Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography

In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 10; pp. 5489 - 5496
Main Authors Zhang, Liwen, Shi, Xiaobing, Zhang, Zhiheng, Kuchel, Rhiannon P, Namivandi‐Zangeneh, Rashin, Corrigan, Nathaniel, Jung, Kenward, Liang, Kang, Boyer, Cyrille
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity. Screening of various porphyrinic Zr‐MOFs (Zn) containing Zn‐metalled porphyrinic ligands demonstrated that MOF‐525 (Zn) with the smallest size had the best photocatalytic activity in PET‐RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET‐RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET‐RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three‐dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open‐air environment. Porphyrinic zirconium MOFs act as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity
AbstractList In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain-end fidelity. Screening of various porphyrinic Zr-MOFs (Zn) containing Zn-metalled porphyrinic ligands demonstrated that MOF-525 (Zn) with the smallest size had the best photocatalytic activity in PET-RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET-RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET-RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three-dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open-air environment.In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain-end fidelity. Screening of various porphyrinic Zr-MOFs (Zn) containing Zn-metalled porphyrinic ligands demonstrated that MOF-525 (Zn) with the smallest size had the best photocatalytic activity in PET-RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET-RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET-RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three-dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open-air environment.
In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity. Screening of various porphyrinic Zr‐MOFs (Zn) containing Zn‐metalled porphyrinic ligands demonstrated that MOF‐525 (Zn) with the smallest size had the best photocatalytic activity in PET‐RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET‐RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET‐RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three‐dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open‐air environment.
In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity. Screening of various porphyrinic Zr‐MOFs (Zn) containing Zn‐metalled porphyrinic ligands demonstrated that MOF‐525 (Zn) with the smallest size had the best photocatalytic activity in PET‐RAFT polymerization, due to enhanced dispersion and light penetration. Oxygen tolerance and temporal control were also demonstrated during MOF catalysed PET‐RAFT. Results suggested that the polymerization rates were significantly affected by changing the size and surface area of MOFs, and the heterogeneous MOF photocatalysts could be easily separated and recycled for up to five independent PET‐RAFT polymerizations without an obvious decrease in efficiency. Finally, the MOF photocatalysts were utilized to create three‐dimensional polymeric objects with high resolution via visible light mediated stereolithography in an open‐air environment. Porphyrinic zirconium MOFs act as heterogeneous photocatalysts for photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of various monomers under a broad range of wavelengths, producing polymers with high monomer conversions, narrow molecular weight distributions, low dispersity and good chain‐end fidelity
Author Shi, Xiaobing
Namivandi‐Zangeneh, Rashin
Liang, Kang
Kuchel, Rhiannon P
Corrigan, Nathaniel
Jung, Kenward
Boyer, Cyrille
Zhang, Liwen
Zhang, Zhiheng
Author_xml – sequence: 1
  givenname: Liwen
  surname: Zhang
  fullname: Zhang, Liwen
  organization: The University of New South Wales
– sequence: 2
  givenname: Xiaobing
  surname: Shi
  fullname: Shi, Xiaobing
  organization: The University of New South Wales
– sequence: 3
  givenname: Zhiheng
  surname: Zhang
  fullname: Zhang, Zhiheng
  organization: The University of New South Wales
– sequence: 4
  givenname: Rhiannon P
  surname: Kuchel
  fullname: Kuchel, Rhiannon P
  organization: The University of New South Wales
– sequence: 5
  givenname: Rashin
  surname: Namivandi‐Zangeneh
  fullname: Namivandi‐Zangeneh, Rashin
  organization: The University of New South Wales
– sequence: 6
  givenname: Nathaniel
  surname: Corrigan
  fullname: Corrigan, Nathaniel
  organization: The University of New South Wales
