Inhibiting Solvent Co‐Intercalation in a Graphite Anode by a Localized High‐Concentration Electrolyte in Fast‐Charging Batteries
Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in di...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 7; pp. 3402 - 3406 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.02.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li+ intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g−1 at 0.2 C and 220 mAh g−1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance.
The unique solvation structure in a localized high‐concentration electrolyte can suppress co‐intercalation of ether solvent into the graphite interlayers and render fast‐charging of practical lithium‐ion batteries. |
---|---|
AbstractList | Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high-concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2-trifluoroethyl) ether as the diluent, enables fast-charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co-intercalation into graphite and achieve highly reversible Li+ intercalation/de-intercalation. The graphite | Li cells exhibit fast-charging potential (340 mAh g-1 at 0.2 C and 220 mAh g-1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low-temperature performance.Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high-concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2-trifluoroethyl) ether as the diluent, enables fast-charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co-intercalation into graphite and achieve highly reversible Li+ intercalation/de-intercalation. The graphite | Li cells exhibit fast-charging potential (340 mAh g-1 at 0.2 C and 220 mAh g-1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low-temperature performance. Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high-concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2-trifluoroethyl) ether as the diluent, enables fast-charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co-intercalation into graphite and achieve highly reversible Li intercalation/de-intercalation. The graphite | Li cells exhibit fast-charging potential (340 mAh g at 0.2 C and 220 mAh g at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low-temperature performance. Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li+ intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g−1 at 0.2 C and 220 mAh g−1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance. The unique solvation structure in a localized high‐concentration electrolyte can suppress co‐intercalation of ether solvent into the graphite interlayers and render fast‐charging of practical lithium‐ion batteries. Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li+ intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g−1 at 0.2 C and 220 mAh g−1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance. Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li + intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g −1 at 0.2 C and 220 mAh g −1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance. |
Author | Huang, Jia‐Qi Jiang, Li‐Li Cai, Wenlong Yao, Yu‐Xing Zhang, Qiang Yan, Chong |
Author_xml | – sequence: 1 givenname: Li‐Li surname: Jiang fullname: Jiang, Li‐Li organization: Jilin Institute of Chemical Technology – sequence: 2 givenname: Chong surname: Yan fullname: Yan, Chong organization: Tsinghua University – sequence: 3 givenname: Yu‐Xing surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 4 givenname: Wenlong surname: Cai fullname: Cai, Wenlong organization: Tsinghua University – sequence: 5 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 6 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33107707$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1v2zAQhokiRfPRrhkDAVm6yOWXRGl0DDsxYLRDsxMUdbIZ0KRL0gncqVPn_Mb8ktJ10gIBik4kyOd573B3io6cd4DQOcEjgjH9pJyBEcUU41aw5g06IRUlJROCHeU7Z6wUTUWO0WmMd5lvGly_Q8eMESwEFifo59ytTGeSccviq7f34FIx8U8_HucuQdDKqmS8K4wrVHEd1GZlEhRj53soul1-W_jMmO_QFzdmucrexDudQ8LBm1rQKXi7y1bOmKmY9sxKheW-4pVKuYqB-B69HZSN8OH5PEO3s-nt5KZcfLmeT8aLUnNRN6Voq570FeO0pkp1HWMD1kIzJnDXqIHlbzVwRhiHoaN1q4ALWjcMqGpxRdkZ-niI3QT_bQsxybWJGqxVDvw2SsorXld11ZKMXr5C7_w2uNxcphpBBOa0zdTFM7Xt1tDLTTBrFXbyZcAZ4AdABx9jgEFqk37PJo_IWEmw3O9R7vco_-wxa6NX2kvyP4X2IDwYC7v_0HL8eT796_4CJcCzFA |
CitedBy_id | crossref_primary_10_1021_acsami_3c04127 crossref_primary_10_1016_j_ensm_2024_103611 crossref_primary_10_1021_acsaem_2c02194 crossref_primary_10_1002_ange_202416092 crossref_primary_10_1002_anie_202110501 crossref_primary_10_1016_j_jpowsour_2024_234780 crossref_primary_10_1002_ange_202318663 crossref_primary_10_1002_aenm_202202660 crossref_primary_10_1002_anie_202100494 crossref_primary_10_1002_ente_202201321 crossref_primary_10_1002_adma_202420428 crossref_primary_10_1021_acsnano_4c13999 crossref_primary_10_1002_anie_202300384 crossref_primary_10_1038_s41467_023_37033_7 crossref_primary_10_1021_acsenergylett_2c02903 crossref_primary_10_1039_D2EE01489K crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1007_s11426_023_1705_9 crossref_primary_10_1002_advs_202206648 crossref_primary_10_1021_acsenergylett_1c02489 crossref_primary_10_1021_acs_jpclett_4c01613 crossref_primary_10_1021_acsenergylett_2c02590 crossref_primary_10_1007_s40820_022_00932_3 crossref_primary_10_1039_D2NR03418B crossref_primary_10_1016_j_ensm_2022_06_047 crossref_primary_10_1016_j_esci_2023_100170 crossref_primary_10_1002_batt_202100127 crossref_primary_10_1002_aenm_202300626 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1039_D3QI01792C crossref_primary_10_1002_eem2_12602 crossref_primary_10_1016_j_ensm_2023_102809 crossref_primary_10_1002_anie_202306236 crossref_primary_10_1016_j_jechem_2023_01_056 crossref_primary_10_1002_ange_202205045 crossref_primary_10_1021_acsenergylett_2c02240 crossref_primary_10_1615_AnnualRevHeatTransfer_2023049032 crossref_primary_10_1016_j_est_2024_111005 crossref_primary_10_1021_acsnano_4c07986 crossref_primary_10_1016_j_jechem_2024_10_014 crossref_primary_10_1039_D4RA08490J crossref_primary_10_1002_ange_202103052 crossref_primary_10_1002_adma_202206448 crossref_primary_10_1002_ange_202403432 crossref_primary_10_1002_bte2_20230018 crossref_primary_10_1016_j_electacta_2024_144718 crossref_primary_10_1016_j_jpowsour_2022_231962 crossref_primary_10_1002_elan_202400318 crossref_primary_10_1002_adma_202311327 crossref_primary_10_1016_j_jechem_2022_12_060 crossref_primary_10_1002_ange_202414201 crossref_primary_10_1002_adfm_202402077 crossref_primary_10_1007_s10008_024_05953_z crossref_primary_10_1016_j_mrl_2025_200177 crossref_primary_10_1002_advs_202201893 crossref_primary_10_1016_j_carbon_2022_11_077 crossref_primary_10_1039_D3EE02213G crossref_primary_10_1016_j_xcrp_2024_101931 crossref_primary_10_1039_D4EB00042K crossref_primary_10_1002_cey2_383 crossref_primary_10_1016_j_est_2024_114402 crossref_primary_10_1016_j_nantod_2022_101478 crossref_primary_10_1016_j_jallcom_2023_170200 crossref_primary_10_1039_D2TA07696A crossref_primary_10_1002_ange_202112550 crossref_primary_10_1002_anie_202415491 crossref_primary_10_1002_adma_202211461 crossref_primary_10_1002_smll_202410167 crossref_primary_10_1016_j_cej_2022_141097 crossref_primary_10_1016_j_ijhydene_2021_08_203 crossref_primary_10_1002_ange_202219310 crossref_primary_10_1002_adma_202206020 crossref_primary_10_1002_anie_202103052 crossref_primary_10_1016_j_cej_2023_141305 crossref_primary_10_1021_acsenergylett_4c01999 crossref_primary_10_1002_smsc_202200015 crossref_primary_10_1021_acsaem_1c04084 crossref_primary_10_1039_D4EE00119B crossref_primary_10_34133_energymatadv_0113 crossref_primary_10_1016_j_cej_2024_150095 crossref_primary_10_1002_advs_202305414 crossref_primary_10_1021_acs_jpcc_2c01192 crossref_primary_10_1016_j_jpowsour_2024_234611 crossref_primary_10_3390_en18040974 crossref_primary_10_1002_bte2_20240106 crossref_primary_10_1016_j_cej_2024_152602 crossref_primary_10_1002_anie_202213416 crossref_primary_10_1002_anie_202112550 crossref_primary_10_1002_celc_202200223 crossref_primary_10_1002_ange_202415491 crossref_primary_10_1002_idm2_12105 crossref_primary_10_1039_D4MH01287A crossref_primary_10_1149_1945_7111_ace65c crossref_primary_10_1002_smll_202404879 crossref_primary_10_1021_acs_nanolett_3c00729 crossref_primary_10_1016_j_jechem_2023_02_044 crossref_primary_10_1021_acs_nanolett_4c04743 crossref_primary_10_1021_acs_nanolett_2c04898 crossref_primary_10_1016_j_jelechem_2023_117241 crossref_primary_10_1039_D2CC00188H crossref_primary_10_1002_adma_202100827 crossref_primary_10_1002_aenm_202401526 crossref_primary_10_1002_adma_202409838 crossref_primary_10_1016_j_ensm_2024_103998 crossref_primary_10_1002_agt2_153 crossref_primary_10_1016_j_cej_2023_148047 crossref_primary_10_1021_acsami_1c16827 crossref_primary_10_3390_batteries9030155 crossref_primary_10_1021_acsmaterialslett_2c00679 crossref_primary_10_1016_j_nanoen_2021_106150 crossref_primary_10_1021_acs_nanolett_4c02330 crossref_primary_10_1002_adsu_202300285 crossref_primary_10_1002_aenm_202403188 crossref_primary_10_1002_eom2_12212 crossref_primary_10_1002_smll_202405731 crossref_primary_10_1002_adfm_202401515 crossref_primary_10_1002_ange_202110501 crossref_primary_10_1016_j_jpowsour_2024_235006 crossref_primary_10_1002_smll_202301737 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_1039_D4EB00011K crossref_primary_10_1002_anie_202416092 crossref_primary_10_1016_j_ensm_2024_103627 crossref_primary_10_1016_j_est_2023_109889 crossref_primary_10_1016_j_nanoen_2024_109545 crossref_primary_10_1007_s40820_024_01419_z crossref_primary_10_1038_s41586_024_07045_4 crossref_primary_10_1016_j_cclet_2022_01_015 crossref_primary_10_1002_smll_202205315 crossref_primary_10_1016_j_ensm_2024_103741 crossref_primary_10_1002_batt_202400031 crossref_primary_10_1002_batt_202400034 crossref_primary_10_1007_s40843_022_2092_0 crossref_primary_10_1039_D3EE02803H crossref_primary_10_1002_advs_202411826 crossref_primary_10_1016_j_est_2025_115426 crossref_primary_10_1039_D4TA02153C crossref_primary_10_1002_smm2_1185 crossref_primary_10_1149_1945_7111_ac8a1e crossref_primary_10_1002_ange_202100494 crossref_primary_10_1016_j_jelechem_2024_118176 crossref_primary_10_1016_j_xcrp_2021_100708 crossref_primary_10_1021_acs_jpclett_4c03022 crossref_primary_10_1002_ange_202213416 crossref_primary_10_1007_s11426_023_1866_y crossref_primary_10_1021_acsenergylett_3c01079 crossref_primary_10_1002_adfm_202112598 crossref_primary_10_1002_aenm_202301452 crossref_primary_10_1021_acsenergylett_2c01408 crossref_primary_10_1007_s40820_023_01183_6 crossref_primary_10_1021_acssuschemeng_2c03938 crossref_primary_10_1002_anie_202414201 crossref_primary_10_1021_acsaem_4c00594 crossref_primary_10_1016_j_nanoen_2023_109088 crossref_primary_10_1016_j_ensm_2024_103698 crossref_primary_10_1016_j_ensm_2021_10_032 crossref_primary_10_1002_celc_202400444 crossref_primary_10_1021_acsaem_0c02961 crossref_primary_10_1002_adfm_202212499 crossref_primary_10_1016_j_ensm_2024_103570 crossref_primary_10_1021_acsami_3c00165 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1002_admt_202400907 crossref_primary_10_1002_inf2_12612 crossref_primary_10_1016_j_cej_2022_135101 crossref_primary_10_1021_acsami_3c17844 crossref_primary_10_1002_anie_202205045 crossref_primary_10_1002_adfm_202312413 crossref_primary_10_1016_j_ensm_2023_102996 crossref_primary_10_1038_s41560_023_01339_z crossref_primary_10_1002_inf2_12293 crossref_primary_10_1002_adfm_202403682 crossref_primary_10_1002_admi_202200011 crossref_primary_10_1021_acs_nanolett_3c02013 crossref_primary_10_1002_aesr_202100140 crossref_primary_10_1038_s41467_023_41778_6 crossref_primary_10_1002_advs_202302966 crossref_primary_10_1021_acscentsci_2c00791 crossref_primary_10_1021_acs_langmuir_4c03435 crossref_primary_10_20517_energymater_2023_28 crossref_primary_10_1021_acs_nanolett_4c00501 crossref_primary_10_1088_1742_6596_2473_1_012018 crossref_primary_10_1007_s12598_023_02537_0 crossref_primary_10_1039_D2NR07273D crossref_primary_10_1039_D4TA06896C crossref_primary_10_1016_j_jiec_2023_07_004 crossref_primary_10_1002_adma_202103178 crossref_primary_10_1021_jacs_3c08313 crossref_primary_10_1002_bte2_20230064 crossref_primary_10_1021_acsnano_3c04790 crossref_primary_10_1002_aenm_202301354 crossref_primary_10_1002_adfm_202409097 crossref_primary_10_1093_nsr_nwae359 crossref_primary_10_1016_j_nxener_2024_100115 crossref_primary_10_1021_acs_jpclett_3c01453 crossref_primary_10_1021_acs_accounts_1c00420 crossref_primary_10_1016_j_scib_2022_07_002 crossref_primary_10_1016_j_jechem_2022_08_047 crossref_primary_10_3389_fenrg_2022_837071 crossref_primary_10_1002_anie_202318663 crossref_primary_10_1021_acsaem_1c02115 crossref_primary_10_1002_adma_202206963 crossref_primary_10_6023_A22070314 crossref_primary_10_1039_D2EE03626F crossref_primary_10_1039_D4CC04026K crossref_primary_10_1039_D3CS00151B crossref_primary_10_1016_j_cjche_2021_08_020 crossref_primary_10_1016_j_elecom_2023_107606 crossref_primary_10_1039_D2SC05723A crossref_primary_10_1557_s43579_022_00277_3 crossref_primary_10_1016_j_cej_2025_161571 crossref_primary_10_1038_s41467_022_29761_z crossref_primary_10_1038_s41467_024_46186_y crossref_primary_10_1002_anie_202416610 crossref_primary_10_1021_jacs_3c07804 crossref_primary_10_1016_j_ensm_2021_11_046 crossref_primary_10_1002_anie_202219310 crossref_primary_10_1021_acsenergylett_1c02425 crossref_primary_10_1016_j_cclet_2023_109146 crossref_primary_10_1016_j_jechem_2024_01_009 crossref_primary_10_1021_acsenergylett_4c00859 crossref_primary_10_1002_ange_202102593 crossref_primary_10_1002_anie_202403432 crossref_primary_10_1016_j_mtener_2023_101315 crossref_primary_10_1016_j_ensm_2022_04_036 crossref_primary_10_1021_acsnano_2c10819 crossref_primary_10_1038_s41560_023_01387_5 crossref_primary_10_1002_smll_202304060 crossref_primary_10_1021_acsmaterialslett_2c00810 crossref_primary_10_1016_j_jechem_2022_12_041 crossref_primary_10_1039_D3LF00259D crossref_primary_10_1016_j_cej_2022_140290 crossref_primary_10_1021_acsaem_3c01034 crossref_primary_10_26599_CF_2024_9200017 crossref_primary_10_1021_jacs_2c08396 crossref_primary_10_1002_anie_202203693 crossref_primary_10_1016_j_jechem_2022_12_049 crossref_primary_10_1039_D3GC01802D crossref_primary_10_1021_acsnano_4c06997 crossref_primary_10_1016_j_jechem_2022_05_010 crossref_primary_10_1002_ange_202303888 crossref_primary_10_1002_wcms_1621 crossref_primary_10_1007_s40843_022_2084_x crossref_primary_10_3390_batteries10120448 crossref_primary_10_1002_anie_202102593 crossref_primary_10_1016_j_inoche_2022_109753 crossref_primary_10_1039_D4CS00826J crossref_primary_10_1002_ange_202307208 crossref_primary_10_1039_D1TA10618J crossref_primary_10_1016_j_jelechem_2023_117758 crossref_primary_10_1016_j_nanoen_2022_107265 crossref_primary_10_1002_ange_202306236 crossref_primary_10_1016_j_matre_2024_100311 crossref_primary_10_1021_acsnano_3c04907 crossref_primary_10_1016_j_ensm_2021_05_037 crossref_primary_10_1002_anie_202411029 crossref_primary_10_1016_j_ensm_2022_06_003 crossref_primary_10_1007_s12274_022_5090_z crossref_primary_10_1016_j_jpowsour_2022_232545 crossref_primary_10_1002_adfm_202303457 crossref_primary_10_1039_D3CC00033H crossref_primary_10_1002_cplu_202200155 crossref_primary_10_1016_j_jechem_2024_02_059 crossref_primary_10_1021_acsaem_2c01285 crossref_primary_10_1002_ange_202300384 crossref_primary_10_1002_adma_202210115 crossref_primary_10_1002_ange_202416610 crossref_primary_10_1002_aenm_202303336 crossref_primary_10_1016_j_esci_2023_100094 crossref_primary_10_1007_s41918_022_00178_y crossref_primary_10_1016_j_nanoen_2022_107014 crossref_primary_10_1007_s11426_023_1638_0 crossref_primary_10_1002_aenm_202003752 crossref_primary_10_1039_D3CP00228D crossref_primary_10_1002_anie_202307208 crossref_primary_10_1039_D4CC00110A crossref_primary_10_1039_D4SC05464D crossref_primary_10_1002_advs_202204059 crossref_primary_10_1016_j_electacta_2023_143189 crossref_primary_10_1002_ange_202406596 crossref_primary_10_1002_idm2_12077 crossref_primary_10_1016_j_jpowsour_2023_232975 crossref_primary_10_1016_j_jechem_2023_10_050 crossref_primary_10_1002_smll_202301574 crossref_primary_10_1016_j_nanoen_2023_108894 crossref_primary_10_1021_acsenergylett_4c00481 crossref_primary_10_1016_j_carbon_2023_118247 crossref_primary_10_1016_j_jechem_2021_10_003 crossref_primary_10_1021_acsami_2c09338 crossref_primary_10_1002_ange_202203693 crossref_primary_10_1126_science_abi6643 crossref_primary_10_1002_adfm_202406357 crossref_primary_10_1016_j_xcrp_2021_100668 crossref_primary_10_1002_ange_202208345 crossref_primary_10_1002_anie_202406596 crossref_primary_10_1016_j_ensm_2023_102995 crossref_primary_10_1039_D2YA00015F crossref_primary_10_1007_s40820_022_00896_4 crossref_primary_10_1021_acsnano_3c02948 crossref_primary_10_1016_j_jechem_2021_05_040 crossref_primary_10_1063_5_0130338 crossref_primary_10_1002_anie_202208345 crossref_primary_10_1002_ange_202411029 crossref_primary_10_1021_acsami_2c17628 crossref_primary_10_1002_batt_202200368 crossref_primary_10_1002_smll_202308995 |
Cites_doi | 10.1016/j.etran.2019.100011 10.1038/ncomms7362 10.1021/acsaem.8b00355 10.1016/j.jpowsour.2017.11.015 10.1016/j.jpowsour.2019.226942 10.1016/j.trechm.2020.01.011 10.1002/smll.201805389 10.1021/jacs.8b04612 10.1021/acsenergylett.0c00643 10.1016/j.ensm.2019.07.026 10.1039/C9CS00728H 10.1038/s41467-019-09274-y 10.1016/j.materresbull.2017.07.018 10.1002/adfm.201909887 10.1038/s41560-019-0336-z 10.1016/j.jechem.2020.02.052 10.1021/cr030203g 10.1021/acsenergylett.7b01213 10.1007/s10800-019-01312-3 10.1002/aenm.201903843 10.1021/acssuschemeng.0c01661 10.1002/adma.201706102 10.1038/s41560-019-0405-3 10.1038/s41557-019-0304-z 10.1016/j.etran.2019.100033 10.1002/adma.200901710 10.1016/j.eng.2018.10.008 10.1002/cssc.201500284 10.1016/j.joule.2019.05.006 10.1016/j.jpowsour.2019.04.113 10.1021/acs.accounts.7b00474 10.1021/ja412807w 10.1002/aenm.201902618 10.1016/j.chempr.2017.10.017 10.1002/adma.201800561 10.1021/acsenergylett.8b00935 10.1002/aenm.202000368 10.1016/j.chempr.2018.05.002 10.1002/aenm.201904152 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202009738 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3406 |
ExternalDocumentID | 33107707 10_1002_anie_202009738 ANIE202009738 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51702117, 21776019, 21825501, and U1801257 – fundername: National Key Research and Development Program funderid: 2016YFA0202500 and 2016YFA0200102 – fundername: National Natural Science Foundation of China grantid: 51702117, 21776019, 21825501, and U1801257 – fundername: National Key Research and Development Program grantid: 2016YFA0202500 and 2016YFA0200102 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4768-795d1d534262aabb33f0c7c3370b8af395daf43134efb269ae472683e2a90523 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:38:27 EDT 2025 Fri Jul 25 10:16:02 EDT 2025 Wed Feb 19 02:29:05 EST 2025 Tue Jul 01 01:17:50 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Wed Jan 22 16:58:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | lithium ion batteries fast-charging solvent co-intercalation graphite anodes localized high-concentration electrolyte |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4768-795d1d534262aabb33f0c7c3370b8af395daf43134efb269ae472683e2a90523 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 33107707 |
PQID | 2487170429 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2454656591 proquest_journals_2487170429 pubmed_primary_33107707 crossref_citationtrail_10_1002_anie_202009738 crossref_primary_10_1002_anie_202009738 wiley_primary_10_1002_anie_202009738_ANIE202009738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 15, 2021 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: February 15, 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2019; 4 2015; 6 2004; 104 2019; 3 2009; 21 2018; 140 2019; 2 2019; 429 2019; 11 2019; 10 2019; 1 2019; 15 2020; 10 2015; 8 2014; 136 2018; 373 2017; 95 2020; 8 2020; 5 2018; 3 2020; 2 2018; 4 2020; 30 2018; 1 2020; 49 2019; 49 2018; 30 2020; 24 2018; 51 2019; 437 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_40_1 e_1_2_2_41_1 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_43_1 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_38_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_11_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_31_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_35_1 e_1_2_2_36_1 |
References_xml | – volume: 3 start-page: 2059 year: 2018 end-page: 2067 publication-title: ACS Energy Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 8664 year: 2020 end-page: 8674 publication-title: ACS Sustainable Chem. Eng. – volume: 1 start-page: 2664 year: 2018 end-page: 2670 publication-title: ACS Appl. Energy Mater. – volume: 136 start-page: 5039 year: 2014 end-page: 5046 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 639 year: 2019 end-page: 646 publication-title: J. Appl. Electrochem. – volume: 104 start-page: 4303 year: 2004 end-page: 4417 publication-title: Chem. Rev. – volume: 3 start-page: 1662 year: 2019 end-page: 1676 publication-title: Joule – volume: 4 start-page: 269 year: 2019 end-page: 280 publication-title: Nat. Energy – volume: 1 year: 2019 publication-title: eTransportation – volume: 8 start-page: 2154 year: 2015 end-page: 2175 publication-title: ChemSusChem – volume: 4 start-page: 1877 year: 2018 end-page: 1892 publication-title: Chem – volume: 2 year: 2019 publication-title: eTransportation – volume: 140 start-page: 9921 year: 2018 end-page: 9933 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 315 year: 2018 end-page: 321 publication-title: ACS Energy Lett. – volume: 4 start-page: 174 year: 2018 end-page: 185 publication-title: Chem – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 540 year: 2019 end-page: 550 publication-title: Nat. Energy – volume: 373 start-page: 110 year: 2018 end-page: 118 publication-title: J. Power Sources – volume: 24 start-page: 75 year: 2020 end-page: 84 publication-title: Energy Storage Mater. – volume: 15 year: 2019 publication-title: Small – volume: 2 start-page: 354 year: 2020 end-page: 366 publication-title: Trends Chem. – volume: 5 start-page: 1438 year: 2020 end-page: 1447 publication-title: ACS Energy Lett. – volume: 437 year: 2019 publication-title: J. Power Sources – volume: 10 start-page: 1474 year: 2019 publication-title: Nat. Commun. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 95 start-page: 61 year: 2017 end-page: 70 publication-title: Mater. Res. Bull. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 429 start-page: 67 year: 2019 end-page: 74 publication-title: J. Power Sources – volume: 21 start-page: 4593 year: 2009 end-page: 4607 publication-title: Adv. Mater. – volume: 11 start-page: 789 year: 2019 end-page: 796 publication-title: Nat. Chem. – volume: 49 start-page: 335 year: 2020 end-page: 338 publication-title: J. Energy Chem. – volume: 49 start-page: 3806 year: 2020 end-page: 3833 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 831 year: 2018 end-page: 847 publication-title: Engineering – volume: 51 start-page: 282 year: 2018 end-page: 289 publication-title: Acc. Chem. Res. – ident: e_1_2_2_46_1 – ident: e_1_2_2_9_2 doi: 10.1016/j.etran.2019.100011 – ident: e_1_2_2_1_1 – ident: e_1_2_2_30_2 doi: 10.1038/ncomms7362 – ident: e_1_2_2_45_1 doi: 10.1021/acsaem.8b00355 – ident: e_1_2_2_26_2 doi: 10.1016/j.jpowsour.2017.11.015 – ident: e_1_2_2_29_2 doi: 10.1016/j.jpowsour.2019.226942 – ident: e_1_2_2_12_2 doi: 10.1016/j.trechm.2020.01.011 – ident: e_1_2_2_10_2 doi: 10.1002/smll.201805389 – ident: e_1_2_2_44_1 doi: 10.1021/jacs.8b04612 – ident: e_1_2_2_48_2 doi: 10.1021/acsenergylett.0c00643 – ident: e_1_2_2_17_2 doi: 10.1016/j.ensm.2019.07.026 – ident: e_1_2_2_7_2 doi: 10.1039/C9CS00728H – ident: e_1_2_2_3_2 doi: 10.1038/s41467-019-09274-y – ident: e_1_2_2_40_1 doi: 10.1016/j.materresbull.2017.07.018 – ident: e_1_2_2_20_2 doi: 10.1002/adfm.201909887 – ident: e_1_2_2_31_2 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_2_23_1 – ident: e_1_2_2_16_2 doi: 10.1016/j.jechem.2020.02.052 – ident: e_1_2_2_24_2 doi: 10.1021/cr030203g – ident: e_1_2_2_41_1 doi: 10.1021/acsenergylett.7b01213 – ident: e_1_2_2_21_1 doi: 10.1007/s10800-019-01312-3 – ident: e_1_2_2_22_1 doi: 10.1002/aenm.201903843 – ident: e_1_2_2_42_1 doi: 10.1021/acssuschemeng.0c01661 – ident: e_1_2_2_35_1 doi: 10.1002/adma.201706102 – ident: e_1_2_2_8_2 doi: 10.1038/s41560-019-0405-3 – ident: e_1_2_2_19_2 doi: 10.1038/s41557-019-0304-z – ident: e_1_2_2_18_1 – ident: e_1_2_2_28_1 – ident: e_1_2_2_5_2 doi: 10.1016/j.etran.2019.100033 – ident: e_1_2_2_11_1 – ident: e_1_2_2_25_2 doi: 10.1002/adma.200901710 – ident: e_1_2_2_4_2 doi: 10.1016/j.eng.2018.10.008 – ident: e_1_2_2_36_1 – ident: e_1_2_2_13_2 doi: 10.1002/cssc.201500284 – ident: e_1_2_2_38_2 doi: 10.1016/j.joule.2019.05.006 – ident: e_1_2_2_15_2 doi: 10.1016/j.jpowsour.2019.04.113 – ident: e_1_2_2_27_2 doi: 10.1021/acs.accounts.7b00474 – ident: e_1_2_2_14_1 – ident: e_1_2_2_32_1 doi: 10.1021/ja412807w – ident: e_1_2_2_34_1 doi: 10.1002/aenm.201902618 – ident: e_1_2_2_43_1 doi: 10.1016/j.chempr.2017.10.017 – ident: e_1_2_2_2_2 doi: 10.1002/adma.201800561 – ident: e_1_2_2_33_1 doi: 10.1021/acsenergylett.8b00935 – ident: e_1_2_2_39_1 doi: 10.1002/aenm.202000368 – ident: e_1_2_2_6_1 – ident: e_1_2_2_37_2 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_2_47_2 doi: 10.1002/aenm.201904152 |
SSID | ssj0028806 |
Score | 2.7022116 |
Snippet | Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low... Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3402 |
SubjectTerms | Anions Charging Electrolytes Electrolytic cells fast-charging Graphite graphite anodes Intercalation Lithium Lithium-ion batteries localized high-concentration electrolyte Low temperature Solid electrolytes solvent co-intercalation Solvents |
Title | Inhibiting Solvent Co‐Intercalation in a Graphite Anode by a Localized High‐Concentration Electrolyte in Fast‐Charging Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202009738 https://www.ncbi.nlm.nih.gov/pubmed/33107707 https://www.proquest.com/docview/2487170429 https://www.proquest.com/docview/2454656591 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UCLeWRPpArIXFyGz8SJ8fVapcW0R6gSL1FtuOIFasEdXcP7amnnvmN_JLOxEnKghASHBPbiWOP7W8mM98Q8iaTVVZKmzOVxIoprjQzRuWMK5e5qpKp4RgofHaennxW7y-Ty5-i-AM_xGBww5XR7te4wI1dHD-QhmIENuh3oiWcwWhfdNhCVPRx4I8SIJwhvEhKhlnoe9bGWByvN18_lX6DmuvItT16pk-J6TsdPE6-Hq2W9sjd_MLn-D9ftUWedLiUjoIgbZNHvn5GNsd9Orgdcndaf5nZGXpJ00_NHN0k6bj5cfu9tSnCTLdTTGc1NfQdsmADlqWjuik9tddw7wMemrMbX1J0LYF2YwyYrDvWXjoJ6Xjm19AKnjE1iyXWQR4nfGOgAQWt_jm5mE4uxiesS-LAnAJVhuk8KXmZSGS-N8ZaKavYaSeljm1mKgnFpgIUI5WvrEhz45UWaSa9MDmarF-Qjbqp_StCnc2zuARAp9FWBXoi7CfciVh7zk3p0oiwfg4L1xGcY56NeRGomUWBg1sMgxuRt0P9b4Ha448193uRKLolvigEqHpc43kekcOhGCYF_7iY2jcrrIO55tMk5xF5GURpeJUEYK11rCMiWoH4Sx-K0fnpZLja_ZdGe-SxQI8cTGeT7JON5dXKHwCkWtrX7bK5B5cUGfc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BclguvB-BBYyExMm7ie3EybGqWlro9gBF4hbZjqOtqBLEtofdEyfO_EZ-CTN5oYIQEhwTzySOPbZnJjPfALxIZZkW0mZcxaHiKlKaG6MyHimXurKUiYkoUfh0mczeq9cf4j6akHJhWnyIweFGK6PZr2mBk0P65CdqKKVgo4EnGsSZ9Cpco7LejVX1dkCQEiiebYKRlJzq0Pe4jaE42effP5d-Uzb3ddfm8JneBNt3u405-Xi829pjd_kLouN_fdctuNGppmzUytJtuOKrO3A47ivC3YWv8-psbdcUKM3e1RuKlGTj-vuXb41bESe7mWW2rphhrwgIG9VZNqrqwjN7gfcWdG6uL33BKLoE-caUM1l1wL1s0lbk2VwgFz5jas63RENQTvTGFgkUDft7sJpOVuMZ7-o4cKfQmuE6i4uoiCWB3xtjrZRl6LSTUoc2NaXEZlOiIiOVL61IMuOVFkkqvTAZea3vw0FVV_4hMGezNCxQp9PkrkJTEbeUyIlQ-ygyhUsC4P0k5q7DOKdSG5u8RWcWOQ1uPgxuAC8H-k8tuscfKY96mci7VX6eC7T2Ik1HegDPh2acFPrpYipf74iGys0ncRYF8KCVpeFVEnVrrUMdgGgk4i99yEfL-WS4evQvTM_gcLY6XeSL-fLNY7guKECHqtvER3Cw_bzzT1DD2tqnzRr6ASaDHhI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3tBAASMhcXKb2E6cHFfbXbpQVgiK1FtkO45YsUoquntoT5w48xv5JczkBQtCSHBMbCeOZ8aemcx8A_AslWVaSJtxFYeKq0hpbozKeKRc6spSJiaiROHX8-TwvXp5Ep_8lMXf4kMMDjeSjGa_JgE_Lcr9H6ChlIGN9p1oAGfSy3BFJWFKfH3wdgCQEsidbX6RlJzK0PewjaHY3xy_eSz9pmtuqq7N2TO9AaafdRty8nFvvbJ77uIXQMf_-aybcL1TTNmo5aRbcMlXt-HauK8Hdwe-zKoPC7ugMGn2rl5SnCQb198-f22cikjqhsZsUTHDXhAMNiqzbFTVhWf2HO8d0am5uPAFo9gSHDemjMmqg-1lk7Yez_IcR-EzpuZsRX0IyIne2OKAoll_F46nk-PxIe-qOHCn0JbhOouLqIglQd8bY62UZei0k1KHNjWlxGZTohojlS-tSDLjlRZJKr0wGfms78FWVVd-B5izWRoWqNFpclahoYgbSuREqH0UmcIlAfCehrnrEM6p0MYyb7GZRU6Lmw-LG8Dzof9pi-3xx567PUvknYyf5QJtvUjTgR7A06EZiUK_XEzl6zX1oWLzSZxFAdxvWWl4lUTNWutQByAahvjLHPLRfDYZrh78y6AncPXNwTQ_ms1fPYRtQdE5VNom3oWt1ae1f4Tq1co-biToO9DYHMo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibiting+Solvent+Co-Intercalation+in+a+Graphite+Anode+by+a+Localized+High-Concentration+Electrolyte+in+Fast-Charging+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jiang%2C+Li-Li&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu-Xing&rft.au=Cai%2C+Wenlong&rft.date=2021-02-15&rft.eissn=1521-3773&rft.volume=60&rft.issue=7&rft.spage=3402&rft_id=info:doi/10.1002%2Fanie.202009738&rft_id=info%3Apmid%2F33107707&rft.externalDocID=33107707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |