Penalized regression calibration: A method for the prediction of survival outcomes using complex longitudinal and high‐dimensional data

Longitudinal and high‐dimensional measurements have become increasingly common in biomedical research. However, methods to predict survival outcomes using covariates that are both longitudinal and high‐dimensional are currently missing. In this article, we propose penalized regression calibration (P...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 40; no. 27; pp. 6178 - 6196
Main Authors Signorelli, Mirko, Spitali, Pietro, Szigyarto, Cristina Al‐Khalili, Tsonaka, Roula
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.11.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Longitudinal and high‐dimensional measurements have become increasingly common in biomedical research. However, methods to predict survival outcomes using covariates that are both longitudinal and high‐dimensional are currently missing. In this article, we propose penalized regression calibration (PRC), a method that can be employed to predict survival in such situations. PRC comprises three modeling steps: First, the trajectories described by the longitudinal predictors are flexibly modeled through the specification of multivariate mixed effects models. Second, subject‐specific summaries of the longitudinal trajectories are derived from the fitted mixed models. Third, the time to event outcome is predicted using the subject‐specific summaries as covariates in a penalized Cox model. To ensure a proper internal validation of the fitted PRC models, we furthermore develop a cluster bootstrap optimism correction procedure that allows to correct for the optimistic bias of apparent measures of predictiveness. PRC and the CBOCP are implemented in the R package pencal, available from CRAN. After studying the behavior of PRC via simulations, we conclude by illustrating an application of PRC to data from an observational study that involved patients affected by Duchenne muscular dystrophy, where the goal is predict time to loss of ambulation using longitudinal blood biomarkers.
Bibliography:Funding information
Association Francaise Contre les Myopathie, 17724; Stichting Duchenne Parent Project, 16.006; Stichting Spieren voor Spieren, SvS15
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Funding information Association Francaise Contre les Myopathie, 17724; Stichting Duchenne Parent Project, 16.006; Stichting Spieren voor Spieren, SvS15
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.9178