– sequence: 7
  givenname: Kenward
  surname: Jung
  fullname: Jung, Kenward
  organization: The University of New South Wales
– sequence: 8
  givenname: Kang
  surname: Liang
  fullname: Liang, Kang
  email: kang.liang@unsw.edu.au
  organization: The University of New South Wales
– sequence: 9
  givenname: Cyrille
  orcidid: 0000-0002-4564-4702
  surname: Boyer
  fullname: Boyer, Cyrille
  email: cboyer@unsw.edu.au
  organization: The University of New South Wales
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33179352$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEQhkVJaT7aa49F0Et6WFff2j2aYDeBpDate-lFyLtaW-nuypG0hM0p91wK_Yf5JZXjpIVA6UkDep5hZt5DsNe5zgDwFqMRRoh81J01I4IIwoyg_AU4wJzgjEpJ91LNKM1kzvE-OAzhMvF5jsQrsE8plgXl5ADczZ3frAdvO1vC79aXrrN9Cy9M1M397a-ZX-ntz9Tr1lw7_yPA44vZNHyAOsBTE413K9MZ1wc4X7voSp28IcQAa-fhfLK4v_35ZTxdwLlrhtZ4e6OjdR3UXQW_Jtu4xsa1W3mdhngNXta6CebN43sEvk0ni5PT7Hz26exkfJ6VTIo8Kyoqcirr2nBNBVvymhe5kGk7tsSacoEFlyQnCDFUCEk5E6iSxtRLVDEkND0Cx7u-G--uehOiam0oTdPoh00USQLKCcc4oe-foZeu912aLlEFTqfljCfq3SPVL1tTqY23rfaDejpzAtgOKL0LwZtalTY-XCJ6bRuFkdqmqbZpqj9pJm30THvq_E-h2AnXtjHDf2g1_nw2-ev-Bic5s6M
CitedBy_id crossref_primary_10_1007_s40820_024_01373_w
crossref_primary_10_1039_D2PY00089J
crossref_primary_10_1021_acs_iecr_3c02177
crossref_primary_10_1002_aenm_202303638
crossref_primary_10_1016_j_flatc_2023_100492
crossref_primary_10_1016_j_foodchem_2024_138749
crossref_primary_10_1002_smll_202401278
crossref_primary_10_1038_s41467_023_38402_y
crossref_primary_10_1039_D3TA02582A
crossref_primary_10_1021_acs_biomac_3c01356
crossref_primary_10_1021_acsanm_2c03126
crossref_primary_10_2139_ssrn_4179196
crossref_primary_10_1021_acs_inorgchem_1c02312
crossref_primary_10_1002_cptc_202300090
crossref_primary_10_1002_smll_202402779
crossref_primary_10_1016_j_eurpolymj_2021_110670
crossref_primary_10_1007_s11356_023_27282_w
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1002_marc_202200173
crossref_primary_10_1039_D2QM01201D
crossref_primary_10_1016_j_ccr_2022_214601
crossref_primary_10_1002_adma_202412407
crossref_primary_10_1038_s41467_024_52489_x
crossref_primary_10_1016_j_mtchem_2022_100959
crossref_primary_10_1021_acs_macromol_1c01367
crossref_primary_10_1039_D0CS01411G
crossref_primary_10_1039_D4RA07121B
crossref_primary_10_1039_D1PY01258D
crossref_primary_10_1039_D1QM00659B
crossref_primary_10_1016_j_ctta_2021_100027
crossref_primary_10_1002_marc_202300336
crossref_primary_10_1002_anie_202107457
crossref_primary_10_1016_j_esci_2024_100354
crossref_primary_10_1039_D4CC04902K
crossref_primary_10_1021_jacs_2c02303
crossref_primary_10_1016_j_mtchem_2024_102337
crossref_primary_10_1002_ange_202015677
crossref_primary_10_1016_j_ica_2022_120909
crossref_primary_10_1021_acsaem_4c02153
crossref_primary_10_1021_acs_inorgchem_2c00441
crossref_primary_10_1021_acsami_3c05397
crossref_primary_10_1002_mame_202200010
crossref_primary_10_1142_S1088424621300056
crossref_primary_10_1002_anie_202304608
crossref_primary_10_1021_acsanm_3c03508
crossref_primary_10_1039_D4PY00027G
crossref_primary_10_1002_anie_202302429
crossref_primary_10_1039_D1PY01534F
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_1016_j_ces_2022_117825
crossref_primary_10_1016_j_apcatb_2022_121673
crossref_primary_10_1021_acs_chemrev_3c00853
crossref_primary_10_2147_IJN_S463144
crossref_primary_10_1002_anie_202015677
crossref_primary_10_1002_anie_202208898
crossref_primary_10_1016_j_cej_2022_139330
crossref_primary_10_1002_ange_202312697
crossref_primary_10_1016_j_ccr_2024_215794
crossref_primary_10_1039_D1GC03604A
crossref_primary_10_1021_acsomega_4c06171
crossref_primary_10_1039_D1PY01058A
crossref_primary_10_1002_ange_202304608
crossref_primary_10_1016_j_seppur_2025_131937
crossref_primary_10_1002_ange_202302429
crossref_primary_10_1002_marc_202200664
crossref_primary_10_1021_acs_macromol_4c00736
crossref_primary_10_1016_j_aca_2022_340659
crossref_primary_10_1007_s40843_022_2226_6
crossref_primary_10_1021_acscatal_4c03407
crossref_primary_10_1021_acsami_2c02690
crossref_primary_10_1002_marc_202200020
crossref_primary_10_1002_anie_202312697
crossref_primary_10_1016_j_mcat_2022_112853
crossref_primary_10_1021_acsanm_2c04533
crossref_primary_10_1002_ange_202208898
crossref_primary_10_1016_j_cej_2022_134692
crossref_primary_10_1039_D1PY01241J
crossref_primary_10_2139_ssrn_4108638
crossref_primary_10_1021_acsami_1c13770
crossref_primary_10_1021_acsapm_1c00262
crossref_primary_10_1002_chem_202102413
crossref_primary_10_1021_jacs_1c04428
crossref_primary_10_1016_j_seppur_2023_123291
crossref_primary_10_1039_D2PY00748G
crossref_primary_10_1021_acs_macromol_2c01668
crossref_primary_10_1039_D3TB01829F
crossref_primary_10_1016_j_mtener_2022_101100
crossref_primary_10_1002_marc_202100384
crossref_primary_10_1039_D2PY00966H
crossref_primary_10_1002_adfm_202207655
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_1016_j_seppur_2022_121423
crossref_primary_10_2139_ssrn_4094536
crossref_primary_10_1016_j_microc_2022_107714
crossref_primary_10_1016_j_cej_2023_142861
crossref_primary_10_1039_D2TB00931E
crossref_primary_10_1021_acscatal_2c05591
crossref_primary_10_1186_s12951_022_01436_3
crossref_primary_10_1021_acsmacrolett_2c00708
crossref_primary_10_1016_j_carbon_2024_119617
crossref_primary_10_1016_j_cej_2022_135033
crossref_primary_10_1016_j_jece_2023_111217
crossref_primary_10_1021_jacs_1c08332
crossref_primary_10_1007_s11426_023_1733_0
crossref_primary_10_3390_polym15071633
crossref_primary_10_1002_adma_202104906
crossref_primary_10_1021_acsmacrolett_1c00046
crossref_primary_10_1039_D1PY00130B
crossref_primary_10_1070_RCR5012
crossref_primary_10_1002_pi_6475
crossref_primary_10_1021_acsami_2c04331
crossref_primary_10_1016_j_colsurfa_2023_131652
crossref_primary_10_1002_advs_202003701
crossref_primary_10_1007_s11706_021_0568_2
crossref_primary_10_1039_D1NR01401C
crossref_primary_10_1002_adma_202411967
crossref_primary_10_1021_acsapm_3c01882
crossref_primary_10_1039_D2NJ03890K
crossref_primary_10_1007_s00604_023_05650_0
crossref_primary_10_1002_ange_202107457
crossref_primary_10_1039_D1CS00069A
crossref_primary_10_1016_j_addma_2022_103088
crossref_primary_10_1002_asia_202100957
crossref_primary_10_1039_D0QM00961J
crossref_primary_10_1016_j_apsusc_2023_158249
crossref_primary_10_1021_acs_macromol_3c02057
crossref_primary_10_3390_polym16050576
crossref_primary_10_1002_adfm_202214627
crossref_primary_10_1016_j_cej_2021_130395
crossref_primary_10_1016_j_polymer_2023_126270
crossref_primary_10_1021_acs_macromol_2c02585
crossref_primary_10_1002_advs_202303206
crossref_primary_10_1016_j_eurpolymj_2024_113220
crossref_primary_10_1016_j_cej_2024_154836
crossref_primary_10_1016_j_seppur_2023_124214
crossref_primary_10_1021_acs_iecr_1c04757
crossref_primary_10_1002_adfm_202312265
crossref_primary_10_1021_acsami_3c13496
crossref_primary_10_1021_acsapm_3c00441
Cites_doi 10.1021/cs501169t
10.1039/C9GC02624J
10.1039/C4CS00103F
10.1039/D0NR00402B
10.1038/srep01399
10.1039/C7CS00041C
10.1002/anie.201505581
10.1021/cr900234b
10.1021/acs.macromol.6b01306
10.1021/acs.macromol.8b01735
10.1039/C5GC02620B
10.1021/acs.chemrev.5b00191
10.1021/acs.chemmater.7b03541
10.1021/acs.macromol.7b02215
10.1021/jacs.5b05274
10.1002/anie.201906194
10.1016/j.reactfunctpolym.2017.02.003
10.1039/C6PY02220K
10.1002/marc.201900333
10.1039/C4CS00395K
10.1021/ma1007545
10.1039/C8CC06415F
10.1039/C6RA12134A
10.1002/ange.201906194
10.1002/ange.201802964
10.1002/ange.201909014
10.1002/anie.201711044
10.1039/C8NR05476B
10.1039/C6PY01844K
10.1021/cr050947p
10.1002/anie.201807385
10.1021/acs.macromol.5b00342
10.1039/C6CC03264H
10.1021/acsmacrolett.7b00140
10.1021/acs.macromol.9b00038
10.1039/C9TA00905A
10.1021/acsapm.9b01076
10.1039/B315319C
10.1002/ange.201912608
10.1002/adma.201502537
10.1002/anie.201811721
10.1002/ange.201912484
10.1016/j.chempr.2020.06.014
10.1039/C8CC08790C
10.1002/marc.201300704
10.1021/acs.macromol.7b01651
10.1021/cr200217c
10.1080/15583724.2011.566406
10.1021/acs.chemrev.5b00671
10.1002/app.42389
10.1039/C5CC03398E
10.1039/C7PY00442G
10.1002/ijch.201500026
10.1007/s10965-015-0707-5
10.1002/anie.201912608
10.1021/acsmacrolett.0c00232
10.1016/j.chempr.2016.12.007
10.1002/anie.201912484
10.1021/acsmacrolett.9b00891
10.1002/marc.201700143
10.1002/ange.202007196
10.1039/D0PY00823K
10.1039/C6CE00465B
10.1021/acs.macromol.0c00106
10.1002/ange.201505581
10.1016/j.progpolymsci.2020.101311
10.1002/ange.201510037
10.1002/anie.201802964
10.3390/polym11111772
10.1016/j.progpolymsci.2006.11.002
10.1002/advs.202001656
10.1002/anie.202007196
10.1039/C4SC03342F
10.1002/ange.201811721
10.1021/acssuschemeng.8b03726
10.1002/pola.22686
10.1016/j.drudis.2016.10.001
10.1016/j.mattod.2017.07.006
10.1038/s42004-018-0071-6
10.1002/asia.201701082
10.1002/ange.201807385
10.1039/C9NR04664J
10.1002/macp.201200204
10.1021/acs.macromol.8b02628
10.1038/nchem.2713
10.1002/anie.201510037
10.1016/j.progpolymsci.2016.06.005
10.1002/adma.201606134
10.1039/C9PY01604J
10.1039/D0TA03112G
10.1021/acs.chemrev.7b00091
10.1021/acs.macromol.7b02533
10.1002/anie.201909014
10.1002/ange.201711044
10.1039/b802583p
10.1039/D0NJ00476F
10.1021/jacs.6b00007
10.1016/j.ccr.2018.09.009
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202014208
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5496
ExternalDocumentID 33179352
10_1002_anie_202014208
ANIE202014208
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4768-9d36837ffe5a364b5f598670024b1a3561657282004096735460d7eefb0d406a3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:41:48 EDT 2025
Fri Jul 25 11:50:15 EDT 2025
Thu Apr 03 07:03:53 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Tue Jul 01 01:17:51 EDT 2025
Wed Jan 22 16:30:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords photopolymerization
metal-organic frameworks (MOFs)
green chemistry
3D printing
stereolithography
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4768-9d36837ffe5a364b5f598670024b1a3561657282004096735460d7eefb0d406a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4564-4702
PMID 33179352
PQID 2491851545
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2460082511
proquest_journals_2491851545
pubmed_primary_33179352
crossref_citationtrail_10_1002_anie_202014208
crossref_primary_10_1002_anie_202014208
wiley_primary_10_1002_anie_202014208_ANIE202014208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2017; 8
2007; 107
2013; 3
2017; 2
2019; 52
2019; 11
2019; 55
2004; 28
2017; 46
2020 2020; 59 132
2020; 12
2020; 11
2007; 32
2017; 113
2017; 9
2017; 117
2020; 8
2020; 7
2018; 6
2015; 48
2020; 6
2014; 4
2020; 2
2015; 137
2020; 53
2018; 1
2017; 38
2019; 21
2018 2018; 57 130
2015; 44
2020; 9
2015; 132
2016; 116
2020; 44
2012; 213
2016; 49
2019; 7
2015; 6
2020; 41
2015; 51
2017; 22
2016; 52
2017; 29
2016; 18
2018; 21
2019; 380
2019 2019; 58 131
2014; 43
2016; 56
2017; 50
2010; 43
2016; 6
2016; 7
2016 2016; 55 128
2015; 27
2012; 112
2011; 51
2015; 22
2017; 12
2008; 46
2016; 62
2014; 35
2020; 111
2018; 51
2016; 138
2009; 109
2018; 10
2018; 54
2009; 38
e_1_2_5_27_2
e_1_2_5_46_1
e_1_2_5_101_2
e_1_2_5_23_2
e_1_2_5_101_3
e_1_2_5_88_1
e_1_2_5_105_2
e_1_2_5_65_2
e_1_2_5_69_2
e_1_2_5_109_1
e_1_2_5_80_2
e_1_2_5_61_2
e_1_2_5_84_3
e_1_2_5_84_2
e_1_2_5_42_1
e_1_2_5_38_2
e_1_2_5_34_3
e_1_2_5_15_2
e_1_2_5_57_2
e_1_2_5_7_2
e_1_2_5_11_1
e_1_2_5_34_2
e_1_2_5_53_3
e_1_2_5_53_2
e_1_2_5_3_2
e_1_2_5_76_2
e_1_2_5_99_2
e_1_2_5_19_2
e_1_2_5_91_2
e_1_2_5_72_2
e_1_2_5_95_2
e_1_2_5_30_2
e_1_2_5_26_2
e_1_2_5_49_1
e_1_2_5_22_2
e_1_2_5_45_2
e_1_2_5_45_1
e_1_2_5_100_2
e_1_2_5_64_2
e_1_2_5_87_2
e_1_2_5_104_1
e_1_2_5_68_2
e_1_2_5_108_1
e_1_2_5_60_2
e_1_2_5_83_2
e_1_2_5_41_2
e_1_2_5_41_1
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_8_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_56_2
e_1_2_5_33_3
e_1_2_5_4_2
e_1_2_5_75_2
e_1_2_5_98_1
e_1_2_5_79_2
e_1_2_5_18_1
e_1_2_5_90_2
e_1_2_5_71_2
e_1_2_5_94_2
e_1_2_5_52_2
e_1_2_5_48_2
e_1_2_5_25_2
e_1_2_5_103_1
e_1_2_5_44_1
e_1_2_5_21_2
e_1_2_5_86_2
e_1_2_5_67_2
e_1_2_5_107_2
e_1_2_5_29_2
e_1_2_5_82_2
e_1_2_5_63_1
e_1_2_5_40_1
e_1_2_5_13_2
e_1_2_5_59_2
e_1_2_5_9_2
e_1_2_5_36_1
e_1_2_5_55_2
e_1_2_5_5_2
e_1_2_5_32_2
e_1_2_5_97_2
e_1_2_5_78_1
e_1_2_5_1_1
e_1_2_5_17_2
e_1_2_5_70_1
e_1_2_5_93_1
e_1_2_5_74_1
e_1_2_5_51_2
e_1_2_5_28_1
e_1_2_5_24_2
e_1_2_5_47_2
e_1_2_5_102_2
e_1_2_5_20_2
e_1_2_5_43_2
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_106_2
e_1_2_5_89_2
e_1_2_5_102_3
e_1_2_5_81_1
e_1_2_5_62_2
e_1_2_5_85_1
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_35_3
e_1_2_5_58_1
e_1_2_5_6_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_54_2
e_1_2_5_31_3
e_1_2_5_2_2
e_1_2_5_77_2
e_1_2_5_39_2
e_1_2_5_92_1
e_1_2_5_73_2
e_1_2_5_96_2
e_1_2_5_50_2
References_xml – volume: 62
  start-page: 73
  year: 2016
  end-page: 125
  publication-title: Prog. Polym. Sci.
– volume: 51
  start-page: 7974
  year: 2018
  end-page: 7982
  publication-title: Macromolecules
– volume: 51
  start-page: 1370
  year: 2018
  end-page: 1376
  publication-title: Macromolecules
– volume: 9
  start-page: 7
  year: 2020
  end-page: 13
  publication-title: ACS Macro Lett.
– volume: 109
  start-page: 4963
  year: 2009
  end-page: 5050
  publication-title: Chem. Rev.
– volume: 9
  start-page: 725
  year: 2020
  end-page: 730
  publication-title: ACS Macro Lett.
– volume: 55 128
  start-page: 1036 1048
  year: 2016 2016
  end-page: 1040 1052
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 5459
  year: 2015
  end-page: 5469
  publication-title: Macromolecules
– volume: 9
  start-page: 537
  year: 2017
  end-page: 545
  publication-title: Nat. Chem.
– volume: 11
  start-page: 1018
  year: 2020
  end-page: 1024
  publication-title: Polym. Chem.
– volume: 55
  start-page: 620
  year: 2019
  end-page: 623
  publication-title: Chem. Commun.
– volume: 41
  year: 2020
  publication-title: Macromol. Rapid Commun.
– volume: 53
  start-page: 1550
  year: 2020
  end-page: 1556
  publication-title: Macromolecules
– volume: 51
  start-page: 10925
  year: 2015
  end-page: 10928
  publication-title: Chem. Commun.
– volume: 58 131
  start-page: 1828 1842
  year: 2019 2019
  end-page: 1832 1846
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 625
  year: 2017
  end-page: 637
  publication-title: Drug Discovery Today
– volume: 43
  start-page: 6245
  year: 2010
  end-page: 6260
  publication-title: Macromolecules
– volume: 6
  start-page: 1341
  year: 2015
  end-page: 1349
  publication-title: Chem. Sci.
– volume: 107
  start-page: 2270
  year: 2007
  end-page: 2299
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 21392 21576
  year: 2020 2020
  end-page: 21396 21580
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 1399
  year: 2013
  publication-title: Sci. Rep. UK
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 10
  start-page: 19254
  year: 2018
  end-page: 19261
  publication-title: Nanoscale
– volume: 6
  start-page: 66444
  year: 2016
  end-page: 66450
  publication-title: RSC Adv.
– volume: 8
  start-page: 2841
  year: 2017
  end-page: 2851
  publication-title: Polym. Chem.
– volume: 1
  start-page: 70
  year: 2018
  publication-title: Commun. Chem.
– volume: 117
  start-page: 8129
  year: 2017
  end-page: 8176
  publication-title: Chem. Rev.
– volume: 46
  start-page: 3387
  year: 2008
  end-page: 3395
  publication-title: J. Polym. Sci. Part A
– volume: 55 128
  start-page: 5414 5504
  year: 2016 2016
  end-page: 5445 5535
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 3696
  year: 2016
  end-page: 3702
  publication-title: CrystEngComm
– volume: 52
  start-page: 3278
  year: 2019
  end-page: 3287
  publication-title: Macromolecules
– volume: 56
  start-page: 110
  year: 2016
  end-page: 118
  publication-title: Isr. J. Chem.
– volume: 27
  start-page: 7229
  year: 2015
  end-page: 7235
  publication-title: Adv. Mater.
– volume: 7
  start-page: 6173
  year: 2019
  end-page: 6179
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 7854
  year: 2016
  end-page: 7857
  publication-title: Chem. Commun.
– volume: 51
  start-page: 779
  year: 2018
  end-page: 790
  publication-title: Macromolecules
– volume: 32
  start-page: 93
  year: 2007
  end-page: 146
  publication-title: Prog. Polym. Sci.
– volume: 137
  start-page: 9174
  year: 2015
  end-page: 9185
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 7595
  year: 2020
  end-page: 7603
  publication-title: Nanoscale
– volume: 21
  start-page: 108
  year: 2018
  end-page: 121
  publication-title: Mater. Today
– volume: 35
  start-page: 454
  year: 2014
  end-page: 459
  publication-title: Macromol. Rapid Commun.
– volume: 58 131
  start-page: 12096 12224
  year: 2019 2019
  end-page: 12101 12229
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 6804
  year: 2015
  end-page: 6849
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1575
  year: 2020
  end-page: 1588
  publication-title: Chem
– volume: 116
  start-page: 10167
  year: 2016
  end-page: 10211
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 2013 2029
  year: 2020 2020
  end-page: 2017 2033
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 9445
  year: 2017
  end-page: 9455
  publication-title: Chem. Mater.
– volume: 6
  start-page: 15245
  year: 2018
  end-page: 15253
  publication-title: ACS Sustainable Chem. Eng.
– volume: 111
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 7199
  year: 2016
  end-page: 7203
  publication-title: Polym. Chem.
– volume: 6
  start-page: 452
  year: 2017
  end-page: 457
  publication-title: ACS Macro Lett.
– volume: 22
  start-page: 60
  year: 2015
  publication-title: J. Polym. Res.
– volume: 44
  start-page: 5235
  year: 2020
  end-page: 5242
  publication-title: New J. Chem.
– volume: 54
  start-page: 11843
  year: 2018
  end-page: 11856
  publication-title: Chem. Commun.
– volume: 8
  start-page: 9825
  year: 2020
  end-page: 9831
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 822
  year: 2004
  end-page: 827
  publication-title: New J. Chem.
– volume: 57 130
  start-page: 12037 12213
  year: 2018 2018
  end-page: 12042 12218
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 5982
  year: 2014
  end-page: 5993
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 703
  year: 2012
  end-page: 723
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 17954 18122
  year: 2019 2019
  end-page: 17963 18131
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 13502
  year: 2019
  end-page: 13510
  publication-title: Nanoscale
– volume: 2
  start-page: 93
  year: 2017
  end-page: 101
  publication-title: Chem
– volume: 49
  start-page: 6779
  year: 2016
  end-page: 6789
  publication-title: Macromolecules
– volume: 21
  start-page: 5865
  year: 2019
  end-page: 5875
  publication-title: Green Chem.
– volume: 213
  start-page: 1391
  year: 2012
  end-page: 1396
  publication-title: Macromol. Chem. Phys.
– volume: 132
  start-page: 42389
  year: 2015
  publication-title: J. Appl. Polym. Sci.
– volume: 18
  start-page: 1475
  year: 2016
  end-page: 1481
  publication-title: Green Chem.
– volume: 11
  start-page: 1772
  year: 2019
  publication-title: Polymers
– volume: 46
  start-page: 3108
  year: 2017
  end-page: 3133
  publication-title: Chem. Soc. Rev.
– volume: 116
  start-page: 835
  year: 2016
  end-page: 877
  publication-title: Chem. Rev.
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 57 130
  start-page: 1557 1573
  year: 2018 2018
  end-page: 1562 1578
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 4254
  year: 2014
  end-page: 4260
  publication-title: ACS Catal.
– volume: 58 131
  start-page: 16811 16967
  year: 2019 2019
  end-page: 16814 16970
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 7509
  year: 2017
  end-page: 7516
  publication-title: Macromolecules
– volume: 380
  start-page: 230
  year: 2019
  end-page: 259
  publication-title: Coord. Chem. Rev.
– volume: 113
  start-page: 1
  year: 2017
  end-page: 5
  publication-title: React. Funct. Polym.
– volume: 138
  start-page: 3518
  year: 2016
  end-page: 3525
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 1609
  year: 2019
  end-page: 1619
  publication-title: Macromolecules
– volume: 8
  start-page: 1760
  year: 2017
  end-page: 1770
  publication-title: Polym. Chem.
– volume: 57 130
  start-page: 7898 8025
  year: 2018 2018
  end-page: 7902 8030
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 2857
  year: 2017
  end-page: 2862
  publication-title: Chem. Asian J.
– volume: 51
  start-page: 99
  year: 2011
  end-page: 103
  publication-title: Polym. Rev.
– volume: 2
  start-page: 782
  year: 2020
  end-page: 790
  publication-title: ACS Appl. Polym. Mater.
– volume: 11
  start-page: 4968
  year: 2020
  end-page: 4972
  publication-title: Polym. Chem.
– volume: 38
  start-page: 1228
  year: 2009
  end-page: 1236
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_5_83_2
  doi: 10.1021/cs501169t
– ident: e_1_2_5_39_2
  doi: 10.1039/C9GC02624J
– ident: e_1_2_5_82_2
  doi: 10.1039/C4CS00103F
– ident: e_1_2_5_52_2
  doi: 10.1039/D0NR00402B
– ident: e_1_2_5_59_2
  doi: 10.1038/srep01399
– ident: e_1_2_5_76_2
  doi: 10.1039/C7CS00041C
– ident: e_1_2_5_84_2
  doi: 10.1002/anie.201505581
– ident: e_1_2_5_4_2
  doi: 10.1021/cr900234b
– ident: e_1_2_5_18_1
– ident: e_1_2_5_104_1
– ident: e_1_2_5_108_1
  doi: 10.1021/acs.macromol.6b01306
– ident: e_1_2_5_55_2
  doi: 10.1021/acs.macromol.8b01735
– ident: e_1_2_5_78_1
– ident: e_1_2_5_91_2
  doi: 10.1039/C5GC02620B
– ident: e_1_2_5_7_2
  doi: 10.1021/acs.chemrev.5b00191
– ident: e_1_2_5_92_1
  doi: 10.1021/acs.chemmater.7b03541
– ident: e_1_2_5_40_1
  doi: 10.1021/acs.macromol.7b02215
– ident: e_1_2_5_29_2
  doi: 10.1021/jacs.5b05274
– ident: e_1_2_5_41_1
  doi: 10.1002/anie.201906194
– ident: e_1_2_5_27_2
  doi: 10.1016/j.reactfunctpolym.2017.02.003
– ident: e_1_2_5_16_2
  doi: 10.1039/C6PY02220K
– ident: e_1_2_5_86_2
  doi: 10.1002/marc.201900333
– ident: e_1_2_5_49_1
– ident: e_1_2_5_81_1
– ident: e_1_2_5_46_1
– ident: e_1_2_5_70_1
– ident: e_1_2_5_72_2
  doi: 10.1039/C4CS00395K
– ident: e_1_2_5_20_2
  doi: 10.1021/ma1007545
– ident: e_1_2_5_77_2
  doi: 10.1039/C8CC06415F
– ident: e_1_2_5_89_2
  doi: 10.1039/C6RA12134A
– ident: e_1_2_5_41_2
  doi: 10.1002/ange.201906194
– ident: e_1_2_5_1_1
– ident: e_1_2_5_34_3
  doi: 10.1002/ange.201802964
– ident: e_1_2_5_98_1
– ident: e_1_2_5_102_3
  doi: 10.1002/ange.201909014
– ident: e_1_2_5_33_2
  doi: 10.1002/anie.201711044
– ident: e_1_2_5_21_2
– ident: e_1_2_5_54_2
  doi: 10.1039/C8NR05476B
– ident: e_1_2_5_37_2
  doi: 10.1039/C6PY01844K
– ident: e_1_2_5_28_1
– ident: e_1_2_5_3_2
  doi: 10.1021/cr050947p
– ident: e_1_2_5_45_1
  doi: 10.1002/anie.201807385
– ident: e_1_2_5_6_2
  doi: 10.1021/acs.macromol.5b00342
– ident: e_1_2_5_96_2
  doi: 10.1039/C6CC03264H
– ident: e_1_2_5_13_2
  doi: 10.1021/acsmacrolett.7b00140
– ident: e_1_2_5_80_2
  doi: 10.1021/acs.macromol.9b00038
– ident: e_1_2_5_50_2
  doi: 10.1039/C9TA00905A
– ident: e_1_2_5_66_1
– ident: e_1_2_5_103_1
  doi: 10.1021/acsapm.9b01076
– ident: e_1_2_5_105_2
  doi: 10.1039/B315319C
– ident: e_1_2_5_63_1
– ident: e_1_2_5_101_3
  doi: 10.1002/ange.201912608
– ident: e_1_2_5_95_2
  doi: 10.1002/adma.201502537
– ident: e_1_2_5_85_1
– ident: e_1_2_5_107_2
– ident: e_1_2_5_43_1
  doi: 10.1002/anie.201811721
– ident: e_1_2_5_88_1
– ident: e_1_2_5_35_3
  doi: 10.1002/ange.201912484
– ident: e_1_2_5_9_2
  doi: 10.1016/j.chempr.2020.06.014
– ident: e_1_2_5_73_2
  doi: 10.1039/C8CC08790C
– ident: e_1_2_5_60_2
  doi: 10.1002/marc.201300704
– ident: e_1_2_5_42_1
  doi: 10.1021/acs.macromol.7b01651
– ident: e_1_2_5_64_2
  doi: 10.1021/cr200217c
– ident: e_1_2_5_5_2
  doi: 10.1080/15583724.2011.566406
– ident: e_1_2_5_12_2
  doi: 10.1021/acs.chemrev.5b00671
– ident: e_1_2_5_61_2
  doi: 10.1002/app.42389
– ident: e_1_2_5_94_2
  doi: 10.1039/C5CC03398E
– ident: e_1_2_5_32_2
  doi: 10.1039/C7PY00442G
– ident: e_1_2_5_106_2
  doi: 10.1002/ijch.201500026
– ident: e_1_2_5_62_2
  doi: 10.1007/s10965-015-0707-5
– ident: e_1_2_5_101_2
  doi: 10.1002/anie.201912608
– ident: e_1_2_5_44_1
  doi: 10.1021/acsmacrolett.0c00232
– ident: e_1_2_5_11_1
– ident: e_1_2_5_26_2
  doi: 10.1016/j.chempr.2016.12.007
– ident: e_1_2_5_35_2
  doi: 10.1002/anie.201912484
– ident: e_1_2_5_47_2
  doi: 10.1021/acsmacrolett.9b00891
– ident: e_1_2_5_14_2
  doi: 10.1002/marc.201700143
– ident: e_1_2_5_53_3
  doi: 10.1002/ange.202007196
– ident: e_1_2_5_17_2
  doi: 10.1039/D0PY00823K
– ident: e_1_2_5_90_2
  doi: 10.1039/C6CE00465B
– ident: e_1_2_5_56_2
  doi: 10.1021/acs.macromol.0c00106
– ident: e_1_2_5_84_3
  doi: 10.1002/ange.201505581
– ident: e_1_2_5_8_2
  doi: 10.1016/j.progpolymsci.2020.101311
– ident: e_1_2_5_31_3
  doi: 10.1002/ange.201510037
– ident: e_1_2_5_34_2
  doi: 10.1002/anie.201802964
– ident: e_1_2_5_15_2
  doi: 10.3390/polym11111772
– ident: e_1_2_5_2_2
  doi: 10.1016/j.progpolymsci.2006.11.002
– ident: e_1_2_5_10_2
  doi: 10.1002/advs.202001656
– ident: e_1_2_5_53_2
  doi: 10.1002/anie.202007196
– ident: e_1_2_5_30_2
  doi: 10.1039/C4SC03342F
– ident: e_1_2_5_43_2
  doi: 10.1002/ange.201811721
– ident: e_1_2_5_38_2
  doi: 10.1021/acssuschemeng.8b03726
– ident: e_1_2_5_93_1
– ident: e_1_2_5_19_2
  doi: 10.1002/pola.22686
– ident: e_1_2_5_67_2
  doi: 10.1016/j.drudis.2016.10.001
– ident: e_1_2_5_65_2
  doi: 10.1016/j.mattod.2017.07.006
– ident: e_1_2_5_79_2
  doi: 10.1038/s42004-018-0071-6
– ident: e_1_2_5_109_1
  doi: 10.1002/asia.201701082
– ident: e_1_2_5_45_2
  doi: 10.1002/ange.201807385
– ident: e_1_2_5_51_2
  doi: 10.1039/C9NR04664J
– ident: e_1_2_5_23_2
  doi: 10.1002/macp.201200204
– ident: e_1_2_5_100_2
  doi: 10.1021/acs.macromol.8b02628
– ident: e_1_2_5_25_2
  doi: 10.1038/nchem.2713
– ident: e_1_2_5_31_2
  doi: 10.1002/anie.201510037
– ident: e_1_2_5_24_2
  doi: 10.1016/j.progpolymsci.2016.06.005
– ident: e_1_2_5_68_2
  doi: 10.1002/adma.201606134
– ident: e_1_2_5_48_2
  doi: 10.1039/C9PY01604J
– ident: e_1_2_5_36_1
– ident: e_1_2_5_57_2
  doi: 10.1039/D0TA03112G
– ident: e_1_2_5_58_1
– ident: e_1_2_5_71_2
  doi: 10.1021/acs.chemrev.7b00091
– ident: e_1_2_5_99_2
  doi: 10.1021/acs.macromol.7b02533
– ident: e_1_2_5_102_2
  doi: 10.1002/anie.201909014
– ident: e_1_2_5_74_1
– ident: e_1_2_5_33_3
  doi: 10.1002/ange.201711044
– ident: e_1_2_5_75_2
  doi: 10.1039/b802583p
– ident: e_1_2_5_87_2
  doi: 10.1039/D0NJ00476F
– ident: e_1_2_5_97_2
  doi: 10.1021/jacs.6b00007
– ident: e_1_2_5_69_2
  doi: 10.1016/j.ccr.2018.09.009
– ident: e_1_2_5_22_2
SSID ssj0028806
Score 2.6445935
Snippet In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer‐reversible...
In this study, porphyrinic zirconium (Zr) MOFs were investigated as heterogeneous photocatalysts for photoinduced electron transfer-reversible...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5489
SubjectTerms 3D printing
Addition polymerization
Catalytic activity
Chain transfer
Electron transfer
green chemistry
Light penetration
Lithography
Metal-organic frameworks
metal–organic frameworks (MOFs)
Molecular weight
Molecular weight distribution
Monomers
Photocatalysis
Photocatalysts
photopolymerization
Polymerization
Polymers
stereolithography
Wavelengths
Zinc
Zirconium
Title Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202014208
https://www.ncbi.nlm.nih.gov/pubmed/33179352
https://www.proquest.com/docview/2491851545
https://www.proquest.com/docview/2460082511
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1KLu2l303cJkWBQtuDk7Vly-vjEtZsA5su6QZCLkayJBKSrkvsPaSn3Hsp5B_ml3TGst1uSwm0R2MJy9JIek8z8wTwRvMkUFYEfkLH9xEPEz-1sfYFGo-QQ6JBlO88PRCTo2j_OD7-JYvf6UP0B240M5r1mia4VNXuT9FQysBGfocbGHmIcRGmgC1CRYe9flSIxunSizj36Rb6TrVxEO6uVl_dlf6AmqvItdl6skcgu0a7iJPznWWtdoqvv-k5_s9fPYaHLS5lI2dIT-CeWTyF-3vddXDP4NuspCEhh0_BTs4ukUefLT-zqUH0fnt943I6C5Z1wV4Vezf9mFXvmazYhGJuSjRVUy4rNjst67I5Nrqq6oohamaz8fz2-vvhKJuzWXlxRV4klx7K5EKzT1jbUJzeaauv_RyOsvF8b-K3Nzn4RYR8xk81F8iErTWx5CJSsSVZ-IQAggokRwwn4gTJHy0pqUh4HImBToyxaqARcUj-AtYW5cJsAEuFFmaodRqpIkI6Jq21ATdBaIcmUfHAA78bybxoZc7pto2L3Ak0hzl1cd53sQdv-_JfnMDHX0tudoaRtxO9ypG9IuIhHOrBdv8ah4b8LrLpViwjGiYeBB6sO4PqP8U5rZBx6EHYmMUdbchHBx_G_dPLf6n0Ch6EFJfTxNFtwlp9uTRbCKxq9bqZPD8ARj0axA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOZQL35RAASMhAYe0mzhxNsdVtdEWusuqbCXEJYpjW60oG9RkD-XUOxck_mF_CTN2ErQghATHKLbi2GP7PXvmDcBzxZNAGhH4CR3fRzxM_NTEyhdoPKIYEg2ieOfpTEyOotfv486bkGJhnD5Ef-BGM8Ou1zTB6UB696dqKIVgI8HDHYyuiK_CNUrrbVnVYa8gFaJ5ugAjzn3KQ9_pNg7C3fX66_vSb2BzHbvazSe7CbJrtvM5-bizauRO-eUXRcf_-q9bcKOFpmzkbOk2XNHLO7C512WEuwtf5xWNCt35lOzDyRlS6ZPVJzbVCOAvL767sM6SZZ2_V81eTt9m9StW1GxCbjcVWquuVjWbH1dNZU-OzuumZgic2Xy8uLz4djjKFmxenZ7TRZKLEGXFUrF3WFuTq95xK7F9D46y8WJv4rfJHPwyQkrjp4oLJMPG6LjgIpKxIWX4hDCCDAqOME7ECfI_WlVSkfA4EgOVaG3kQCHoKPh92FhWS_0AWCqU0EOl0kiWETKywhgTcB2EZqgTGQ888LuhzMtW6ZwSbpzmTqM5zKmL876LPXjRl__sND7-WHK7s4y8net1jgQWQQ9BUQ-e9a9xaOjqpbDdimWEJeNB4MGWs6j-U5zTIhmHHoTWLv7Shnw02x_3Tw__pdJT2Jwspgf5wf7szSO4HpKbjnWr24aN5mylHyPOauQTO5N-AOQ9Ht8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkYAL3x-BAkZCAg5pN3HibI6rdqMtsEtUtlLVS-TEtlpRNlWTPZRT71yQ-If9JczESWBBCAmOUWzF8Yzt9-yZZ4AXikdeboTnRrR9H3A_cmMTKleg8wg5JBpE-c7TmZjsBW_2w_2fsvitPkS_4UYjo5mvaYCfKLP5QzSUMrCR3-ECRifEl-FKIAZD8uvt3V5AykfvtPlFnLt0DX0n2zjwN1frry5Lv2HNVejarD3JTZBdq23IyceNZZ1vFJ9_EXT8n9-6BTdaYMpG1pNuwyW9uAPXtrr74O7Cl7Qkm9CJT8EOjk6RSB8tP7GpRvh-cf7NJnUWLOmivSr2avo-qV4zWbEJBd2U6Ku6XFYsPSzrstk3OqvqiiFsZul4fnH-dXeUzFlaHp_RMZLND2VyodgHrK0pUO-wFdi-B3vJeL41cdurHNwiQELjxooLpMLG6FByEeShIV34iBBC7kmOIE6EEbI_mlNiEfEQjakirU0-UAg5JL8Pa4tyoR8Ci4USeqhUHORFgHxMGmM8rj3fDHWUhwMH3M6SWdHqnNN1G8eZVWj2M-rirO9iB1725U-swscfS653jpG1I73KkL4i5CEg6sDz_jWahg5eZNOtWEY0VNzzHHhgHar_FOc0RYa-A37jFn9pQzaa7Yz7p0f_UukZXE23k-zdzuztY7juU4xOE1O3Dmv16VI_QZBV50-bcfQdidQdlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrinic+Zirconium+Metal%E2%80%93Organic+Frameworks+%28MOFs%29+as+Heterogeneous+Photocatalysts+for+PET%E2%80%90RAFT+Polymerization+and+Stereolithography&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Liwen&rft.au=Shi%2C+Xiaobing&rft.au=Zhang%2C+Zhiheng&rft.au=Kuchel%2C+Rhiannon+P&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=10&rft.spage=5489&rft.epage=5496&rft_id=info:doi/10.1002%2Fanie.202014208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon