Inhibiting Solvent Co‐Intercalation in a Graphite Anode by a Localized High‐Concentration Electrolyte in Fast‐Charging Batteries

Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in di...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 7; pp. 3402 - 3406
Main Authors Jiang, Li‐Li, Yan, Chong, Yao, Yu‐Xing, Cai, Wenlong, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.02.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li+ intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g−1 at 0.2 C and 220 mAh g−1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance. The unique solvation structure in a localized high‐concentration electrolyte can suppress co‐intercalation of ether solvent into the graphite interlayers and render fast‐charging of practical lithium‐ion batteries.
AbstractList Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high-concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2-trifluoroethyl) ether as the diluent, enables fast-charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co-intercalation into graphite and achieve highly reversible Li+ intercalation/de-intercalation. The graphite | Li cells exhibit fast-charging potential (340 mAh g-1 at 0.2 C and 220 mAh g-1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low-temperature performance.Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high-concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2-trifluoroethyl) ether as the diluent, enables fast-charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co-intercalation into graphite and achieve highly reversible Li+ intercalation/de-intercalation. The graphite | Li cells exhibit fast-charging potential (340 mAh g-1 at 0.2 C and 220 mAh g-1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low-temperature performance.
Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high-concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2-trifluoroethyl) ether as the diluent, enables fast-charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co-intercalation into graphite and achieve highly reversible Li intercalation/de-intercalation. The graphite | Li cells exhibit fast-charging potential (340 mAh g at 0.2 C and 220 mAh g at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low-temperature performance.
Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li+ intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g−1 at 0.2 C and 220 mAh g−1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance. The unique solvation structure in a localized high‐concentration electrolyte can suppress co‐intercalation of ether solvent into the graphite interlayers and render fast‐charging of practical lithium‐ion batteries.
Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li+ intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g−1 at 0.2 C and 220 mAh g−1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance.
Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li + intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g −1 at 0.2 C and 220 mAh g −1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance.
Author Huang, Jia‐Qi
Jiang, Li‐Li
Cai, Wenlong
Yao, Yu‐Xing
Zhang, Qiang
Yan, Chong
Author_xml – sequence: 1
  givenname: Li‐Li
  surname: Jiang
  fullname: Jiang, Li‐Li
  organization: Jilin Institute of Chemical Technology
– sequence: 2
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Tsinghua University
– sequence: 3
  givenname: Yu‐Xing
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 4
  givenname: Wenlong
  surname: Cai
  fullname: Cai, Wenlong
  organization: Tsinghua University
– sequence: 5
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33107707$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1v2zAQhokiRfPRrhkDAVm6yOWXRGl0DDsxYLRDsxMUdbIZ0KRL0gncqVPn_Mb8ktJ10gIBik4kyOd573B3io6cd4DQOcEjgjH9pJyBEcUU41aw5g06IRUlJROCHeU7Z6wUTUWO0WmMd5lvGly_Q8eMESwEFifo59ytTGeSccviq7f34FIx8U8_HucuQdDKqmS8K4wrVHEd1GZlEhRj53soul1-W_jMmO_QFzdmucrexDudQ8LBm1rQKXi7y1bOmKmY9sxKheW-4pVKuYqB-B69HZSN8OH5PEO3s-nt5KZcfLmeT8aLUnNRN6Voq570FeO0pkp1HWMD1kIzJnDXqIHlbzVwRhiHoaN1q4ALWjcMqGpxRdkZ-niI3QT_bQsxybWJGqxVDvw2SsorXld11ZKMXr5C7_w2uNxcphpBBOa0zdTFM7Xt1tDLTTBrFXbyZcAZ4AdABx9jgEFqk37PJo_IWEmw3O9R7vco_-wxa6NX2kvyP4X2IDwYC7v_0HL8eT796_4CJcCzFA
CitedBy_id crossref_primary_10_1021_acsami_3c04127
crossref_primary_10_1016_j_ensm_2024_103611
crossref_primary_10_1021_acsaem_2c02194
crossref_primary_10_1002_ange_202416092
crossref_primary_10_1002_anie_202110501
crossref_primary_10_1016_j_jpowsour_2024_234780
crossref_primary_10_1002_ange_202318663
crossref_primary_10_1002_aenm_202202660
crossref_primary_10_1002_anie_202100494
crossref_primary_10_1002_ente_202201321
crossref_primary_10_1002_adma_202420428
crossref_primary_10_1021_acsnano_4c13999
crossref_primary_10_1002_anie_202300384
crossref_primary_10_1038_s41467_023_37033_7
crossref_primary_10_1021_acsenergylett_2c02903
crossref_primary_10_1039_D2EE01489K
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1007_s11426_023_1705_9
crossref_primary_10_1002_advs_202206648
crossref_primary_10_1021_acsenergylett_1c02489
crossref_primary_10_1021_acs_jpclett_4c01613
crossref_primary_10_1021_acsenergylett_2c02590
crossref_primary_10_1007_s40820_022_00932_3
crossref_primary_10_1039_D2NR03418B
crossref_primary_10_1016_j_ensm_2022_06_047
crossref_primary_10_1016_j_esci_2023_100170
crossref_primary_10_1002_batt_202100127
crossref_primary_10_1002_aenm_202300626
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1039_D3QI01792C
crossref_primary_10_1002_eem2_12602
crossref_primary_10_1016_j_ensm_2023_102809
crossref_primary_10_1002_anie_202306236
crossref_primary_10_1016_j_jechem_2023_01_056
crossref_primary_10_1002_ange_202205045
crossref_primary_10_1021_acsenergylett_2c02240
crossref_primary_10_1615_AnnualRevHeatTransfer_2023049032
crossref_primary_10_1016_j_est_2024_111005
crossref_primary_10_1021_acsnano_4c07986
crossref_primary_10_1016_j_jechem_2024_10_014
crossref_primary_10_1039_D4RA08490J
crossref_primary_10_1002_ange_202103052
crossref_primary_10_1002_adma_202206448
crossref_primary_10_1002_ange_202403432
crossref_primary_10_1002_bte2_20230018
crossref_primary_10_1016_j_electacta_2024_144718
crossref_primary_10_1016_j_jpowsour_2022_231962
crossref_primary_10_1002_elan_202400318
crossref_primary_10_1002_adma_202311327
crossref_primary_10_1016_j_jechem_2022_12_060
crossref_primary_10_1002_ange_202414201
crossref_primary_10_1002_adfm_202402077
crossref_primary_10_1007_s10008_024_05953_z
crossref_primary_10_1016_j_mrl_2025_200177
crossref_primary_10_1002_advs_202201893
crossref_primary_10_1016_j_carbon_2022_11_077
crossref_primary_10_1039_D3EE02213G
crossref_primary_10_1016_j_xcrp_2024_101931
crossref_primary_10_1039_D4EB00042K
crossref_primary_10_1002_cey2_383
crossref_primary_10_1016_j_est_2024_114402
crossref_primary_10_1016_j_nantod_2022_101478
crossref_primary_10_1016_j_jallcom_2023_170200
crossref_primary_10_1039_D2TA07696A
crossref_primary_10_1002_ange_202112550
crossref_primary_10_1002_anie_202415491
crossref_primary_10_1002_adma_202211461
crossref_primary_10_1002_smll_202410167
crossref_primary_10_1016_j_cej_2022_141097
crossref_primary_10_1016_j_ijhydene_2021_08_203
crossref_primary_10_1002_ange_202219310
crossref_primary_10_1002_adma_202206020
crossref_primary_10_1002_anie_202103052
crossref_primary_10_1016_j_cej_2023_141305
crossref_primary_10_1021_acsenergylett_4c01999
crossref_primary_10_1002_smsc_202200015
crossref_primary_10_1021_acsaem_1c04084
crossref_primary_10_1039_D4EE00119B
crossref_primary_10_34133_energymatadv_0113
crossref_primary_10_1016_j_cej_2024_150095
crossref_primary_10_1002_advs_202305414
crossref_primary_10_1021_acs_jpcc_2c01192
crossref_primary_10_1016_j_jpowsour_2024_234611
crossref_primary_10_3390_en18040974
crossref_primary_10_1002_bte2_20240106
crossref_primary_10_1016_j_cej_2024_152602
crossref_primary_10_1002_anie_202213416
crossref_primary_10_1002_anie_202112550
crossref_primary_10_1002_celc_202200223
crossref_primary_10_1002_ange_202415491
crossref_primary_10_1002_idm2_12105
crossref_primary_10_1039_D4MH01287A
crossref_primary_10_1149_1945_7111_ace65c
crossref_primary_10_1002_smll_202404879
crossref_primary_10_1021_acs_nanolett_3c00729
crossref_primary_10_1016_j_jechem_2023_02_044
crossref_primary_10_1021_acs_nanolett_4c04743
crossref_primary_10_1021_acs_nanolett_2c04898
crossref_primary_10_1016_j_jelechem_2023_117241
crossref_primary_10_1039_D2CC00188H
crossref_primary_10_1002_adma_202100827
crossref_primary_10_1002_aenm_202401526
crossref_primary_10_1002_adma_202409838
crossref_primary_10_1016_j_ensm_2024_103998
crossref_primary_10_1002_agt2_153
crossref_primary_10_1016_j_cej_2023_148047
crossref_primary_10_1021_acsami_1c16827
crossref_primary_10_3390_batteries9030155
crossref_primary_10_1021_acsmaterialslett_2c00679
crossref_primary_10_1016_j_nanoen_2021_106150
crossref_primary_10_1021_acs_nanolett_4c02330
crossref_primary_10_1002_adsu_202300285
crossref_primary_10_1002_aenm_202403188
crossref_primary_10_1002_eom2_12212
crossref_primary_10_1002_smll_202405731
crossref_primary_10_1002_adfm_202401515
crossref_primary_10_1002_ange_202110501
crossref_primary_10_1016_j_jpowsour_2024_235006
crossref_primary_10_1002_smll_202301737
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1039_D4EB00011K
crossref_primary_10_1002_anie_202416092
crossref_primary_10_1016_j_ensm_2024_103627
crossref_primary_10_1016_j_est_2023_109889
crossref_primary_10_1016_j_nanoen_2024_109545
crossref_primary_10_1007_s40820_024_01419_z
crossref_primary_10_1038_s41586_024_07045_4
crossref_primary_10_1016_j_cclet_2022_01_015
crossref_primary_10_1002_smll_202205315
crossref_primary_10_1016_j_ensm_2024_103741
crossref_primary_10_1002_batt_202400031
crossref_primary_10_1002_batt_202400034
crossref_primary_10_1007_s40843_022_2092_0
crossref_primary_10_1039_D3EE02803H
crossref_primary_10_1002_advs_202411826
crossref_primary_10_1016_j_est_2025_115426
crossref_primary_10_1039_D4TA02153C
crossref_primary_10_1002_smm2_1185
crossref_primary_10_1149_1945_7111_ac8a1e
crossref_primary_10_1002_ange_202100494
crossref_primary_10_1016_j_jelechem_2024_118176
crossref_primary_10_1016_j_xcrp_2021_100708
crossref_primary_10_1021_acs_jpclett_4c03022
crossref_primary_10_1002_ange_202213416
crossref_primary_10_1007_s11426_023_1866_y
crossref_primary_10_1021_acsenergylett_3c01079
crossref_primary_10_1002_adfm_202112598
crossref_primary_10_1002_aenm_202301452
crossref_primary_10_1021_acsenergylett_2c01408
crossref_primary_10_1007_s40820_023_01183_6
crossref_primary_10_1021_acssuschemeng_2c03938
crossref_primary_10_1002_anie_202414201
crossref_primary_10_1021_acsaem_4c00594
crossref_primary_10_1016_j_nanoen_2023_109088
crossref_primary_10_1016_j_ensm_2024_103698
crossref_primary_10_1016_j_ensm_2021_10_032
crossref_primary_10_1002_celc_202400444
crossref_primary_10_1021_acsaem_0c02961
crossref_primary_10_1002_adfm_202212499
crossref_primary_10_1016_j_ensm_2024_103570
crossref_primary_10_1021_acsami_3c00165
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1002_admt_202400907
crossref_primary_10_1002_inf2_12612
crossref_primary_10_1016_j_cej_2022_135101
crossref_primary_10_1021_acsami_3c17844
crossref_primary_10_1002_anie_202205045
crossref_primary_10_1002_adfm_202312413
crossref_primary_10_1016_j_ensm_2023_102996
crossref_primary_10_1038_s41560_023_01339_z
crossref_primary_10_1002_inf2_12293
crossref_primary_10_1002_adfm_202403682
crossref_primary_10_1002_admi_202200011
crossref_primary_10_1021_acs_nanolett_3c02013
crossref_primary_10_1002_aesr_202100140
crossref_primary_10_1038_s41467_023_41778_6
crossref_primary_10_1002_advs_202302966
crossref_primary_10_1021_acscentsci_2c00791
crossref_primary_10_1021_acs_langmuir_4c03435
crossref_primary_10_20517_energymater_2023_28
crossref_primary_10_1021_acs_nanolett_4c00501
crossref_primary_10_1088_1742_6596_2473_1_012018
crossref_primary_10_1007_s12598_023_02537_0
crossref_primary_10_1039_D2NR07273D
crossref_primary_10_1039_D4TA06896C
crossref_primary_10_1016_j_jiec_2023_07_004
crossref_primary_10_1002_adma_202103178
crossref_primary_10_1021_jacs_3c08313
crossref_primary_10_1002_bte2_20230064
crossref_primary_10_1021_acsnano_3c04790
crossref_primary_10_1002_aenm_202301354
crossref_primary_10_1002_adfm_202409097
crossref_primary_10_1093_nsr_nwae359
crossref_primary_10_1016_j_nxener_2024_100115
crossref_primary_10_1021_acs_jpclett_3c01453
crossref_primary_10_1021_acs_accounts_1c00420
crossref_primary_10_1016_j_scib_2022_07_002
crossref_primary_10_1016_j_jechem_2022_08_047
crossref_primary_10_3389_fenrg_2022_837071
crossref_primary_10_1002_anie_202318663
crossref_primary_10_1021_acsaem_1c02115
crossref_primary_10_1002_adma_202206963
crossref_primary_10_6023_A22070314
crossref_primary_10_1039_D2EE03626F
crossref_primary_10_1039_D4CC04026K
crossref_primary_10_1039_D3CS00151B
crossref_primary_10_1016_j_cjche_2021_08_020
crossref_primary_10_1016_j_elecom_2023_107606
crossref_primary_10_1039_D2SC05723A
crossref_primary_10_1557_s43579_022_00277_3
crossref_primary_10_1016_j_cej_2025_161571
crossref_primary_10_1038_s41467_022_29761_z
crossref_primary_10_1038_s41467_024_46186_y
crossref_primary_10_1002_anie_202416610
crossref_primary_10_1021_jacs_3c07804
crossref_primary_10_1016_j_ensm_2021_11_046
crossref_primary_10_1002_anie_202219310
crossref_primary_10_1021_acsenergylett_1c02425
crossref_primary_10_1016_j_cclet_2023_109146
crossref_primary_10_1016_j_jechem_2024_01_009
crossref_primary_10_1021_acsenergylett_4c00859
crossref_primary_10_1002_ange_202102593
crossref_primary_10_1002_anie_202403432
crossref_primary_10_1016_j_mtener_2023_101315
crossref_primary_10_1016_j_ensm_2022_04_036
crossref_primary_10_1021_acsnano_2c10819
crossref_primary_10_1038_s41560_023_01387_5
crossref_primary_10_1002_smll_202304060
crossref_primary_10_1021_acsmaterialslett_2c00810
crossref_primary_10_1016_j_jechem_2022_12_041
crossref_primary_10_1039_D3LF00259D
crossref_primary_10_1016_j_cej_2022_140290
crossref_primary_10_1021_acsaem_3c01034
crossref_primary_10_26599_CF_2024_9200017
crossref_primary_10_1021_jacs_2c08396
crossref_primary_10_1002_anie_202203693
crossref_primary_10_1016_j_jechem_2022_12_049
crossref_primary_10_1039_D3GC01802D
crossref_primary_10_1021_acsnano_4c06997
crossref_primary_10_1016_j_jechem_2022_05_010
crossref_primary_10_1002_ange_202303888
crossref_primary_10_1002_wcms_1621
crossref_primary_10_1007_s40843_022_2084_x
crossref_primary_10_3390_batteries10120448
crossref_primary_10_1002_anie_202102593
crossref_primary_10_1016_j_inoche_2022_109753
crossref_primary_10_1039_D4CS00826J
crossref_primary_10_1002_ange_202307208
crossref_primary_10_1039_D1TA10618J
crossref_primary_10_1016_j_jelechem_2023_117758
crossref_primary_10_1016_j_nanoen_2022_107265
crossref_primary_10_1002_ange_202306236
crossref_primary_10_1016_j_matre_2024_100311
crossref_primary_10_1021_acsnano_3c04907
crossref_primary_10_1016_j_ensm_2021_05_037
crossref_primary_10_1002_anie_202411029
crossref_primary_10_1016_j_ensm_2022_06_003
crossref_primary_10_1007_s12274_022_5090_z
crossref_primary_10_1016_j_jpowsour_2022_232545
crossref_primary_10_1002_adfm_202303457
crossref_primary_10_1039_D3CC00033H
crossref_primary_10_1002_cplu_202200155
crossref_primary_10_1016_j_jechem_2024_02_059
crossref_primary_10_1021_acsaem_2c01285
crossref_primary_10_1002_ange_202300384
crossref_primary_10_1002_adma_202210115
crossref_primary_10_1002_ange_202416610
crossref_primary_10_1002_aenm_202303336
crossref_primary_10_1016_j_esci_2023_100094
crossref_primary_10_1007_s41918_022_00178_y
crossref_primary_10_1016_j_nanoen_2022_107014
crossref_primary_10_1007_s11426_023_1638_0
crossref_primary_10_1002_aenm_202003752
crossref_primary_10_1039_D3CP00228D
crossref_primary_10_1002_anie_202307208
crossref_primary_10_1039_D4CC00110A
crossref_primary_10_1039_D4SC05464D
crossref_primary_10_1002_advs_202204059
crossref_primary_10_1016_j_electacta_2023_143189
crossref_primary_10_1002_ange_202406596
crossref_primary_10_1002_idm2_12077
crossref_primary_10_1016_j_jpowsour_2023_232975
crossref_primary_10_1016_j_jechem_2023_10_050
crossref_primary_10_1002_smll_202301574
crossref_primary_10_1016_j_nanoen_2023_108894
crossref_primary_10_1021_acsenergylett_4c00481
crossref_primary_10_1016_j_carbon_2023_118247
crossref_primary_10_1016_j_jechem_2021_10_003
crossref_primary_10_1021_acsami_2c09338
crossref_primary_10_1002_ange_202203693
crossref_primary_10_1126_science_abi6643
crossref_primary_10_1002_adfm_202406357
crossref_primary_10_1016_j_xcrp_2021_100668
crossref_primary_10_1002_ange_202208345
crossref_primary_10_1002_anie_202406596
crossref_primary_10_1016_j_ensm_2023_102995
crossref_primary_10_1039_D2YA00015F
crossref_primary_10_1007_s40820_022_00896_4
crossref_primary_10_1021_acsnano_3c02948
crossref_primary_10_1016_j_jechem_2021_05_040
crossref_primary_10_1063_5_0130338
crossref_primary_10_1002_anie_202208345
crossref_primary_10_1002_ange_202411029
crossref_primary_10_1021_acsami_2c17628
crossref_primary_10_1002_batt_202200368
crossref_primary_10_1002_smll_202308995
Cites_doi 10.1016/j.etran.2019.100011
10.1038/ncomms7362
10.1021/acsaem.8b00355
10.1016/j.jpowsour.2017.11.015
10.1016/j.jpowsour.2019.226942
10.1016/j.trechm.2020.01.011
10.1002/smll.201805389
10.1021/jacs.8b04612
10.1021/acsenergylett.0c00643
10.1016/j.ensm.2019.07.026
10.1039/C9CS00728H
10.1038/s41467-019-09274-y
10.1016/j.materresbull.2017.07.018
10.1002/adfm.201909887
10.1038/s41560-019-0336-z
10.1016/j.jechem.2020.02.052
10.1021/cr030203g
10.1021/acsenergylett.7b01213
10.1007/s10800-019-01312-3
10.1002/aenm.201903843
10.1021/acssuschemeng.0c01661
10.1002/adma.201706102
10.1038/s41560-019-0405-3
10.1038/s41557-019-0304-z
10.1016/j.etran.2019.100033
10.1002/adma.200901710
10.1016/j.eng.2018.10.008
10.1002/cssc.201500284
10.1016/j.joule.2019.05.006
10.1016/j.jpowsour.2019.04.113
10.1021/acs.accounts.7b00474
10.1021/ja412807w
10.1002/aenm.201902618
10.1016/j.chempr.2017.10.017
10.1002/adma.201800561
10.1021/acsenergylett.8b00935
10.1002/aenm.202000368
10.1016/j.chempr.2018.05.002
10.1002/aenm.201904152
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202009738
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3406
ExternalDocumentID 33107707
10_1002_anie_202009738
ANIE202009738
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51702117, 21776019, 21825501, and U1801257
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500 and 2016YFA0200102
– fundername: National Natural Science Foundation of China
  grantid: 51702117, 21776019, 21825501, and U1801257
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500 and 2016YFA0200102
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4768-795d1d534262aabb33f0c7c3370b8af395daf43134efb269ae472683e2a90523
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:38:27 EDT 2025
Fri Jul 25 10:16:02 EDT 2025
Wed Feb 19 02:29:05 EST 2025
Tue Jul 01 01:17:50 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Wed Jan 22 16:58:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords lithium ion batteries
fast-charging
solvent co-intercalation
graphite anodes
localized high-concentration electrolyte
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4768-795d1d534262aabb33f0c7c3370b8af395daf43134efb269ae472683e2a90523
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 33107707
PQID 2487170429
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2454656591
proquest_journals_2487170429
pubmed_primary_33107707
crossref_citationtrail_10_1002_anie_202009738
crossref_primary_10_1002_anie_202009738
wiley_primary_10_1002_anie_202009738_ANIE202009738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 15, 2021
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: February 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2019; 4
2015; 6
2004; 104
2019; 3
2009; 21
2018; 140
2019; 2
2019; 429
2019; 11
2019; 10
2019; 1
2019; 15
2020; 10
2015; 8
2014; 136
2018; 373
2017; 95
2020; 8
2020; 5
2018; 3
2020; 2
2018; 4
2020; 30
2018; 1
2020; 49
2019; 49
2018; 30
2020; 24
2018; 51
2019; 437
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_40_1
e_1_2_2_41_1
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_43_1
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_38_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_11_1
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_31_2
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_35_1
e_1_2_2_36_1
References_xml – volume: 3
  start-page: 2059
  year: 2018
  end-page: 2067
  publication-title: ACS Energy Lett.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 8664
  year: 2020
  end-page: 8674
  publication-title: ACS Sustainable Chem. Eng.
– volume: 1
  start-page: 2664
  year: 2018
  end-page: 2670
  publication-title: ACS Appl. Energy Mater.
– volume: 136
  start-page: 5039
  year: 2014
  end-page: 5046
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 639
  year: 2019
  end-page: 646
  publication-title: J. Appl. Electrochem.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4417
  publication-title: Chem. Rev.
– volume: 3
  start-page: 1662
  year: 2019
  end-page: 1676
  publication-title: Joule
– volume: 4
  start-page: 269
  year: 2019
  end-page: 280
  publication-title: Nat. Energy
– volume: 1
  year: 2019
  publication-title: eTransportation
– volume: 8
  start-page: 2154
  year: 2015
  end-page: 2175
  publication-title: ChemSusChem
– volume: 4
  start-page: 1877
  year: 2018
  end-page: 1892
  publication-title: Chem
– volume: 2
  year: 2019
  publication-title: eTransportation
– volume: 140
  start-page: 9921
  year: 2018
  end-page: 9933
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 315
  year: 2018
  end-page: 321
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 174
  year: 2018
  end-page: 185
  publication-title: Chem
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  publication-title: Nat. Energy
– volume: 373
  start-page: 110
  year: 2018
  end-page: 118
  publication-title: J. Power Sources
– volume: 24
  start-page: 75
  year: 2020
  end-page: 84
  publication-title: Energy Storage Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 2
  start-page: 354
  year: 2020
  end-page: 366
  publication-title: Trends Chem.
– volume: 5
  start-page: 1438
  year: 2020
  end-page: 1447
  publication-title: ACS Energy Lett.
– volume: 437
  year: 2019
  publication-title: J. Power Sources
– volume: 10
  start-page: 1474
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 95
  start-page: 61
  year: 2017
  end-page: 70
  publication-title: Mater. Res. Bull.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 429
  start-page: 67
  year: 2019
  end-page: 74
  publication-title: J. Power Sources
– volume: 21
  start-page: 4593
  year: 2009
  end-page: 4607
  publication-title: Adv. Mater.
– volume: 11
  start-page: 789
  year: 2019
  end-page: 796
  publication-title: Nat. Chem.
– volume: 49
  start-page: 335
  year: 2020
  end-page: 338
  publication-title: J. Energy Chem.
– volume: 49
  start-page: 3806
  year: 2020
  end-page: 3833
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 831
  year: 2018
  end-page: 847
  publication-title: Engineering
– volume: 51
  start-page: 282
  year: 2018
  end-page: 289
  publication-title: Acc. Chem. Res.
– ident: e_1_2_2_46_1
– ident: e_1_2_2_9_2
  doi: 10.1016/j.etran.2019.100011
– ident: e_1_2_2_1_1
– ident: e_1_2_2_30_2
  doi: 10.1038/ncomms7362
– ident: e_1_2_2_45_1
  doi: 10.1021/acsaem.8b00355
– ident: e_1_2_2_26_2
  doi: 10.1016/j.jpowsour.2017.11.015
– ident: e_1_2_2_29_2
  doi: 10.1016/j.jpowsour.2019.226942
– ident: e_1_2_2_12_2
  doi: 10.1016/j.trechm.2020.01.011
– ident: e_1_2_2_10_2
  doi: 10.1002/smll.201805389
– ident: e_1_2_2_44_1
  doi: 10.1021/jacs.8b04612
– ident: e_1_2_2_48_2
  doi: 10.1021/acsenergylett.0c00643
– ident: e_1_2_2_17_2
  doi: 10.1016/j.ensm.2019.07.026
– ident: e_1_2_2_7_2
  doi: 10.1039/C9CS00728H
– ident: e_1_2_2_3_2
  doi: 10.1038/s41467-019-09274-y
– ident: e_1_2_2_40_1
  doi: 10.1016/j.materresbull.2017.07.018
– ident: e_1_2_2_20_2
  doi: 10.1002/adfm.201909887
– ident: e_1_2_2_31_2
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_2_23_1
– ident: e_1_2_2_16_2
  doi: 10.1016/j.jechem.2020.02.052
– ident: e_1_2_2_24_2
  doi: 10.1021/cr030203g
– ident: e_1_2_2_41_1
  doi: 10.1021/acsenergylett.7b01213
– ident: e_1_2_2_21_1
  doi: 10.1007/s10800-019-01312-3
– ident: e_1_2_2_22_1
  doi: 10.1002/aenm.201903843
– ident: e_1_2_2_42_1
  doi: 10.1021/acssuschemeng.0c01661
– ident: e_1_2_2_35_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_2_8_2
  doi: 10.1038/s41560-019-0405-3
– ident: e_1_2_2_19_2
  doi: 10.1038/s41557-019-0304-z
– ident: e_1_2_2_18_1
– ident: e_1_2_2_28_1
– ident: e_1_2_2_5_2
  doi: 10.1016/j.etran.2019.100033
– ident: e_1_2_2_11_1
– ident: e_1_2_2_25_2
  doi: 10.1002/adma.200901710
– ident: e_1_2_2_4_2
  doi: 10.1016/j.eng.2018.10.008
– ident: e_1_2_2_36_1
– ident: e_1_2_2_13_2
  doi: 10.1002/cssc.201500284
– ident: e_1_2_2_38_2
  doi: 10.1016/j.joule.2019.05.006
– ident: e_1_2_2_15_2
  doi: 10.1016/j.jpowsour.2019.04.113
– ident: e_1_2_2_27_2
  doi: 10.1021/acs.accounts.7b00474
– ident: e_1_2_2_14_1
– ident: e_1_2_2_32_1
  doi: 10.1021/ja412807w
– ident: e_1_2_2_34_1
  doi: 10.1002/aenm.201902618
– ident: e_1_2_2_43_1
  doi: 10.1016/j.chempr.2017.10.017
– ident: e_1_2_2_2_2
  doi: 10.1002/adma.201800561
– ident: e_1_2_2_33_1
  doi: 10.1021/acsenergylett.8b00935
– ident: e_1_2_2_39_1
  doi: 10.1002/aenm.202000368
– ident: e_1_2_2_6_1
– ident: e_1_2_2_37_2
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_2_47_2
  doi: 10.1002/aenm.201904152
SSID ssj0028806
Score 2.7022116
Snippet Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low...
Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3402
SubjectTerms Anions
Charging
Electrolytes
Electrolytic cells
fast-charging
Graphite
graphite anodes
Intercalation
Lithium
Lithium-ion batteries
localized high-concentration electrolyte
Low temperature
Solid electrolytes
solvent co-intercalation
Solvents
Title Inhibiting Solvent Co‐Intercalation in a Graphite Anode by a Localized High‐Concentration Electrolyte in Fast‐Charging Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202009738
https://www.ncbi.nlm.nih.gov/pubmed/33107707
https://www.proquest.com/docview/2487170429
https://www.proquest.com/docview/2454656591
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UCLeWRPpArIXFyGz8SJ8fVapcW0R6gSL1FtuOIFasEdXcP7amnnvmN_JLOxEnKghASHBPbiWOP7W8mM98Q8iaTVVZKmzOVxIoprjQzRuWMK5e5qpKp4RgofHaennxW7y-Ty5-i-AM_xGBww5XR7te4wI1dHD-QhmIENuh3oiWcwWhfdNhCVPRx4I8SIJwhvEhKhlnoe9bGWByvN18_lX6DmuvItT16pk-J6TsdPE6-Hq2W9sjd_MLn-D9ftUWedLiUjoIgbZNHvn5GNsd9Orgdcndaf5nZGXpJ00_NHN0k6bj5cfu9tSnCTLdTTGc1NfQdsmADlqWjuik9tddw7wMemrMbX1J0LYF2YwyYrDvWXjoJ6Xjm19AKnjE1iyXWQR4nfGOgAQWt_jm5mE4uxiesS-LAnAJVhuk8KXmZSGS-N8ZaKavYaSeljm1mKgnFpgIUI5WvrEhz45UWaSa9MDmarF-Qjbqp_StCnc2zuARAp9FWBXoi7CfciVh7zk3p0oiwfg4L1xGcY56NeRGomUWBg1sMgxuRt0P9b4Ha448193uRKLolvigEqHpc43kekcOhGCYF_7iY2jcrrIO55tMk5xF5GURpeJUEYK11rCMiWoH4Sx-K0fnpZLja_ZdGe-SxQI8cTGeT7JON5dXKHwCkWtrX7bK5B5cUGfc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BclguvB-BBYyExMm7ie3EybGqWlro9gBF4hbZjqOtqBLEtofdEyfO_EZ-CTN5oYIQEhwTzySOPbZnJjPfALxIZZkW0mZcxaHiKlKaG6MyHimXurKUiYkoUfh0mczeq9cf4j6akHJhWnyIweFGK6PZr2mBk0P65CdqKKVgo4EnGsSZ9Cpco7LejVX1dkCQEiiebYKRlJzq0Pe4jaE42effP5d-Uzb3ddfm8JneBNt3u405-Xi829pjd_kLouN_fdctuNGppmzUytJtuOKrO3A47ivC3YWv8-psbdcUKM3e1RuKlGTj-vuXb41bESe7mWW2rphhrwgIG9VZNqrqwjN7gfcWdG6uL33BKLoE-caUM1l1wL1s0lbk2VwgFz5jas63RENQTvTGFgkUDft7sJpOVuMZ7-o4cKfQmuE6i4uoiCWB3xtjrZRl6LSTUoc2NaXEZlOiIiOVL61IMuOVFkkqvTAZea3vw0FVV_4hMGezNCxQp9PkrkJTEbeUyIlQ-ygyhUsC4P0k5q7DOKdSG5u8RWcWOQ1uPgxuAC8H-k8tuscfKY96mci7VX6eC7T2Ik1HegDPh2acFPrpYipf74iGys0ncRYF8KCVpeFVEnVrrUMdgGgk4i99yEfL-WS4evQvTM_gcLY6XeSL-fLNY7guKECHqtvER3Cw_bzzT1DD2tqnzRr6ASaDHhI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3tBAASMhcXKb2E6cHFfbXbpQVgiK1FtkO45YsUoquntoT5w48xv5JczkBQtCSHBMbCeOZ8aemcx8A_AslWVaSJtxFYeKq0hpbozKeKRc6spSJiaiROHX8-TwvXp5Ep_8lMXf4kMMDjeSjGa_JgE_Lcr9H6ChlIGN9p1oAGfSy3BFJWFKfH3wdgCQEsidbX6RlJzK0PewjaHY3xy_eSz9pmtuqq7N2TO9AaafdRty8nFvvbJ77uIXQMf_-aybcL1TTNmo5aRbcMlXt-HauK8Hdwe-zKoPC7ugMGn2rl5SnCQb198-f22cikjqhsZsUTHDXhAMNiqzbFTVhWf2HO8d0am5uPAFo9gSHDemjMmqg-1lk7Yez_IcR-EzpuZsRX0IyIne2OKAoll_F46nk-PxIe-qOHCn0JbhOouLqIglQd8bY62UZei0k1KHNjWlxGZTohojlS-tSDLjlRZJKr0wGfms78FWVVd-B5izWRoWqNFpclahoYgbSuREqH0UmcIlAfCehrnrEM6p0MYyb7GZRU6Lmw-LG8Dzof9pi-3xx567PUvknYyf5QJtvUjTgR7A06EZiUK_XEzl6zX1oWLzSZxFAdxvWWl4lUTNWutQByAahvjLHPLRfDYZrh78y6AncPXNwTQ_ms1fPYRtQdE5VNom3oWt1ae1f4Tq1co-biToO9DYHMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibiting+Solvent+Co-Intercalation+in+a+Graphite+Anode+by+a+Localized+High-Concentration+Electrolyte+in+Fast-Charging+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jiang%2C+Li-Li&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu-Xing&rft.au=Cai%2C+Wenlong&rft.date=2021-02-15&rft.eissn=1521-3773&rft.volume=60&rft.issue=7&rft.spage=3402&rft_id=info:doi/10.1002%2Fanie.202009738&rft_id=info%3Apmid%2F33107707&rft.externalDocID=33107707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon