Single‐cell RNA‐seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum)
Summary Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cel...
Saved in:
Published in | Plant biotechnology journal Vol. 20; no. 12; pp. 2372 - 2388 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.12.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.
With scRNA‐seq, cotton fibre cell was identified differentiated at −1 DPA. It further refines the spatiotemporal patterns of two command genes, MYB25‐like and HOX3, who determine fibre differentiation and tip‐biased diffuse growth respectively. |
---|---|
AbstractList | Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. With scRNA‐seq, cotton fibre cell was identified differentiated at −1 DPA. It further refines the spatiotemporal patterns of two command genes, MYB25‐like and HOX3, who determine fibre differentiation and tip‐biased diffuse growth respectively. Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. Summary Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. With scRNA‐seq, cotton fibre cell was identified differentiated at −1 DPA. It further refines the spatiotemporal patterns of two command genes, MYB25‐like and HOX3, who determine fibre differentiation and tip‐biased diffuse growth respectively. |
Author | Ye, Zhengxiu Qin, Yuan Li, Weiwen Sun, Mengling Liu, Yuqi You, Jiaqi Yang, Xiyan Xu, Zhongping Lindsey, Keith Xu, Jiawen Shao, Lei Liu, Zhenping Wang, Maojun Tu, Lili Xu, Mingqi Zhao, Guannan Zhang, Xianlong |
AuthorAffiliation | 2 Department of Biosciences Durham University Durham UK 1 National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory Huazhong Agricultural University Wuhan Hubei Province China |
AuthorAffiliation_xml | – name: 1 National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory Huazhong Agricultural University Wuhan Hubei Province China – name: 2 Department of Biosciences Durham University Durham UK |
Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0003-4887-8878 surname: Qin fullname: Qin, Yuan organization: Huazhong Agricultural University – sequence: 2 givenname: Mengling surname: Sun fullname: Sun, Mengling organization: Huazhong Agricultural University – sequence: 3 givenname: Weiwen surname: Li fullname: Li, Weiwen organization: Huazhong Agricultural University – sequence: 4 givenname: Mingqi surname: Xu fullname: Xu, Mingqi organization: Huazhong Agricultural University – sequence: 5 givenname: Lei surname: Shao fullname: Shao, Lei organization: Huazhong Agricultural University – sequence: 6 givenname: Yuqi surname: Liu fullname: Liu, Yuqi organization: Huazhong Agricultural University – sequence: 7 givenname: Guannan surname: Zhao fullname: Zhao, Guannan organization: Huazhong Agricultural University – sequence: 8 givenname: Zhenping surname: Liu fullname: Liu, Zhenping organization: Huazhong Agricultural University – sequence: 9 givenname: Zhongping orcidid: 0000-0003-2559-9091 surname: Xu fullname: Xu, Zhongping organization: Huazhong Agricultural University – sequence: 10 givenname: Jiaqi surname: You fullname: You, Jiaqi organization: Huazhong Agricultural University – sequence: 11 givenname: Zhengxiu surname: Ye fullname: Ye, Zhengxiu organization: Huazhong Agricultural University – sequence: 12 givenname: Jiawen surname: Xu fullname: Xu, Jiawen organization: Huazhong Agricultural University – sequence: 13 givenname: Xiyan orcidid: 0000-0003-1305-8677 surname: Yang fullname: Yang, Xiyan organization: Huazhong Agricultural University – sequence: 14 givenname: Maojun orcidid: 0000-0002-4791-3742 surname: Wang fullname: Wang, Maojun organization: Huazhong Agricultural University – sequence: 15 givenname: Keith surname: Lindsey fullname: Lindsey, Keith organization: Durham University – sequence: 16 givenname: Xianlong orcidid: 0000-0002-7703-524X surname: Zhang fullname: Zhang, Xianlong organization: Huazhong Agricultural University – sequence: 17 givenname: Lili orcidid: 0000-0003-4294-1928 surname: Tu fullname: Tu, Lili email: lilitu@mail.hzau.edu.cn organization: Huazhong Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36053965$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktuFDEQhi0URB6w4ALIEptkMUm77bbdG6QQQYgUAeKxttxuO6mo257Y7kGzyxE4IyfBMxNGEAnwxiXVV38999GOD94i9JxUx6S8k3kHx4S2RD5Ce4RxMRO8qXe2NmO7aD-lm6qqCW_4E7RLedXQljd76O4z-KvB_rj7buww4E_vT4uZ7C2OdmH1kLDT2eLeZhtH8DpD8NgEn2MYcHBYewy-hwX0kx6wgy5avBYCDxk2OKwici7W4XlIaTmHacTXENOUp_HoKXrsSh777P4_QF_fvvly9m52-eH84uz0cmaY4HImTWcsaRgnrBeu4bojNWGip8XhCKmMbnjVS2ZcI3WnOXe1a2jH6s46Jw2lB-jVRnc-daPtjS096EHNI4w6LlXQoP70eLhWV2GhWi4YJaQIHN4LxHA72ZTVCGnVq_Y2TEnVkpBW1pyK_6OiagXlRPCCvnyA3oQp-jKJQlHB2raWbaFe_F78tupfeyzA0QYwsYw4WrdFSKVWN6LKjaj1jRT25AFrIK9XVfqG4V8R32Cwy79Lq4-vLzYRPwFd1dFP |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2024_109320 crossref_primary_10_1002_csc2_20987 crossref_primary_10_1016_j_jare_2024_08_004 crossref_primary_10_3390_agronomy13020519 crossref_primary_10_1007_s00425_025_04666_5 crossref_primary_10_1093_jxb_erae078 crossref_primary_10_1007_s00122_024_04717_7 crossref_primary_10_1007_s11032_024_01477_6 crossref_primary_10_1186_s13059_023_02908_x crossref_primary_10_3390_cells11193045 crossref_primary_10_1007_s11427_022_2278_0 crossref_primary_10_3390_cells13181561 crossref_primary_10_1111_jipb_13776 crossref_primary_10_3390_genes15080977 crossref_primary_10_1016_j_copbio_2024_103174 crossref_primary_10_1016_j_indcrop_2023_116323 crossref_primary_10_1016_j_xplc_2024_100832 crossref_primary_10_3389_fbioe_2024_1376353 crossref_primary_10_1016_j_indcrop_2024_118663 crossref_primary_10_1016_j_xplc_2023_100554 crossref_primary_10_1111_tpj_17050 crossref_primary_10_1093_genetics_iyad219 crossref_primary_10_3390_agronomy14050891 crossref_primary_10_34133_bdr_0029 crossref_primary_10_1111_tpj_70036 crossref_primary_10_1007_s12298_025_01558_6 crossref_primary_10_3389_fgene_2024_1306469 crossref_primary_10_1016_j_cpb_2023_100289 crossref_primary_10_3390_plants13243476 crossref_primary_10_1016_j_xplc_2023_100740 crossref_primary_10_3390_plants13081127 crossref_primary_10_1093_gpbjnl_qzae026 crossref_primary_10_1016_j_molp_2024_08_010 crossref_primary_10_1111_pbi_14294 crossref_primary_10_3390_agronomy14112530 crossref_primary_10_3390_plants12213771 crossref_primary_10_3390_plants13162308 crossref_primary_10_1016_j_xplc_2024_100816 crossref_primary_10_1186_s42397_024_00181_2 crossref_primary_10_1186_s13059_023_03032_6 crossref_primary_10_1038_s41467_025_55869_z crossref_primary_10_1016_j_tranon_2023_101717 crossref_primary_10_1016_j_copbio_2022_102858 crossref_primary_10_3390_plants13121679 crossref_primary_10_1186_s12870_024_05262_7 crossref_primary_10_1111_ppl_14303 crossref_primary_10_48130_FR_2023_0027 crossref_primary_10_1093_plphys_kiae107 crossref_primary_10_1134_S1021443723602835 crossref_primary_10_1016_j_cropd_2024_100057 crossref_primary_10_1093_nar_gkad706 crossref_primary_10_1093_plcell_koae068 crossref_primary_10_3389_fgeed_2024_1401088 crossref_primary_10_1007_s11033_024_09412_w crossref_primary_10_1186_s43897_023_00067_y crossref_primary_10_1111_tpj_16315 crossref_primary_10_1016_j_cj_2024_04_009 crossref_primary_10_1038_s41467_024_55755_0 crossref_primary_10_1111_pce_14586 crossref_primary_10_1016_j_ymeth_2024_09_010 crossref_primary_10_1073_pnas_2310881120 crossref_primary_10_1016_j_cropd_2023_100041 crossref_primary_10_3390_ijms25179639 crossref_primary_10_1002_advs_202304017 crossref_primary_10_1111_tpj_70064 |
Cites_doi | 10.1016/j.molp.2020.06.010 10.1016/j.pbi.2020.10.007 10.1105/tpc.114.127647 10.1093/plcell/koaa060 10.1016/j.pbi.2010.09.010 10.1111/pbi.13763 10.1093/jxb/erz162 10.1104/pp.111.186742 10.1038/ncomms14049 10.1038/nbt.3122 10.1016/j.devcel.2022.04.011 10.1016/j.devcel.2019.02.022 10.1016/j.jprot.2015.05.031 10.1016/j.molp.2020.05.006 10.1126/science.abj2327 10.1111/nph.12211 10.1038/ncomms6519 10.1111/pbi.13891 10.1007/s00425-007-0580-5 10.1016/S0168-9452(02)00320-5 10.1007/s11427-018-9402-9 10.1111/nph.14844 10.1105/tpc.113.121731 10.1038/s41588-018-0282-x 10.1016/j.tplants.2021.08.016 10.1111/pbi.13656 10.1126/science.abf4368 10.1016/j.devcel.2021.02.021 10.1093/bioinformatics/btp352 10.1002/j.1537-2197.1975.tb14105.x 10.1038/nmeth.3317 10.1105/tpc.105.040303 10.1186/s13059-021-02537-2 10.1073/pnas.2018788117 10.1093/jxb/erx459 10.1111/pbi.12988 10.1186/1741-7007-8-139 10.1093/plcell/koab101 10.1111/pbi.12844 10.1105/tpc.010108 10.1016/j.devcel.2021.03.014 10.1146/annurev-arplant-080720-113241 10.1093/aob/mcm232 10.1111/tpj.14858 10.1111/j.1365-313X.2012.05003.x 10.1534/genetics.108.093070 10.1105/tpc.104.024844 10.1111/tpj.13273 10.1111/nph.16898 10.1016/j.xplc.2022.100306 10.1038/s41467-021-22352-4 10.1111/pbi.12755 10.1038/nbt.3207 10.1093/pcp/pci228 10.1242/dev.009597 10.1007/s00299-007-0337-4 10.1111/nph.13860 10.1016/j.molp.2020.10.012 10.1105/tpc.18.00785 10.1093/plcell/koac011 10.1038/s41477-019-0418-8 10.1016/j.devcel.2020.12.015 10.1093/nar/gkg358 10.1111/jipb.13159 10.1093/plphys/kiab489 10.1371/journal.pgen.1004266 10.1242/dev.125.7.1161 10.1111/tpj.15719 10.1105/tpc.111.083261 10.1016/j.molp.2019.04.004 10.1016/j.cj.2022.02.004 10.1186/1471-2229-11-176 10.1038/nbt.1843 10.3389/fpls.2012.00104 10.1186/s12864-019-5986-5 10.1242/dev.016873 10.3389/fpls.2014.00179 10.1111/j.1365-313X.2010.04464.x 10.1371/journal.pgen.0040025 10.1016/j.molp.2020.12.014 10.1038/sj.cr.7310150 10.1111/j.1365-313X.2009.03847.x 10.1016/0092-8674(94)90118-X 10.1146/annurev-genet-071719-020453 10.1104/pp.18.01482 10.1111/tpj.12512 10.1111/nph.18008 10.1126/science.aay4970 10.1111/tpj.15772 10.1104/pp.19.00197 10.1242/dev.00292 10.1111/tpj.12245 10.1016/j.devcel.2022.01.008 10.1016/j.jgg.2021.06.001 10.1105/tpc.109.072579 10.1146/annurev-arplant-081720-010120 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13918 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | A single cell view on cotton fibre initiation |
EISSN | 1467-7652 |
EndPage | 2388 |
ExternalDocumentID | PMC9674311 36053965 10_1111_pbi_13918 PBI13918 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31830062; 31901576 – fundername: Interdisciplinary Sciences Research Institute of Huazhong Agricultural University funderid: 2662021JC005 – fundername: Interdisciplinary Sciences Research Institute of Huazhong Agricultural University grantid: 2662021JC005 – fundername: ; grantid: 31830062; 31901576 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4768-8cbce154614d7f56ab12147d38cbf110ca560d84cf58aba66f2f53b42beff8c33 |
IEDL.DBID | BENPR |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 18:39:48 EDT 2025 Fri Jul 11 18:25:53 EDT 2025 Fri Jul 11 05:49:01 EDT 2025 Wed Aug 13 04:29:37 EDT 2025 Wed Feb 19 02:26:01 EST 2025 Tue Jul 01 02:34:49 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Wed Jan 22 16:23:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | cell fate determination Gossypium hirsutum regulatory network cotton fibre initiation single cell transcriptomic atlas |
Language | English |
License | Attribution 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4768-8cbce154614d7f56ab12147d38cbf110ca560d84cf58aba66f2f53b42beff8c33 |
Notes | These authors contributed equally. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4887-8878 0000-0002-4791-3742 0000-0003-1305-8677 0000-0002-7703-524X 0000-0003-2559-9091 0000-0003-4294-1928 |
OpenAccessLink | https://www.proquest.com/docview/2737499289?pq-origsite=%requestingapplication% |
PMID | 36053965 |
PQID | 2737499289 |
PQPubID | 1096352 |
PageCount | 2388 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674311 proquest_miscellaneous_2811982637 proquest_miscellaneous_2709736176 proquest_journals_2737499289 pubmed_primary_36053965 crossref_primary_10_1111_pbi_13918 crossref_citationtrail_10_1111_pbi_13918 wiley_primary_10_1111_pbi_13918_PBI13918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2022; 375 2021b; 56 2017; 8 2021b; 14 2019; 51 2007; 226 2021; 22 2007; 100 2019; 12 2015; 33 2019; 17 2014; 26 2011; 11 2003; 15 2020; 13 2022; 20 2008; 4 2011; 14 2021; 72 2022; 27 2021a; 229 2012; 71 2010; 22 2007; 134 2014; 5 2021b; 48 2019; 62 2021; 33 2019; 20 2018; 217 2021a; 19 2020; 370 2022b; 110 2022; 34 2011; 65 2011; 23 1998; 125 2013; 198 2021a; 12 2011; 29 2009; 59 1994; 76 2007; 26 2014; 10 2016; 88 2010; 8 2007; 17 2015; 12 2009; 25 2022; 110 2019; 70 2019; 5 2019; 31 2015; 126 2006; 18 2020; 103 2003; 31 2018; 69 2022; 234 2003; 130 2021; 14 2022; 188 2008; 180 2021; 59 2012; 3 2019; 181 2021; 56 2021; 55 2022 2017; 58 2004; 16 2002; 163 2019; 48 2022a; 3 2013; 75 2006; 47 2022; 57 2019; 179 2020; 117 2016; 210 2021; 374 2008; 135 2012; 158 2021; 63 1975; 62 2018; 16 2014; 78 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 Zhang M. (e_1_2_10_89_1) 2017; 58 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 Sun G. (e_1_2_10_60_1) 2022; 34 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_47_1 |
References_xml | – volume: 56 start-page: 1056 year: 2021b end-page: 1074 article-title: A single‐cell analysis of the Arabidopsis vegetative shoot apex publication-title: Dev. Cell – volume: 100 start-page: 1391 year: 2007 end-page: 1401 article-title: Gene expression changes and early events in cotton fibre development publication-title: Ann. Bot. – volume: 58 start-page: 385 year: 2017 end-page: 397 article-title: Auxin regulates cotton fiber initiation via GhPIN‐mediated auxin transport publication-title: Plant Cell Physiol. – volume: 71 start-page: 464 year: 2012 end-page: 478 article-title: Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD‐1 publication-title: Plant J. – volume: 48 start-page: 840 year: 2019 end-page: 852 article-title: Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high‐throughput single‐Cell RNA sequencing publication-title: Dev. Cell – volume: 31 start-page: 2534 year: 2003 end-page: 2543 article-title: Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array publication-title: Nucleic Acids Res. – volume: 3 start-page: 104 year: 2012 article-title: Cotton fiber: a powerful single‐cell model for cell wall and cellulose research publication-title: Front. Plant Sci. – year: 2022 article-title: Single‐cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type‐specific nitrate‐response genes publication-title: Crop J. – volume: 26 start-page: 2905 year: 2014 end-page: 2919 article-title: Arabidopsis DELLA and two HD‐ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis‐element publication-title: Plant Cell – volume: 17 start-page: 435 year: 2019 end-page: 450 article-title: Multi‐omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process publication-title: Plant Biotechnol. J. – volume: 188 start-page: 898 year: 2022 end-page: 918 article-title: Single‐cell transcriptomics sheds light on the identity and metabolism of developing leaf cells publication-title: Plant Physiol. – volume: 26 start-page: 1118 year: 2014 end-page: 1133 article-title: Arabidopsis DELLA and JAZ proteins bind the WD‐repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy publication-title: Plant Cell – volume: 134 start-page: 3873 year: 2007 end-page: 3882 article-title: TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis publication-title: Development – volume: 217 start-page: 883 year: 2018 end-page: 895 article-title: Genetics and evolution of MIXTA genes regulating cotton lint fiber development publication-title: New Phytol. – volume: 33 start-page: 511 year: 2021 end-page: 530 article-title: Distinct identities of leaf phloem cells revealed by single cell transcriptomics publication-title: Plant Cell – volume: 62 start-page: 723 year: 1975 end-page: 730 article-title: Fiber initiation on the cotton ovule ( ) publication-title: Am. J. Bot. – volume: 33 start-page: 2197 year: 2021 end-page: 2220 article-title: A single‐cell view of the transcriptome during lateral root initiation in publication-title: Plant Cell – volume: 158 start-page: 890 year: 2012 end-page: 904 article-title: GbPDF1 is involved in cotton fiber initiation via the core cis‐element HDZIP2ATATHB2 publication-title: Plant Physiol. – volume: 229 start-page: 1844 year: 2021a end-page: 1851 article-title: Looking into ‘hair tonics’ for cotton fiber initiation publication-title: New Phytol. – volume: 374 start-page: 1247 year: 2021 end-page: 1252 article-title: Ground tissue circuitry regulates organ complexity in maize and Setaria publication-title: Science – volume: 48 start-page: 881 year: 2021b end-page: 898 article-title: Single‐cell transcriptome atlas of the leaf and root of rice seedlings publication-title: J. Genet. Genomics – volume: 56 start-page: 557 year: 2021 end-page: 568 article-title: Single‐cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery publication-title: Dev. Cell – volume: 20 start-page: 417 year: 2022 end-page: 419 article-title: Single‐cell RNA sequencing profiles of stem‐differentiating xylem in poplar publication-title: Plant Biotechnol. J. – volume: 72 start-page: 847 year: 2021 end-page: 866 article-title: Advances and opportunities in single‐cell transcriptomics for plant research publication-title: Annu. Rev. Plant Biol. – volume: 15 start-page: 952 year: 2003 end-page: 964 article-title: Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development publication-title: Plant Cell – volume: 47 start-page: 107 year: 2006 end-page: 127 article-title: Expression profiling identifies genes expressed early during lint fibre initiation in cotton publication-title: Plant Cell Physiol. – volume: 56 start-page: 1043 year: 2021 end-page: 1055 article-title: Single‐cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf publication-title: Dev. Cell – volume: 226 start-page: 1475 year: 2007 end-page: 1490 article-title: Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules publication-title: Planta – volume: 16 start-page: 1002 year: 2018 end-page: 1012 article-title: Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton ( L.) publication-title: Plant Biotechnol. J. – volume: 13 start-page: 1178 year: 2020 end-page: 1193 article-title: Global dynamic molecular profiling of stomatal lineage cell development by single‐cell RNA sequencing publication-title: Mol. Plant – volume: 234 start-page: 494 year: 2022 end-page: 512 article-title: A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems publication-title: New Phytol. – year: 2022 article-title: Single‐cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves publication-title: Plant Biotechnol. J. – volume: 375 start-page: eabf4368 year: 2022 article-title: A conserved superlocus regulates above‐ and belowground root initiation publication-title: Science – volume: 180 start-page: 811 year: 2008 end-page: 820 article-title: The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development publication-title: Genetics – volume: 13 start-page: 1063 year: 2020 end-page: 1077 article-title: The miR319‐Targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber publication-title: Mol. Plant – volume: 27 start-page: 92 year: 2022 end-page: 103 article-title: Crafting a blueprint for single‐cell RNA sequencing publication-title: Trends Plant Sci. – volume: 14 start-page: 384 year: 2021b end-page: 394 article-title: Transcriptional landscape of rice roots at the single‐cell resolution publication-title: Mol. Plant – volume: 179 start-page: 1444 year: 2019 end-page: 1456 article-title: Single‐cell RNA sequencing resolves molecular relationships among individual plant cells publication-title: Plant Physiol. – volume: 163 start-page: 1113 year: 2002 end-page: 1120 article-title: Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT‐PCR publication-title: Plant Sci. – volume: 12 start-page: 648 year: 2019 end-page: 660 article-title: A single‐cell RNA sequencing profiles the developmental landscape of Arabidopsis root publication-title: Mol. Plant – volume: 103 start-page: 1735 year: 2020 end-page: 1743 article-title: Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3 publication-title: Plant J. – volume: 130 start-page: 635 year: 2003 end-page: 643 article-title: Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis publication-title: Development – volume: 33 start-page: 290 year: 2015 end-page: 295 article-title: StringTie enables improved reconstruction of a transcriptome from RNA‐seq reads publication-title: Nat. Biotechnol. – volume: 78 start-page: 686 year: 2014 end-page: 696 article-title: Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling publication-title: Plant J. – volume: 57 start-page: 1299 year: 2022 end-page: 1310 article-title: The single‐cell stereo‐seq reveals region‐specific cell subtypes and transcriptome profiling in Arabidopsis leaves publication-title: Dev. Cell – volume: 125 start-page: 1161 year: 1998 end-page: 1171 article-title: Control of GL2 expression in Arabidopsis leaves and trichomes publication-title: Development – volume: 33 start-page: 531 year: 2015 end-page: 537 article-title: Sequencing of allotetraploid cotton ( L. acc. TM‐1) provides a resource for fiber improvement publication-title: Nat. Biotechnol. – volume: 181 start-page: 1587 year: 2019 end-page: 1599 article-title: The TCP4 transcription factor directly activates TRICHOMELESS1 and 2 and suppresses trichome initiation publication-title: Plant Physiol. – volume: 17 start-page: 422 year: 2007 end-page: 434 article-title: Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis publication-title: Cell Res. – volume: 69 start-page: 997 year: 2018 end-page: 1009 article-title: Genetic dissection of the fuzzless seed trait in Gossypium barbadense publication-title: J. Exp. Bot. – volume: 12 start-page: 2053 year: 2021a article-title: Single‐cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root publication-title: Nat. Commun. – volume: 23 start-page: 1795 year: 2011 end-page: 1814 article-title: The Jasmonate‐ZIM‐Domain proteins interact with the WD‐Repeat/bHLH/MYB complexes to regulate Jasmonate‐mediated anthocyanin accumulation and trichome initiation in publication-title: Plant Cell – volume: 8 start-page: 14049 year: 2017 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. – volume: 19 start-page: 2261 year: 2021a end-page: 2276 article-title: Single‐cell RNA‐seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut ( L.) publication-title: Plant Biotechnol. J. – volume: 76 start-page: 555 year: 1994 end-page: 566 article-title: Genetic dissection of trichome cell development in Arabidopsis publication-title: Cell – volume: 29 start-page: 453 year: 2011 end-page: 458 article-title: Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality publication-title: Nat. Biotechnol. – volume: 75 start-page: 823 year: 2013 end-page: 835 article-title: Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase publication-title: Plant J. – volume: 34 start-page: 1396 year: 2022 end-page: 1414 article-title: A DE1 BINDING FACTOR 1‐GLABRA2 module regulates rhamnogalacturonan I biosynthesis in Arabidopsis seed coat mucilage publication-title: Plant Cell – volume: 135 start-page: 1991 year: 2008 end-page: 1999 article-title: The TTG1‐bHLH‐MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci publication-title: Development – volume: 5 start-page: 5519 year: 2014 article-title: Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3 publication-title: Nat. Commun. – volume: 26 start-page: 1309 year: 2007 end-page: 1320 article-title: Genes expression analyses of sea‐Island cotton ( L.) during fiber development publication-title: Plant Cell Rep. – volume: 5 start-page: 179 year: 2014 article-title: Members of the MYBMIXTA‐like transcription factors may orchestrate the initiation of fiber development in cotton seeds publication-title: Front. Plant Sci. – volume: 10 year: 2014 article-title: Interaction between two timing MicroRNAs controls trichome distribution in arabidopsis publication-title: PLoS Genet. – volume: 65 start-page: 785 year: 2011 end-page: 797 article-title: GhMYB25‐like: a key factor in early cotton fibre development publication-title: Plant J. – volume: 34 start-page: 1890 year: 2022 end-page: 1911 article-title: The maize single‐nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata publication-title: Plant Cell – volume: 18 start-page: 651 year: 2006 end-page: 664 article-title: Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation publication-title: Plant Cell – volume: 25 start-page: 2078 year: 2009 end-page: 2079 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 198 start-page: 699 year: 2013 end-page: 708 article-title: Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in publication-title: New Phytol. – volume: 70 start-page: 3139 year: 2019 end-page: 3151 article-title: Cytokinin inhibits cotton fiber initiation by disrupting PIN3a‐mediated asymmetric accumulation of auxin in the ovule epidermis publication-title: J. Exp. Bot. – volume: 110 start-page: 7 year: 2022b end-page: 22 article-title: Identification of novel regulators required for early development of vein pattern in the cotyledons by single‐cell RNA‐sequencing publication-title: Plant J. – volume: 59 start-page: 52 year: 2009 end-page: 62 article-title: The MYB transcription factor GhMYB25 regulates early fibre and trichome development publication-title: Plant J. – volume: 370 start-page: 810 year: 2020 article-title: Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions publication-title: Science – volume: 14 start-page: 106 year: 2011 end-page: 111 article-title: How cotton fibers elongate: a tale of linear cell‐growth mode publication-title: Curr. Opin. Plant Biol. – volume: 117 start-page: 33689 year: 2020 end-page: 33699 article-title: Plant stem‐cell organization and differentiation at single‐cell resolution publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 start-page: 543 year: 2022 end-page: 560 article-title: A single‐cell Arabidopsis root atlas reveals developmental trajectories in wild‐type and cell identity mutants publication-title: Dev. Cell – volume: 16 start-page: 137 year: 2018 end-page: 150 article-title: High efficient multisites genome editing in allotetraploid cotton ( ) using CRISPR/Cas9 system publication-title: Plant Biotechnol. J. – volume: 72 start-page: 437 year: 2021 end-page: 462 article-title: Recent advances and future perspectives in cotton research publication-title: Annu. Rev. Plant Biol. – volume: 12 start-page: 357 year: 2015 end-page: 360 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods – volume: 62 start-page: 1 year: 2019 end-page: 7 article-title: Hi‐TOM: a platform for high‐throughput tracking of mutations induced by CRISPR/Cas systems publication-title: Sci. China Life Sci. – volume: 22 start-page: 2322 year: 2010 end-page: 2335 article-title: Temporal control of trichome distribution by microRNA156‐targeted SPL genes in publication-title: Plant Cell – volume: 4 year: 2008 article-title: The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism publication-title: PLoS Genet. – volume: 3 year: 2022a article-title: Transcriptional landscapes of de novo root regeneration from detached Arabidopsis leaves revealed by time‐lapse and single‐cell RNA sequencing analyses publication-title: Plant Commun. – volume: 16 start-page: 2323 year: 2004 end-page: 2334 article-title: Control of plant trichome development by a cotton fiber MYB gene publication-title: Plant Cell – volume: 88 start-page: 921 year: 2016 end-page: 935 article-title: GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3‐MYB transcription factor GhMYB25‐like publication-title: Plant J. – volume: 11 start-page: 176 year: 2011 article-title: Functional characterization of TRICHOMELESS2, a new single‐repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis publication-title: BMC Plant Biol. – volume: 51 start-page: 224 year: 2019 end-page: 229 article-title: Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense publication-title: Nat. Genet. – volume: 126 start-page: 68 year: 2015 end-page: 81 article-title: iTRAQ‐facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild‐type cotton ( L.) publication-title: J. Proteomics – volume: 55 start-page: 479 year: 2021 end-page: 496 article-title: Plant cell identity in the era of single‐cell transcriptomics publication-title: Annu. Rev. Genet. – volume: 59 year: 2021 article-title: MIXTAs and phytohormones orchestrate cotton fiber development publication-title: Curr. Opin. Plant Biol. – volume: 63 start-page: 1906 year: 2021 end-page: 1921 article-title: Single‐cell RNA sequencing reveals a high‐resolution cell atlas of xylem in Populus publication-title: J. Integr. Plant Biol. – volume: 5 start-page: 498 year: 2019 end-page: 504 article-title: Live‐cell imaging of the cytoskeleton in elongating cotton fibres publication-title: Nat. Plants – volume: 110 start-page: 1551 year: 2022 end-page: 1563 article-title: Advances and applications of single‐cell omics technologies in plant research publication-title: Plant J. – volume: 8 start-page: 139 year: 2010 article-title: Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication publication-title: BMC Biol. – volume: 20 start-page: 633 year: 2019 article-title: Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long‐ and short‐fiber cotton ( L.) lines publication-title: BMC Genomics – volume: 31 start-page: 993 year: 2019 end-page: 1011 article-title: Dynamics of gene expression in single root cells of publication-title: Plant Cell – volume: 22 start-page: 319 year: 2021 article-title: Transcriptional landscape of highly lignified poplar stems at single‐cell resolution publication-title: Genome Biol. – volume: 14 start-page: 115 year: 2021 end-page: 126 article-title: Single‐cell transcriptome analysis in plants: advances and challenges publication-title: Mol. Plant – volume: 210 start-page: 1298 year: 2016 end-page: 1310 article-title: Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development publication-title: New Phytol. – ident: e_1_2_10_35_1 doi: 10.1016/j.molp.2020.06.010 – ident: e_1_2_10_63_1 doi: 10.1016/j.pbi.2020.10.007 – ident: e_1_2_10_49_1 doi: 10.1105/tpc.114.127647 – ident: e_1_2_10_22_1 doi: 10.1093/plcell/koaa060 – ident: e_1_2_10_47_1 doi: 10.1016/j.pbi.2010.09.010 – ident: e_1_2_10_82_1 doi: 10.1111/pbi.13763 – ident: e_1_2_10_88_1 doi: 10.1093/jxb/erz162 – ident: e_1_2_10_6_1 doi: 10.1104/pp.111.186742 – ident: e_1_2_10_96_1 doi: 10.1038/ncomms14049 – ident: e_1_2_10_42_1 doi: 10.1038/nbt.3122 – ident: e_1_2_10_81_1 doi: 10.1016/j.devcel.2022.04.011 – ident: e_1_2_10_7_1 doi: 10.1016/j.devcel.2019.02.022 – ident: e_1_2_10_30_1 doi: 10.1016/j.jprot.2015.05.031 – ident: e_1_2_10_4_1 doi: 10.1016/j.molp.2020.05.006 – ident: e_1_2_10_41_1 doi: 10.1126/science.abj2327 – ident: e_1_2_10_97_1 doi: 10.1111/nph.12211 – ident: e_1_2_10_56_1 doi: 10.1038/ncomms6519 – ident: e_1_2_10_73_1 doi: 10.1111/pbi.13891 – ident: e_1_2_10_79_1 doi: 10.1007/s00425-007-0580-5 – ident: e_1_2_10_24_1 doi: 10.1016/S0168-9452(02)00320-5 – ident: e_1_2_10_32_1 doi: 10.1007/s11427-018-9402-9 – ident: e_1_2_10_78_1 doi: 10.1111/nph.14844 – ident: e_1_2_10_44_1 doi: 10.1105/tpc.113.121731 – ident: e_1_2_10_71_1 doi: 10.1038/s41588-018-0282-x – ident: e_1_2_10_8_1 doi: 10.1016/j.tplants.2021.08.016 – ident: e_1_2_10_29_1 doi: 10.1111/pbi.13656 – ident: e_1_2_10_40_1 doi: 10.1126/science.abf4368 – ident: e_1_2_10_93_1 doi: 10.1016/j.devcel.2021.02.021 – ident: e_1_2_10_26_1 doi: 10.1093/bioinformatics/btp352 – ident: e_1_2_10_59_1 doi: 10.1002/j.1537-2197.1975.tb14105.x – ident: e_1_2_10_21_1 doi: 10.1038/nmeth.3317 – ident: e_1_2_10_58_1 doi: 10.1105/tpc.105.040303 – ident: e_1_2_10_5_1 doi: 10.1186/s13059-021-02537-2 – ident: e_1_2_10_53_1 doi: 10.1073/pnas.2018788117 – ident: e_1_2_10_98_1 doi: 10.1093/jxb/erx459 – ident: e_1_2_10_27_1 doi: 10.1111/pbi.12988 – ident: e_1_2_10_48_1 doi: 10.1186/1741-7007-8-139 – ident: e_1_2_10_9_1 doi: 10.1093/plcell/koab101 – ident: e_1_2_10_15_1 doi: 10.1111/pbi.12844 – ident: e_1_2_10_50_1 doi: 10.1105/tpc.010108 – ident: e_1_2_10_36_1 doi: 10.1016/j.devcel.2021.03.014 – ident: e_1_2_10_16_1 doi: 10.1146/annurev-arplant-080720-113241 – ident: e_1_2_10_23_1 doi: 10.1093/aob/mcm232 – ident: e_1_2_10_18_1 doi: 10.1111/tpj.14858 – ident: e_1_2_10_67_1 doi: 10.1111/j.1365-313X.2012.05003.x – ident: e_1_2_10_43_1 doi: 10.1534/genetics.108.093070 – ident: e_1_2_10_75_1 doi: 10.1105/tpc.104.024844 – ident: e_1_2_10_14_1 doi: 10.1111/tpj.13273 – ident: e_1_2_10_70_1 doi: 10.1111/nph.16898 – ident: e_1_2_10_33_1 doi: 10.1016/j.xplc.2022.100306 – ident: e_1_2_10_92_1 doi: 10.1038/s41467-021-22352-4 – ident: e_1_2_10_72_1 doi: 10.1111/pbi.12755 – ident: e_1_2_10_91_1 doi: 10.1038/nbt.3207 – ident: e_1_2_10_80_1 doi: 10.1093/pcp/pci228 – ident: e_1_2_10_74_1 doi: 10.1242/dev.009597 – ident: e_1_2_10_64_1 doi: 10.1007/s00299-007-0337-4 – ident: e_1_2_10_68_1 doi: 10.1111/nph.13860 – ident: e_1_2_10_57_1 doi: 10.1016/j.molp.2020.10.012 – ident: e_1_2_10_19_1 doi: 10.1105/tpc.18.00785 – ident: e_1_2_10_84_1 doi: 10.1093/plcell/koac011 – ident: e_1_2_10_87_1 doi: 10.1038/s41477-019-0418-8 – ident: e_1_2_10_83_1 doi: 10.1016/j.devcel.2020.12.015 – ident: e_1_2_10_20_1 doi: 10.1093/nar/gkg358 – ident: e_1_2_10_25_1 doi: 10.1111/jipb.13159 – ident: e_1_2_10_62_1 doi: 10.1093/plphys/kiab489 – ident: e_1_2_10_85_1 doi: 10.1371/journal.pgen.1004266 – ident: e_1_2_10_61_1 doi: 10.1242/dev.125.7.1161 – volume: 58 start-page: 385 year: 2017 ident: e_1_2_10_89_1 article-title: Auxin regulates cotton fiber initiation via GhPIN‐mediated auxin transport publication-title: Plant Cell Physiol. – ident: e_1_2_10_34_1 doi: 10.1111/tpj.15719 – ident: e_1_2_10_45_1 doi: 10.1105/tpc.111.083261 – ident: e_1_2_10_94_1 doi: 10.1016/j.molp.2019.04.004 – ident: e_1_2_10_28_1 doi: 10.1016/j.cj.2022.02.004 – ident: e_1_2_10_10_1 doi: 10.1186/1471-2229-11-176 – ident: e_1_2_10_90_1 doi: 10.1038/nbt.1843 – ident: e_1_2_10_12_1 doi: 10.3389/fpls.2012.00104 – ident: e_1_2_10_46_1 doi: 10.1186/s12864-019-5986-5 – ident: e_1_2_10_95_1 doi: 10.1242/dev.016873 – ident: e_1_2_10_3_1 doi: 10.3389/fpls.2014.00179 – ident: e_1_2_10_66_1 doi: 10.1111/j.1365-313X.2010.04464.x – ident: e_1_2_10_13_1 doi: 10.1371/journal.pgen.0040025 – ident: e_1_2_10_31_1 doi: 10.1016/j.molp.2020.12.014 – ident: e_1_2_10_11_1 doi: 10.1038/sj.cr.7310150 – ident: e_1_2_10_37_1 doi: 10.1111/j.1365-313X.2009.03847.x – ident: e_1_2_10_17_1 doi: 10.1016/0092-8674(94)90118-X – ident: e_1_2_10_52_1 doi: 10.1146/annurev-genet-071719-020453 – ident: e_1_2_10_51_1 doi: 10.1104/pp.18.01482 – ident: e_1_2_10_69_1 doi: 10.1111/tpj.12512 – ident: e_1_2_10_99_1 doi: 10.1111/nph.18008 – ident: e_1_2_10_77_1 doi: 10.1126/science.aay4970 – ident: e_1_2_10_39_1 doi: 10.1111/tpj.15772 – ident: e_1_2_10_65_1 doi: 10.1104/pp.19.00197 – ident: e_1_2_10_2_1 doi: 10.1242/dev.00292 – ident: e_1_2_10_38_1 doi: 10.1111/tpj.12245 – ident: e_1_2_10_55_1 doi: 10.1016/j.devcel.2022.01.008 – volume: 34 start-page: 1890 year: 2022 ident: e_1_2_10_60_1 article-title: The maize single‐nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata publication-title: Plant Cell – ident: e_1_2_10_76_1 doi: 10.1016/j.jgg.2021.06.001 – ident: e_1_2_10_86_1 doi: 10.1105/tpc.109.072579 – ident: e_1_2_10_54_1 doi: 10.1146/annurev-arplant-081720-010120 |
SSID | ssj0021656 |
Score | 2.591453 |
Snippet | Summary
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling... Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2372 |
SubjectTerms | biotechnology Cell differentiation cell fate determination Comparative analysis Cotton Cotton Fiber Cotton fibers cotton fibre initiation Crop yield Developmental stages early development Epidermis flowering Gene expression Gene sequencing genes Genomics Genotype & phenotype Gossypium - genetics Gossypium hirsutum Hybridization Integument lint cotton mutants Ovule - genetics ovules regulatory network Ribonucleic acid RNA RNA-Seq Scanning electron microscopy sequence analysis single cell transcriptomic atlas Transcription factors trichomes Trichomes - genetics |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPcGB9yNQKoM4lENWdZw4iThtK0pBokKFSj0gRbZj04g2u-wmBzj1J_Ab-SWdcR7qUkAIKYdIHkf2eCb-xpr5DPA8EiItdSxCGycYoHDBwzwvXbhtMscj7oRUVJz87kDuH8Vvj5PjNXg51MJ0_BDjgRt5hv9fk4Mrvbzk5HNdTRC-cCr0pVwtAkSHI3VURKwyXWVRGqa46fesQpTFM_Zc3YuuAMyreZKX8avfgPZuwqdh6F3eyZdJ2-iJ-f4Lq-N_zu0W3OiBKZt2lnQb1mx9B65PPy96cg57F84_4D53an-e_6DjfnZ4MMXXpf3KiAYKzZg5BK6sHBJsaMlZnwrPZo6pmlVj-RdzOEDL_IcqSmDqxCvq0SAeZVuvUWXf5lV7xk6qxbJt2rMX9-Bo79XH3f2wv8EhNDHGMWFmtLEI0hADlKlLpNKc7kUqBTY4BB5GIeAqs9i4JFNaSekilwgdR9o6lxkh7sN6PavtQ2Bq28oSxZ1UaeyUzuLM5XHJc4ePtTaArWEtC9PTm9MtG6fFEOagUguv1ACejaLzjtPjd0Ibg0EUvVsvC8R6KYaIGKQG8HRsRockbanazlqSIQYkBIbyLzIZ5zkGdiIN4EFnY-NIBAaYIpdJAOmK9Y0CRAi-2lJXJ54YPKeKEs5RFd64_jy54v3OG__y6N9FH8O1iEo_fCrPBqw3i9Y-QUDW6E3veRewJTef priority: 102 providerName: Wiley-Blackwell |
Title | Single‐cell RNA‐seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13918 https://www.ncbi.nlm.nih.gov/pubmed/36053965 https://www.proquest.com/docview/2737499289 https://www.proquest.com/docview/2709736176 https://www.proquest.com/docview/2811982637 https://pubmed.ncbi.nlm.nih.gov/PMC9674311 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7R7QUOCMpfoF0ZxKEcAnXsJM6p2qJuCxKr1UKl3iInsWmkNrvd3Ry49RF4Rp6EmcRJWxUqRVYkT6LYM_Z848wPwPtAiLjIpPCNDNFA4YL7SVJYfy9XlgfcikhTcPK3SXR8Ir-ehqfuwG3l3Cq7PbHZqIt5Tmfkn1DNxojO0T7YX1z6VDWK_q66EhobsIlbsFID2Dw4nExnvclFuWXa-KLYj1H1u9xC5MuzyMqPCH-o2sdNjXQHZt71lryJYhs1NH4Cjx1-ZKOW4U_hgam24NHo59Ll0DDP4Oo7qqNz8-fqN53Ks9lkhLcrc8koWxNKG7OIL1nR-cEQZ5jzWGdzy3TFyj5Ki1k0pw1rXlSSn1FLXtITa4SNbPcIx_RrUdYX7Kxcrup1ffHhOZyMD398PvZdoQU_l2hu-CrPcoNYClV1Edsw0hmn8kWFwA6L-CDXiIsKJXMbKp3pKLKBDUUmg8xYq3IhXsCgmlfmFTC9Z6ICyW2kY2l1pqSyiSx4YvEyxniw2012mrss5FQM4zztrBHkS9rwxYN3PemiTb3xL6LtjmOpW32r9FpWPHjbd-O6odnSlZnXREOJihC_RffQKM4TtL9E7MHLVgj6LxFoB4okCj2Ib4lHT0B5u2_3VOVZk787ocAPznEqGkH6_-DS6cGX5ub1_aN8Aw8DispovGy2YbBe1mYHsdI6G8JGIKfYqvHR0C2OYXPuQO0s-AuYyxyx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V7QE4IMpvoAWDQCqHlDp2nOSA0PKz3aXtCkEr9RacxKaR2ux2d6Oqtz4CT8JD8STM5I9Whd4q7SGSJ9HaM_Z8k8x8A_DSEyLIEilcI30MULjgbhRl1t1IQ8s9boXSVJy8M1KDPfl5399fgF9tLQylVbZnYnVQZ-OU3pG_QTcbIDrH-ODd5NilrlH0dbVtoVGbxZY5PcGQbfZ2-BH1-8rz-p92PwzcpquAm0rE1m6YJqlB4IB-KQusr3TCqVdPJnDAojNMNYKALJSp9UOdaKWsZ32RSC8x1oYpvQDFI39JCvTkVJne3-wCPGKyqauZAjdAoNEwGVHm0CTJ1xFsUW-R8_7vEqi9nJt5HjNXTq9_B243aJX1avNahgVT3IVbvR_ThrHD3IOzb-j8Ds3vs5_0DYB9HfXwcmaOGXFDoW0zi2iWZW3WDdkBa_Lj2dgyXbC8qwljFoN3w6oH5ZTVVIvndMccQSpb28Q5nU7y8ogd5NNZOS-PXt-HvWtRwANYLMaFeQRMbxiVobhVOpBWJ6EMbSQzHln8GWMcWGsXO04bznNqvXEYt7EP6iWu9OLAi050UhN9_EtopdVY3Oz1WfzXMh143g3jLqXV0oUZlyRDtEiIFtUVMiHnEUZ7InDgYW0E3T8RGHWKSPkOBBfMoxMglvCLI0V-ULGFR1RmwjkuRWVI_59c_OX9sLp4fPUsn8GNwe7Odrw9HG09gZse1YNU-T0rsDiflmYVUdo8eVptDQbfr3sv_gHDX1VU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VWwnBAfFPoIBBIJVDaB3n94DQlnbpUlitCpV6C3Zi00htdru7Eeqtj8Dz8Dg8CTOJE1oVequUQyRPotgz4_nGmR-Al54QUa584Wo_QAeFC-4mSW7c9Sw23ONGhJKSkz-Pwu09_-N-sL8Ev9pcGAqrbPfEeqPOJxmdka-hmY0QnaN_sGZsWMR4c_BueuxSByn609q202hEZEef_ED3bf52uIm8fuV5g62v77dd22HAzXzE2W6cqUwjiEAblUcmCKXi1LcnFzhg0DBmEgFBHvuZCWKpZBgazwRC-Z7SxsQZHYbi9r8ckVfUg-WNrdF4t3P3qK5Nk9sUuRHCDlvXiOKIpqp4g9CLOo2ctYYXIO7FSM2zCLo2gYNbcNNiV9ZvhO02LOnyDtzof5_Z-h36Lpx-QVN4qH-f_qQ_Amx31MfbuT5mVCkKJZ0ZxLYsb2NwSCqYjZZnE8NkyYouQ4wZdOU1q19UUIxTQ17QEwuErGz1A87pZFpUR-ygmM2rRXX0-h7sXQkL7kOvnJT6ITC5rsMcyU0oI99IFfuxSfycJwYvrbUDq-1ip5mtgE6NOA7T1hNCvqQ1Xxx40ZFOm7If_yJaaTmWWs2fp3_l1IHn3TDqLK2WLPWkIhoqkoTYMbyEJuY8Qd9PRA48aISg-xKBPqhIwsCB6Jx4dARUM_z8SFkc1LXDE0o64RyXohak_08uHW8M65tHl8_yGVxDPUw_DUc7j-G6R8khdbDPCvQWs0o_Qci2UE-tbjD4dtXq-Af0Klrm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+RNA-seq+reveals+fate+determination+control+of+an+individual+fibre+cell+initiation+in+cotton+%28Gossypium+hirsutum%29&rft.jtitle=Plant+biotechnology+journal&rft.au=Qin%2C+Yuan&rft.au=Sun%2C+Mengling&rft.au=Li%2C+Weiwen&rft.au=Xu%2C+Mingqi&rft.date=2022-12-01&rft.eissn=1467-7652&rft.volume=20&rft.issue=12&rft.spage=2372&rft_id=info:doi/10.1111%2Fpbi.13918&rft_id=info%3Apmid%2F36053965&rft.externalDocID=36053965 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |