Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography
In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 10; pp. 5489 - 5496 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity. Screening of various porphyrinic Zr‐MOFs (Zn) containing Zn‐metalled porphyrinic ligands demonstrated that MOF‐525 (Zn) with the smallest size had the best photocatalytic activity in PET‐RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET‐RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET‐RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three‐dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open‐air environment.
Porphyrinic zirconium MOFs act as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity |
---|---|
AbstractList | In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain-end fidelity. Screening of various porphyrinic Zr-MOFs (Zn) containing Zn-metalled porphyrinic ligands demonstrated that MOF-525 (Zn) with the smallest size had the best photocatalytic activity in PET-RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET-RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET-RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three-dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open-air environment.In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain-end fidelity. Screening of various porphyrinic Zr-MOFs (Zn) containing Zn-metalled porphyrinic ligands demonstrated that MOF-525 (Zn) with the smallest size had the best photocatalytic activity in PET-RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET-RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET-RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three-dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open-air environment. In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity. Screening of various porphyrinic Zr‐MOFs (Zn) containing Zn‐metalled porphyrinic ligands demonstrated that MOF‐525 (Zn) with the smallest size had the best photocatalytic activity in PET‐RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET‐RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET‐RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three‐dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open‐air environment. In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity. Screening of various porphyrinic Zr‐MOFs (Zn) containing Zn‐metalled porphyrinic ligands demonstrated that MOF‐525 (Zn) with the smallest size had the best photocatalytic activity in PET‐RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET‐RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET‐RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three‐dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open‐air environment. Porphyrinic zirconium MOFs act as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity |
Author | Shi, Xiaobing Namivandi‐Zangeneh, Rashin Liang, Kang Kuchel, Rhiannon P Corrigan, Nathaniel Jung, Kenward Boyer, Cyrille Zhang, Liwen Zhang, Zhiheng |
Author_xml | – sequence: 1 givenname: Liwen surname: Zhang fullname: Zhang, Liwen organization: The University of New South Wales – sequence: 2 givenname: Xiaobing surname: Shi fullname: Shi, Xiaobing organization: The University of New South Wales – sequence: 3 givenname: Zhiheng surname: Zhang fullname: Zhang, Zhiheng organization: The University of New South Wales – sequence: 4 givenname: Rhiannon P surname: Kuchel fullname: Kuchel, Rhiannon P organization: The University of New South Wales – sequence: 5 givenname: Rashin surname: Namivandi‐Zangeneh fullname: Namivandi‐Zangeneh, Rashin organization: The University of New South Wales – sequence: 6 givenname: Nathaniel surname: Corrigan fullname: Corrigan, Nathaniel organization: The University of New South Wales – sequence: 7 givenname: Kenward surname: Jung fullname: Jung, Kenward organization: The University of New South Wales – sequence: 8 givenname: Kang surname: Liang fullname: Liang, Kang email: kang.liang@unsw.edu.au organization: The University of New South Wales – sequence: 9 givenname: Cyrille orcidid: 0000-0002-4564-4702 surname: Boyer fullname: Boyer, Cyrille email: cboyer@unsw.edu.au organization: The University of New South Wales |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33179352$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rGzEQhkVJaT7aa49F0Et6WFff2j2aYDeBpDate-lFyLtaW-nuypG0hM0p91wK_Yf5JZXjpIVA6UkDep5hZt5DsNe5zgDwFqMRRoh81J01I4IIwoyg_AU4wJzgjEpJ91LNKM1kzvE-OAzhMvF5jsQrsE8plgXl5ADczZ3frAdvO1vC79aXrrN9Cy9M1M397a-ZX-ntz9Tr1lw7_yPA44vZNHyAOsBTE413K9MZ1wc4X7voSp28IcQAa-fhfLK4v_35ZTxdwLlrhtZ4e6OjdR3UXQW_Jtu4xsa1W3mdhngNXta6CebN43sEvk0ni5PT7Hz26exkfJ6VTIo8Kyoqcirr2nBNBVvymhe5kGk7tsSacoEFlyQnCDFUCEk5E6iSxtRLVDEkND0Cx7u-G--uehOiam0oTdPoh00USQLKCcc4oe-foZeu912aLlEFTqfljCfq3SPVL1tTqY23rfaDejpzAtgOKL0LwZtalTY-XCJ6bRuFkdqmqbZpqj9pJm30THvq_E-h2AnXtjHDf2g1_nw2-ev-Bic5s6M |
CitedBy_id | crossref_primary_10_1007_s40820_024_01373_w crossref_primary_10_1039_D2PY00089J crossref_primary_10_1021_acs_iecr_3c02177 crossref_primary_10_1002_aenm_202303638 crossref_primary_10_1016_j_flatc_2023_100492 crossref_primary_10_1016_j_foodchem_2024_138749 crossref_primary_10_1002_smll_202401278 crossref_primary_10_1038_s41467_023_38402_y crossref_primary_10_1039_D3TA02582A crossref_primary_10_1021_acs_biomac_3c01356 crossref_primary_10_1021_acsanm_2c03126 crossref_primary_10_2139_ssrn_4179196 crossref_primary_10_1021_acs_inorgchem_1c02312 crossref_primary_10_1002_cptc_202300090 crossref_primary_10_1002_smll_202402779 crossref_primary_10_1016_j_eurpolymj_2021_110670 crossref_primary_10_1007_s11356_023_27282_w crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1002_marc_202200173 crossref_primary_10_1039_D2QM01201D crossref_primary_10_1016_j_ccr_2022_214601 crossref_primary_10_1002_adma_202412407 crossref_primary_10_1038_s41467_024_52489_x crossref_primary_10_1016_j_mtchem_2022_100959 crossref_primary_10_1021_acs_macromol_1c01367 crossref_primary_10_1039_D0CS01411G crossref_primary_10_1039_D4RA07121B crossref_primary_10_1039_D1PY01258D crossref_primary_10_1039_D1QM00659B crossref_primary_10_1016_j_ctta_2021_100027 crossref_primary_10_1002_marc_202300336 crossref_primary_10_1002_anie_202107457 crossref_primary_10_1016_j_esci_2024_100354 crossref_primary_10_1039_D4CC04902K crossref_primary_10_1021_jacs_2c02303 crossref_primary_10_1016_j_mtchem_2024_102337 crossref_primary_10_1002_ange_202015677 crossref_primary_10_1016_j_ica_2022_120909 crossref_primary_10_1021_acsaem_4c02153 crossref_primary_10_1021_acs_inorgchem_2c00441 crossref_primary_10_1021_acsami_3c05397 crossref_primary_10_1002_mame_202200010 crossref_primary_10_1142_S1088424621300056 crossref_primary_10_1002_anie_202304608 crossref_primary_10_1021_acsanm_3c03508 crossref_primary_10_1039_D4PY00027G crossref_primary_10_1002_anie_202302429 crossref_primary_10_1039_D1PY01534F crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_1016_j_ces_2022_117825 crossref_primary_10_1016_j_apcatb_2022_121673 crossref_primary_10_1021_acs_chemrev_3c00853 crossref_primary_10_2147_IJN_S463144 crossref_primary_10_1002_anie_202015677 crossref_primary_10_1002_anie_202208898 crossref_primary_10_1016_j_cej_2022_139330 crossref_primary_10_1002_ange_202312697 crossref_primary_10_1016_j_ccr_2024_215794 crossref_primary_10_1039_D1GC03604A crossref_primary_10_1021_acsomega_4c06171 crossref_primary_10_1039_D1PY01058A crossref_primary_10_1002_ange_202304608 crossref_primary_10_1016_j_seppur_2025_131937 crossref_primary_10_1002_ange_202302429 crossref_primary_10_1002_marc_202200664 crossref_primary_10_1021_acs_macromol_4c00736 crossref_primary_10_1016_j_aca_2022_340659 crossref_primary_10_1007_s40843_022_2226_6 crossref_primary_10_1021_acscatal_4c03407 crossref_primary_10_1021_acsami_2c02690 crossref_primary_10_1002_marc_202200020 crossref_primary_10_1002_anie_202312697 crossref_primary_10_1016_j_mcat_2022_112853 crossref_primary_10_1021_acsanm_2c04533 crossref_primary_10_1002_ange_202208898 crossref_primary_10_1016_j_cej_2022_134692 crossref_primary_10_1039_D1PY01241J crossref_primary_10_2139_ssrn_4108638 crossref_primary_10_1021_acsami_1c13770 crossref_primary_10_1021_acsapm_1c00262 crossref_primary_10_1002_chem_202102413 crossref_primary_10_1021_jacs_1c04428 crossref_primary_10_1016_j_seppur_2023_123291 crossref_primary_10_1039_D2PY00748G crossref_primary_10_1021_acs_macromol_2c01668 crossref_primary_10_1039_D3TB01829F crossref_primary_10_1016_j_mtener_2022_101100 crossref_primary_10_1002_marc_202100384 crossref_primary_10_1039_D2PY00966H crossref_primary_10_1002_adfm_202207655 crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_1016_j_seppur_2022_121423 crossref_primary_10_2139_ssrn_4094536 crossref_primary_10_1016_j_microc_2022_107714 crossref_primary_10_1016_j_cej_2023_142861 crossref_primary_10_1039_D2TB00931E crossref_primary_10_1021_acscatal_2c05591 crossref_primary_10_1186_s12951_022_01436_3 crossref_primary_10_1021_acsmacrolett_2c00708 crossref_primary_10_1016_j_carbon_2024_119617 crossref_primary_10_1016_j_cej_2022_135033 crossref_primary_10_1016_j_jece_2023_111217 crossref_primary_10_1021_jacs_1c08332 crossref_primary_10_1007_s11426_023_1733_0 crossref_primary_10_3390_polym15071633 crossref_primary_10_1002_adma_202104906 crossref_primary_10_1021_acsmacrolett_1c00046 crossref_primary_10_1039_D1PY00130B crossref_primary_10_1070_RCR5012 crossref_primary_10_1002_pi_6475 crossref_primary_10_1021_acsami_2c04331 crossref_primary_10_1016_j_colsurfa_2023_131652 crossref_primary_10_1002_advs_202003701 crossref_primary_10_1007_s11706_021_0568_2 crossref_primary_10_1039_D1NR01401C crossref_primary_10_1002_adma_202411967 crossref_primary_10_1021_acsapm_3c01882 crossref_primary_10_1039_D2NJ03890K crossref_primary_10_1007_s00604_023_05650_0 crossref_primary_10_1002_ange_202107457 crossref_primary_10_1039_D1CS00069A crossref_primary_10_1016_j_addma_2022_103088 crossref_primary_10_1002_asia_202100957 crossref_primary_10_1039_D0QM00961J crossref_primary_10_1016_j_apsusc_2023_158249 crossref_primary_10_1021_acs_macromol_3c02057 crossref_primary_10_3390_polym16050576 crossref_primary_10_1002_adfm_202214627 crossref_primary_10_1016_j_cej_2021_130395 crossref_primary_10_1016_j_polymer_2023_126270 crossref_primary_10_1021_acs_macromol_2c02585 crossref_primary_10_1002_advs_202303206 crossref_primary_10_1016_j_eurpolymj_2024_113220 crossref_primary_10_1016_j_cej_2024_154836 crossref_primary_10_1016_j_seppur_2023_124214 crossref_primary_10_1021_acs_iecr_1c04757 crossref_primary_10_1002_adfm_202312265 crossref_primary_10_1021_acsami_3c13496 crossref_primary_10_1021_acsapm_3c00441 |
Cites_doi | 10.1021/cs501169t 10.1039/C9GC02624J 10.1039/C4CS00103F 10.1039/D0NR00402B 10.1038/srep01399 10.1039/C7CS00041C 10.1002/anie.201505581 10.1021/cr900234b 10.1021/acs.macromol.6b01306 10.1021/acs.macromol.8b01735 10.1039/C5GC02620B 10.1021/acs.chemrev.5b00191 10.1021/acs.chemmater.7b03541 10.1021/acs.macromol.7b02215 10.1021/jacs.5b05274 10.1002/anie.201906194 10.1016/j.reactfunctpolym.2017.02.003 10.1039/C6PY02220K 10.1002/marc.201900333 10.1039/C4CS00395K 10.1021/ma1007545 10.1039/C8CC06415F 10.1039/C6RA12134A 10.1002/ange.201906194 10.1002/ange.201802964 10.1002/ange.201909014 10.1002/anie.201711044 10.1039/C8NR05476B 10.1039/C6PY01844K 10.1021/cr050947p 10.1002/anie.201807385 10.1021/acs.macromol.5b00342 10.1039/C6CC03264H 10.1021/acsmacrolett.7b00140 10.1021/acs.macromol.9b00038 10.1039/C9TA00905A 10.1021/acsapm.9b01076 10.1039/B315319C 10.1002/ange.201912608 10.1002/adma.201502537 10.1002/anie.201811721 10.1002/ange.201912484 10.1016/j.chempr.2020.06.014 10.1039/C8CC08790C 10.1002/marc.201300704 10.1021/acs.macromol.7b01651 10.1021/cr200217c 10.1080/15583724.2011.566406 10.1021/acs.chemrev.5b00671 10.1002/app.42389 10.1039/C5CC03398E 10.1039/C7PY00442G 10.1002/ijch.201500026 10.1007/s10965-015-0707-5 10.1002/anie.201912608 10.1021/acsmacrolett.0c00232 10.1016/j.chempr.2016.12.007 10.1002/anie.201912484 10.1021/acsmacrolett.9b00891 10.1002/marc.201700143 10.1002/ange.202007196 10.1039/D0PY00823K 10.1039/C6CE00465B 10.1021/acs.macromol.0c00106 10.1002/ange.201505581 10.1016/j.progpolymsci.2020.101311 10.1002/ange.201510037 10.1002/anie.201802964 10.3390/polym11111772 10.1016/j.progpolymsci.2006.11.002 10.1002/advs.202001656 10.1002/anie.202007196 10.1039/C4SC03342F 10.1002/ange.201811721 10.1021/acssuschemeng.8b03726 10.1002/pola.22686 10.1016/j.drudis.2016.10.001 10.1016/j.mattod.2017.07.006 10.1038/s42004-018-0071-6 10.1002/asia.201701082 10.1002/ange.201807385 10.1039/C9NR04664J 10.1002/macp.201200204 10.1021/acs.macromol.8b02628 10.1038/nchem.2713 10.1002/anie.201510037 10.1016/j.progpolymsci.2016.06.005 10.1002/adma.201606134 10.1039/C9PY01604J 10.1039/D0TA03112G 10.1021/acs.chemrev.7b00091 10.1021/acs.macromol.7b02533 10.1002/anie.201909014 10.1002/ange.201711044 10.1039/b802583p 10.1039/D0NJ00476F 10.1021/jacs.6b00007 10.1016/j.ccr.2018.09.009 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202014208 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 5496 |
ExternalDocumentID | 33179352 10_1002_anie_202014208 ANIE202014208 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4768-9d36837ffe5a364b5f598670024b1a3561657282004096735460d7eefb0d406a3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:41:48 EDT 2025 Fri Jul 25 11:50:15 EDT 2025 Thu Apr 03 07:03:53 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Tue Jul 01 01:17:51 EDT 2025 Wed Jan 22 16:30:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | photopolymerization metal-organic frameworks (MOFs) green chemistry 3D printing stereolithography |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4768-9d36837ffe5a364b5f598670024b1a3561657282004096735460d7eefb0d406a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4564-4702 |
PMID | 33179352 |
PQID | 2491851545 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2460082511 proquest_journals_2491851545 pubmed_primary_33179352 crossref_citationtrail_10_1002_anie_202014208 crossref_primary_10_1002_anie_202014208 wiley_primary_10_1002_anie_202014208_ANIE202014208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2017; 8 2007; 107 2013; 3 2017; 2 2019; 52 2019; 11 2019; 55 2004; 28 2017; 46 2020 2020; 59 132 2020; 12 2020; 11 2007; 32 2017; 113 2017; 9 2017; 117 2020; 8 2020; 7 2018; 6 2015; 48 2020; 6 2014; 4 2020; 2 2015; 137 2020; 53 2018; 1 2017; 38 2019; 21 2018 2018; 57 130 2015; 44 2020; 9 2015; 132 2016; 116 2020; 44 2012; 213 2016; 49 2019; 7 2015; 6 2020; 41 2015; 51 2017; 22 2016; 52 2017; 29 2016; 18 2018; 21 2019; 380 2019 2019; 58 131 2014; 43 2016; 56 2017; 50 2010; 43 2016; 6 2016; 7 2016 2016; 55 128 2015; 27 2012; 112 2011; 51 2015; 22 2017; 12 2008; 46 2016; 62 2014; 35 2020; 111 2018; 51 2016; 138 2009; 109 2018; 10 2018; 54 2009; 38 e_1_2_5_27_2 e_1_2_5_46_1 e_1_2_5_101_2 e_1_2_5_23_2 e_1_2_5_101_3 e_1_2_5_88_1 e_1_2_5_105_2 e_1_2_5_65_2 e_1_2_5_69_2 e_1_2_5_109_1 e_1_2_5_80_2 e_1_2_5_61_2 e_1_2_5_84_3 e_1_2_5_84_2 e_1_2_5_42_1 e_1_2_5_38_2 e_1_2_5_34_3 e_1_2_5_15_2 e_1_2_5_57_2 e_1_2_5_7_2 e_1_2_5_11_1 e_1_2_5_34_2 e_1_2_5_53_3 e_1_2_5_53_2 e_1_2_5_3_2 e_1_2_5_76_2 e_1_2_5_99_2 e_1_2_5_19_2 e_1_2_5_91_2 e_1_2_5_72_2 e_1_2_5_95_2 e_1_2_5_30_2 e_1_2_5_26_2 e_1_2_5_49_1 e_1_2_5_22_2 e_1_2_5_45_2 e_1_2_5_45_1 e_1_2_5_100_2 e_1_2_5_64_2 e_1_2_5_87_2 e_1_2_5_104_1 e_1_2_5_68_2 e_1_2_5_108_1 e_1_2_5_60_2 e_1_2_5_83_2 e_1_2_5_41_2 e_1_2_5_41_1 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_8_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_56_2 e_1_2_5_33_3 e_1_2_5_4_2 e_1_2_5_75_2 e_1_2_5_98_1 e_1_2_5_79_2 e_1_2_5_18_1 e_1_2_5_90_2 e_1_2_5_71_2 e_1_2_5_94_2 e_1_2_5_52_2 e_1_2_5_48_2 e_1_2_5_25_2 e_1_2_5_103_1 e_1_2_5_44_1 e_1_2_5_21_2 e_1_2_5_86_2 e_1_2_5_67_2 e_1_2_5_107_2 e_1_2_5_29_2 e_1_2_5_82_2 e_1_2_5_63_1 e_1_2_5_40_1 e_1_2_5_13_2 e_1_2_5_59_2 e_1_2_5_9_2 e_1_2_5_36_1 e_1_2_5_55_2 e_1_2_5_5_2 e_1_2_5_32_2 e_1_2_5_97_2 e_1_2_5_78_1 e_1_2_5_1_1 e_1_2_5_17_2 e_1_2_5_70_1 e_1_2_5_93_1 e_1_2_5_74_1 e_1_2_5_51_2 e_1_2_5_28_1 e_1_2_5_24_2 e_1_2_5_47_2 e_1_2_5_102_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_106_2 e_1_2_5_89_2 e_1_2_5_102_3 e_1_2_5_81_1 e_1_2_5_62_2 e_1_2_5_85_1 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_35_3 e_1_2_5_58_1 e_1_2_5_6_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_54_2 e_1_2_5_31_3 e_1_2_5_2_2 e_1_2_5_77_2 e_1_2_5_39_2 e_1_2_5_92_1 e_1_2_5_73_2 e_1_2_5_96_2 e_1_2_5_50_2 |
References_xml | – volume: 62 start-page: 73 year: 2016 end-page: 125 publication-title: Prog. Polym. Sci. – volume: 51 start-page: 7974 year: 2018 end-page: 7982 publication-title: Macromolecules – volume: 51 start-page: 1370 year: 2018 end-page: 1376 publication-title: Macromolecules – volume: 9 start-page: 7 year: 2020 end-page: 13 publication-title: ACS Macro Lett. – volume: 109 start-page: 4963 year: 2009 end-page: 5050 publication-title: Chem. Rev. – volume: 9 start-page: 725 year: 2020 end-page: 730 publication-title: ACS Macro Lett. – volume: 55 128 start-page: 1036 1048 year: 2016 2016 end-page: 1040 1052 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 5459 year: 2015 end-page: 5469 publication-title: Macromolecules – volume: 9 start-page: 537 year: 2017 end-page: 545 publication-title: Nat. Chem. – volume: 11 start-page: 1018 year: 2020 end-page: 1024 publication-title: Polym. Chem. – volume: 55 start-page: 620 year: 2019 end-page: 623 publication-title: Chem. Commun. – volume: 41 year: 2020 publication-title: Macromol. Rapid Commun. – volume: 53 start-page: 1550 year: 2020 end-page: 1556 publication-title: Macromolecules – volume: 51 start-page: 10925 year: 2015 end-page: 10928 publication-title: Chem. Commun. – volume: 58 131 start-page: 1828 1842 year: 2019 2019 end-page: 1832 1846 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 625 year: 2017 end-page: 637 publication-title: Drug Discovery Today – volume: 43 start-page: 6245 year: 2010 end-page: 6260 publication-title: Macromolecules – volume: 6 start-page: 1341 year: 2015 end-page: 1349 publication-title: Chem. Sci. – volume: 107 start-page: 2270 year: 2007 end-page: 2299 publication-title: Chem. Rev. – volume: 59 132 start-page: 21392 21576 year: 2020 2020 end-page: 21396 21580 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 1399 year: 2013 publication-title: Sci. Rep. UK – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 10 start-page: 19254 year: 2018 end-page: 19261 publication-title: Nanoscale – volume: 6 start-page: 66444 year: 2016 end-page: 66450 publication-title: RSC Adv. – volume: 8 start-page: 2841 year: 2017 end-page: 2851 publication-title: Polym. Chem. – volume: 1 start-page: 70 year: 2018 publication-title: Commun. Chem. – volume: 117 start-page: 8129 year: 2017 end-page: 8176 publication-title: Chem. Rev. – volume: 46 start-page: 3387 year: 2008 end-page: 3395 publication-title: J. Polym. Sci. Part A – volume: 55 128 start-page: 5414 5504 year: 2016 2016 end-page: 5445 5535 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 3696 year: 2016 end-page: 3702 publication-title: CrystEngComm – volume: 52 start-page: 3278 year: 2019 end-page: 3287 publication-title: Macromolecules – volume: 56 start-page: 110 year: 2016 end-page: 118 publication-title: Isr. J. Chem. – volume: 27 start-page: 7229 year: 2015 end-page: 7235 publication-title: Adv. Mater. – volume: 7 start-page: 6173 year: 2019 end-page: 6179 publication-title: J. Mater. Chem. A – volume: 52 start-page: 7854 year: 2016 end-page: 7857 publication-title: Chem. Commun. – volume: 51 start-page: 779 year: 2018 end-page: 790 publication-title: Macromolecules – volume: 32 start-page: 93 year: 2007 end-page: 146 publication-title: Prog. Polym. Sci. – volume: 137 start-page: 9174 year: 2015 end-page: 9185 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 7595 year: 2020 end-page: 7603 publication-title: Nanoscale – volume: 21 start-page: 108 year: 2018 end-page: 121 publication-title: Mater. Today – volume: 35 start-page: 454 year: 2014 end-page: 459 publication-title: Macromol. Rapid Commun. – volume: 58 131 start-page: 12096 12224 year: 2019 2019 end-page: 12101 12229 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 6804 year: 2015 end-page: 6849 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1575 year: 2020 end-page: 1588 publication-title: Chem – volume: 116 start-page: 10167 year: 2016 end-page: 10211 publication-title: Chem. Rev. – volume: 59 132 start-page: 2013 2029 year: 2020 2020 end-page: 2017 2033 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 9445 year: 2017 end-page: 9455 publication-title: Chem. Mater. – volume: 6 start-page: 15245 year: 2018 end-page: 15253 publication-title: ACS Sustainable Chem. Eng. – volume: 111 year: 2020 publication-title: Prog. Polym. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 7199 year: 2016 end-page: 7203 publication-title: Polym. Chem. – volume: 6 start-page: 452 year: 2017 end-page: 457 publication-title: ACS Macro Lett. – volume: 22 start-page: 60 year: 2015 publication-title: J. Polym. Res. – volume: 44 start-page: 5235 year: 2020 end-page: 5242 publication-title: New J. Chem. – volume: 54 start-page: 11843 year: 2018 end-page: 11856 publication-title: Chem. Commun. – volume: 8 start-page: 9825 year: 2020 end-page: 9831 publication-title: J. Mater. Chem. A – volume: 28 start-page: 822 year: 2004 end-page: 827 publication-title: New J. Chem. – volume: 57 130 start-page: 12037 12213 year: 2018 2018 end-page: 12042 12218 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 5982 year: 2014 end-page: 5993 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 703 year: 2012 end-page: 723 publication-title: Chem. Rev. – volume: 58 131 start-page: 17954 18122 year: 2019 2019 end-page: 17963 18131 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 13502 year: 2019 end-page: 13510 publication-title: Nanoscale – volume: 2 start-page: 93 year: 2017 end-page: 101 publication-title: Chem – volume: 49 start-page: 6779 year: 2016 end-page: 6789 publication-title: Macromolecules – volume: 21 start-page: 5865 year: 2019 end-page: 5875 publication-title: Green Chem. – volume: 213 start-page: 1391 year: 2012 end-page: 1396 publication-title: Macromol. Chem. Phys. – volume: 132 start-page: 42389 year: 2015 publication-title: J. Appl. Polym. Sci. – volume: 18 start-page: 1475 year: 2016 end-page: 1481 publication-title: Green Chem. – volume: 11 start-page: 1772 year: 2019 publication-title: Polymers – volume: 46 start-page: 3108 year: 2017 end-page: 3133 publication-title: Chem. Soc. Rev. – volume: 116 start-page: 835 year: 2016 end-page: 877 publication-title: Chem. Rev. – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 57 130 start-page: 1557 1573 year: 2018 2018 end-page: 1562 1578 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 4254 year: 2014 end-page: 4260 publication-title: ACS Catal. – volume: 58 131 start-page: 16811 16967 year: 2019 2019 end-page: 16814 16970 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 7509 year: 2017 end-page: 7516 publication-title: Macromolecules – volume: 380 start-page: 230 year: 2019 end-page: 259 publication-title: Coord. Chem. Rev. – volume: 113 start-page: 1 year: 2017 end-page: 5 publication-title: React. Funct. Polym. – volume: 138 start-page: 3518 year: 2016 end-page: 3525 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 1609 year: 2019 end-page: 1619 publication-title: Macromolecules – volume: 8 start-page: 1760 year: 2017 end-page: 1770 publication-title: Polym. Chem. – volume: 57 130 start-page: 7898 8025 year: 2018 2018 end-page: 7902 8030 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 2857 year: 2017 end-page: 2862 publication-title: Chem. Asian J. – volume: 51 start-page: 99 year: 2011 end-page: 103 publication-title: Polym. Rev. – volume: 2 start-page: 782 year: 2020 end-page: 790 publication-title: ACS Appl. Polym. Mater. – volume: 11 start-page: 4968 year: 2020 end-page: 4972 publication-title: Polym. Chem. – volume: 38 start-page: 1228 year: 2009 end-page: 1236 publication-title: Chem. Soc. Rev. – ident: e_1_2_5_83_2 doi: 10.1021/cs501169t – ident: e_1_2_5_39_2 doi: 10.1039/C9GC02624J – ident: e_1_2_5_82_2 doi: 10.1039/C4CS00103F – ident: e_1_2_5_52_2 doi: 10.1039/D0NR00402B – ident: e_1_2_5_59_2 doi: 10.1038/srep01399 – ident: e_1_2_5_76_2 doi: 10.1039/C7CS00041C – ident: e_1_2_5_84_2 doi: 10.1002/anie.201505581 – ident: e_1_2_5_4_2 doi: 10.1021/cr900234b – ident: e_1_2_5_18_1 – ident: e_1_2_5_104_1 – ident: e_1_2_5_108_1 doi: 10.1021/acs.macromol.6b01306 – ident: e_1_2_5_55_2 doi: 10.1021/acs.macromol.8b01735 – ident: e_1_2_5_78_1 – ident: e_1_2_5_91_2 doi: 10.1039/C5GC02620B – ident: e_1_2_5_7_2 doi: 10.1021/acs.chemrev.5b00191 – ident: e_1_2_5_92_1 doi: 10.1021/acs.chemmater.7b03541 – ident: e_1_2_5_40_1 doi: 10.1021/acs.macromol.7b02215 – ident: e_1_2_5_29_2 doi: 10.1021/jacs.5b05274 – ident: e_1_2_5_41_1 doi: 10.1002/anie.201906194 – ident: e_1_2_5_27_2 doi: 10.1016/j.reactfunctpolym.2017.02.003 – ident: e_1_2_5_16_2 doi: 10.1039/C6PY02220K – ident: e_1_2_5_86_2 doi: 10.1002/marc.201900333 – ident: e_1_2_5_49_1 – ident: e_1_2_5_81_1 – ident: e_1_2_5_46_1 – ident: e_1_2_5_70_1 – ident: e_1_2_5_72_2 doi: 10.1039/C4CS00395K – ident: e_1_2_5_20_2 doi: 10.1021/ma1007545 – ident: e_1_2_5_77_2 doi: 10.1039/C8CC06415F – ident: e_1_2_5_89_2 doi: 10.1039/C6RA12134A – ident: e_1_2_5_41_2 doi: 10.1002/ange.201906194 – ident: e_1_2_5_1_1 – ident: e_1_2_5_34_3 doi: 10.1002/ange.201802964 – ident: e_1_2_5_98_1 – ident: e_1_2_5_102_3 doi: 10.1002/ange.201909014 – ident: e_1_2_5_33_2 doi: 10.1002/anie.201711044 – ident: e_1_2_5_21_2 – ident: e_1_2_5_54_2 doi: 10.1039/C8NR05476B – ident: e_1_2_5_37_2 doi: 10.1039/C6PY01844K – ident: e_1_2_5_28_1 – ident: e_1_2_5_3_2 doi: 10.1021/cr050947p – ident: e_1_2_5_45_1 doi: 10.1002/anie.201807385 – ident: e_1_2_5_6_2 doi: 10.1021/acs.macromol.5b00342 – ident: e_1_2_5_96_2 doi: 10.1039/C6CC03264H – ident: e_1_2_5_13_2 doi: 10.1021/acsmacrolett.7b00140 – ident: e_1_2_5_80_2 doi: 10.1021/acs.macromol.9b00038 – ident: e_1_2_5_50_2 doi: 10.1039/C9TA00905A – ident: e_1_2_5_66_1 – ident: e_1_2_5_103_1 doi: 10.1021/acsapm.9b01076 – ident: e_1_2_5_105_2 doi: 10.1039/B315319C – ident: e_1_2_5_63_1 – ident: e_1_2_5_101_3 doi: 10.1002/ange.201912608 – ident: e_1_2_5_95_2 doi: 10.1002/adma.201502537 – ident: e_1_2_5_85_1 – ident: e_1_2_5_107_2 – ident: e_1_2_5_43_1 doi: 10.1002/anie.201811721 – ident: e_1_2_5_88_1 – ident: e_1_2_5_35_3 doi: 10.1002/ange.201912484 – ident: e_1_2_5_9_2 doi: 10.1016/j.chempr.2020.06.014 – ident: e_1_2_5_73_2 doi: 10.1039/C8CC08790C – ident: e_1_2_5_60_2 doi: 10.1002/marc.201300704 – ident: e_1_2_5_42_1 doi: 10.1021/acs.macromol.7b01651 – ident: e_1_2_5_64_2 doi: 10.1021/cr200217c – ident: e_1_2_5_5_2 doi: 10.1080/15583724.2011.566406 – ident: e_1_2_5_12_2 doi: 10.1021/acs.chemrev.5b00671 – ident: e_1_2_5_61_2 doi: 10.1002/app.42389 – ident: e_1_2_5_94_2 doi: 10.1039/C5CC03398E – ident: e_1_2_5_32_2 doi: 10.1039/C7PY00442G – ident: e_1_2_5_106_2 doi: 10.1002/ijch.201500026 – ident: e_1_2_5_62_2 doi: 10.1007/s10965-015-0707-5 – ident: e_1_2_5_101_2 doi: 10.1002/anie.201912608 – ident: e_1_2_5_44_1 doi: 10.1021/acsmacrolett.0c00232 – ident: e_1_2_5_11_1 – ident: e_1_2_5_26_2 doi: 10.1016/j.chempr.2016.12.007 – ident: e_1_2_5_35_2 doi: 10.1002/anie.201912484 – ident: e_1_2_5_47_2 doi: 10.1021/acsmacrolett.9b00891 – ident: e_1_2_5_14_2 doi: 10.1002/marc.201700143 – ident: e_1_2_5_53_3 doi: 10.1002/ange.202007196 – ident: e_1_2_5_17_2 doi: 10.1039/D0PY00823K – ident: e_1_2_5_90_2 doi: 10.1039/C6CE00465B – ident: e_1_2_5_56_2 doi: 10.1021/acs.macromol.0c00106 – ident: e_1_2_5_84_3 doi: 10.1002/ange.201505581 – ident: e_1_2_5_8_2 doi: 10.1016/j.progpolymsci.2020.101311 – ident: e_1_2_5_31_3 doi: 10.1002/ange.201510037 – ident: e_1_2_5_34_2 doi: 10.1002/anie.201802964 – ident: e_1_2_5_15_2 doi: 10.3390/polym11111772 – ident: e_1_2_5_2_2 doi: 10.1016/j.progpolymsci.2006.11.002 – ident: e_1_2_5_10_2 doi: 10.1002/advs.202001656 – ident: e_1_2_5_53_2 doi: 10.1002/anie.202007196 – ident: e_1_2_5_30_2 doi: 10.1039/C4SC03342F – ident: e_1_2_5_43_2 doi: 10.1002/ange.201811721 – ident: e_1_2_5_38_2 doi: 10.1021/acssuschemeng.8b03726 – ident: e_1_2_5_93_1 – ident: e_1_2_5_19_2 doi: 10.1002/pola.22686 – ident: e_1_2_5_67_2 doi: 10.1016/j.drudis.2016.10.001 – ident: e_1_2_5_65_2 doi: 10.1016/j.mattod.2017.07.006 – ident: e_1_2_5_79_2 doi: 10.1038/s42004-018-0071-6 – ident: e_1_2_5_109_1 doi: 10.1002/asia.201701082 – ident: e_1_2_5_45_2 doi: 10.1002/ange.201807385 – ident: e_1_2_5_51_2 doi: 10.1039/C9NR04664J – ident: e_1_2_5_23_2 doi: 10.1002/macp.201200204 – ident: e_1_2_5_100_2 doi: 10.1021/acs.macromol.8b02628 – ident: e_1_2_5_25_2 doi: 10.1038/nchem.2713 – ident: e_1_2_5_31_2 doi: 10.1002/anie.201510037 – ident: e_1_2_5_24_2 doi: 10.1016/j.progpolymsci.2016.06.005 – ident: e_1_2_5_68_2 doi: 10.1002/adma.201606134 – ident: e_1_2_5_48_2 doi: 10.1039/C9PY01604J – ident: e_1_2_5_36_1 – ident: e_1_2_5_57_2 doi: 10.1039/D0TA03112G – ident: e_1_2_5_58_1 – ident: e_1_2_5_71_2 doi: 10.1021/acs.chemrev.7b00091 – ident: e_1_2_5_99_2 doi: 10.1021/acs.macromol.7b02533 – ident: e_1_2_5_102_2 doi: 10.1002/anie.201909014 – ident: e_1_2_5_74_1 – ident: e_1_2_5_33_3 doi: 10.1002/ange.201711044 – ident: e_1_2_5_75_2 doi: 10.1039/b802583p – ident: e_1_2_5_87_2 doi: 10.1039/D0NJ00476F – ident: e_1_2_5_97_2 doi: 10.1021/jacs.6b00007 – ident: e_1_2_5_69_2 doi: 10.1016/j.ccr.2018.09.009 – ident: e_1_2_5_22_2 |
SSID | ssj0028806 |
Score | 2.6445935 |
Snippet | In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible... In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer-reversible... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5489 |
SubjectTerms | 3D printing Addition polymerization Catalytic activity Chain transfer Electron transfer green chemistry Light penetration Lithography Metal-organic frameworks metal–organic frameworks (MOFs) Molecular weight Molecular weight distribution Monomers Photocatalysis Photocatalysts photopolymerization Polymerization Polymers stereolithography Wavelengths Zinc Zirconium |
Title | Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202014208 https://www.ncbi.nlm.nih.gov/pubmed/33179352 https://www.proquest.com/docview/2491851545 https://www.proquest.com/docview/2460082511 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1KLu2l303cJkWBQtuDk7Vly-vjEtZsA5su6QZCLkayJBKSrkvsPaSn3Hsp5B_ml3TGst1uSwm0R2MJy9JIek8z8wTwRvMkUFYEfkLH9xEPEz-1sfYFGo-QQ6JBlO88PRCTo2j_OD7-JYvf6UP0B240M5r1mia4VNXuT9FQysBGfocbGHmIcRGmgC1CRYe9flSIxunSizj36Rb6TrVxEO6uVl_dlf6AmqvItdl6skcgu0a7iJPznWWtdoqvv-k5_s9fPYaHLS5lI2dIT-CeWTyF-3vddXDP4NuspCEhh0_BTs4ukUefLT-zqUH0fnt943I6C5Z1wV4Vezf9mFXvmazYhGJuSjRVUy4rNjst67I5Nrqq6oohamaz8fz2-vvhKJuzWXlxRV4klx7K5EKzT1jbUJzeaauv_RyOsvF8b-K3Nzn4RYR8xk81F8iErTWx5CJSsSVZ-IQAggokRwwn4gTJHy0pqUh4HImBToyxaqARcUj-AtYW5cJsAEuFFmaodRqpIkI6Jq21ATdBaIcmUfHAA78bybxoZc7pto2L3Ak0hzl1cd53sQdv-_JfnMDHX0tudoaRtxO9ypG9IuIhHOrBdv8ah4b8LrLpViwjGiYeBB6sO4PqP8U5rZBx6EHYmMUdbchHBx_G_dPLf6n0Ch6EFJfTxNFtwlp9uTRbCKxq9bqZPD8ARj0axA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOZQL35RAASMhAYe0mzhxNsdVtdEWusuqbCXEJYpjW60oG9RkD-XUOxck_mF_CTN2ErQghATHKLbi2GP7PXvmDcBzxZNAGhH4CR3fRzxM_NTEyhdoPKIYEg2ieOfpTEyOotfv486bkGJhnD5Ef-BGM8Ou1zTB6UB696dqKIVgI8HDHYyuiK_CNUrrbVnVYa8gFaJ5ugAjzn3KQ9_pNg7C3fX66_vSb2BzHbvazSe7CbJrtvM5-bizauRO-eUXRcf_-q9bcKOFpmzkbOk2XNHLO7C512WEuwtf5xWNCt35lOzDyRlS6ZPVJzbVCOAvL767sM6SZZ2_V81eTt9m9StW1GxCbjcVWquuVjWbH1dNZU-OzuumZgic2Xy8uLz4djjKFmxenZ7TRZKLEGXFUrF3WFuTq95xK7F9D46y8WJv4rfJHPwyQkrjp4oLJMPG6LjgIpKxIWX4hDCCDAqOME7ECfI_WlVSkfA4EgOVaG3kQCHoKPh92FhWS_0AWCqU0EOl0kiWETKywhgTcB2EZqgTGQ888LuhzMtW6ZwSbpzmTqM5zKmL876LPXjRl__sND7-WHK7s4y8net1jgQWQQ9BUQ-e9a9xaOjqpbDdimWEJeNB4MGWs6j-U5zTIhmHHoTWLv7Shnw02x_3Tw__pdJT2Jwspgf5wf7szSO4HpKbjnWr24aN5mylHyPOauQTO5N-AOQ9Ht8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkYAL3x-BAkZCAg5pN3HibI6rdqMtsEtUtlLVS-TEtlpRNlWTPZRT71yQ-If9JczESWBBCAmOUWzF8Yzt9-yZZ4AXikdeboTnRrR9H3A_cmMTKleg8wg5JBpE-c7TmZjsBW_2w_2fsvitPkS_4UYjo5mvaYCfKLP5QzSUMrCR3-ECRifEl-FKIAZD8uvt3V5AykfvtPlFnLt0DX0n2zjwN1frry5Lv2HNVejarD3JTZBdq23IyceNZZ1vFJ9_EXT8n9-6BTdaYMpG1pNuwyW9uAPXtrr74O7Cl7Qkm9CJT8EOjk6RSB8tP7GpRvh-cf7NJnUWLOmivSr2avo-qV4zWbEJBd2U6Ku6XFYsPSzrstk3OqvqiiFsZul4fnH-dXeUzFlaHp_RMZLND2VyodgHrK0pUO-wFdi-B3vJeL41cdurHNwiQELjxooLpMLG6FByEeShIV34iBBC7kmOIE6EEbI_mlNiEfEQjakirU0-UAg5JL8Pa4tyoR8Ci4USeqhUHORFgHxMGmM8rj3fDHWUhwMH3M6SWdHqnNN1G8eZVWj2M-rirO9iB1725U-swscfS653jpG1I73KkL4i5CEg6sDz_jWahg5eZNOtWEY0VNzzHHhgHar_FOc0RYa-A37jFn9pQzaa7Yz7p0f_UukZXE23k-zdzuztY7juU4xOE1O3Dmv16VI_QZBV50-bcfQdidQdlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrinic+Zirconium+Metal%E2%80%93Organic+Frameworks+%28MOFs%29+as+Heterogeneous+Photocatalysts+for+PET%E2%80%90RAFT+Polymerization+and+Stereolithography&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Liwen&rft.au=Shi%2C+Xiaobing&rft.au=Zhang%2C+Zhiheng&rft.au=Kuchel%2C+Rhiannon+P&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=10&rft.spage=5489&rft.epage=5496&rft_id=info:doi/10.1002%2Fanie.202014208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |