Single‐cell RNA‐seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum)

Summary Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cel...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 20; no. 12; pp. 2372 - 2388
Main Authors Qin, Yuan, Sun, Mengling, Li, Weiwen, Xu, Mingqi, Shao, Lei, Liu, Yuqi, Zhao, Guannan, Liu, Zhenping, Xu, Zhongping, You, Jiaqi, Ye, Zhengxiu, Xu, Jiawen, Yang, Xiyan, Wang, Maojun, Lindsey, Keith, Zhang, Xianlong, Tu, Lili
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.12.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. With scRNA‐seq, cotton fibre cell was identified differentiated at −1 DPA. It further refines the spatiotemporal patterns of two command genes, MYB25‐like and HOX3, who determine fibre differentiation and tip‐biased diffuse growth respectively.
AbstractList Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. With scRNA‐seq, cotton fibre cell was identified differentiated at −1 DPA. It further refines the spatiotemporal patterns of two command genes, MYB25‐like and HOX3, who determine fibre differentiation and tip‐biased diffuse growth respectively.
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.
Summary Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single‐cell RNA sequencing (scRNA‐seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non‐fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA‐seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25‐like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip‐biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield. With scRNA‐seq, cotton fibre cell was identified differentiated at −1 DPA. It further refines the spatiotemporal patterns of two command genes, MYB25‐like and HOX3, who determine fibre differentiation and tip‐biased diffuse growth respectively.
Author Ye, Zhengxiu
Qin, Yuan
Li, Weiwen
Sun, Mengling
Liu, Yuqi
You, Jiaqi
Yang, Xiyan
Xu, Zhongping
Lindsey, Keith
Xu, Jiawen
Shao, Lei
Liu, Zhenping
Wang, Maojun
Tu, Lili
Xu, Mingqi
Zhao, Guannan
Zhang, Xianlong
AuthorAffiliation 2 Department of Biosciences Durham University Durham UK
1 National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory Huazhong Agricultural University Wuhan Hubei Province China
AuthorAffiliation_xml – name: 1 National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory Huazhong Agricultural University Wuhan Hubei Province China
– name: 2 Department of Biosciences Durham University Durham UK
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0003-4887-8878
  surname: Qin
  fullname: Qin, Yuan
  organization: Huazhong Agricultural University
– sequence: 2
  givenname: Mengling
  surname: Sun
  fullname: Sun, Mengling
  organization: Huazhong Agricultural University
– sequence: 3
  givenname: Weiwen
  surname: Li
  fullname: Li, Weiwen
  organization: Huazhong Agricultural University
– sequence: 4
  givenname: Mingqi
  surname: Xu
  fullname: Xu, Mingqi
  organization: Huazhong Agricultural University
– sequence: 5
  givenname: Lei
  surname: Shao
  fullname: Shao, Lei
  organization: Huazhong Agricultural University
– sequence: 6
  givenname: Yuqi
  surname: Liu
  fullname: Liu, Yuqi
  organization: Huazhong Agricultural University
– sequence: 7
  givenname: Guannan
  surname: Zhao
  fullname: Zhao, Guannan
  organization: Huazhong Agricultural University
– sequence: 8
  givenname: Zhenping
  surname: Liu
  fullname: Liu, Zhenping
  organization: Huazhong Agricultural University
– sequence: 9
  givenname: Zhongping
  orcidid: 0000-0003-2559-9091
  surname: Xu
  fullname: Xu, Zhongping
  organization: Huazhong Agricultural University
– sequence: 10
  givenname: Jiaqi
  surname: You
  fullname: You, Jiaqi
  organization: Huazhong Agricultural University
– sequence: 11
  givenname: Zhengxiu
  surname: Ye
  fullname: Ye, Zhengxiu
  organization: Huazhong Agricultural University
– sequence: 12
  givenname: Jiawen
  surname: Xu
  fullname: Xu, Jiawen
  organization: Huazhong Agricultural University
– sequence: 13
  givenname: Xiyan
  orcidid: 0000-0003-1305-8677
  surname: Yang
  fullname: Yang, Xiyan
  organization: Huazhong Agricultural University
– sequence: 14
  givenname: Maojun
  orcidid: 0000-0002-4791-3742
  surname: Wang
  fullname: Wang, Maojun
  organization: Huazhong Agricultural University
– sequence: 15
  givenname: Keith
  surname: Lindsey
  fullname: Lindsey, Keith
  organization: Durham University
– sequence: 16
  givenname: Xianlong
  orcidid: 0000-0002-7703-524X
  surname: Zhang
  fullname: Zhang, Xianlong
  organization: Huazhong Agricultural University
– sequence: 17
  givenname: Lili
  orcidid: 0000-0003-4294-1928
  surname: Tu
  fullname: Tu, Lili
  email: lilitu@mail.hzau.edu.cn
  organization: Huazhong Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36053965$$D View this record in MEDLINE/PubMed
BookMark eNqFkktuFDEQhi0URB6w4ALIEptkMUm77bbdG6QQQYgUAeKxttxuO6mo257Y7kGzyxE4IyfBMxNGEAnwxiXVV38999GOD94i9JxUx6S8k3kHx4S2RD5Ce4RxMRO8qXe2NmO7aD-lm6qqCW_4E7RLedXQljd76O4z-KvB_rj7buww4E_vT4uZ7C2OdmH1kLDT2eLeZhtH8DpD8NgEn2MYcHBYewy-hwX0kx6wgy5avBYCDxk2OKwici7W4XlIaTmHacTXENOUp_HoKXrsSh777P4_QF_fvvly9m52-eH84uz0cmaY4HImTWcsaRgnrBeu4bojNWGip8XhCKmMbnjVS2ZcI3WnOXe1a2jH6s46Jw2lB-jVRnc-daPtjS096EHNI4w6LlXQoP70eLhWV2GhWi4YJaQIHN4LxHA72ZTVCGnVq_Y2TEnVkpBW1pyK_6OiagXlRPCCvnyA3oQp-jKJQlHB2raWbaFe_F78tupfeyzA0QYwsYw4WrdFSKVWN6LKjaj1jRT25AFrIK9XVfqG4V8R32Cwy79Lq4-vLzYRPwFd1dFP
CitedBy_id crossref_primary_10_1016_j_plaphy_2024_109320
crossref_primary_10_1002_csc2_20987
crossref_primary_10_1016_j_jare_2024_08_004
crossref_primary_10_3390_agronomy13020519
crossref_primary_10_1007_s00425_025_04666_5
crossref_primary_10_1093_jxb_erae078
crossref_primary_10_1007_s00122_024_04717_7
crossref_primary_10_1007_s11032_024_01477_6
crossref_primary_10_1186_s13059_023_02908_x
crossref_primary_10_3390_cells11193045
crossref_primary_10_1007_s11427_022_2278_0
crossref_primary_10_3390_cells13181561
crossref_primary_10_1111_jipb_13776
crossref_primary_10_3390_genes15080977
crossref_primary_10_1016_j_copbio_2024_103174
crossref_primary_10_1016_j_indcrop_2023_116323
crossref_primary_10_1016_j_xplc_2024_100832
crossref_primary_10_3389_fbioe_2024_1376353
crossref_primary_10_1016_j_indcrop_2024_118663
crossref_primary_10_1016_j_xplc_2023_100554
crossref_primary_10_1111_tpj_17050
crossref_primary_10_1093_genetics_iyad219
crossref_primary_10_3390_agronomy14050891
crossref_primary_10_34133_bdr_0029
crossref_primary_10_1111_tpj_70036
crossref_primary_10_1007_s12298_025_01558_6
crossref_primary_10_3389_fgene_2024_1306469
crossref_primary_10_1016_j_cpb_2023_100289
crossref_primary_10_3390_plants13243476
crossref_primary_10_1016_j_xplc_2023_100740
crossref_primary_10_3390_plants13081127
crossref_primary_10_1093_gpbjnl_qzae026
crossref_primary_10_1016_j_molp_2024_08_010
crossref_primary_10_1111_pbi_14294
crossref_primary_10_3390_agronomy14112530
crossref_primary_10_3390_plants12213771
crossref_primary_10_3390_plants13162308
crossref_primary_10_1016_j_xplc_2024_100816
crossref_primary_10_1186_s42397_024_00181_2
crossref_primary_10_1186_s13059_023_03032_6
crossref_primary_10_1038_s41467_025_55869_z
crossref_primary_10_1016_j_tranon_2023_101717
crossref_primary_10_1016_j_copbio_2022_102858
crossref_primary_10_3390_plants13121679
crossref_primary_10_1186_s12870_024_05262_7
crossref_primary_10_1111_ppl_14303
crossref_primary_10_48130_FR_2023_0027
crossref_primary_10_1093_plphys_kiae107
crossref_primary_10_1134_S1021443723602835
crossref_primary_10_1016_j_cropd_2024_100057
crossref_primary_10_1093_nar_gkad706
crossref_primary_10_1093_plcell_koae068
crossref_primary_10_3389_fgeed_2024_1401088
crossref_primary_10_1007_s11033_024_09412_w
crossref_primary_10_1186_s43897_023_00067_y
crossref_primary_10_1111_tpj_16315
crossref_primary_10_1016_j_cj_2024_04_009
crossref_primary_10_1038_s41467_024_55755_0
crossref_primary_10_1111_pce_14586
crossref_primary_10_1016_j_ymeth_2024_09_010
crossref_primary_10_1073_pnas_2310881120
crossref_primary_10_1016_j_cropd_2023_100041
crossref_primary_10_3390_ijms25179639
crossref_primary_10_1002_advs_202304017
crossref_primary_10_1111_tpj_70064
Cites_doi 10.1016/j.molp.2020.06.010
10.1016/j.pbi.2020.10.007
10.1105/tpc.114.127647
10.1093/plcell/koaa060
10.1016/j.pbi.2010.09.010
10.1111/pbi.13763
10.1093/jxb/erz162
10.1104/pp.111.186742
10.1038/ncomms14049
10.1038/nbt.3122
10.1016/j.devcel.2022.04.011
10.1016/j.devcel.2019.02.022
10.1016/j.jprot.2015.05.031
10.1016/j.molp.2020.05.006
10.1126/science.abj2327
10.1111/nph.12211
10.1038/ncomms6519
10.1111/pbi.13891
10.1007/s00425-007-0580-5
10.1016/S0168-9452(02)00320-5
10.1007/s11427-018-9402-9
10.1111/nph.14844
10.1105/tpc.113.121731
10.1038/s41588-018-0282-x
10.1016/j.tplants.2021.08.016
10.1111/pbi.13656
10.1126/science.abf4368
10.1016/j.devcel.2021.02.021
10.1093/bioinformatics/btp352
10.1002/j.1537-2197.1975.tb14105.x
10.1038/nmeth.3317
10.1105/tpc.105.040303
10.1186/s13059-021-02537-2
10.1073/pnas.2018788117
10.1093/jxb/erx459
10.1111/pbi.12988
10.1186/1741-7007-8-139
10.1093/plcell/koab101
10.1111/pbi.12844
10.1105/tpc.010108
10.1016/j.devcel.2021.03.014
10.1146/annurev-arplant-080720-113241
10.1093/aob/mcm232
10.1111/tpj.14858
10.1111/j.1365-313X.2012.05003.x
10.1534/genetics.108.093070
10.1105/tpc.104.024844
10.1111/tpj.13273
10.1111/nph.16898
10.1016/j.xplc.2022.100306
10.1038/s41467-021-22352-4
10.1111/pbi.12755
10.1038/nbt.3207
10.1093/pcp/pci228
10.1242/dev.009597
10.1007/s00299-007-0337-4
10.1111/nph.13860
10.1016/j.molp.2020.10.012
10.1105/tpc.18.00785
10.1093/plcell/koac011
10.1038/s41477-019-0418-8
10.1016/j.devcel.2020.12.015
10.1093/nar/gkg358
10.1111/jipb.13159
10.1093/plphys/kiab489
10.1371/journal.pgen.1004266
10.1242/dev.125.7.1161
10.1111/tpj.15719
10.1105/tpc.111.083261
10.1016/j.molp.2019.04.004
10.1016/j.cj.2022.02.004
10.1186/1471-2229-11-176
10.1038/nbt.1843
10.3389/fpls.2012.00104
10.1186/s12864-019-5986-5
10.1242/dev.016873
10.3389/fpls.2014.00179
10.1111/j.1365-313X.2010.04464.x
10.1371/journal.pgen.0040025
10.1016/j.molp.2020.12.014
10.1038/sj.cr.7310150
10.1111/j.1365-313X.2009.03847.x
10.1016/0092-8674(94)90118-X
10.1146/annurev-genet-071719-020453
10.1104/pp.18.01482
10.1111/tpj.12512
10.1111/nph.18008
10.1126/science.aay4970
10.1111/tpj.15772
10.1104/pp.19.00197
10.1242/dev.00292
10.1111/tpj.12245
10.1016/j.devcel.2022.01.008
10.1016/j.jgg.2021.06.001
10.1105/tpc.109.072579
10.1146/annurev-arplant-081720-010120
ContentType Journal Article
Copyright 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.13918
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate A single cell view on cotton fibre initiation
EISSN 1467-7652
EndPage 2388
ExternalDocumentID PMC9674311
36053965
10_1111_pbi_13918
PBI13918
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31830062; 31901576
– fundername: Interdisciplinary Sciences Research Institute of Huazhong Agricultural University
  funderid: 2662021JC005
– fundername: Interdisciplinary Sciences Research Institute of Huazhong Agricultural University
  grantid: 2662021JC005
– fundername: ;
  grantid: 31830062; 31901576
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4768-8cbce154614d7f56ab12147d38cbf110ca560d84cf58aba66f2f53b42beff8c33
IEDL.DBID BENPR
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 18:39:48 EDT 2025
Fri Jul 11 18:25:53 EDT 2025
Fri Jul 11 05:49:01 EDT 2025
Wed Aug 13 04:29:37 EDT 2025
Wed Feb 19 02:26:01 EST 2025
Tue Jul 01 02:34:49 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Wed Jan 22 16:23:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords cell fate determination
Gossypium hirsutum
regulatory network
cotton fibre initiation
single cell transcriptomic atlas
Language English
License Attribution
2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4768-8cbce154614d7f56ab12147d38cbf110ca560d84cf58aba66f2f53b42beff8c33
Notes These authors contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4887-8878
0000-0002-4791-3742
0000-0003-1305-8677
0000-0002-7703-524X
0000-0003-2559-9091
0000-0003-4294-1928
OpenAccessLink https://www.proquest.com/docview/2737499289?pq-origsite=%requestingapplication%
PMID 36053965
PQID 2737499289
PQPubID 1096352
PageCount 2388
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674311
proquest_miscellaneous_2811982637
proquest_miscellaneous_2709736176
proquest_journals_2737499289
pubmed_primary_36053965
crossref_primary_10_1111_pbi_13918
crossref_citationtrail_10_1111_pbi_13918
wiley_primary_10_1111_pbi_13918_PBI13918
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2022; 375
2021b; 56
2017; 8
2021b; 14
2019; 51
2007; 226
2021; 22
2007; 100
2019; 12
2015; 33
2019; 17
2014; 26
2011; 11
2003; 15
2020; 13
2022; 20
2008; 4
2011; 14
2021; 72
2022; 27
2021a; 229
2012; 71
2010; 22
2007; 134
2014; 5
2021b; 48
2019; 62
2021; 33
2019; 20
2018; 217
2021a; 19
2020; 370
2022b; 110
2022; 34
2011; 65
2011; 23
1998; 125
2013; 198
2021a; 12
2011; 29
2009; 59
1994; 76
2007; 26
2014; 10
2016; 88
2010; 8
2007; 17
2015; 12
2009; 25
2022; 110
2019; 70
2019; 5
2019; 31
2015; 126
2006; 18
2020; 103
2003; 31
2018; 69
2022; 234
2003; 130
2021; 14
2022; 188
2008; 180
2021; 59
2012; 3
2019; 181
2021; 56
2021; 55
2022
2017; 58
2004; 16
2002; 163
2019; 48
2022a; 3
2013; 75
2006; 47
2022; 57
2019; 179
2020; 117
2016; 210
2021; 374
2008; 135
2012; 158
2021; 63
1975; 62
2018; 16
2014; 78
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
Zhang M. (e_1_2_10_89_1) 2017; 58
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
Sun G. (e_1_2_10_60_1) 2022; 34
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_47_1
References_xml – volume: 56
  start-page: 1056
  year: 2021b
  end-page: 1074
  article-title: A single‐cell analysis of the Arabidopsis vegetative shoot apex
  publication-title: Dev. Cell
– volume: 100
  start-page: 1391
  year: 2007
  end-page: 1401
  article-title: Gene expression changes and early events in cotton fibre development
  publication-title: Ann. Bot.
– volume: 58
  start-page: 385
  year: 2017
  end-page: 397
  article-title: Auxin regulates cotton fiber initiation via GhPIN‐mediated auxin transport
  publication-title: Plant Cell Physiol.
– volume: 71
  start-page: 464
  year: 2012
  end-page: 478
  article-title: Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD‐1
  publication-title: Plant J.
– volume: 48
  start-page: 840
  year: 2019
  end-page: 852
  article-title: Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high‐throughput single‐Cell RNA sequencing
  publication-title: Dev. Cell
– volume: 31
  start-page: 2534
  year: 2003
  end-page: 2543
  article-title: Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 104
  year: 2012
  article-title: Cotton fiber: a powerful single‐cell model for cell wall and cellulose research
  publication-title: Front. Plant Sci.
– year: 2022
  article-title: Single‐cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type‐specific nitrate‐response genes
  publication-title: Crop J.
– volume: 26
  start-page: 2905
  year: 2014
  end-page: 2919
  article-title: Arabidopsis DELLA and two HD‐ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis‐element
  publication-title: Plant Cell
– volume: 17
  start-page: 435
  year: 2019
  end-page: 450
  article-title: Multi‐omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process
  publication-title: Plant Biotechnol. J.
– volume: 188
  start-page: 898
  year: 2022
  end-page: 918
  article-title: Single‐cell transcriptomics sheds light on the identity and metabolism of developing leaf cells
  publication-title: Plant Physiol.
– volume: 26
  start-page: 1118
  year: 2014
  end-page: 1133
  article-title: Arabidopsis DELLA and JAZ proteins bind the WD‐repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy
  publication-title: Plant Cell
– volume: 134
  start-page: 3873
  year: 2007
  end-page: 3882
  article-title: TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis
  publication-title: Development
– volume: 217
  start-page: 883
  year: 2018
  end-page: 895
  article-title: Genetics and evolution of MIXTA genes regulating cotton lint fiber development
  publication-title: New Phytol.
– volume: 33
  start-page: 511
  year: 2021
  end-page: 530
  article-title: Distinct identities of leaf phloem cells revealed by single cell transcriptomics
  publication-title: Plant Cell
– volume: 62
  start-page: 723
  year: 1975
  end-page: 730
  article-title: Fiber initiation on the cotton ovule ( )
  publication-title: Am. J. Bot.
– volume: 33
  start-page: 2197
  year: 2021
  end-page: 2220
  article-title: A single‐cell view of the transcriptome during lateral root initiation in
  publication-title: Plant Cell
– volume: 158
  start-page: 890
  year: 2012
  end-page: 904
  article-title: GbPDF1 is involved in cotton fiber initiation via the core cis‐element HDZIP2ATATHB2
  publication-title: Plant Physiol.
– volume: 229
  start-page: 1844
  year: 2021a
  end-page: 1851
  article-title: Looking into ‘hair tonics’ for cotton fiber initiation
  publication-title: New Phytol.
– volume: 374
  start-page: 1247
  year: 2021
  end-page: 1252
  article-title: Ground tissue circuitry regulates organ complexity in maize and Setaria
  publication-title: Science
– volume: 48
  start-page: 881
  year: 2021b
  end-page: 898
  article-title: Single‐cell transcriptome atlas of the leaf and root of rice seedlings
  publication-title: J. Genet. Genomics
– volume: 56
  start-page: 557
  year: 2021
  end-page: 568
  article-title: Single‐cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery
  publication-title: Dev. Cell
– volume: 20
  start-page: 417
  year: 2022
  end-page: 419
  article-title: Single‐cell RNA sequencing profiles of stem‐differentiating xylem in poplar
  publication-title: Plant Biotechnol. J.
– volume: 72
  start-page: 847
  year: 2021
  end-page: 866
  article-title: Advances and opportunities in single‐cell transcriptomics for plant research
  publication-title: Annu. Rev. Plant Biol.
– volume: 15
  start-page: 952
  year: 2003
  end-page: 964
  article-title: Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development
  publication-title: Plant Cell
– volume: 47
  start-page: 107
  year: 2006
  end-page: 127
  article-title: Expression profiling identifies genes expressed early during lint fibre initiation in cotton
  publication-title: Plant Cell Physiol.
– volume: 56
  start-page: 1043
  year: 2021
  end-page: 1055
  article-title: Single‐cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf
  publication-title: Dev. Cell
– volume: 226
  start-page: 1475
  year: 2007
  end-page: 1490
  article-title: Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules
  publication-title: Planta
– volume: 16
  start-page: 1002
  year: 2018
  end-page: 1012
  article-title: Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton ( L.)
  publication-title: Plant Biotechnol. J.
– volume: 13
  start-page: 1178
  year: 2020
  end-page: 1193
  article-title: Global dynamic molecular profiling of stomatal lineage cell development by single‐cell RNA sequencing
  publication-title: Mol. Plant
– volume: 234
  start-page: 494
  year: 2022
  end-page: 512
  article-title: A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems
  publication-title: New Phytol.
– year: 2022
  article-title: Single‐cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves
  publication-title: Plant Biotechnol. J.
– volume: 375
  start-page: eabf4368
  year: 2022
  article-title: A conserved superlocus regulates above‐ and belowground root initiation
  publication-title: Science
– volume: 180
  start-page: 811
  year: 2008
  end-page: 820
  article-title: The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development
  publication-title: Genetics
– volume: 13
  start-page: 1063
  year: 2020
  end-page: 1077
  article-title: The miR319‐Targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber
  publication-title: Mol. Plant
– volume: 27
  start-page: 92
  year: 2022
  end-page: 103
  article-title: Crafting a blueprint for single‐cell RNA sequencing
  publication-title: Trends Plant Sci.
– volume: 14
  start-page: 384
  year: 2021b
  end-page: 394
  article-title: Transcriptional landscape of rice roots at the single‐cell resolution
  publication-title: Mol. Plant
– volume: 179
  start-page: 1444
  year: 2019
  end-page: 1456
  article-title: Single‐cell RNA sequencing resolves molecular relationships among individual plant cells
  publication-title: Plant Physiol.
– volume: 163
  start-page: 1113
  year: 2002
  end-page: 1120
  article-title: Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT‐PCR
  publication-title: Plant Sci.
– volume: 12
  start-page: 648
  year: 2019
  end-page: 660
  article-title: A single‐cell RNA sequencing profiles the developmental landscape of Arabidopsis root
  publication-title: Mol. Plant
– volume: 103
  start-page: 1735
  year: 2020
  end-page: 1743
  article-title: Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3
  publication-title: Plant J.
– volume: 130
  start-page: 635
  year: 2003
  end-page: 643
  article-title: Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis
  publication-title: Development
– volume: 33
  start-page: 290
  year: 2015
  end-page: 295
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA‐seq reads
  publication-title: Nat. Biotechnol.
– volume: 78
  start-page: 686
  year: 2014
  end-page: 696
  article-title: Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling
  publication-title: Plant J.
– volume: 57
  start-page: 1299
  year: 2022
  end-page: 1310
  article-title: The single‐cell stereo‐seq reveals region‐specific cell subtypes and transcriptome profiling in Arabidopsis leaves
  publication-title: Dev. Cell
– volume: 125
  start-page: 1161
  year: 1998
  end-page: 1171
  article-title: Control of GL2 expression in Arabidopsis leaves and trichomes
  publication-title: Development
– volume: 33
  start-page: 531
  year: 2015
  end-page: 537
  article-title: Sequencing of allotetraploid cotton ( L. acc. TM‐1) provides a resource for fiber improvement
  publication-title: Nat. Biotechnol.
– volume: 181
  start-page: 1587
  year: 2019
  end-page: 1599
  article-title: The TCP4 transcription factor directly activates TRICHOMELESS1 and 2 and suppresses trichome initiation
  publication-title: Plant Physiol.
– volume: 17
  start-page: 422
  year: 2007
  end-page: 434
  article-title: Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis
  publication-title: Cell Res.
– volume: 69
  start-page: 997
  year: 2018
  end-page: 1009
  article-title: Genetic dissection of the fuzzless seed trait in Gossypium barbadense
  publication-title: J. Exp. Bot.
– volume: 12
  start-page: 2053
  year: 2021a
  article-title: Single‐cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root
  publication-title: Nat. Commun.
– volume: 23
  start-page: 1795
  year: 2011
  end-page: 1814
  article-title: The Jasmonate‐ZIM‐Domain proteins interact with the WD‐Repeat/bHLH/MYB complexes to regulate Jasmonate‐mediated anthocyanin accumulation and trichome initiation in
  publication-title: Plant Cell
– volume: 8
  start-page: 14049
  year: 2017
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
– volume: 19
  start-page: 2261
  year: 2021a
  end-page: 2276
  article-title: Single‐cell RNA‐seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut ( L.)
  publication-title: Plant Biotechnol. J.
– volume: 76
  start-page: 555
  year: 1994
  end-page: 566
  article-title: Genetic dissection of trichome cell development in Arabidopsis
  publication-title: Cell
– volume: 29
  start-page: 453
  year: 2011
  end-page: 458
  article-title: Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality
  publication-title: Nat. Biotechnol.
– volume: 75
  start-page: 823
  year: 2013
  end-page: 835
  article-title: Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase
  publication-title: Plant J.
– volume: 34
  start-page: 1396
  year: 2022
  end-page: 1414
  article-title: A DE1 BINDING FACTOR 1‐GLABRA2 module regulates rhamnogalacturonan I biosynthesis in Arabidopsis seed coat mucilage
  publication-title: Plant Cell
– volume: 135
  start-page: 1991
  year: 2008
  end-page: 1999
  article-title: The TTG1‐bHLH‐MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci
  publication-title: Development
– volume: 5
  start-page: 5519
  year: 2014
  article-title: Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1309
  year: 2007
  end-page: 1320
  article-title: Genes expression analyses of sea‐Island cotton ( L.) during fiber development
  publication-title: Plant Cell Rep.
– volume: 5
  start-page: 179
  year: 2014
  article-title: Members of the MYBMIXTA‐like transcription factors may orchestrate the initiation of fiber development in cotton seeds
  publication-title: Front. Plant Sci.
– volume: 10
  year: 2014
  article-title: Interaction between two timing MicroRNAs controls trichome distribution in arabidopsis
  publication-title: PLoS Genet.
– volume: 65
  start-page: 785
  year: 2011
  end-page: 797
  article-title: GhMYB25‐like: a key factor in early cotton fibre development
  publication-title: Plant J.
– volume: 34
  start-page: 1890
  year: 2022
  end-page: 1911
  article-title: The maize single‐nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata
  publication-title: Plant Cell
– volume: 18
  start-page: 651
  year: 2006
  end-page: 664
  article-title: Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation
  publication-title: Plant Cell
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 198
  start-page: 699
  year: 2013
  end-page: 708
  article-title: Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in
  publication-title: New Phytol.
– volume: 70
  start-page: 3139
  year: 2019
  end-page: 3151
  article-title: Cytokinin inhibits cotton fiber initiation by disrupting PIN3a‐mediated asymmetric accumulation of auxin in the ovule epidermis
  publication-title: J. Exp. Bot.
– volume: 110
  start-page: 7
  year: 2022b
  end-page: 22
  article-title: Identification of novel regulators required for early development of vein pattern in the cotyledons by single‐cell RNA‐sequencing
  publication-title: Plant J.
– volume: 59
  start-page: 52
  year: 2009
  end-page: 62
  article-title: The MYB transcription factor GhMYB25 regulates early fibre and trichome development
  publication-title: Plant J.
– volume: 370
  start-page: 810
  year: 2020
  article-title: Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions
  publication-title: Science
– volume: 14
  start-page: 106
  year: 2011
  end-page: 111
  article-title: How cotton fibers elongate: a tale of linear cell‐growth mode
  publication-title: Curr. Opin. Plant Biol.
– volume: 117
  start-page: 33689
  year: 2020
  end-page: 33699
  article-title: Plant stem‐cell organization and differentiation at single‐cell resolution
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 57
  start-page: 543
  year: 2022
  end-page: 560
  article-title: A single‐cell Arabidopsis root atlas reveals developmental trajectories in wild‐type and cell identity mutants
  publication-title: Dev. Cell
– volume: 16
  start-page: 137
  year: 2018
  end-page: 150
  article-title: High efficient multisites genome editing in allotetraploid cotton ( ) using CRISPR/Cas9 system
  publication-title: Plant Biotechnol. J.
– volume: 72
  start-page: 437
  year: 2021
  end-page: 462
  article-title: Recent advances and future perspectives in cotton research
  publication-title: Annu. Rev. Plant Biol.
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
– volume: 62
  start-page: 1
  year: 2019
  end-page: 7
  article-title: Hi‐TOM: a platform for high‐throughput tracking of mutations induced by CRISPR/Cas systems
  publication-title: Sci. China Life Sci.
– volume: 22
  start-page: 2322
  year: 2010
  end-page: 2335
  article-title: Temporal control of trichome distribution by microRNA156‐targeted SPL genes in
  publication-title: Plant Cell
– volume: 4
  year: 2008
  article-title: The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism
  publication-title: PLoS Genet.
– volume: 3
  year: 2022a
  article-title: Transcriptional landscapes of de novo root regeneration from detached Arabidopsis leaves revealed by time‐lapse and single‐cell RNA sequencing analyses
  publication-title: Plant Commun.
– volume: 16
  start-page: 2323
  year: 2004
  end-page: 2334
  article-title: Control of plant trichome development by a cotton fiber MYB gene
  publication-title: Plant Cell
– volume: 88
  start-page: 921
  year: 2016
  end-page: 935
  article-title: GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3‐MYB transcription factor GhMYB25‐like
  publication-title: Plant J.
– volume: 11
  start-page: 176
  year: 2011
  article-title: Functional characterization of TRICHOMELESS2, a new single‐repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis
  publication-title: BMC Plant Biol.
– volume: 51
  start-page: 224
  year: 2019
  end-page: 229
  article-title: Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense
  publication-title: Nat. Genet.
– volume: 126
  start-page: 68
  year: 2015
  end-page: 81
  article-title: iTRAQ‐facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild‐type cotton ( L.)
  publication-title: J. Proteomics
– volume: 55
  start-page: 479
  year: 2021
  end-page: 496
  article-title: Plant cell identity in the era of single‐cell transcriptomics
  publication-title: Annu. Rev. Genet.
– volume: 59
  year: 2021
  article-title: MIXTAs and phytohormones orchestrate cotton fiber development
  publication-title: Curr. Opin. Plant Biol.
– volume: 63
  start-page: 1906
  year: 2021
  end-page: 1921
  article-title: Single‐cell RNA sequencing reveals a high‐resolution cell atlas of xylem in Populus
  publication-title: J. Integr. Plant Biol.
– volume: 5
  start-page: 498
  year: 2019
  end-page: 504
  article-title: Live‐cell imaging of the cytoskeleton in elongating cotton fibres
  publication-title: Nat. Plants
– volume: 110
  start-page: 1551
  year: 2022
  end-page: 1563
  article-title: Advances and applications of single‐cell omics technologies in plant research
  publication-title: Plant J.
– volume: 8
  start-page: 139
  year: 2010
  article-title: Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication
  publication-title: BMC Biol.
– volume: 20
  start-page: 633
  year: 2019
  article-title: Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long‐ and short‐fiber cotton ( L.) lines
  publication-title: BMC Genomics
– volume: 31
  start-page: 993
  year: 2019
  end-page: 1011
  article-title: Dynamics of gene expression in single root cells of
  publication-title: Plant Cell
– volume: 22
  start-page: 319
  year: 2021
  article-title: Transcriptional landscape of highly lignified poplar stems at single‐cell resolution
  publication-title: Genome Biol.
– volume: 14
  start-page: 115
  year: 2021
  end-page: 126
  article-title: Single‐cell transcriptome analysis in plants: advances and challenges
  publication-title: Mol. Plant
– volume: 210
  start-page: 1298
  year: 2016
  end-page: 1310
  article-title: Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development
  publication-title: New Phytol.
– ident: e_1_2_10_35_1
  doi: 10.1016/j.molp.2020.06.010
– ident: e_1_2_10_63_1
  doi: 10.1016/j.pbi.2020.10.007
– ident: e_1_2_10_49_1
  doi: 10.1105/tpc.114.127647
– ident: e_1_2_10_22_1
  doi: 10.1093/plcell/koaa060
– ident: e_1_2_10_47_1
  doi: 10.1016/j.pbi.2010.09.010
– ident: e_1_2_10_82_1
  doi: 10.1111/pbi.13763
– ident: e_1_2_10_88_1
  doi: 10.1093/jxb/erz162
– ident: e_1_2_10_6_1
  doi: 10.1104/pp.111.186742
– ident: e_1_2_10_96_1
  doi: 10.1038/ncomms14049
– ident: e_1_2_10_42_1
  doi: 10.1038/nbt.3122
– ident: e_1_2_10_81_1
  doi: 10.1016/j.devcel.2022.04.011
– ident: e_1_2_10_7_1
  doi: 10.1016/j.devcel.2019.02.022
– ident: e_1_2_10_30_1
  doi: 10.1016/j.jprot.2015.05.031
– ident: e_1_2_10_4_1
  doi: 10.1016/j.molp.2020.05.006
– ident: e_1_2_10_41_1
  doi: 10.1126/science.abj2327
– ident: e_1_2_10_97_1
  doi: 10.1111/nph.12211
– ident: e_1_2_10_56_1
  doi: 10.1038/ncomms6519
– ident: e_1_2_10_73_1
  doi: 10.1111/pbi.13891
– ident: e_1_2_10_79_1
  doi: 10.1007/s00425-007-0580-5
– ident: e_1_2_10_24_1
  doi: 10.1016/S0168-9452(02)00320-5
– ident: e_1_2_10_32_1
  doi: 10.1007/s11427-018-9402-9
– ident: e_1_2_10_78_1
  doi: 10.1111/nph.14844
– ident: e_1_2_10_44_1
  doi: 10.1105/tpc.113.121731
– ident: e_1_2_10_71_1
  doi: 10.1038/s41588-018-0282-x
– ident: e_1_2_10_8_1
  doi: 10.1016/j.tplants.2021.08.016
– ident: e_1_2_10_29_1
  doi: 10.1111/pbi.13656
– ident: e_1_2_10_40_1
  doi: 10.1126/science.abf4368
– ident: e_1_2_10_93_1
  doi: 10.1016/j.devcel.2021.02.021
– ident: e_1_2_10_26_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_10_59_1
  doi: 10.1002/j.1537-2197.1975.tb14105.x
– ident: e_1_2_10_21_1
  doi: 10.1038/nmeth.3317
– ident: e_1_2_10_58_1
  doi: 10.1105/tpc.105.040303
– ident: e_1_2_10_5_1
  doi: 10.1186/s13059-021-02537-2
– ident: e_1_2_10_53_1
  doi: 10.1073/pnas.2018788117
– ident: e_1_2_10_98_1
  doi: 10.1093/jxb/erx459
– ident: e_1_2_10_27_1
  doi: 10.1111/pbi.12988
– ident: e_1_2_10_48_1
  doi: 10.1186/1741-7007-8-139
– ident: e_1_2_10_9_1
  doi: 10.1093/plcell/koab101
– ident: e_1_2_10_15_1
  doi: 10.1111/pbi.12844
– ident: e_1_2_10_50_1
  doi: 10.1105/tpc.010108
– ident: e_1_2_10_36_1
  doi: 10.1016/j.devcel.2021.03.014
– ident: e_1_2_10_16_1
  doi: 10.1146/annurev-arplant-080720-113241
– ident: e_1_2_10_23_1
  doi: 10.1093/aob/mcm232
– ident: e_1_2_10_18_1
  doi: 10.1111/tpj.14858
– ident: e_1_2_10_67_1
  doi: 10.1111/j.1365-313X.2012.05003.x
– ident: e_1_2_10_43_1
  doi: 10.1534/genetics.108.093070
– ident: e_1_2_10_75_1
  doi: 10.1105/tpc.104.024844
– ident: e_1_2_10_14_1
  doi: 10.1111/tpj.13273
– ident: e_1_2_10_70_1
  doi: 10.1111/nph.16898
– ident: e_1_2_10_33_1
  doi: 10.1016/j.xplc.2022.100306
– ident: e_1_2_10_92_1
  doi: 10.1038/s41467-021-22352-4
– ident: e_1_2_10_72_1
  doi: 10.1111/pbi.12755
– ident: e_1_2_10_91_1
  doi: 10.1038/nbt.3207
– ident: e_1_2_10_80_1
  doi: 10.1093/pcp/pci228
– ident: e_1_2_10_74_1
  doi: 10.1242/dev.009597
– ident: e_1_2_10_64_1
  doi: 10.1007/s00299-007-0337-4
– ident: e_1_2_10_68_1
  doi: 10.1111/nph.13860
– ident: e_1_2_10_57_1
  doi: 10.1016/j.molp.2020.10.012
– ident: e_1_2_10_19_1
  doi: 10.1105/tpc.18.00785
– ident: e_1_2_10_84_1
  doi: 10.1093/plcell/koac011
– ident: e_1_2_10_87_1
  doi: 10.1038/s41477-019-0418-8
– ident: e_1_2_10_83_1
  doi: 10.1016/j.devcel.2020.12.015
– ident: e_1_2_10_20_1
  doi: 10.1093/nar/gkg358
– ident: e_1_2_10_25_1
  doi: 10.1111/jipb.13159
– ident: e_1_2_10_62_1
  doi: 10.1093/plphys/kiab489
– ident: e_1_2_10_85_1
  doi: 10.1371/journal.pgen.1004266
– ident: e_1_2_10_61_1
  doi: 10.1242/dev.125.7.1161
– volume: 58
  start-page: 385
  year: 2017
  ident: e_1_2_10_89_1
  article-title: Auxin regulates cotton fiber initiation via GhPIN‐mediated auxin transport
  publication-title: Plant Cell Physiol.
– ident: e_1_2_10_34_1
  doi: 10.1111/tpj.15719
– ident: e_1_2_10_45_1
  doi: 10.1105/tpc.111.083261
– ident: e_1_2_10_94_1
  doi: 10.1016/j.molp.2019.04.004
– ident: e_1_2_10_28_1
  doi: 10.1016/j.cj.2022.02.004
– ident: e_1_2_10_10_1
  doi: 10.1186/1471-2229-11-176
– ident: e_1_2_10_90_1
  doi: 10.1038/nbt.1843
– ident: e_1_2_10_12_1
  doi: 10.3389/fpls.2012.00104
– ident: e_1_2_10_46_1
  doi: 10.1186/s12864-019-5986-5
– ident: e_1_2_10_95_1
  doi: 10.1242/dev.016873
– ident: e_1_2_10_3_1
  doi: 10.3389/fpls.2014.00179
– ident: e_1_2_10_66_1
  doi: 10.1111/j.1365-313X.2010.04464.x
– ident: e_1_2_10_13_1
  doi: 10.1371/journal.pgen.0040025
– ident: e_1_2_10_31_1
  doi: 10.1016/j.molp.2020.12.014
– ident: e_1_2_10_11_1
  doi: 10.1038/sj.cr.7310150
– ident: e_1_2_10_37_1
  doi: 10.1111/j.1365-313X.2009.03847.x
– ident: e_1_2_10_17_1
  doi: 10.1016/0092-8674(94)90118-X
– ident: e_1_2_10_52_1
  doi: 10.1146/annurev-genet-071719-020453
– ident: e_1_2_10_51_1
  doi: 10.1104/pp.18.01482
– ident: e_1_2_10_69_1
  doi: 10.1111/tpj.12512
– ident: e_1_2_10_99_1
  doi: 10.1111/nph.18008
– ident: e_1_2_10_77_1
  doi: 10.1126/science.aay4970
– ident: e_1_2_10_39_1
  doi: 10.1111/tpj.15772
– ident: e_1_2_10_65_1
  doi: 10.1104/pp.19.00197
– ident: e_1_2_10_2_1
  doi: 10.1242/dev.00292
– ident: e_1_2_10_38_1
  doi: 10.1111/tpj.12245
– ident: e_1_2_10_55_1
  doi: 10.1016/j.devcel.2022.01.008
– volume: 34
  start-page: 1890
  year: 2022
  ident: e_1_2_10_60_1
  article-title: The maize single‐nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata
  publication-title: Plant Cell
– ident: e_1_2_10_76_1
  doi: 10.1016/j.jgg.2021.06.001
– ident: e_1_2_10_86_1
  doi: 10.1105/tpc.109.072579
– ident: e_1_2_10_54_1
  doi: 10.1146/annurev-arplant-081720-010120
SSID ssj0021656
Score 2.591453
Snippet Summary Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling...
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2372
SubjectTerms biotechnology
Cell differentiation
cell fate determination
Comparative analysis
Cotton
Cotton Fiber
Cotton fibers
cotton fibre initiation
Crop yield
Developmental stages
early development
Epidermis
flowering
Gene expression
Gene sequencing
genes
Genomics
Genotype & phenotype
Gossypium - genetics
Gossypium hirsutum
Hybridization
Integument
lint cotton
mutants
Ovule - genetics
ovules
regulatory network
Ribonucleic acid
RNA
RNA-Seq
Scanning electron microscopy
sequence analysis
single cell transcriptomic atlas
Transcription factors
trichomes
Trichomes - genetics
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPcGB9yNQKoM4lENWdZw4iThtK0pBokKFSj0gRbZj04g2u-wmBzj1J_Ab-SWdcR7qUkAIKYdIHkf2eCb-xpr5DPA8EiItdSxCGycYoHDBwzwvXbhtMscj7oRUVJz87kDuH8Vvj5PjNXg51MJ0_BDjgRt5hv9fk4Mrvbzk5HNdTRC-cCr0pVwtAkSHI3VURKwyXWVRGqa46fesQpTFM_Zc3YuuAMyreZKX8avfgPZuwqdh6F3eyZdJ2-iJ-f4Lq-N_zu0W3OiBKZt2lnQb1mx9B65PPy96cg57F84_4D53an-e_6DjfnZ4MMXXpf3KiAYKzZg5BK6sHBJsaMlZnwrPZo6pmlVj-RdzOEDL_IcqSmDqxCvq0SAeZVuvUWXf5lV7xk6qxbJt2rMX9-Bo79XH3f2wv8EhNDHGMWFmtLEI0hADlKlLpNKc7kUqBTY4BB5GIeAqs9i4JFNaSekilwgdR9o6lxkh7sN6PavtQ2Bq28oSxZ1UaeyUzuLM5XHJc4ePtTaArWEtC9PTm9MtG6fFEOagUguv1ACejaLzjtPjd0Ibg0EUvVsvC8R6KYaIGKQG8HRsRockbanazlqSIQYkBIbyLzIZ5zkGdiIN4EFnY-NIBAaYIpdJAOmK9Y0CRAi-2lJXJ54YPKeKEs5RFd64_jy54v3OG__y6N9FH8O1iEo_fCrPBqw3i9Y-QUDW6E3veRewJTef
  priority: 102
  providerName: Wiley-Blackwell
Title Single‐cell RNA‐seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum)
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13918
https://www.ncbi.nlm.nih.gov/pubmed/36053965
https://www.proquest.com/docview/2737499289
https://www.proquest.com/docview/2709736176
https://www.proquest.com/docview/2811982637
https://pubmed.ncbi.nlm.nih.gov/PMC9674311
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7R7QUOCMpfoF0ZxKEcAnXsJM6p2qJuCxKr1UKl3iInsWmkNrvd3Ry49RF4Rp6EmcRJWxUqRVYkT6LYM_Z848wPwPtAiLjIpPCNDNFA4YL7SVJYfy9XlgfcikhTcPK3SXR8Ir-ehqfuwG3l3Cq7PbHZqIt5Tmfkn1DNxojO0T7YX1z6VDWK_q66EhobsIlbsFID2Dw4nExnvclFuWXa-KLYj1H1u9xC5MuzyMqPCH-o2sdNjXQHZt71lryJYhs1NH4Cjx1-ZKOW4U_hgam24NHo59Ll0DDP4Oo7qqNz8-fqN53Ks9lkhLcrc8koWxNKG7OIL1nR-cEQZ5jzWGdzy3TFyj5Ki1k0pw1rXlSSn1FLXtITa4SNbPcIx_RrUdYX7Kxcrup1ffHhOZyMD398PvZdoQU_l2hu-CrPcoNYClV1Edsw0hmn8kWFwA6L-CDXiIsKJXMbKp3pKLKBDUUmg8xYq3IhXsCgmlfmFTC9Z6ICyW2kY2l1pqSyiSx4YvEyxniw2012mrss5FQM4zztrBHkS9rwxYN3PemiTb3xL6LtjmOpW32r9FpWPHjbd-O6odnSlZnXREOJihC_RffQKM4TtL9E7MHLVgj6LxFoB4okCj2Ib4lHT0B5u2_3VOVZk787ocAPznEqGkH6_-DS6cGX5ub1_aN8Aw8DispovGy2YbBe1mYHsdI6G8JGIKfYqvHR0C2OYXPuQO0s-AuYyxyx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V7QE4IMpvoAWDQCqHlDp2nOSA0PKz3aXtCkEr9RacxKaR2ux2d6Oqtz4CT8JD8STM5I9Whd4q7SGSJ9HaM_Z8k8x8A_DSEyLIEilcI30MULjgbhRl1t1IQ8s9boXSVJy8M1KDPfl5399fgF9tLQylVbZnYnVQZ-OU3pG_QTcbIDrH-ODd5NilrlH0dbVtoVGbxZY5PcGQbfZ2-BH1-8rz-p92PwzcpquAm0rE1m6YJqlB4IB-KQusr3TCqVdPJnDAojNMNYKALJSp9UOdaKWsZ32RSC8x1oYpvQDFI39JCvTkVJne3-wCPGKyqauZAjdAoNEwGVHm0CTJ1xFsUW-R8_7vEqi9nJt5HjNXTq9_B243aJX1avNahgVT3IVbvR_ThrHD3IOzb-j8Ds3vs5_0DYB9HfXwcmaOGXFDoW0zi2iWZW3WDdkBa_Lj2dgyXbC8qwljFoN3w6oH5ZTVVIvndMccQSpb28Q5nU7y8ogd5NNZOS-PXt-HvWtRwANYLMaFeQRMbxiVobhVOpBWJ6EMbSQzHln8GWMcWGsXO04bznNqvXEYt7EP6iWu9OLAi050UhN9_EtopdVY3Oz1WfzXMh143g3jLqXV0oUZlyRDtEiIFtUVMiHnEUZ7InDgYW0E3T8RGHWKSPkOBBfMoxMglvCLI0V-ULGFR1RmwjkuRWVI_59c_OX9sLp4fPUsn8GNwe7Odrw9HG09gZse1YNU-T0rsDiflmYVUdo8eVptDQbfr3sv_gHDX1VU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VWwnBAfFPoIBBIJVDaB3n94DQlnbpUlitCpV6C3Zi00htdru7Eeqtj8Dz8Dg8CTOJE1oVequUQyRPotgz4_nGmR-Al54QUa584Wo_QAeFC-4mSW7c9Sw23ONGhJKSkz-Pwu09_-N-sL8Ev9pcGAqrbPfEeqPOJxmdka-hmY0QnaN_sGZsWMR4c_BueuxSByn609q202hEZEef_ED3bf52uIm8fuV5g62v77dd22HAzXzE2W6cqUwjiEAblUcmCKXi1LcnFzhg0DBmEgFBHvuZCWKpZBgazwRC-Z7SxsQZHYbi9r8ckVfUg-WNrdF4t3P3qK5Nk9sUuRHCDlvXiOKIpqp4g9CLOo2ctYYXIO7FSM2zCLo2gYNbcNNiV9ZvhO02LOnyDtzof5_Z-h36Lpx-QVN4qH-f_qQ_Amx31MfbuT5mVCkKJZ0ZxLYsb2NwSCqYjZZnE8NkyYouQ4wZdOU1q19UUIxTQ17QEwuErGz1A87pZFpUR-ygmM2rRXX0-h7sXQkL7kOvnJT6ITC5rsMcyU0oI99IFfuxSfycJwYvrbUDq-1ip5mtgE6NOA7T1hNCvqQ1Xxx40ZFOm7If_yJaaTmWWs2fp3_l1IHn3TDqLK2WLPWkIhoqkoTYMbyEJuY8Qd9PRA48aISg-xKBPqhIwsCB6Jx4dARUM_z8SFkc1LXDE0o64RyXohak_08uHW8M65tHl8_yGVxDPUw_DUc7j-G6R8khdbDPCvQWs0o_Qci2UE-tbjD4dtXq-Af0Klrm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+RNA-seq+reveals+fate+determination+control+of+an+individual+fibre+cell+initiation+in+cotton+%28Gossypium+hirsutum%29&rft.jtitle=Plant+biotechnology+journal&rft.au=Qin%2C+Yuan&rft.au=Sun%2C+Mengling&rft.au=Li%2C+Weiwen&rft.au=Xu%2C+Mingqi&rft.date=2022-12-01&rft.eissn=1467-7652&rft.volume=20&rft.issue=12&rft.spage=2372&rft_id=info:doi/10.1111%2Fpbi.13918&rft_id=info%3Apmid%2F36053965&rft.externalDocID=36053965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon