, including an all-carbon quaternary center, and were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six-membered spiroindolenine undergoes an unprecedented six-to-seven-membered ring expansion, affording the corresponding hexahydroazepino[4,5-b]indole.
A desymmetrization strategy was developed involving iridium‐catalyzed allylic dearomatization of indoles. The six‐membered‐ring spiroindolenines contain three contiguous stereogenic centers, including an all‐carbon quaternary center, and were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six‐membered spiroindolenine undergoes an unprecedented six‐to‐seven‐membered ring expansion, affording the corresponding hexahydroazepino[4,5‐b]indole. The Legend of Spiro: An iridium‐catalyzed desymmetrization reaction involving allylic dearomatization of indoles was developed. The six‐membered‐ring spiroindolenines were obtained in up to 99 % yield with 99 % ee and >95:5 d.r. When treated with a catalytic amount of tosylic acid, six‐membered spiroindolenine undergoes six‐to‐seven‐membered ring expansion, yielding hexahydroazepino[4,5‐b]indole.
Author Zheng, Chao
Wang, Ye
You, Shu‐Li
Author_xml – sequence: 1
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 2
  givenname: Chao
  surname: Zheng
  fullname: Zheng, Chao
  organization: University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 3
  givenname: Shu‐Li
  orcidid: 0000-0003-4586-8359
  surname: You
  fullname: You, Shu‐Li
  email: slyou@sioc.ac.cn
  organization: Collaborative Innovation Center of Chemical Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28980373$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1KxDAUhYOM-DO6dSkDbtx0zG3aJlkO49_AoAt1XdL2VjKk7Zi0SF35CD6jT2J0xhEEcRFuuHwn9-acfTKomxoJOQI6BkrDM1VrHIcUOBURyC2yB3EIAeOcDfw9YizgIoZdsu_cwvNC0GSH7IZCCso42yMPM6sL3VXvr29T1SrTv2Axmri-qrC1Oh9NjOmNr-eobFOpVr_409SjrB8p3_wG19271qoWH_sDsl0q4_BwXYfk4fLifnodzG-vZtPJPMgjnsgA4iIKqRQhxNR_AaAsZJwlRQLIZSSEULykshQJxlKBLLJQsVCAyimVWYbIhuR09e7SNk8dujattMvRGFVj07kUpJ8DnEXUoye_0EXT2dpv56mEiYRzyT11vKa6rMIiXVpdKdun34Z5YLwCcts4Z7HcIEDTz0TSz0TSTSJeEP0S5Lr9cst7pc3fMrmSPWuD_T9D0snN7OJH-wE9vKBb
CitedBy_id crossref_primary_10_1039_D2QO01054B
crossref_primary_10_31635_ccschem_019_20180006
crossref_primary_10_1039_C6CS00825A
crossref_primary_10_1039_D1QO00408E
crossref_primary_10_1021_acscatal_9b03461
crossref_primary_10_1039_D1GC02713A
crossref_primary_10_1002_adsc_202401198
crossref_primary_10_1039_D3QO00035D
crossref_primary_10_1021_acscatal_0c05020
crossref_primary_10_1021_acs_orglett_9b01705
crossref_primary_10_1002_ejoc_201701812
crossref_primary_10_1002_ange_201807069
crossref_primary_10_1021_acs_orglett_2c04109
crossref_primary_10_1002_anie_202010164
crossref_primary_10_1021_acscatal_2c02164
crossref_primary_10_1021_acs_joc_2c00286
crossref_primary_10_1002_adsc_202400411
crossref_primary_10_1002_ejoc_202300253
crossref_primary_10_1021_acs_orglett_3c00575
crossref_primary_10_1002_ange_201810900
crossref_primary_10_1021_acs_organomet_9b00416
crossref_primary_10_1039_D4SC05541A
crossref_primary_10_1016_j_tet_2022_132839
crossref_primary_10_1002_ange_201811437
crossref_primary_10_1002_anie_202215616
crossref_primary_10_1021_acscatal_1c01328
crossref_primary_10_1021_acs_orglett_2c02060
crossref_primary_10_1021_acs_orglett_9b03988
crossref_primary_10_1039_C8CC09226E
crossref_primary_10_1021_acs_orglett_3c03716
crossref_primary_10_1021_acs_orglett_0c00181
crossref_primary_10_1021_acs_orglett_3c00207
crossref_primary_10_1021_acs_organomet_8b00762
crossref_primary_10_1002_anie_201905021
crossref_primary_10_1002_anie_201811437
crossref_primary_10_1002_anie_201810900
crossref_primary_10_1039_D1SC02838C
crossref_primary_10_1021_acs_orglett_7b03887
crossref_primary_10_1002_anie_201807069
crossref_primary_10_1002_chem_201900425
crossref_primary_10_1021_acs_orglett_3c00834
crossref_primary_10_1021_acs_joc_9b02110
crossref_primary_10_1021_jacs_7b12824
crossref_primary_10_1021_acs_orglett_8b01807
crossref_primary_10_1002_ange_201905021
crossref_primary_10_1021_jacs_8b00136
crossref_primary_10_1039_C7CS00508C
crossref_primary_10_1039_C8CC08962K
crossref_primary_10_1002_ange_201812344
crossref_primary_10_1002_tcr_202400135
crossref_primary_10_1021_acs_accounts_0c00074
crossref_primary_10_1021_acs_orglett_0c01406
crossref_primary_10_1002_ange_202010164
crossref_primary_10_1021_acscatal_8b03694
crossref_primary_10_1039_C8CC01474D
crossref_primary_10_1002_ejoc_202000262
crossref_primary_10_1016_j_tet_2020_131765
crossref_primary_10_1021_acs_orglett_4c03586
crossref_primary_10_1021_acs_orglett_0c01370
crossref_primary_10_1021_acs_orglett_9b04283
crossref_primary_10_1016_j_tet_2018_08_052
crossref_primary_10_1039_C9NJ05515K
crossref_primary_10_1021_acscatal_4c04504
crossref_primary_10_1039_C9SC05311E
crossref_primary_10_1002_ejoc_201900798
crossref_primary_10_1021_acs_orglett_2c03691
crossref_primary_10_1021_jacs_0c09638
crossref_primary_10_1002_anie_202214519
crossref_primary_10_3390_molecules28145372
crossref_primary_10_1039_D0QO00344A
crossref_primary_10_1039_D3QO02033A
crossref_primary_10_1021_acs_orglett_3c01106
crossref_primary_10_1002_ange_202215616
crossref_primary_10_1021_acscatal_3c01417
crossref_primary_10_1039_D4SC02802C
crossref_primary_10_1021_jacs_8b13182
crossref_primary_10_1039_C9GC03345A
crossref_primary_10_1039_D4CC03166K
crossref_primary_10_1002_adsc_201800981
crossref_primary_10_1038_s41467_022_31063_3
crossref_primary_10_1021_acs_orglett_1c01234
crossref_primary_10_1021_acs_orglett_9b02051
crossref_primary_10_1002_adsc_201800865
crossref_primary_10_1002_chem_201805945
crossref_primary_10_1039_D0CC07529A
crossref_primary_10_1002_anie_201812344
crossref_primary_10_1021_jacs_1c04648
crossref_primary_10_1016_j_comptc_2020_113030
crossref_primary_10_6023_A23040164
crossref_primary_10_1002_ange_202214519
crossref_primary_10_1039_D0QO01124J
crossref_primary_10_1016_j_chempr_2018_06_006
crossref_primary_10_1021_acs_orglett_2c00129
crossref_primary_10_1021_jacs_8b00187
crossref_primary_10_1016_j_tet_2022_132629
crossref_primary_10_1021_acs_joc_0c01373
crossref_primary_10_1021_jacs_1c01242
crossref_primary_10_1021_acs_orglett_9b02285
crossref_primary_10_1021_acs_orglett_8b02463
crossref_primary_10_1021_acscentsci_0c01651
crossref_primary_10_1021_acs_chemrev_8b00506
Cites_doi 10.1002/anie.201609693
10.1021/acscatal.6b01886
10.1039/C6SC00176A
10.1007/b12823
10.1002/ange.201107677
10.1002/9783527698479.ch5
10.1002/anie.201204822
10.1007/978-3-642-15334-1_7
10.1002/ange.201707015
10.1002/anie.200460276
10.1007/b94492
10.1002/ange.201407518
10.1021/ja4042127
10.1039/b512615k
10.1111/j.1365-2958.2008.06144.x
10.1039/B614169B
10.1002/9783527652235.ch48
10.1016/B978-008045382-8.00013-7
10.1002/ange.201703833
10.1039/C4OB00371C
10.1021/ja305100g
10.1016/j.tet.2016.12.074
10.1021/ja4025337
10.1002/anie.201703833
10.1002/anie.201507193
10.1002/hlca.200590118
10.1021/np4007469
10.1021/jacs.6b02153
10.1021/ol300297t
10.1002/ange.200802480
10.1021/jacs.5b01705
10.1021/jacs.6b12077
10.1016/j.chempr.2016.11.005
10.1021/acscatal.6b00719
10.1002/chem.200901377
10.1002/ange.201410257
10.1002/ange.201600235
10.1002/chem.201202264
10.1021/cr9902852
10.1021/jacs.7b02856
10.1021/jacs.6b11692
10.1002/ange.201405689
10.1021/acs.orglett.7b00449
10.1021/jo400365e
10.1002/chem.201201772
10.1002/anie.201400109
10.1002/anie.201707015
10.1002/anie.201410257
10.1002/chem.201500349
10.1002/anie.201600235
10.1002/anie.201407518
10.1021/ar100047x
10.1002/9780470098004.ch10
10.1021/acs.orglett.6b03221
10.1021/jacs.5b00613
10.1021/np500259j
10.1016/j.tet.2011.11.094
10.1002/ange.201609693
10.1002/chem.201503835
10.1021/ol4002619
10.1021/ol101825f
10.1002/anie.201107677
10.1016/S0040-4020(00)00935-2
10.1021/np900374s
10.1016/j.tet.2009.12.046
10.1002/ange.201204822
10.1002/ange.201507193
10.1021/ja109953v
10.1002/ejoc.200300738
10.1021/acs.orglett.7b01346
10.1002/ange.200460276
10.1055/s-2008-1032094
10.1055/s-2006-950284
10.1039/c2ob07086c
10.1055/s-2005-921899
10.1039/C5CS00015G
10.1021/ja105111n
10.1021/ar500167f
10.3109/14756366.2015.1118685
10.1002/anie.201405689
10.1002/ange.201400109
10.1039/C4OB02440K
10.1021/cr068369f
10.2174/1385272043486016
10.1021/ja403535a
10.1016/j.tet.2014.07.081
10.1002/chem.201503276
10.1007/3418_2011_10
10.1039/C5CS00356C
10.1002/anie.200802480
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201708419
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 15097
ExternalDocumentID 28980373
10_1002_anie_201708419
ANIE201708419
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2016YFA0202900, 2015CB856600
– fundername: National Natural Science Foundation of China
  funderid: 21332009, 21421091
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4769-15d42098215001711fd95b6d61e794888a7f09f86e59a19db2a3281ac009bbee3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:33:10 EDT 2025
Fri Jul 25 10:35:07 EDT 2025
Wed Feb 19 02:34:39 EST 2025
Tue Jul 01 02:26:12 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Wed Jan 22 17:09:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords enantioselective synthesis
indoles
asymmetric catalysis
iridium catalysts
dearomatization
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4769-15d42098215001711fd95b6d61e794888a7f09f86e59a19db2a3281ac009bbee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4586-8359
PMID 28980373
PQID 1963867797
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1947617340
proquest_journals_1963867797
pubmed_primary_28980373
crossref_primary_10_1002_anie_201708419
crossref_citationtrail_10_1002_anie_201708419
wiley_primary_10_1002_anie_201708419_ANIE201708419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 20, 2017
PublicationDateYYYYMMDD 2017-11-20
PublicationDate_xml – month: 11
  year: 2017
  text: November 20, 2017
  day: 20
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2010; 12
2007; 107
2014; 70
2004; 8
2004; 7
2016; 31
2012; 18
2008 2008; 47 120
2012; 14
2012; 10
2017; 73
2010; 66
2013; 15
2012; 134
2015; 137
2006; 23
2012 2012; 51 124
2015 2015; 54 127
2008; 68
2012; 68
2001; 57
2014; 12
2009; 15
2016; 45
2015; 13
2004 2004; 43 116
2012
2010
2008
2007
2014; 47
2006
2005
2004
2011; 34
2017 2017; 56 129
2016; 18
2011; 38
2005; 88
2011; 133
2017; 139
2010; 43
2016; 6
2016; 7
2016; 1
2016 2016; 55 128
2013; 76
2009; 72
2013; 78
2015; 21
2010; 132
2013; 135
2016
2017; 19
2016; 138
2000; 100
2014
2013
2014; 77
2016; 22
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_85_2
e_1_2_2_62_1
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_89_1
e_1_2_2_81_2
e_1_2_2_13_2
e_1_2_2_59_2
e_1_2_2_51_2
e_1_2_2_74_2
e_1_2_2_74_3
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_55_2
e_1_2_2_78_2
e_1_2_2_36_1
e_1_2_2_48_1
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_44_2
e_1_2_2_25_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_67_2
e_1_2_2_82_1
e_1_2_2_37_2
e_1_2_2_79_3
e_1_2_2_10_2
e_1_2_2_75_2
e_1_2_2_52_3
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_33_2
e_1_2_2_79_2
e_1_2_2_14_2
e_1_2_2_56_2
e_1_2_2_90_1
e_1_2_2_71_2
e_1_2_2_4_2
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_41_1
e_1_2_2_87_1
e_1_2_2_64_2
e_1_2_2_83_2
e_1_2_2_83_3
e_1_2_2_8_2
e_1_2_2_26_3
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_60_2
e_1_2_2_11_2
e_1_2_2_38_2
Miyabe H. (e_1_2_2_63_2) 2005
Helmchen G. (e_1_2_2_70_2) 2014
Ye K.-Y. (e_1_2_2_86_2) 2013
e_1_2_2_72_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_15_3
e_1_2_2_15_2
e_1_2_2_57_2
e_1_2_2_76_2
e_1_2_2_91_1
Williamson A. E. (e_1_2_2_34_2) 2012
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_69_2
e_1_2_2_7_1
e_1_2_2_61_2
e_1_2_2_42_2
e_1_2_2_84_2
e_1_2_2_27_3
e_1_2_2_27_2
e_1_2_2_65_2
e_1_2_2_88_1
e_1_2_2_46_2
e_1_2_2_88_2
e_1_2_2_80_2
e_1_2_2_12_2
e_1_2_2_58_2
e_1_2_2_39_2
e_1_2_2_50_3
e_1_2_2_50_2
e_1_2_2_54_1
e_1_2_2_31_2
e_1_2_2_73_2
e_1_2_2_31_3
e_1_2_2_77_3
e_1_2_2_16_2
e_1_2_2_35_2
e_1_2_2_77_2
References_xml – volume: 100
  start-page: 2917
  year: 2000
  publication-title: Chem. Rev.
– volume: 51 124
  start-page: 12662 12834
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 1661
  year: 2017
  publication-title: J. Am. Chem. Soc.
– start-page: 675
  year: 2007
  publication-title: Chem. Commun.
– start-page: 1641
  year: 2005
  publication-title: Synlett
– volume: 70
  start-page: 9571
  year: 2014
  publication-title: Tetrahedron
– volume: 73
  start-page: 888
  year: 2017
  publication-title: Tetrahedron
– start-page: 3033
  year: 2005
  publication-title: Synlett
– volume: 107
  start-page: 5683
  year: 2007
  publication-title: Chem. Rev.
– volume: 135
  start-page: 6802
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 17453
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 55 128
  start-page: 5819 5913
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45
  start-page: 5474
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 11545 11703
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 2185 2213
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45
  start-page: 1570
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 532
  year: 2006
  publication-title: Nat. Prod. Rep.
– volume: 18
  start-page: 13920
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 53 126
  start-page: 10471 10639
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 2856
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 830
  year: 2016
  publication-title: Chem
– volume: 12
  start-page: 4188
  year: 2010
  publication-title: Org. Lett.
– volume: 76
  start-page: 2322
  year: 2013
  publication-title: J. Nat. Prod.
– volume: 43
  start-page: 1461
  year: 2010
  publication-title: Acc. Chem. Res.
– start-page: 3349
  year: 2006
  publication-title: Synthesis
– volume: 19
  start-page: 3235
  year: 2017
  publication-title: Org. Lett.
– volume: 8
  start-page: 113
  year: 2004
  publication-title: Curr. Org. Chem.
– volume: 18
  start-page: 6328
  year: 2016
  publication-title: Org. Lett.
– volume: 19
  start-page: 1527
  year: 2017
  publication-title: Org. Lett.
– year: 2004
– start-page: 103
  year: 2016
  end-page: 128
– start-page: 2109
  year: 2013
  publication-title: Synthesis
– start-page: 467
  year: 2008
  publication-title: Synlett
– volume: 66
  start-page: 2235
  year: 2010
  publication-title: Tetrahedron
– volume: 56 129
  start-page: 3242 3290
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 6207
  year: 2016
  publication-title: ACS Catal.
– volume: 137
  start-page: 3225
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 68
  start-page: 995
  year: 2012
  publication-title: Tetrahedron
– volume: 51 124
  start-page: 1680 1712
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  start-page: 169
  year: 2011
  publication-title: Top. Organomet. Chem.
– volume: 135
  start-page: 7851
  year: 2013
  publication-title: J. Am. Chem. Soc.
– start-page: 275
  year: 2007
  end-page: 311
– volume: 139
  start-page: 8082
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 14314
  year: 2012
  publication-title: Chem. Eur. J.
– start-page: 235
  year: 2014
  end-page: 254
– volume: 134
  start-page: 10815
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 4453
  year: 2016
  publication-title: Chem. Sci.
– volume: 138
  start-page: 5234
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 2006
  year: 2014
  publication-title: J. Nat. Prod.
– volume: 57
  start-page: 273
  year: 2001
  publication-title: Tetrahedron
– volume: 47
  start-page: 2558
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 72
  start-page: 1836
  year: 2009
  publication-title: J. Nat. Prod.
– start-page: 383
  year: 2012
  end-page: 390
– volume: 13
  start-page: 6082
  year: 2015
  publication-title: Org. Biomol. Chem.
– volume: 14
  start-page: 1350
  year: 2012
  publication-title: Org. Lett.
– volume: 6
  start-page: 3381
  year: 2016
  publication-title: ACS Catal.
– volume: 47 120
  start-page: 7652 7764
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 3147
  year: 2012
  publication-title: Org. Biomol. Chem.
– volume: 53 126
  start-page: 13854 14074
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43 116
  start-page: 4797 4901
  year: 2004 2004
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 71
  year: 2004
  publication-title: Top. Organomet. Chem.
– volume: 12
  start-page: 4807
  year: 2014
  publication-title: Org. Biomol. Chem.
– volume: 133
  start-page: 2072
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 4936
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 11418
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 155
  year: 2011
  publication-title: Top. Organomet. Chem.
– start-page: 977
  year: 2010
– volume: 68
  start-page: 152
  year: 2008
  publication-title: Mol. Microbiol.
– volume: 135
  start-page: 8169
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 88
  start-page: 1472
  year: 2005
  publication-title: Helv. Chim. Acta
– volume: 15
  start-page: 1492
  year: 2013
  publication-title: Org. Lett.
– volume: 15
  start-page: 11737
  year: 2009
  publication-title: Chem. Eur. J.
– volume: 54 127
  start-page: 14146 14352
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 8389
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 139
  start-page: 87
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 7475 7583
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 78
  start-page: 4357
  year: 2013
  publication-title: J. Org. Chem.
– volume: 7
  start-page: 95
  year: 2004
  publication-title: Top. Organomet. Chem.
– volume: 53 126
  start-page: 4680 4768
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 1666
  year: 2016
  publication-title: J. Enzyme Inhib. Med. Chem.
– ident: e_1_2_2_77_2
  doi: 10.1002/anie.201609693
– ident: e_1_2_2_71_2
  doi: 10.1021/acscatal.6b01886
– ident: e_1_2_2_32_1
– ident: e_1_2_2_53_2
  doi: 10.1039/C6SC00176A
– ident: e_1_2_2_10_2
  doi: 10.1007/b12823
– ident: e_1_2_2_50_3
  doi: 10.1002/ange.201107677
– ident: e_1_2_2_62_1
– ident: e_1_2_2_35_2
  doi: 10.1002/9783527698479.ch5
– ident: e_1_2_2_15_2
  doi: 10.1002/anie.201204822
– start-page: 235
  volume-title: Molecular Catalysis.
  year: 2014
  ident: e_1_2_2_70_2
– ident: e_1_2_2_67_2
  doi: 10.1007/978-3-642-15334-1_7
– ident: e_1_2_2_79_3
  doi: 10.1002/ange.201707015
– ident: e_1_2_2_88_1
  doi: 10.1002/anie.200460276
– ident: e_1_2_2_11_2
  doi: 10.1007/b94492
– ident: e_1_2_2_27_3
  doi: 10.1002/ange.201407518
– ident: e_1_2_2_24_2
  doi: 10.1021/ja4042127
– ident: e_1_2_2_42_2
  doi: 10.1039/b512615k
– ident: e_1_2_2_60_2
  doi: 10.1111/j.1365-2958.2008.06144.x
– ident: e_1_2_2_65_2
  doi: 10.1039/B614169B
– start-page: 383
  volume-title: Asymmetric Synthesis II,: More Methods and Applications
  year: 2012
  ident: e_1_2_2_34_2
  doi: 10.1002/9783527652235.ch48
– ident: e_1_2_2_43_2
  doi: 10.1016/B978-008045382-8.00013-7
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201703833
– ident: e_1_2_2_82_1
– ident: e_1_2_2_17_2
  doi: 10.1039/C4OB00371C
– ident: e_1_2_2_21_2
  doi: 10.1021/ja305100g
– ident: e_1_2_2_57_2
  doi: 10.1016/j.tet.2016.12.074
– ident: e_1_2_2_23_2
  doi: 10.1021/ja4025337
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201703833
– ident: e_1_2_2_52_2
  doi: 10.1002/anie.201507193
– ident: e_1_2_2_59_2
  doi: 10.1002/hlca.200590118
– ident: e_1_2_2_46_2
  doi: 10.1021/np4007469
– ident: e_1_2_2_72_2
  doi: 10.1021/jacs.6b02153
– ident: e_1_2_2_22_2
  doi: 10.1021/ol300297t
– ident: e_1_2_2_83_3
  doi: 10.1002/ange.200802480
– ident: e_1_2_2_87_1
– ident: e_1_2_2_29_2
  doi: 10.1021/jacs.5b01705
– ident: e_1_2_2_38_2
  doi: 10.1021/jacs.6b12077
– start-page: 1641
  year: 2005
  ident: e_1_2_2_63_2
  publication-title: Synlett
– start-page: 2109
  year: 2013
  ident: e_1_2_2_86_2
  publication-title: Synthesis
– ident: e_1_2_2_19_2
  doi: 10.1016/j.chempr.2016.11.005
– ident: e_1_2_2_73_2
  doi: 10.1021/acscatal.6b00719
– ident: e_1_2_2_91_1
  doi: 10.1002/chem.200901377
– ident: e_1_2_2_40_2
  doi: 10.1002/ange.201410257
– ident: e_1_2_2_74_3
  doi: 10.1002/ange.201600235
– ident: e_1_2_2_5_2
  doi: 10.1002/chem.201202264
– ident: e_1_2_2_8_2
  doi: 10.1021/cr9902852
– ident: e_1_2_2_76_2
  doi: 10.1021/jacs.7b02856
– ident: e_1_2_2_78_2
  doi: 10.1021/jacs.6b11692
– ident: e_1_2_2_26_3
  doi: 10.1002/ange.201405689
– ident: e_1_2_2_80_2
  doi: 10.1021/acs.orglett.7b00449
– ident: e_1_2_2_89_1
  doi: 10.1021/jo400365e
– ident: e_1_2_2_85_2
  doi: 10.1002/chem.201201772
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201400109
– ident: e_1_2_2_79_2
  doi: 10.1002/anie.201707015
– ident: e_1_2_2_54_1
– ident: e_1_2_2_40_1
  doi: 10.1002/anie.201410257
– ident: e_1_2_2_56_2
  doi: 10.1002/chem.201500349
– ident: e_1_2_2_74_2
  doi: 10.1002/anie.201600235
– ident: e_1_2_2_27_2
  doi: 10.1002/anie.201407518
– ident: e_1_2_2_66_2
  doi: 10.1021/ar100047x
– ident: e_1_2_2_3_2
  doi: 10.1002/9780470098004.ch10
– ident: e_1_2_2_75_2
  doi: 10.1021/acs.orglett.6b03221
– ident: e_1_2_2_28_2
  doi: 10.1021/jacs.5b00613
– ident: e_1_2_2_47_2
  doi: 10.1021/np500259j
– ident: e_1_2_2_37_2
  doi: 10.1016/j.tet.2011.11.094
– ident: e_1_2_2_77_3
  doi: 10.1002/ange.201609693
– ident: e_1_2_2_20_2
  doi: 10.1002/chem.201503835
– ident: e_1_2_2_36_1
– ident: e_1_2_2_55_2
  doi: 10.1021/ol4002619
– ident: e_1_2_2_45_2
  doi: 10.1021/ol101825f
– ident: e_1_2_2_50_2
  doi: 10.1002/anie.201107677
– ident: e_1_2_2_9_2
  doi: 10.1016/S0040-4020(00)00935-2
– ident: e_1_2_2_41_1
– ident: e_1_2_2_44_2
  doi: 10.1021/np900374s
– ident: e_1_2_2_14_2
  doi: 10.1016/j.tet.2009.12.046
– ident: e_1_2_2_15_3
  doi: 10.1002/ange.201204822
– ident: e_1_2_2_52_3
  doi: 10.1002/ange.201507193
– ident: e_1_2_2_90_1
– ident: e_1_2_2_84_2
  doi: 10.1021/ja109953v
– ident: e_1_2_2_58_2
  doi: 10.1002/ejoc.200300738
– ident: e_1_2_2_81_2
  doi: 10.1021/acs.orglett.7b01346
– ident: e_1_2_2_88_2
  doi: 10.1002/ange.200460276
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_13_2
  doi: 10.1055/s-2008-1032094
– ident: e_1_2_2_64_2
  doi: 10.1055/s-2006-950284
– ident: e_1_2_2_69_2
  doi: 10.1039/c2ob07086c
– ident: e_1_2_2_2_2
  doi: 10.1055/s-2005-921899
– ident: e_1_2_2_6_2
  doi: 10.1039/C5CS00015G
– ident: e_1_2_2_49_2
  doi: 10.1021/ja105111n
– ident: e_1_2_2_16_2
  doi: 10.1021/ar500167f
– ident: e_1_2_2_48_1
– ident: e_1_2_2_61_2
  doi: 10.3109/14756366.2015.1118685
– ident: e_1_2_2_26_2
  doi: 10.1002/anie.201405689
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201400109
– ident: e_1_2_2_39_2
  doi: 10.1039/C4OB02440K
– ident: e_1_2_2_4_2
  doi: 10.1021/cr068369f
– ident: e_1_2_2_12_2
  doi: 10.2174/1385272043486016
– ident: e_1_2_2_51_2
  doi: 10.1021/ja403535a
– ident: e_1_2_2_33_2
  doi: 10.1016/j.tet.2014.07.081
– ident: e_1_2_2_30_2
  doi: 10.1002/chem.201503276
– ident: e_1_2_2_68_2
  doi: 10.1007/3418_2011_10
– ident: e_1_2_2_18_2
  doi: 10.1039/C5CS00356C
– ident: e_1_2_2_83_2
  doi: 10.1002/anie.200802480
SSID ssj0028806
Score 2.5401518
Snippet A desymmetrization strategy was developed involving iridium‐catalyzed allylic dearomatization of indoles. The six‐membered‐ring spiroindolenines contain three...
A desymmetrization strategy was developed involving iridium-catalyzed allylic dearomatization of indoles. The six-membered-ring spiroindolenines contain three...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15093
SubjectTerms asymmetric catalysis
Catalysis
dearomatization
enantioselective synthesis
Indoles
Iridium
iridium catalysts
Title Iridium‐Catalyzed Asymmetric Allylic Dearomatization by a Desymmetrization Strategy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201708419
https://www.ncbi.nlm.nih.gov/pubmed/28980373
https://www.proquest.com/docview/1963867797
https://www.proquest.com/docview/1947617340
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwEC2NuDAXlhmWsClISJwM8dJxfGw1IECCw4iWuEV27EiIXhDdfQgnPoFv5EtwZYMGjUYaTkmcsuyUXfaz43oFcKCcsBj9hETa5sSvNzKitdHEJZTnhgmpy6B9V9fxeV9c3nZuP3jxV_wQ7YYbWkY5XqOBazM5ficNRQ9sPJolo0SUvJ94YAtR0Z-WP4r5zlm5F3FOMAp9w9oYseP57POz0heoOY9cy6nnbBl0U-nqxMn90WxqjrKnT3yO3_mqFViqcWnYrTrSKvxwo1-w2GvCwf2G_sXjnb2bDV-fX3q45VM8ORt2J8VwiDG5srA7GBQDfz3xpjNGGFz5d4amCLVPbATr1JoUt1iD_tnpTe-c1DEZSCZkrAjtWMEilXikUFLt0NyqjoltTJ23bL-c1jKPVJ7ErqM0VdYwzVlCdeaxnDHO8XVYGI1HbhNCnuBuiqW5oVpIlSXUKZEranMZZ7FQAZCmTdKsJizHuBmDtKJaZikqK22VFcBhK_9QUXX8VXKnaeK0NtlJWg5FsZRKBrDfvvZKxj8oeuTGM5TxSqCSiyiAjaprtEX5lWsScckDYGUD_6MOaff64rR92vqfTNvwE-_RM5JFO7AwfZy5XQ-RpmavNIM33GIILQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5V9AAX-uDRFNqmEhInQ_zYOD6utrvabWEPiJW4RXbsSIh9VLB7CKf-hP5Gfkk9eaEFoUrtKYozVhzbY89MPN8HcKScsMh-QiJtc-L9jYxobTRxCeW5YULqkrTvfBwPJ-L7Vac5TYi5MBU-RBtwQ80o12tUcAxInz6ihmIKNp7NklEiEPjzNdJ6l17VRYsgxfz0rBKMOCfIQ9_gNkbsdL3--r70zNhct13LzWfwBkzT7OrMyc3JamlOsvsniI7_9V1vYbs2TcNuNZfewSs3fw-bvYYRbgcmo9tre72aPfz63cOoT3HvbNi9K2YzpOXKwu50Wkz99ZvXngVawlWKZ2iKUPvCRrAurXFxi12YDPqXvSGpaRlIJmSsCO1YwSKVeGOhRNuhuVUdE9uYOq_c3qPWMo9UnsSuozRV1jDNWUJ15s05Y5zje7AxX8zdBwh5ggEVS3NDtZAqS6hTIlfU5jLOYqECIM2gpFmNWY7UGdO0QltmKXZW2nZWAMet_M8KreNFycNmjNNaa-_ScjWKpVQygK_tY9_J-BNFz91ihTK-E6jkIgpgv5ob7au885pEXPIAWDnCf2lD2h2P-u3dx3-p9AU2h5fnZ-nZaPzjALawHBMlWXQIG8vblfvkLaal-VzqxB9elAxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JixQxFA4ygnpxX0pHLUHwlJlsneXYdE8z7dKI2DC3IqkkMEwvw0z3oebkT_A3-kvMq01bEUFPRaVeqNTLe8mXVN73EHptgvCQ_QQT6yNO640SW-ssDpry6JhQtk7a92Emj-fi7cng5Kco_oYfot9wA8-ox2tw8HMfD3-QhkIENhzNUkQL4P28LiTRYNfjTz2BFEvW2cQXcY4hDX1H20jY4W793WnpN6y5C13ruWdyB9mu1c2Rk7OD7cYdlFe_EDr-z2fdRbdbYJoPG0u6h66F1X10c9Tlg3uA5tOLU3-6XX778nUEez7VVfD58LJaLiEpV5kPF4tqka7j5DtrwMFNgGfuqtymwk6wLW1ZcauHaD45-jw6xm1SBlwKJQ2mAy8YMTpBhZprh0ZvBk56SUNy7bSetioSE7UMA2Op8Y5ZzjS1ZQJzzoXAH6G91XoVnqCca9hO8TQ6aoUypabBiGioj0qWUpgM4a5PirJlLIfEGYui4VpmBSir6JWVoTe9_HnD1fFHyf2ui4vWZy-LeiySShmVoVf946Rk-IViV2G9BZmkBKq4IBl63JhG_6q0dNWEK54hVnfwX9pQDGfTo_7u6b9UeolufBxPivfT2btn6BYUQ5QkI_tob3OxDc8TXNq4F7VHfAdF_wsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iridium%E2%80%90Catalyzed+Asymmetric+Allylic+Dearomatization+by+a+Desymmetrization+Strategy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Ye&rft.au=Zheng%2C+Chao&rft.au=You%2C+Shu%E2%80%90Li&rft.date=2017-11-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=47&rft.spage=15093&rft.epage=15097&rft_id=info:doi/10.1002%2Fanie.201708419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201708419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon