An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes
Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial di...
Saved in:
Published in | Journal of fish biology Vol. 94; no. 5; pp. 692 - 713 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations.
Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds.
The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world‐wide to assess potential effects on fishes.
Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer‐term effects, in terms of fitness and likely impacts upon populations. |
---|---|
AbstractList | Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations. Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world‐wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer‐term effects, in terms of fitness and likely impacts upon populations. Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities ( e.g ., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world‐wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer‐term effects, in terms of fitness and likely impacts upon populations. Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations.Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations. |
Author | Popper, Arthur N. Hawkins, Anthony D. |
AuthorAffiliation | 1 Department of Biology University of Maryland College Park Maryland USA 2 Loughine Ltd. Aberdeen UK |
AuthorAffiliation_xml | – name: 1 Department of Biology University of Maryland College Park Maryland USA – name: 2 Loughine Ltd. Aberdeen UK |
Author_xml | – sequence: 1 givenname: Arthur N. surname: Popper fullname: Popper, Arthur N. email: apopper@umd.edu organization: University of Maryland – sequence: 2 givenname: Anthony D. surname: Hawkins fullname: Hawkins, Anthony D. organization: Loughine Ltd |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30864159$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFLHDEUhUOx1FX70D9QBvrSPozmTjIzyUtBpWpFKBT7HDKZGzfLbLJNZlb89826a2mlQu9LIPnO4dycA7Lng0dC3gE9hjwnC9sdA5NcvCIzoLIuRcPlHplRWlVlBqp9cpDSglIqmWRvyD6jmYBazsj3U1-ENca1w_si2MK6NC86F7QJUxqdSYX2fTHOsXDLlTZj2kDaj_MYVuEOvTNFCpPv871_FGM6Iq-tHhK-3Z2H5MfFl9vzq_Lm2-XX89Ob0vC2EaVmXEANObVF2SKtrKQceCfqrrFtzwzHXlphuorVtNfCSkNb22ndWeRgKnZIPm99V1O3xN6gH6Me1Cq6pY4PKmin_n7xbq7uwlo1gsu2rrPBx51BDD8nTKNaumRwGLTHvL2qWhCMU2j-AwUJFIABz-iHZ-giTNHnn1BVnjqX0NJMvf8z_O_UT81k4GQLmBhSimiVcaMeXdjs4gYFVG26V7l79dh9Vnx6pngy_Re7c793Az68DKrri7Ot4hdMub28 |
CitedBy_id | crossref_primary_10_1121_10_0006972 crossref_primary_10_1002_ece3_7585 crossref_primary_10_1111_jfb_15322 crossref_primary_10_1111_joa_13691 crossref_primary_10_1111_fme_12680 crossref_primary_10_1121_10_0001960 crossref_primary_10_1121_10_0024720 crossref_primary_10_1016_j_mce_2022_111727 crossref_primary_10_3389_fmars_2023_1214949 crossref_primary_10_1007_s44274_024_00092_8 crossref_primary_10_3389_fmars_2021_629230 crossref_primary_10_1002_aqc_4037 crossref_primary_10_3390_ani15050714 crossref_primary_10_1002_ieam_4261 crossref_primary_10_1016_j_scitotenv_2023_167341 crossref_primary_10_1007_s10530_024_03475_3 crossref_primary_10_1007_s00300_020_02794_0 crossref_primary_10_1038_s41597_023_02033_1 crossref_primary_10_1121_10_0002363 crossref_primary_10_1098_rstb_2022_0503 crossref_primary_10_1111_1365_2664_14738 crossref_primary_10_1038_s41598_023_40986_w crossref_primary_10_1016_j_marpolbul_2021_112845 crossref_primary_10_3354_meps14100 crossref_primary_10_1007_s11160_020_09598_9 crossref_primary_10_1371_journal_pone_0239919 crossref_primary_10_1093_conphys_coaa089 crossref_primary_10_1121_10_0012991 crossref_primary_10_1002_fee_2824 crossref_primary_10_1016_j_marpolbul_2023_115406 crossref_primary_10_1002_eap_2770 crossref_primary_10_1016_j_biocon_2020_108910 crossref_primary_10_1093_icesjms_fsab115 crossref_primary_10_1121_10_0000971 crossref_primary_10_1121_10_0032360 crossref_primary_10_1093_icesjms_fsaa026 crossref_primary_10_1093_icesjms_fsac203 crossref_primary_10_1121_10_0004773 crossref_primary_10_1186_s13750_020_00202_y crossref_primary_10_1007_s11160_022_09741_8 crossref_primary_10_1016_j_compag_2024_109393 crossref_primary_10_3389_fevo_2023_1130075 crossref_primary_10_1016_j_envpol_2022_118913 crossref_primary_10_1016_j_marenvres_2024_106717 crossref_primary_10_1002_lno_12743 crossref_primary_10_1016_j_ocecoaman_2021_105611 crossref_primary_10_1121_10_0020150 crossref_primary_10_7717_peerj_14230 crossref_primary_10_3390_fishes8070377 crossref_primary_10_3390_jmse10030375 crossref_primary_10_1121_10_0001255 crossref_primary_10_1016_j_envpol_2021_118063 crossref_primary_10_1016_j_fishres_2025_107296 crossref_primary_10_1016_j_envpol_2021_117898 crossref_primary_10_1016_j_scitotenv_2024_171304 crossref_primary_10_1111_ahe_12821 crossref_primary_10_3389_fmars_2022_863647 crossref_primary_10_1007_s10641_022_01318_5 crossref_primary_10_1121_10_0006099 crossref_primary_10_1080_17524032_2021_2014923 crossref_primary_10_1121_10_0006412 crossref_primary_10_3354_meps13434 crossref_primary_10_1111_jai_14198 crossref_primary_10_1093_icesjms_fsae017 crossref_primary_10_1111_jfb_13985 crossref_primary_10_1002_ecy_4173 crossref_primary_10_1093_conphys_coab002 crossref_primary_10_1121_1_5120185 crossref_primary_10_1016_j_marpolbul_2024_116792 crossref_primary_10_1007_s10530_023_03072_w crossref_primary_10_1093_icesjms_fsac193 crossref_primary_10_1111_faf_12699 crossref_primary_10_46715_jescc2021_08_1000115 crossref_primary_10_1016_j_marpolbul_2021_113057 crossref_primary_10_37939_jhcc_v3i1_6 crossref_primary_10_1016_j_marpolbul_2022_114487 crossref_primary_10_1007_s40823_019_00038_4 crossref_primary_10_1159_000539329 crossref_primary_10_1121_10_0009237 crossref_primary_10_1002_mcf2_10226 crossref_primary_10_1007_s10530_023_03022_6 crossref_primary_10_1016_j_heares_2021_108189 crossref_primary_10_1093_icesjms_fsad032 crossref_primary_10_1016_j_chemosphere_2021_132983 crossref_primary_10_1016_j_marpolbul_2024_117072 crossref_primary_10_1121_10_0001064 crossref_primary_10_1007_s10641_022_01317_6 crossref_primary_10_1038_s41598_021_04052_7 crossref_primary_10_1121_10_0020581 crossref_primary_10_3389_fmars_2024_1395120 crossref_primary_10_1016_j_marenvres_2023_105894 crossref_primary_10_1111_raq_12842 crossref_primary_10_1016_j_scitotenv_2023_167802 crossref_primary_10_1111_eff_12657 crossref_primary_10_1242_jeb_243537 crossref_primary_10_1016_j_marpolbul_2024_116454 crossref_primary_10_3390_ijerph20010591 crossref_primary_10_1126_science_aba4658 crossref_primary_10_1121_10_0034619 crossref_primary_10_25225_jvb_21057 crossref_primary_10_1121_10_0022413 crossref_primary_10_1016_j_tree_2021_01_012 crossref_primary_10_1016_j_envpol_2020_116184 crossref_primary_10_1121_10_0020588 crossref_primary_10_1080_09524622_2022_2086174 crossref_primary_10_1121_10_0001726 crossref_primary_10_1016_j_heares_2023_108766 crossref_primary_10_1016_j_marpolbul_2024_116564 crossref_primary_10_1007_s42241_022_0033_4 crossref_primary_10_3389_fmars_2023_1058414 crossref_primary_10_1007_s00227_021_03996_8 crossref_primary_10_1111_ibi_13375 crossref_primary_10_1016_j_envpol_2024_124770 crossref_primary_10_1007_s11160_022_09698_8 crossref_primary_10_1111_fwb_13426 crossref_primary_10_1121_10_0021174 crossref_primary_10_1109_TIM_2024_3381697 crossref_primary_10_1016_j_envpol_2024_123322 crossref_primary_10_1002_mcf2_10265 crossref_primary_10_3354_meps13634 crossref_primary_10_1016_j_marpolbul_2025_117563 crossref_primary_10_3390_fishes8120581 crossref_primary_10_1038_s42003_022_03959_9 crossref_primary_10_3389_fmars_2021_821019 crossref_primary_10_1121_10_0000907 crossref_primary_10_1242_jeb_243314 crossref_primary_10_1002_jez_b_22948 crossref_primary_10_1016_j_ecoenv_2024_116074 crossref_primary_10_1089_zeb_2021_0063 crossref_primary_10_1016_j_ecolmodel_2024_110704 crossref_primary_10_1016_j_marpolbul_2022_113596 crossref_primary_10_3389_fmars_2022_975328 crossref_primary_10_1121_10_0025544 crossref_primary_10_1111_jfb_15397 crossref_primary_10_1242_jeb_219683 crossref_primary_10_1007_s11160_020_09620_0 crossref_primary_10_1038_s41598_023_49567_3 crossref_primary_10_1121_10_0001674 crossref_primary_10_3389_fevo_2022_810156 crossref_primary_10_1111_jfb_15955 crossref_primary_10_3389_fmars_2022_1070290 crossref_primary_10_1111_fwb_14092 crossref_primary_10_1111_oik_08078 crossref_primary_10_1121_10_0017248 crossref_primary_10_7846_JKOSMEE_2021_24_4_274 crossref_primary_10_1016_j_marpolbul_2024_116412 crossref_primary_10_1121_10_0028385 crossref_primary_10_1063_5_0191022 crossref_primary_10_1121_1_5134683 crossref_primary_10_1121_10_0020542 crossref_primary_10_3390_jmse10020177 crossref_primary_10_3354_meps14515 crossref_primary_10_1121_10_0020535 crossref_primary_10_1016_j_aquaculture_2025_742334 crossref_primary_10_3390_fishes8060293 crossref_primary_10_1093_icesjms_fsac051 crossref_primary_10_3389_fmars_2023_1106980 crossref_primary_10_1038_s41598_022_19573_y crossref_primary_10_1111_jfb_16023 crossref_primary_10_1111_raq_12899 crossref_primary_10_1002_aqc_4083 crossref_primary_10_1002_fee_2657 crossref_primary_10_3389_fmars_2023_1129057 crossref_primary_10_3389_frsen_2025_1482244 crossref_primary_10_3390_modelling2040028 crossref_primary_10_1007_s00359_019_01381_x crossref_primary_10_1038_s42003_023_04728_y crossref_primary_10_1038_s41598_023_33423_5 crossref_primary_10_1093_icesjms_fsab193 crossref_primary_10_31857_S0042875224040128 crossref_primary_10_1016_j_envpol_2020_114925 crossref_primary_10_1111_csp2_352 crossref_primary_10_7717_peerj_12841 crossref_primary_10_1088_1742_6596_1721_1_012044 crossref_primary_10_3390_jmse11061115 crossref_primary_10_3354_ab00728 crossref_primary_10_1121_10_0017432 crossref_primary_10_3389_fmars_2024_1342454 crossref_primary_10_1038_s41598_021_84261_2 crossref_primary_10_1016_j_anbehav_2020_08_004 crossref_primary_10_1080_24750263_2019_1699611 crossref_primary_10_1063_5_0144985 crossref_primary_10_1111_fwb_13356 crossref_primary_10_1121_10_0013994 crossref_primary_10_1016_j_scitotenv_2022_154735 crossref_primary_10_1016_j_scitotenv_2021_151367 crossref_primary_10_3390_s21216998 crossref_primary_10_1016_j_marpolbul_2021_112129 crossref_primary_10_1121_10_0021021 crossref_primary_10_3390_s20226644 crossref_primary_10_1016_j_tree_2020_05_002 crossref_primary_10_1121_10_0022353 crossref_primary_10_1002_lol2_10358 crossref_primary_10_3389_fmars_2021_719258 crossref_primary_10_1007_s00300_020_02701_7 crossref_primary_10_1121_10_0020850 crossref_primary_10_1134_S0032945224700279 crossref_primary_10_7717_peerj_18491 crossref_primary_10_1016_j_anbehav_2025_123130 crossref_primary_10_1111_eff_12828 crossref_primary_10_3390_jmse10101517 crossref_primary_10_3389_fmars_2025_1489202 crossref_primary_10_1111_gcb_15798 crossref_primary_10_3390_biology10101063 crossref_primary_10_1111_rec_13934 crossref_primary_10_1016_j_marpolbul_2021_112934 crossref_primary_10_3389_fvets_2022_889117 crossref_primary_10_1080_09524622_2022_2070542 crossref_primary_10_1016_j_scitotenv_2024_172705 crossref_primary_10_1002_ece3_10946 crossref_primary_10_1643_i2022029 crossref_primary_10_1121_10_0019634 crossref_primary_10_1016_j_marpolbul_2024_116969 crossref_primary_10_1080_17445302_2024_2443083 crossref_primary_10_1016_j_anbehav_2023_10_006 crossref_primary_10_3389_fmars_2021_671965 crossref_primary_10_3390_acoustics2020022 crossref_primary_10_1093_jom_ufad013 crossref_primary_10_3389_fmars_2023_1242793 crossref_primary_10_1121_10_0021166 crossref_primary_10_1121_10_0022254 crossref_primary_10_1016_j_marpolbul_2021_112824 crossref_primary_10_18475_cjos_v54i1_a11 crossref_primary_10_1016_j_envpol_2023_121469 crossref_primary_10_1080_23308249_2020_1762536 crossref_primary_10_1016_j_envpol_2020_115376 |
Cites_doi | 10.1242/jeb.61.1.243 10.1016/j.fishres.2011.01.013 10.1139/cjfas-2018-0359 10.1016/j.applanim.2012.07.002 10.1007/978-3-319-21059-9_16 10.1121/1.3664082 10.1121/1.423255 10.1080/09524622.2008.9753771 10.1093/beheco/aru029 10.1007/978-1-4419-7311-5_106 10.1093/icesjms/fsw205 10.1186/1741-7007-11-75 10.1007/978-1-4939-2981-8_24 10.1371/journal.pone.0017478 10.1007/978-1-4939-2981-8_18 10.1016/j.marpolbul.2015.12.007 10.1139/f2012-059 10.1111/gcb.13352 10.1371/journal.pone.0039593 10.1007/978-1-4939-2981-8_116 10.1016/j.ocecoaman.2016.04.007 10.1016/j.marenvres.2009.09.004 10.1007/978-1-4939-2981-8_113 10.1016/j.aquaeng.2015.06.003 10.1111/j.1749-4877.2008.00132.x 10.1242/jeb.183681 10.3354/meps08451 10.1016/j.marpolbul.2016.08.039 10.1007/978-1-4419-7311-5_111 10.1242/jeb.58.3.797 10.1007/978-3-319-21059-9_7 10.1242/jeb.01188 10.1080/09524622.2008.9753745 10.1016/j.biocon.2015.04.004 10.1007/978-1-4419-7311-5 10.1007/978-1-4939-2981-8_22 10.1159/000118637 10.1007/978-1-4939-2981-8_15 10.1121/1.1904386 10.1139/f96-177 10.1121/2.0000250 10.1007/978-1-4419-7311-5_84 10.1080/09524622.2002.9753733 10.1007/s10695-015-0165-3 10.1111/j.1095-8649.1992.tb02602.x 10.1186/1471-2202-12-19 10.1016/j.fishres.2017.01.012 10.1007/978-1-4939-2981-8_142 10.1007/978-1-4939-8574-6 10.1007/978-1-4615-7186-5_12 10.1093/beheco/aru028 10.1111/j.1095-8649.1974.tb04541.x 10.1002/rra.3229 10.1098/rspb.2012.1544 10.1121/1.2961166 10.1139/cjfas-2017-0245 10.1121/2.0000280 10.1007/BF00696473 10.1577/T05-207.1 10.3354/meps11382 10.1016/S0065-2881(06)51003-X 10.1002/ece3.4458 10.1016/j.heares.2009.12.023 10.1016/j.marpolbul.2017.06.067 10.1121/1.2710741 10.3390/jmse6020061 10.1007/s11160-012-9297-z 10.1007/978-1-4939-2981-8_51 10.1016/0300-9629(74)90082-6 10.1121/1.4906261 10.1016/j.marenvres.2017.08.010 10.1121/1.5021594 10.1111/are.13027 10.1111/j.1095-8649.2009.02319.x 10.1007/978-0-387-73029-5_5 10.1371/journal.pone.0038968 10.1007/978-1-4419-9523-0_4 10.1121/1.1808219 10.1111/j.1095-8649.1978.tb03480.x 10.3390/jmse4030047 10.1371/journal.pone.0163638 10.1121/1.4976086 10.1016/j.anbehav.2016.03.027 10.1016/j.cbpa.2013.07.008 10.1111/eff.12146 10.1007/978-1-4614-9102-6_14 10.1016/j.biocon.2014.07.012 10.1121/1.4795220 10.1007/978-0-387-22628-6_1 10.1007/978-1-4612-0533-3_7 10.1007/978-1-4939-2981-8_130 10.1016/S1546-5098(08)60047-3 10.1016/B978-0-12-504250-5.50034-5 10.1007/978-1-4939-2981-8_115 10.1007/978-1-4419-7311-5_132 10.1111/j.1461-0248.2011.01664.x 10.3354/meps309279 10.1121/1.4870697 10.1093/icb/22.2.311 10.1111/jfb.12740 10.1093/icesjms/fsm041 10.1121/1.414699 10.1098/rspb.2017.1627 10.1073/pnas.1719291115 10.1121/1.4952711 10.1098/rspb.2015.1943 10.1007/978-0-387-73029-5_8 10.1007/978-1-4939-2981-8_124 10.1007/s11160-014-9369-3 10.1111/j.1095-8649.2010.02626.x 10.1121/1.4830811 10.1007/978-1-4939-2981-8 10.1080/10888705.2011.600664 10.1111/faf.12218 10.1371/journal.pone.0159486 10.1007/978-1-4939-2981-8_43 10.1007/978-1-4939-2981-8_82 10.1007/0-387-28863-5_3 10.1007/978-94-011-1578-0_5 10.1016/j.yhbeh.2006.05.007 10.1007/978-3-319-21059-9_17 10.1007/978-1-4939-2981-8_114 10.1016/j.marpolbul.2014.04.026 10.1111/j.1523-1739.2011.01803.x 10.1038/nrn3744 10.1016/j.biocon.2005.10.020 10.1371/journal.pone.0073844 10.1017/S0025315400027119 10.1121/1.4758779 10.1242/jeb.02490 10.1016/j.envpol.2017.11.003 10.1016/0010-406X(67)90615-9 10.1121/1.1368406 10.1111/2041-210X.12544 10.1016/j.marpolbul.2018.03.024 10.1121/1.4812818 10.3354/meps08353 10.1093/icesjms/fss155 10.1121/1.4964824 10.1121/1.4984976 10.1121/1.2735115 10.1080/09524622.2008.9753852 10.1007/978-0-387-73029-5_6 10.1121/1.5082306 10.1098/rstb.2000.0687 10.1111/j.1439-0426.2011.01740.x 10.1121/1.1527962 10.1578/AM.33.4.2007.411 10.1007/978-1-4419-7311-5_52 10.3389/fevo.2016.00028 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. Journal of Fish Biology © 2019 The Fisheries Society of the British Isles |
Copyright_xml | – notice: 2019 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. – notice: Journal of Fish Biology © 2019 The Fisheries Society of the British Isles |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7TN 8FD C1K F1W FR3 H95 L.G P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/jfb.13948 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Oceanic Abstracts Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
DocumentTitleAlternate | Popper and Hawkins |
EISSN | 1095-8649 |
EndPage | 713 |
ExternalDocumentID | PMC6849755 30864159 10_1111_jfb_13948 JFB13948 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- --K -~X .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 24P 29K 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAJYS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BGJEQ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LG5 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NQ- O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPZ RX1 SAMSI SUPJJ TN5 TWZ UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XOL XPP YK3 YQT ZCG ZMT ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7TN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4768-a348151948fe97e02f90414b85b6f7d3c4ed9f8cb2350da8f9c07fbaabfe41c23 |
IEDL.DBID | DR2 |
ISSN | 0022-1112 1095-8649 |
IngestDate | Thu Aug 21 18:22:37 EDT 2025 Fri Jul 11 18:27:33 EDT 2025 Thu Jul 10 23:21:47 EDT 2025 Fri Jul 25 10:17:51 EDT 2025 Thu Apr 03 06:58:58 EDT 2025 Tue Jul 01 01:50:50 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Wed Jan 22 16:56:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | guidelines hearing effects behaviour criteria sound |
Language | English |
License | Attribution 2019 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4768-a348151948fe97e02f90414b85b6f7d3c4ed9f8cb2350da8f9c07fbaabfe41c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 This paper is dedicated to two long‐time friends and colleagues, Colin Chapman and Richard R. Fay. Colin and Dick have been major contributors to our understanding of fish bioacoustics. Moreover, their work and their thinking has inspired many of the studies described in this review. |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.13948 |
PMID | 30864159 |
PQID | 2222500970 |
PQPubID | 1086393 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6849755 proquest_miscellaneous_2718340165 proquest_miscellaneous_2191011314 proquest_journals_2222500970 pubmed_primary_30864159 crossref_citationtrail_10_1111_jfb_13948 crossref_primary_10_1111_jfb_13948 wiley_primary_10_1111_jfb_13948_JFB13948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Journal of fish biology |
PublicationTitleAlternate | J Fish Biol |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 1987; 30 2016a 2010; 108 1967; 22 2016b; 74 1976 2014; 25 2013; 70 1973 1971 1974; 6 2004; 207 2016; 140 2012c; 7 2014; 135 2018; 6 1974; 47 2018; 8 2012; 132 1973; 85 2006; 209 2015; 137 2015; 533 2015; 87 1987 2016; 42 2014; 15 1983 1981 2012; 26 2018; 34 2007; 64 2016; 48 2014; 10 1992; 40 2018; 221 2006; 50 2006; 51 2000; 355 2016b; 112 2005; 117 2002; 2 1994 1993 2017; 130 2011; 6 2016; 12 2008; L 164 1999 1996; 99 2016; 11 2016; 4 2015; 67 2016; 7 2009; 75 1974; 61 2012b; 279 2018; 115 2017; 141 1881 2016; 27 2018; 14 2016; 22 2013; 23 1973; 58 2015; 187 2016; 75 2012d; 131 2011; 12 2016; 103 2008; 4 2009; 395 2011; 14 2011; 273 2003; 113 2007; 33 2001; 109 2017; 237 2014; 178 2006; 135 2018; 131 2010; 69 2013b; 166 2001 2013; 11 1982; 22 2012b 2012a 2016; 116 2012; 69 2012; 730 2017; 122 2011; 27 2018; 75 2006; 128 2012; 141 2018; 144 2010; 76 2018; 143 2012 2010 2013a; 8 2007; 121 2007; 122 2010; 401 2015; 11 2008; 17 2008 2007 2006 2005 2004 2016; 127 2003 1978; 13 2014; 83 1996; 53 2015; 24 2015; 25 2004; 116 2011; 108 1993; 18 2006; 309 2017; 190 2013; 134 2013; 133 1964 2018 1963 2017 2016 2016; 139 1998; 104 2015 2017; 18 2014 2009; 4 2012; 7 1966; 46 Bolgan M. (e_1_2_16_8_1) 2016; 75 e_1_2_16_23_1 e_1_2_16_27_1 e_1_2_16_117_1 e_1_2_16_42_1 e_1_2_16_88_1 e_1_2_16_113_1 e_1_2_16_159_1 e_1_2_16_84_1 e_1_2_16_61_1 e_1_2_16_143_1 e_1_2_16_166_1 e_1_2_16_189_1 e_1_2_16_80_1 e_1_2_16_101_1 e_1_2_16_162_1 e_1_2_16_185_1 Ross D. (e_1_2_16_151_1) 1987 NRC (e_1_2_16_116_1) 2005 e_1_2_16_181_1 e_1_2_16_15_1 e_1_2_16_38_1 e_1_2_16_19_1 e_1_2_16_34_1 e_1_2_16_57_1 e_1_2_16_30_1 e_1_2_16_53_1 e_1_2_16_76_1 e_1_2_16_99_1 e_1_2_16_105_1 e_1_2_16_128_1 e_1_2_16_11_1 e_1_2_16_109_1 e_1_2_16_124_1 e_1_2_16_147_1 e_1_2_16_95_1 e_1_2_16_72_1 Schulz‐Mirbach T. (e_1_2_16_161_1) 2018 e_1_2_16_91_1 e_1_2_16_131_1 e_1_2_16_177_1 e_1_2_16_112_1 e_1_2_16_154_1 e_1_2_16_173_1 e_1_2_16_5_1 e_1_2_16_150_1 Bregman A. S. (e_1_2_16_9_1) 1994 Southall B. L. (e_1_2_16_175_1) 2005 e_1_2_16_26_1 e_1_2_16_49_1 Sand O. (e_1_2_16_156_1) 1973; 58 e_1_2_16_45_1 e_1_2_16_68_1 Moulton J. M. (e_1_2_16_107_1) 1963 e_1_2_16_41_1 e_1_2_16_87_1 e_1_2_16_118_1 e_1_2_16_22_1 e_1_2_16_60_1 e_1_2_16_83_1 e_1_2_16_114_1 Dahl P. H. (e_1_2_16_24_1) 2015; 11 e_1_2_16_137_1 e_1_2_16_179_1 e_1_2_16_167_1 e_1_2_16_144_1 e_1_2_16_186_1 e_1_2_16_163_1 e_1_2_16_182_1 e_1_2_16_14_1 e_1_2_16_18_1 e_1_2_16_56_1 e_1_2_16_37_1 e_1_2_16_79_1 e_1_2_16_98_1 e_1_2_16_52_1 e_1_2_16_129_1 Ross D. (e_1_2_16_152_1) 1993; 18 e_1_2_16_33_1 e_1_2_16_75_1 e_1_2_16_102_1 e_1_2_16_71_1 e_1_2_16_94_1 e_1_2_16_10_1 e_1_2_16_125_1 e_1_2_16_106_1 e_1_2_16_148_1 e_1_2_16_90_1 e_1_2_16_132_1 e_1_2_16_155_1 e_1_2_16_178_1 e_1_2_16_4_1 e_1_2_16_174_1 Retzius G. (e_1_2_16_146_1) 1881 e_1_2_16_170_1 Parvulescu A. (e_1_2_16_120_1) 1964 e_1_2_16_25_1 Hawkins A. D. (e_1_2_16_65_1) 1983 e_1_2_16_29_1 e_1_2_16_48_1 e_1_2_16_63_1 e_1_2_16_119_1 e_1_2_16_44_1 e_1_2_16_86_1 e_1_2_16_21_1 e_1_2_16_138_1 e_1_2_16_157_1 e_1_2_16_40_1 e_1_2_16_82_1 e_1_2_16_122_1 e_1_2_16_145_1 e_1_2_16_164_1 e_1_2_16_187_1 e_1_2_16_141_1 e_1_2_16_160_1 Hawkins A. D. (e_1_2_16_67_1) 2014; 10 EU (e_1_2_16_39_1) 2008; 164 Ladich F. (e_1_2_16_89_1) 2014 e_1_2_16_13_1 e_1_2_16_17_1 e_1_2_16_36_1 e_1_2_16_59_1 e_1_2_16_78_1 e_1_2_16_32_1 e_1_2_16_55_1 e_1_2_16_74_1 e_1_2_16_103_1 Popper A. N. (e_1_2_16_136_1) 2014 Putland R. L. (e_1_2_16_140_1) 2018 e_1_2_16_70_1 e_1_2_16_51_1 e_1_2_16_126_1 e_1_2_16_149_1 e_1_2_16_93_1 e_1_2_16_7_1 e_1_2_16_110_1 e_1_2_16_133_1 e_1_2_16_3_1 e_1_2_16_171_1 Slabbekoorn H. (e_1_2_16_168_1) 2018; 14 e_1_2_16_28_1 e_1_2_16_47_1 Gisiner R. (e_1_2_16_46_1) 2016; 12 MacGillivray A. (e_1_2_16_97_1) 2004 e_1_2_16_139_1 e_1_2_16_2_1 e_1_2_16_43_1 e_1_2_16_66_1 e_1_2_16_85_1 e_1_2_16_135_1 e_1_2_16_20_1 e_1_2_16_62_1 e_1_2_16_81_1 e_1_2_16_158_1 e_1_2_16_142_1 e_1_2_16_188_1 e_1_2_16_123_1 e_1_2_16_165_1 e_1_2_16_100_1 e_1_2_16_184_1 e_1_2_16_180_1 Urick R. J. (e_1_2_16_183_1) 1983 NRC (e_1_2_16_115_1) 1994 e_1_2_16_12_1 e_1_2_16_35_1 Hawkins A. D. (e_1_2_16_69_1) 2016; 74 e_1_2_16_16_1 e_1_2_16_58_1 Hawkins A. D. (e_1_2_16_64_1) 1976 e_1_2_16_31_1 e_1_2_16_77_1 e_1_2_16_104_1 e_1_2_16_96_1 e_1_2_16_54_1 e_1_2_16_73_1 e_1_2_16_108_1 e_1_2_16_92_1 e_1_2_16_50_1 e_1_2_16_127_1 e_1_2_16_169_1 e_1_2_16_111_1 e_1_2_16_134_1 e_1_2_16_153_1 e_1_2_16_176_1 e_1_2_16_6_1 e_1_2_16_130_1 Patrick W. S. (e_1_2_16_121_1) 2010; 108 e_1_2_16_172_1 31074025 - J Fish Biol. 2019 May;94(5):691. doi: 10.1111/jfb.13985 |
References_xml | – volume: 4 start-page: 26 year: 2009 end-page: 32 article-title: Soundscapes and the sense of hearing of fishes publication-title: Integrative Zoology – start-page: 893 year: 1973 end-page: 908 – start-page: 655 year: 1963 end-page: 693 – start-page: 78 year: 2007 – volume: 117 start-page: 3958 year: 2005 end-page: 3971 article-title: Effects of exposure to seismic airgun use on hearing of three fish species publication-title: The Journal of the Acoustical Society of America – start-page: 121 year: 2016 end-page: 155 – year: 2005 – start-page: 235 year: 2012a end-page: 237 – volume: 10 start-page: 30 year: 2014 end-page: 41 article-title: Assessing the impacts of underwater sounds on fishes and other forms of marine life publication-title: Acoustics Today – volume: 75 start-page: 455 year: 2009 end-page: 489 article-title: The effects of anthropogenic sources of sound on fishes publication-title: Journal of Fish Biology – volume: 221 start-page: jeb183681 year: 2018 article-title: Acoustic communication in marine shallow waters: Testing the acoustic adaptive hypothesis in sand gobies publication-title: The Journal of Experimental Biology – start-page: 153 year: 2016 end-page: 160 – volume: 116 start-page: 3789 year: 2004 end-page: 3797 article-title: Noise emission during the first powerboat race in an alpine lake and potential impact on fish communities publication-title: The Journal of the Acoustical Society of America – volume: 85 start-page: 147 year: 1973 end-page: 167 article-title: A field study of hearing in the cod, L publication-title: Journal of Comparative Physiology – volume: 4 start-page: 47 year: 2016 end-page: 61 article-title: Modeling water motion near seismic waves propagating across a graded seabed, as generated by man‐made impacts publication-title: Journal of Marine Science and Engineering – start-page: 1049 year: 2016 end-page: 1056 – volume: 273 start-page: 25 year: 2011 end-page: 36 article-title: Rethinking sound detection by fishes publication-title: Hearing Research – volume: 116 start-page: 1 year: 2016 end-page: 11 article-title: Behavioural responses to sound exposure in captivity by two fish species with different hearing ability publication-title: Animal Behaviour – volume: 115 start-page: 5193 year: 2018 end-page: 5198 article-title: Habitat degradation negatively affects auditory settlement behavior of coral reef fishes publication-title: Proceedings of the National Academy of Sciences – year: 2014 – year: 1881 – volume: 22 start-page: 311 year: 1982 end-page: 328 article-title: The morphology and evolution of the ear in actinopterygian fishes publication-title: American Zoologist – start-page: 41 year: 2012 end-page: 55 – volume: 22 start-page: 3349 year: 2016 end-page: 3360 article-title: Repeated exposure reduces the response to impulsive noise in European seabass publication-title: Global Change Biology – volume: 74 start-page: 635 year: 2016b end-page: 671 article-title: A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates publication-title: ICES Journal of Marine Science: Journal du Conseil – volume: 61 start-page: 243 year: 1974 end-page: 260 article-title: Acoustic stimulation of the ear of the goldfish ( ) publication-title: Journal of Experimental Biology – volume: 108 start-page: 372 year: 2011 end-page: 384 article-title: Ecological risk assessment for the effects of fishing publication-title: Fisheries Research – volume: 730 start-page: 469 year: 2012 end-page: 471 article-title: Svein Vaage broadband air gun study publication-title: Advances in Experimental Medicine and Biology – volume: 70 start-page: 34 year: 2013 end-page: 45 article-title: Fish avoidance of research vessels and the efficacy of noise‐reduced vessels: A review publication-title: ICES Journal of Marine Science – volume: 46 start-page: 241 year: 1966 end-page: 247 article-title: Underwater sounds of the haddock, publication-title: Journal of the Marine Biological Association of the United Kingdom – volume: 27 start-page: 005002 year: 2016 article-title: Temporal and spatial variability in vessel noise on tropical coral reefs publication-title: Proceedings of Meetings on Acoustics – volume: 50 start-page: 432 year: 2006 end-page: 441 article-title: From social behavior to neural circuitry: Steroid hormones rapidly modulate advertisement calling via a vocal pattern generator publication-title: Hormones and Behaviour – year: 2008 – volume: 11 start-page: e0159486 year: 2016 article-title: Effects of exposure to the sound from seismic airguns on pallid sturgeon and paddlefish publication-title: PLoS One – volume: 18 start-page: 967 year: 2017 end-page: 985 article-title: A critical analysis of the direct effects of dredging on fish publication-title: Fish and Fisheries – volume: L 164 start-page: 19 year: 2008 end-page: 40 article-title: Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) publication-title: Official Journal of the European Union – volume: 7 start-page: e39593 year: 2012 article-title: Recovery of barotrauma injuries in Chinook salmon, from exposure to pile driving sound publication-title: PLoS One – volume: 237 start-page: 814 year: 2017 end-page: 823 article-title: Noise can affect acoustic communication and subsequent spawning success in fish publication-title: Environmental Pollution – start-page: 289 year: 2014 end-page: 321 – volume: 30 start-page: 43 year: 1987 end-page: 61 article-title: Sensory and nonsensory ciliated cells in the ear of the sea lamprey, publication-title: Brain, Behavior and Evolution – volume: 108 start-page: 305 year: 2010 end-page: 322 article-title: Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing publication-title: Fisheries Bulletin – volume: 24 start-page: 329 year: 2015 end-page: 337 article-title: Failure of predator conditioning: An experimental study of predator avoidance in brown trout ( ) publication-title: Ecology of Freshwater Fish – start-page: 1 year: 2018 end-page: 14 article-title: Ecology of fish hearing publication-title: Journal of Fish Biology – start-page: 943 year: 2016 end-page: 949 – start-page: 917 year: 2016a end-page: 924 – start-page: 247 year: 2014 end-page: 267 – volume: 122 start-page: 623 year: 2007 end-page: 635 article-title: The effects of high‐intensity, low‐frequency active sonar on rainbow trout publication-title: The Journal of the Acoustical Society of America – volume: 139 start-page: 3097 year: 2016 end-page: 3101 article-title: Auditory sensitivity in aquatic animals publication-title: The Journal of the Acoustical Society of America – volume: 33 start-page: 411 year: 2007 end-page: 521 article-title: Marine mammal noise exposure criteria: Initial scientific recommendations publication-title: Aquatic Mammals – start-page: 149 year: 1976 end-page: 170 – volume: 128 start-page: 501 year: 2006 end-page: 508 article-title: Ship noise and cortisol secretion in European freshwater fishes publication-title: Biological Conservation – volume: 4 start-page: 22 year: 2008 end-page: 34 article-title: Coming to terms with the effects of ocean noise on marine animals publication-title: Acoustics Today – volume: 131 start-page: 323 year: 2018 end-page: 334 article-title: Underwater operational noise level emitted by a tidal current turbine and its potential impact on marine fauna publication-title: Marine Pollution Bulletin – volume: 12 start-page: 19 year: 2011 article-title: Structural and functional effects of acoustic exposure in goldfish: Evidence for tonotopy in the teleost saccule publication-title: BMC Neuroscience – year: 2007 – year: 1987 – year: 2012b – start-page: 583 year: 2012 end-page: 585 – volume: 4 start-page: 1 year: 2016 end-page: 26 article-title: Diversity in fish auditory systems: One of the riddles of sensory biology publication-title: Frontiers in Ecology and Evolution – volume: 34 start-page: 3 year: 2018 end-page: 12 article-title: Soundpeaking – Hydropeaking induced changes in river soundscapes publication-title: River Research and Applications – volume: 395 start-page: 5 year: 2009 end-page: 20 article-title: Anthropogenic and natural sources of ambient noise in the ocean publication-title: Marine Ecology Progress Series – volume: 11 start-page: 18 year: 2015 end-page: 25 article-title: The underwater sound field from impact pile driving and its potential effects on marine life publication-title: Acoustics Today – volume: 48 start-page: 1895 year: 2016 end-page: 1903 article-title: Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream (Linnaeus, 1758) juveniles publication-title: Aquaculture Research – year: 2016 – year: 2010 – start-page: 532 year: 2015 – start-page: 205 year: 2016 end-page: 215 – volume: 26 start-page: 21 year: 2012 end-page: 28 article-title: A new context‐based approach to assess marine mammal behavioral responses to anthropogenic sounds publication-title: Conservation Biology – volume: 11 start-page: 75 year: 2013 article-title: A unique swim bladder‐inner ear connection in a teleost fish revealed by a combined high‐resolution microtomographic and three‐dimensional histological study publication-title: BMC Biology – start-page: 431 year: 2016a end-page: 439 – volume: 47 start-page: 371 year: 1974 end-page: 385 article-title: Field studies of hearing in two species of flatfish (L.) and (L.) (Family Pleuronectidae) publication-title: Comparative Biochemistry and Physiology A – volume: 25 start-page: 819 year: 2014 end-page: 826 article-title: Evidence of the Lombard effect in fishes publication-title: Behavioral Ecology – volume: 207 start-page: 3591 year: 2004 end-page: 3602 article-title: Acoustical stress and hearing sensitivity in fishes: Does the linear threshold shift hypothesis hold water? publication-title: Journal of Experimental Biology – volume: 17 start-page: 289 year: 2008 end-page: 297 article-title: A proposed method to assess physical injury to fishes from underwater sound produced during pile driving publication-title: Bioacoustics – volume: 133 start-page: EL326 year: 2013 end-page: EL330 article-title: Underwater noise of small personal watercraft (jet skis) publication-title: The Journal of the Acoustical Society of America – volume: 14 start-page: 42 year: 2018 end-page: 49 article-title: Soundscape ecology of the Anthropocene publication-title: Acoustics Today – volume: 8 start-page: 9934 year: 2018 end-page: 9946 article-title: Understanding the population consequences of disturbance publication-title: Ecology and Evolution – start-page: 189 year: 2016 end-page: 196 – volume: 15 start-page: 483 year: 2014 end-page: 491 article-title: Is the din really harmless? Long‐term effects of non‐traumatic noise on the adult auditory system publication-title: Nature Reviews Neuroscience – volume: 131 start-page: 599 year: 2012d end-page: 607 article-title: Effects of mid‐frequency active sonar on hearing in fish publication-title: The Journal of the Acoustical Society of America – volume: 76 start-page: 1825 year: 2010 end-page: 1840 article-title: Exposure of fish to high‐intensity sonar does not induce acute pathology publication-title: Journal of Fish Biology – start-page: 925 year: 2016 end-page: 931 – volume: 127 start-page: 63 year: 2016 end-page: 73 article-title: The potential for vessel noise to mask biologically important sounds within ecologically significant embayments publication-title: Ocean & Coastal Management – volume: 144 start-page: 3329 year: 2018 end-page: 3350 article-title: Directional hearing and sound source localization by fishes publication-title: The Journal of the Acoustical Society of America – volume: 14 start-page: 340 year: 2011 end-page: 360 article-title: Aggression and welfare in a common aquarium fish, the Midas cichlid publication-title: Journal of Applied Animal Welfare Science – year: 2001 – volume: 141 start-page: 4380 year: 2017 end-page: 4387 article-title: Onset of barotrauma injuries related to number of pile driving strike exposures in hybrid striped bass publication-title: The Journal of the Acoustical Society of America – volume: 83 start-page: 331 year: 2014 end-page: 336 article-title: Underwater noise pollution in a coastal tropical environment publication-title: Marine Pollution Bulletin – volume: 109 start-page: 3048 year: 2001 end-page: 3054 article-title: Ultrasound detection by clupeiform fishes publication-title: The Journal of the Acoustical Society of America – volume: 134 start-page: EL205 year: 2013 end-page: EL210 article-title: Effects of low‐frequency naval sonar exposure on three species of fish publication-title: The Journal of the Acoustical Society of America – volume: 121 start-page: EL145 year: 2007 end-page: EL150 article-title: Silent research vessels are not quiet publication-title: The Journal of the Acoustical Society of America – volume: 8 start-page: e73844 year: 2013a article-title: Recovery of barotrauma injuries resulting from exposure to pile driving sound in two sizes of hybrid striped bass publication-title: PLoS One – volume: 132 start-page: EL423 year: 2012 end-page: EL438 article-title: Mapping cumulative noise from shipping to inform marine spatial planning publication-title: The Journal of the Acoustical Society of America – volume: 14 start-page: 1052 year: 2011 end-page: 1061 article-title: How and why environmental noise impacts animals: An integrative, mechanistic review publication-title: Ecology Letters – year: 2018 – volume: 190 start-page: 1 year: 2017 end-page: 14 article-title: Effects of hydrokinetic turbine sound on the behavior of four species of fish within an experimental mesocosm publication-title: Fisheries Research – start-page: 341 year: 2016 end-page: 391 – start-page: 457 year: 2018 end-page: 482 article-title: Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths publication-title: Biological Reviews – year: 1994 – volume: 130 start-page: 315 year: 2017 end-page: 324 article-title: Acoustic dose‐behavioral response relationship in sea bass ( ) exposed to playbacks of pile driving sounds publication-title: Marine Environmental Research – volume: 209 start-page: 4193 year: 2006 end-page: 4202 article-title: Anatomical and functional recovery of the goldfish ( ) ear following noise exposure publication-title: The Journal of Experimental Biology – start-page: 253 year: 2008 end-page: 278 – volume: 69 start-page: 136 year: 2010 end-page: 142 article-title: Impact of an acoustic stimulus on the motility and blood parameters of European sea bass ( L.) and gilthead sea bream ( L.) publication-title: Marine Environmental Research – volume: 401 start-page: 21 year: 2010 end-page: 29 article-title: Localised coastal habitats have distinct underwater sound signatures publication-title: Marine Ecology Progress Series – start-page: 114 year: 1993 end-page: 153 – volume: 309 start-page: 279 year: 2006 end-page: 295 article-title: Wind turbine underwater noise and marine mammals: Implications of current knowledge and data needs publication-title: Marine Ecology Progress Series – volume: 141 start-page: 79 year: 2012 end-page: 90 article-title: Early life behavioural differences in wild caught and domesticated sea bass ( ) publication-title: Applied Animal Behaviour Science – start-page: 135 year: 1971 end-page: 205 – volume: 140 start-page: 2913 year: 2016 end-page: 2922 article-title: Measurement and characterisation of radiated underwater sound from a 3.6 MW monopile wind turbine publication-title: The Journal of the Acoustical Society of America – volume: 58 start-page: 797 year: 1973 end-page: 820 article-title: Acoustic properties of the cod swim bladder publication-title: Journal of Experimental Biology – volume: 178 start-page: 65 year: 2014 end-page: 73 article-title: Temporal structure of sound affects behavioural recovery from noise impact in European seabass publication-title: Biological Conservation – start-page: 3 year: 2003 end-page: 38 – volume: 279 start-page: 4705 year: 2012b end-page: 4714 article-title: Effects of exposure to pile‐driving sounds on the lake sturgeon, Nile tilapia and hogchoker publication-title: Proceedings of the Royal Society B – volume: 135 start-page: 1409 year: 2006 end-page: 1431 article-title: Bioacoustics of the family Sciaenidae (croakers and drumfishes) publication-title: Transactions of the American Fisheries Society – volume: 137 start-page: 556 year: 2015 end-page: 564 article-title: Hearing frequency thresholds of harbor porpoises ( ) temporarily affected by played back offshore pile driving sounds publication-title: The Journal of the Acoustical Society of America – volume: 87 start-page: 579 year: 2015 end-page: 603 article-title: Seasonal patterns and individual differences in the calls of male haddock publication-title: Journal of Fish Biology – start-page: 1145 year: 2016 end-page: 1148 – volume: 53 start-page: 2238 year: 1996 end-page: 2249 article-title: Effects of seismic shooting on local abundance and catch rates of cod ( ) and haddock ( ) publication-title: Canadian Journal of Fisheries and Aquatic Sciences – year: 2004 – volume: 166 start-page: 352 year: 2013b end-page: 360 article-title: Effects of exposure to pile driving sounds on fish inner ear tissues publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – volume: 2 start-page: 313 year: 2002 end-page: 316 article-title: Effects of seismic shooting and vessel‐generated noise on fish behaviour and catch rates publication-title: Bioacoustics – start-page: 363 year: 2016 end-page: 369 – volume: 27 start-page: 070008 year: 2016 article-title: Issues associated with sound exposure experiments in tanks publication-title: Proceedings of Meetings on Acoustics – volume: 27 start-page: 1052 year: 2011 end-page: 1056 article-title: Anti‐predatory behaviour of wild‐caught vs captive‐bred freshwater angelfish, publication-title: Journal of Applied Ichthyology – volume: 25 start-page: 39 year: 2015 end-page: 64 article-title: Information gaps in understanding the effects of noise on fishes and invertebrates publication-title: Reviews in Fish Biology and Fisheries – year: 2018 article-title: Hearing capabilities and behavioural response of sea lamprey ( ) to low frequency sounds publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 51 start-page: 143 year: 2006 end-page: 196 article-title: Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans publication-title: Advances in Marine Biology – start-page: 933 year: 2016 end-page: 941 – volume: 141 start-page: 1371 year: 2017 end-page: 1413 article-title: A review of the history, development and application of auditory weighting functions in humans and marine mammals publication-title: The Journal of the Acoustical Society of America – year: 2015 – volume: 67 start-page: 67 year: 2015 end-page: 76 article-title: Stress response to anthropogenic noise in Atlantic cod L publication-title: Aquacultural Engineering – start-page: 87 year: 1964 end-page: 100 – year: 1983 – volume: 104 start-page: 562 year: 1998 end-page: 568 article-title: Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad ( ) publication-title: The Journal of the Acoustical Society of America – start-page: 489 year: 2012 end-page: 492 – volume: 64 start-page: 633 year: 2007 end-page: 639 article-title: Scientific tools to support the practical implementation of ecosystem‐based fisheries management publication-title: ICES Journal of Marine Science: Journal du Conseil – volume: 533 start-page: 93 year: 2015 end-page: 107 article-title: Coral reef species assemblages are associated with ambient soundscapes publication-title: Marine Ecology Progress Series – volume: 69 start-page: 1278 year: 2012 end-page: 1291 article-title: Sounds from seismic air guns: Gear‐and species‐specific effects on catch rates and fish distribution publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 22 start-page: 527 year: 1967 end-page: 538 article-title: Hearing in herring publication-title: Comparative Biochemistry and Physiology – volume: 17 start-page: 1 year: 2008 end-page: 3 article-title: Introduction: International conference on the effects of noise on aquatic life publication-title: Bioacoustics – start-page: 1001 year: 2016 end-page: 1006 – volume: 40 start-page: 523 year: 1992 end-page: 534 article-title: Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, L publication-title: Journal of Fish Biology – start-page: 243 year: 1981 end-page: 255 – start-page: 347 year: 1983 end-page: 405 – volume: 122 start-page: 297 year: 2017 end-page: 305 article-title: Anthropogenic noise compromises the anti‐predator behaviour of the European seabass, (L.) publication-title: Marine Pollution Bulletin – volume: 355 start-page: 1295 year: 2000 end-page: 1298 article-title: Detection of infrasound and linear acceleration in fishes publication-title: Philosophical Transactions of the Royal Society B – volume: 7 start-page: 836 year: 2016 end-page: 842 article-title: Particle motion: The missing link in underwater acoustic ecology publication-title: Methods in Ecology and Evolution – volume: 11 start-page: e0163638 year: 2016 article-title: Effects of pile driving on the residency and movement of tagged reef fish publication-title: PLoS One – start-page: 393 year: 2016 end-page: 417 – start-page: 679 year: 2016 end-page: 686 – start-page: 269 year: 1999 end-page: 318 – volume: 6 start-page: 61 year: 2018 article-title: Optimal transmission of interface vibration wavelets—a simulation of seabed seismic responses publication-title: Journal of Marine Science and Engineering – volume: 6 start-page: e17478 year: 2011 article-title: Acoustic noise induces attention shifts and reduces foraging performance in three‐spined sticklebacks ( ) publication-title: PLoS One – year: 2012 – volume: 42 start-page: 631 year: 2016 end-page: 641 article-title: Vessel noise pollution as a human threat to fish: Assessment of the stress response in gilthead sea bream ( , Linnaeus 1758) publication-title: Fish Physiology and Biochemistry – volume: 112 start-page: 75 year: 2016b end-page: 85 article-title: Use of baited remote underwater video (BRUV) and motion analysis for studying the impacts of underwater noise upon free ranging fish and implications for marine energy management publication-title: Marine Pollution Bulletin – volume: 6 start-page: 225 year: 1974 end-page: 236 article-title: Tracking cod L. in a Scottish sea loch publication-title: Journal of Fish Biology – volume: 113 start-page: 638 year: 2003 end-page: 642 article-title: High intensity anthropogenic sound damages fish ears publication-title: The Journal of the Acoustical Society of America – volume: 135 start-page: 3101 year: 2014 end-page: 3116 article-title: Responses of free‐living coastal pelagic fish to impulsive sounds publication-title: The Journal of the Acoustical Society of America – volume: 75 start-page: 1535 year: 2018 end-page: 1541 article-title: Integrating techniques: A review of the effects of anthropogenic noise on freshwater fish publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 13 start-page: 655 year: 1978 end-page: 673 article-title: The hearing of the Atlantic salmon, publication-title: Journal of Fish Biology – volume: 75 start-page: 644 year: 2016 end-page: 651 article-title: First observations of anthropogenic underwater noise in a large multi‐use lake publication-title: Journal of Limnology – year: 2012a – volume: 103 start-page: 15 year: 2016 end-page: 38 article-title: Communication masking in marine mammals: A review and research strategy publication-title: Marine Pollution Bulletin – year: 2006 – volume: 17 start-page: 75 year: 2008 end-page: 77 article-title: Can longspine squirrelfish hear bottlenose dolphin? publication-title: Bioacoustics – start-page: 125 year: 2016 end-page: 132 – volume: 18 start-page: 5 year: 1993 end-page: 8 article-title: On ocean underwater ambient noise publication-title: Acoustics Bulletin – volume: 134 start-page: 4059 year: 2013 article-title: Effects of pile driving on fishes publication-title: The Journal of the Acoustical Society of America – year: 2017 – volume: 143 start-page: 470 year: 2018 end-page: 486 article-title: The importance of particle motion to fishes and invertebrates publication-title: The Journal of the Acoustical Society of America – volume: 23 start-page: 317 year: 2013 end-page: 364 article-title: Auditory evoked potential audiometry in fish publication-title: Reviews in Fish Biology and Fisheries – volume: 12 start-page: 10 year: 2016 end-page: 18 article-title: Sound and marine seismic surveys publication-title: Acoustics Today – volume: 99 start-page: 1759 year: 1996 end-page: 1766 article-title: Effects of low‐frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish publication-title: The Journal of the Acoustical Society of America – volume: 187 start-page: 27 year: 2015 end-page: 33 article-title: Traffic noise masks acoustic signals of freshwater stream fish publication-title: Biological Conservation – volume: 25 start-page: 1022 year: 2014 end-page: 1030 article-title: Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? publication-title: Behavioral Ecology – volume: 7 start-page: e38968 year: 2012c article-title: Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds publication-title: PLoS One – start-page: 183 year: 2008 end-page: 222 – ident: e_1_2_16_43_1 doi: 10.1242/jeb.61.1.243 – ident: e_1_2_16_77_1 doi: 10.1016/j.fishres.2011.01.013 – ident: e_1_2_16_105_1 doi: 10.1139/cjfas-2018-0359 – ident: e_1_2_16_4_1 – ident: e_1_2_16_6_1 doi: 10.1016/j.applanim.2012.07.002 – ident: e_1_2_16_160_1 doi: 10.1007/978-3-319-21059-9_16 – ident: e_1_2_16_54_1 doi: 10.1121/1.3664082 – ident: e_1_2_16_100_1 doi: 10.1121/1.423255 – ident: e_1_2_16_95_1 doi: 10.1080/09524622.2008.9753771 – ident: e_1_2_16_141_1 doi: 10.1093/beheco/aru029 – ident: e_1_2_16_102_1 doi: 10.1007/978-1-4419-7311-5_106 – volume: 74 start-page: 635 year: 2016 ident: e_1_2_16_69_1 article-title: A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates publication-title: ICES Journal of Marine Science: Journal du Conseil doi: 10.1093/icesjms/fsw205 – ident: e_1_2_16_159_1 doi: 10.1186/1741-7007-11-75 – ident: e_1_2_16_28_1 doi: 10.1007/978-1-4939-2981-8_24 – ident: e_1_2_16_139_1 doi: 10.1371/journal.pone.0017478 – ident: e_1_2_16_23_1 doi: 10.1007/978-1-4939-2981-8_18 – ident: e_1_2_16_38_1 doi: 10.1016/j.marpolbul.2015.12.007 – volume-title: National marine fisheries service, office of protected resources, technical report year: 2005 ident: e_1_2_16_175_1 – ident: e_1_2_16_92_1 doi: 10.1139/f2012-059 – ident: e_1_2_16_142_1 doi: 10.1111/gcb.13352 – ident: e_1_2_16_179_1 – ident: e_1_2_16_18_1 doi: 10.1371/journal.pone.0039593 – ident: e_1_2_16_153_1 doi: 10.1007/978-1-4939-2981-8_116 – ident: e_1_2_16_123_1 doi: 10.1016/j.ocecoaman.2016.04.007 – ident: e_1_2_16_10_1 doi: 10.1016/j.marenvres.2009.09.004 – volume: 11 start-page: 18 year: 2015 ident: e_1_2_16_24_1 article-title: The underwater sound field from impact pile driving and its potential effects on marine life publication-title: Acoustics Today – ident: e_1_2_16_148_1 doi: 10.1007/978-1-4939-2981-8_113 – ident: e_1_2_16_164_1 doi: 10.1016/j.aquaeng.2015.06.003 – ident: e_1_2_16_41_1 doi: 10.1111/j.1749-4877.2008.00132.x – ident: e_1_2_16_2_1 doi: 10.1242/jeb.183681 – ident: e_1_2_16_143_1 doi: 10.3354/meps08451 – ident: e_1_2_16_149_1 doi: 10.1016/j.marpolbul.2016.08.039 – ident: e_1_2_16_165_1 doi: 10.1007/978-1-4419-7311-5_111 – volume: 58 start-page: 797 year: 1973 ident: e_1_2_16_156_1 article-title: Acoustic properties of the cod swim bladder publication-title: Journal of Experimental Biology doi: 10.1242/jeb.58.3.797 – ident: e_1_2_16_167_1 doi: 10.1007/978-3-319-21059-9_7 – ident: e_1_2_16_172_1 doi: 10.1242/jeb.01188 – ident: e_1_2_16_59_1 doi: 10.1080/09524622.2008.9753745 – ident: e_1_2_16_79_1 doi: 10.1016/j.biocon.2015.04.004 – ident: e_1_2_16_133_1 doi: 10.1007/978-1-4419-7311-5 – ident: e_1_2_16_25_1 doi: 10.1007/978-1-4939-2981-8_22 – start-page: 457 year: 2018 ident: e_1_2_16_161_1 article-title: Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths publication-title: Biological Reviews – ident: e_1_2_16_137_1 doi: 10.1159/000118637 – ident: e_1_2_16_15_1 doi: 10.1007/978-1-4939-2981-8_15 – ident: e_1_2_16_138_1 doi: 10.1121/1.1904386 – volume: 75 start-page: 644 year: 2016 ident: e_1_2_16_8_1 article-title: First observations of anthropogenic underwater noise in a large multi‐use lake publication-title: Journal of Limnology – ident: e_1_2_16_33_1 doi: 10.1139/f96-177 – ident: e_1_2_16_84_1 doi: 10.1121/2.0000250 – ident: e_1_2_16_178_1 doi: 10.1007/978-1-4419-7311-5_84 – ident: e_1_2_16_184_1 – ident: e_1_2_16_32_1 doi: 10.1080/09524622.2002.9753733 – ident: e_1_2_16_20_1 doi: 10.1007/s10695-015-0165-3 – ident: e_1_2_16_88_1 doi: 10.1111/j.1095-8649.1992.tb02602.x – ident: e_1_2_16_174_1 doi: 10.1186/1471-2202-12-19 – ident: e_1_2_16_158_1 doi: 10.1016/j.fishres.2017.01.012 – ident: e_1_2_16_182_1 doi: 10.1007/978-1-4939-2981-8_142 – volume-title: Mechanics of underwater noise year: 1987 ident: e_1_2_16_151_1 – ident: e_1_2_16_169_1 doi: 10.1007/978-1-4939-8574-6 – ident: e_1_2_16_35_1 doi: 10.1007/978-1-4615-7186-5_12 – ident: e_1_2_16_186_1 – ident: e_1_2_16_78_1 doi: 10.1093/beheco/aru028 – ident: e_1_2_16_58_1 doi: 10.1111/j.1095-8649.1974.tb04541.x – ident: e_1_2_16_96_1 doi: 10.1002/rra.3229 – ident: e_1_2_16_51_1 doi: 10.1098/rspb.2012.1544 – ident: e_1_2_16_56_1 doi: 10.1121/1.2961166 – start-page: 347 volume-title: Bioacoustics, a comparative approach year: 1983 ident: e_1_2_16_65_1 – ident: e_1_2_16_104_1 doi: 10.1139/cjfas-2017-0245 – ident: e_1_2_16_29_1 doi: 10.1121/2.0000280 – volume: 12 start-page: 10 year: 2016 ident: e_1_2_16_46_1 article-title: Sound and marine seismic surveys publication-title: Acoustics Today – ident: e_1_2_16_22_1 doi: 10.1007/BF00696473 – ident: e_1_2_16_144_1 doi: 10.1577/T05-207.1 – ident: e_1_2_16_83_1 doi: 10.3354/meps11382 – ident: e_1_2_16_106_1 doi: 10.1016/S0065-2881(06)51003-X – ident: e_1_2_16_124_1 doi: 10.1002/ece3.4458 – ident: e_1_2_16_127_1 doi: 10.1016/j.heares.2009.12.023 – ident: e_1_2_16_177_1 doi: 10.1016/j.marpolbul.2017.06.067 – ident: e_1_2_16_118_1 doi: 10.1121/1.2710741 – volume: 164 start-page: 19 year: 2008 ident: e_1_2_16_39_1 article-title: Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) publication-title: Official Journal of the European Union – ident: e_1_2_16_72_1 doi: 10.3390/jmse6020061 – ident: e_1_2_16_110_1 – volume-title: Underwater sound level and velocity measurements from study of airgun noise impacts on Mackenzie River fish species year: 2004 ident: e_1_2_16_97_1 – ident: e_1_2_16_90_1 doi: 10.1007/s11160-012-9297-z – volume-title: Low‐frequency sound and marine mammals: Current knowledge and research need year: 1994 ident: e_1_2_16_115_1 – ident: e_1_2_16_68_1 doi: 10.1007/978-1-4939-2981-8_51 – ident: e_1_2_16_21_1 doi: 10.1016/0300-9629(74)90082-6 – ident: e_1_2_16_85_1 doi: 10.1121/1.4906261 – ident: e_1_2_16_86_1 doi: 10.1016/j.marenvres.2017.08.010 – ident: e_1_2_16_135_1 doi: 10.1121/1.5021594 – ident: e_1_2_16_45_1 doi: 10.1111/are.13027 – ident: e_1_2_16_44_1 – ident: e_1_2_16_132_1 doi: 10.1111/j.1095-8649.2009.02319.x – ident: e_1_2_16_185_1 doi: 10.1007/978-0-387-73029-5_5 – ident: e_1_2_16_52_1 doi: 10.1371/journal.pone.0038968 – ident: e_1_2_16_74_1 doi: 10.1007/978-1-4419-9523-0_4 – ident: e_1_2_16_3_1 doi: 10.1121/1.1808219 – ident: e_1_2_16_63_1 doi: 10.1111/j.1095-8649.1978.tb03480.x – ident: e_1_2_16_73_1 doi: 10.3390/jmse4030047 – ident: e_1_2_16_81_1 doi: 10.1371/journal.pone.0163638 – volume: 10 start-page: 30 year: 2014 ident: e_1_2_16_67_1 article-title: Assessing the impacts of underwater sounds on fishes and other forms of marine life publication-title: Acoustics Today – ident: e_1_2_16_80_1 doi: 10.1121/1.4976086 – ident: e_1_2_16_163_1 doi: 10.1016/j.anbehav.2016.03.027 – ident: e_1_2_16_19_1 doi: 10.1016/j.cbpa.2013.07.008 – ident: e_1_2_16_122_1 doi: 10.1111/eff.12146 – ident: e_1_2_16_113_1 – ident: e_1_2_16_61_1 doi: 10.1007/978-1-4614-9102-6_14 – ident: e_1_2_16_111_1 doi: 10.1016/j.biocon.2014.07.012 – ident: e_1_2_16_36_1 doi: 10.1121/1.4795220 – volume: 14 start-page: 42 year: 2018 ident: e_1_2_16_168_1 article-title: Soundscape ecology of the Anthropocene publication-title: Acoustics Today – ident: e_1_2_16_128_1 doi: 10.1007/978-0-387-22628-6_1 – ident: e_1_2_16_42_1 doi: 10.1007/978-1-4612-0533-3_7 – volume-title: Marine mammal populations and ocean noise: Determining when noise causes biologically significant effects year: 2005 ident: e_1_2_16_116_1 – volume: 18 start-page: 5 year: 1993 ident: e_1_2_16_152_1 article-title: On ocean underwater ambient noise publication-title: Acoustics Bulletin – ident: e_1_2_16_166_1 doi: 10.1007/978-1-4939-2981-8_130 – ident: e_1_2_16_181_1 doi: 10.1016/S1546-5098(08)60047-3 – ident: e_1_2_16_12_1 – ident: e_1_2_16_155_1 doi: 10.1016/B978-0-12-504250-5.50034-5 – ident: e_1_2_16_150_1 doi: 10.1007/978-1-4939-2981-8_115 – volume-title: Principles of underwater sound year: 1983 ident: e_1_2_16_183_1 – ident: e_1_2_16_180_1 doi: 10.1007/978-1-4419-7311-5_132 – ident: e_1_2_16_87_1 doi: 10.1111/j.1461-0248.2011.01664.x – ident: e_1_2_16_98_1 doi: 10.3354/meps309279 – ident: e_1_2_16_71_1 doi: 10.1121/1.4870697 – start-page: 289 volume-title: Insights from comparative hearing research year: 2014 ident: e_1_2_16_89_1 – ident: e_1_2_16_126_1 doi: 10.1093/icb/22.2.311 – ident: e_1_2_16_14_1 doi: 10.1111/jfb.12740 – ident: e_1_2_16_170_1 doi: 10.1093/icesjms/fsm041 – ident: e_1_2_16_57_1 doi: 10.1121/1.414699 – ident: e_1_2_16_75_1 doi: 10.1098/rspb.2017.1627 – ident: e_1_2_16_11_1 – ident: e_1_2_16_47_1 doi: 10.1073/pnas.1719291115 – ident: e_1_2_16_94_1 doi: 10.1121/1.4952711 – ident: e_1_2_16_109_1 doi: 10.1098/rspb.2015.1943 – start-page: 149 volume-title: Sound reception in fish year: 1976 ident: e_1_2_16_64_1 – ident: e_1_2_16_5_1 doi: 10.1007/978-0-387-73029-5_8 – volume: 108 start-page: 305 year: 2010 ident: e_1_2_16_121_1 article-title: Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing publication-title: Fisheries Bulletin – ident: e_1_2_16_162_1 doi: 10.1007/978-1-4939-2981-8_124 – ident: e_1_2_16_66_1 doi: 10.1007/s11160-014-9369-3 – volume-title: ASA S3 s−1C1. 4 TR‐2014 sound exposure guidelines for fishes and sea turtles: A technical report prepared by ANSI‐accredited standards committee S3 s−1C1 and registered with ANSI year: 2014 ident: e_1_2_16_136_1 – ident: e_1_2_16_82_1 doi: 10.1111/j.1095-8649.2010.02626.x – ident: e_1_2_16_130_1 doi: 10.1121/1.4830811 – ident: e_1_2_16_134_1 doi: 10.1007/978-1-4939-2981-8 – ident: e_1_2_16_114_1 – ident: e_1_2_16_117_1 doi: 10.1080/10888705.2011.600664 – ident: e_1_2_16_187_1 doi: 10.1111/faf.12218 – ident: e_1_2_16_129_1 doi: 10.1371/journal.pone.0159486 – ident: e_1_2_16_49_1 doi: 10.1007/978-1-4939-2981-8_43 – start-page: 655 volume-title: Acoustic behaviour of animals year: 1963 ident: e_1_2_16_107_1 – ident: e_1_2_16_101_1 doi: 10.1007/978-1-4939-2981-8_82 – ident: e_1_2_16_13_1 – ident: e_1_2_16_40_1 doi: 10.1007/0-387-28863-5_3 – volume-title: Das Gehörorgan der Wirbelthiere year: 1881 ident: e_1_2_16_146_1 – ident: e_1_2_16_60_1 doi: 10.1007/978-94-011-1578-0_5 – ident: e_1_2_16_145_1 doi: 10.1016/j.yhbeh.2006.05.007 – ident: e_1_2_16_173_1 doi: 10.1007/978-3-319-21059-9_17 – ident: e_1_2_16_147_1 doi: 10.1007/978-1-4939-2981-8_114 – ident: e_1_2_16_7_1 doi: 10.1016/j.marpolbul.2014.04.026 – ident: e_1_2_16_31_1 doi: 10.1111/j.1523-1739.2011.01803.x – ident: e_1_2_16_48_1 doi: 10.1038/nrn3744 – start-page: 87 volume-title: Marine bio‐acoustics year: 1964 ident: e_1_2_16_120_1 – ident: e_1_2_16_125_1 – ident: e_1_2_16_189_1 doi: 10.1016/j.biocon.2005.10.020 – volume-title: Auditory scene analysis: The perceptual organization of sound year: 1994 ident: e_1_2_16_9_1 – ident: e_1_2_16_17_1 doi: 10.1371/journal.pone.0073844 – ident: e_1_2_16_62_1 doi: 10.1017/S0025315400027119 – ident: e_1_2_16_37_1 doi: 10.1121/1.4758779 – ident: e_1_2_16_171_1 doi: 10.1242/jeb.02490 – ident: e_1_2_16_26_1 doi: 10.1016/j.envpol.2017.11.003 – ident: e_1_2_16_34_1 doi: 10.1016/0010-406X(67)90615-9 – ident: e_1_2_16_99_1 doi: 10.1121/1.1368406 – ident: e_1_2_16_108_1 doi: 10.1111/2041-210X.12544 – ident: e_1_2_16_93_1 doi: 10.1016/j.marpolbul.2018.03.024 – ident: e_1_2_16_53_1 doi: 10.1121/1.4812818 – ident: e_1_2_16_76_1 doi: 10.3354/meps08353 – ident: e_1_2_16_27_1 doi: 10.1093/icesjms/fss155 – start-page: 1 year: 2018 ident: e_1_2_16_140_1 article-title: Ecology of fish hearing publication-title: Journal of Fish Biology – ident: e_1_2_16_119_1 doi: 10.1121/1.4964824 – ident: e_1_2_16_16_1 doi: 10.1121/1.4984976 – ident: e_1_2_16_131_1 doi: 10.1121/1.2735115 – ident: e_1_2_16_55_1 – ident: e_1_2_16_188_1 doi: 10.1080/09524622.2008.9753852 – ident: e_1_2_16_154_1 doi: 10.1007/978-0-387-73029-5_6 – ident: e_1_2_16_70_1 doi: 10.1121/1.5082306 – ident: e_1_2_16_112_1 – ident: e_1_2_16_157_1 doi: 10.1098/rstb.2000.0687 – ident: e_1_2_16_30_1 doi: 10.1111/j.1439-0426.2011.01740.x – ident: e_1_2_16_103_1 doi: 10.1121/1.1527962 – ident: e_1_2_16_176_1 doi: 10.1578/AM.33.4.2007.411 – ident: e_1_2_16_50_1 doi: 10.1007/978-1-4419-7311-5_52 – ident: e_1_2_16_91_1 doi: 10.3389/fevo.2016.00028 – reference: 31074025 - J Fish Biol. 2019 May;94(5):691. doi: 10.1111/jfb.13985 |
SSID | ssj0009393 |
Score | 2.648355 |
SecondaryResourceType | review_article |
Snippet | Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 692 |
SubjectTerms | Acoustic noise Acoustics animal behavior Animal Communication Animals Anthropogenic factors Auditory Perception Behavior, Animal Behaviour Bioacoustics Biological noise Bottom trawling Communication criteria death Detection Dimensions Dredging Ecosystem Ecosystems effects Elasmobranchii Fish Fishes - physiology Fitness guidelines habitat preferences Habitat selection Harbors Harbours Hearing Hearing loss Human influences Humans Masking Mating behavior Migration Noise Oil exploration oils Olfaction Orientation Otolithic Membrane - physiology Particle motion Physiological effects Populations Predators Prey Reproductive behaviour Review Paper Sensory systems Shipping Smell Sound Sound production Sound sources taste Trawling Underwater acoustics Underwater exploration vision wind Wind farms Wind power Wounds |
Title | An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfb.13948 https://www.ncbi.nlm.nih.gov/pubmed/30864159 https://www.proquest.com/docview/2222500970 https://www.proquest.com/docview/2191011314 https://www.proquest.com/docview/2718340165 https://pubmed.ncbi.nlm.nih.gov/PMC6849755 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SQKCXPtJH3KZBLT3k4sW25LVFT0nIEgIJJTQQSsFoZIksLd5Qby799Z2RH8k2TSm5GWtkJHtG-kae-QbgI-1YVkuDsapRxyo3daytcXGJ0qY1JmktOXf45HR6dK6OL_KLNfg05MJ0_BDjgRtbRliv2cANtreN3OOE4IviRF-O1WJAdHZDHaVlT7hLzhZ1yHpWoRDFM_Rc3YvuAMy7cZK38WvYgGZP4dsw9C7u5PvkeokT--sPVscHzu0ZPOmBqdjrNOk5rLlmEza-LsKx-ws422sER3vynwSx8MLP20uB8wUtqKEeWCtMUwtCk6LLu2xZyPRVGEhJ51a0XMGJ7jehs2tfwvns8MvBUdzXY4itIq8kNpy0S4hPld7pwiWZ14lKFZY5Tn1RS6tcrX1pMZN5UpvSa5sUHo1B71RqM_kK1ptF47ZAKEKdJimRbqJKU8TcKm2nPie05kmrItgdvkxle7JyrpnxoxqdFo9VeEURfBhFrzqGjr8JbQ-ft-qNtK0y9nU5kSWJ4P3YTObF_0xM4-j9VbSg06KVylT9Q4b2d6k4LyyC153GjCOR5DISRtIRFCu6NAowvfdqSzO_DDTf01LpIqdn7gZVuX9y1fFsP1y8-X_Rt_CYoJ_uQje3YX3589q9I3i1xB14lKnPO8GafgMfTCOu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXKJRH6LaYqodeskpiZxNLvRTEailtD1UrVUgo8ji2dkWVrcj2wq9n7DzYpQWh3iJnHMXxjP2NM_MNwB7tWFpyhaEoUYYiVWUotTJhjlzHJUZxyV3u8MnpaHIhji7TyzU46HJhGn6I_sDNWYZfr52BuwPpZSu3OCT8IvIH8NBV9PYO1dlv8ijJW8pdcreoR9LyCvk4nq7r6m50C2LejpRcRrB-Cxo_g2_dyzeRJ9-HNwsc6p9_8Dred3Qb8LTFpuywUabnsGaqF_Do69yfvG_C2WHFXMCn-5nA5pbZWT1lOJvTmupLgtVMVSUjQMma1MvaCam2EAPp6Uyz2hVxovbKdzb1S7gYfzr_OAnbkgyhFuSYhMrl7RLoE7k1MjNRYmUkYoF5iiOblVwLU0qba0x4GpUqt1JHmUWl0BoR64S_gvVqXpk3wAQBTxXlSI0o4hgx1ULqkU0JsFlSrAD2u6kpdMtX7spmXBW932Kx8J8ogN1e9Loh6bhLaNDNb9HaaV0kzt11uSxRAO_722Rh7reJqgx9v4LWdFq3Yh6Lf8jQFs-FSw0L4HWjMv2bcPIaCSbJALIVZeoFHMP36p1qNvVM36NcyCylZ-57Xfn74Iqj8Qd_8fb_Rd_B48n5yXFx_Pn0yxY8ISQom0jOAawvftyYbUJbC9zxRvULVvcm8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhCXlldpoIBBHHrJKomdh8WpUFalQIUqKlUIKfL4oa5A2arZXvrrGTuPdikgxC2Kx5GdzNjfODPfALyiHUtLrjAWBmUscmViqZWNK-Q6NZikhvvc4U8Hxd6R2D_Oj1fg9ZAL0_FDjAdu3jLCeu0N_NS4q0bucELwRVQ34KYoksqr9O7hJXeU5D3jLnlb1CPraYVCGM_QdXkzuoYwrwdKXgWwYQearsO3Yexd4Mn3yfkCJ_riF1rH_5zcXVjrkSnb6VTpHqzY5j7c-joP5-4P4HCnYT7c0_9KYHPH3Kw9YTib04oaCoK1TDWGEZxkXeJl64VUX4aBtHSmWetLONH9JnS27UM4mr778nYv7gsyxFqQWxIrn7VLkE9UzsrSJpmTiUgFVjkWrjRcC2ukqzRmPE-MqpzUSelQKXRWpDrjG7DazBu7CUwQ7FRJhXQTRZoi5lpIXbic4JojtYpge_gyte7Zyn3RjB_16LU4rMMriuDlKHraUXT8Tmhr-Lx1b6VtnXln12eyJBG8GJvJvvxPE9VYen81rei0aqU8FX-RoQ2eC58YFsGjTmPGkXDyGQkkyQjKJV0aBTy_93JLMzsJPN9FJWSZ0zO3g6r8eXL1_vRNuHj876LP4fbn3Wn98f3Bhydwh2Cg7MI4t2B1cXZunxLUWuCzYFI_Aeu6Jao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+fish+bioacoustics+and+the+impacts+of+anthropogenic+sounds+on+fishes&rft.jtitle=Journal+of+fish+biology&rft.au=Popper%2C+Arthur+N.&rft.au=Hawkins%2C+Anthony+D.&rft.date=2019-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-1112&rft.eissn=1095-8649&rft.volume=94&rft.issue=5&rft.spage=692&rft.epage=713&rft_id=info:doi/10.1111%2Fjfb.13948&rft_id=info%3Apmid%2F30864159&rft.externalDocID=PMC6849755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1112&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1112&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1112&client=summon |