Phase‐Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts

Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellen...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 27; pp. 7769 - 7773
Main Authors Gao, Qiang, Huang, Chuan‐Qi, Ju, Yi‐Ming, Gao, Min‐Rui, Liu, Jian‐Wei, An, Duo, Cui, Chun‐Hua, Zheng, Ya‐Rong, Li, Wei‐Xue, Yu, Shu‐Hong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.06.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides. Fleeced: Hierarchical CoTe2 nanofleeces were synthesized by using ultrathin Te nanowires as templates. They exhibited excellent electrocatalytic activity and stablity for the oxygen evolution reaction (OER) in alkaline media. The CoTe2 catalyst exhibited superior OER activity to the CoTe catalyst and was comparable to the state‐of‐the‐art RuO2 catalyst.
AbstractList Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides. Fleeced: Hierarchical CoTe2 nanofleeces were synthesized by using ultrathin Te nanowires as templates. They exhibited excellent electrocatalytic activity and stablity for the oxygen evolution reaction (OER) in alkaline media. The CoTe2 catalyst exhibited superior OER activity to the CoTe catalyst and was comparable to the state‐of‐the‐art RuO2 catalyst.
Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides.
Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides.Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides.
Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe and CoTe nanofleeces for efficient OER catalysts. The CoTe nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides.
Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe 2 and CoTe nanofleeces for efficient OER catalysts. The CoTe 2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe 2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO 2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe 2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides.
Author Liu, Jian‐Wei
Huang, Chuan‐Qi
Li, Wei‐Xue
Gao, Min‐Rui
Ju, Yi‐Ming
Zheng, Ya‐Rong
An, Duo
Yu, Shu‐Hong
Gao, Qiang
Cui, Chun‐Hua
Author_xml – sequence: 1
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Chuan‐Qi
  surname: Huang
  fullname: Huang, Chuan‐Qi
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Yi‐Ming
  surname: Ju
  fullname: Ju, Yi‐Ming
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Min‐Rui
  surname: Gao
  fullname: Gao, Min‐Rui
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Jian‐Wei
  surname: Liu
  fullname: Liu, Jian‐Wei
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Duo
  surname: An
  fullname: An, Duo
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Chun‐Hua
  surname: Cui
  fullname: Cui, Chun‐Hua
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Ya‐Rong
  surname: Zheng
  fullname: Zheng, Ya‐Rong
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Wei‐Xue
  surname: Li
  fullname: Li, Wei‐Xue
  email: wxli70@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Shu‐Hong
  orcidid: 0000-0003-3732-1011
  surname: Yu
  fullname: Yu, Shu‐Hong
  email: shyu@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28467678$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rHCEYh6WkNH_aa49F6CWX2aozo84xLJs2EJJA9i6O805jcDVVJ-3c8hHyGftJ6rJJC4GSk4rP8-PV3yHa88EDQh8pWVBC2BftLSwYoYLQrpNv0AFtGa1qIeq9sm_quhKypfvoMKXbwktJ-Du0z2TDBRfyAA1XNzrB74fHa3Bgsr0HfD37fAMJEg4jXoZeu4zX4NwU7QD4QvswOgBT7scQ8WocrbHgM778NX8Hj1f3wU3ZBo-XOms3p5zeo7ejdgk-PK1HaH26Wi-_VeeXX8-WJ-eVaQSXFaMchABKaiKkMKwbWjL0bW-YKCcpmKG6J6w3fau7XvS8Bc4B2mKD1rI-Qse72LsYfkyQstrYZMrk2kOYkqKya5lgHRMF_fwCvQ1T9GU4RTtKedcQug389ERN_QYGdRftRsdZPX9fAZodYGJIKcKojM16-_gctXWKErVtSW1bUn9bKtrihfac_F-h2wk_rYP5FVqdXJyt_rl_AGRdpiM
CitedBy_id crossref_primary_10_1016_j_mcat_2023_113586
crossref_primary_10_1002_ente_201900066
crossref_primary_10_3390_cryst14010046
crossref_primary_10_1021_acs_accounts_7b00187
crossref_primary_10_1039_C7CC09105B
crossref_primary_10_1021_acsami_3c05055
crossref_primary_10_1039_C9CC02845E
crossref_primary_10_1016_j_jcis_2024_01_026
crossref_primary_10_1002_smll_202305519
crossref_primary_10_1080_16583655_2021_1996944
crossref_primary_10_1016_j_mtener_2018_12_001
crossref_primary_10_1021_acsnano_8b01296
crossref_primary_10_1039_D2TA02620A
crossref_primary_10_1016_j_electacta_2022_141106
crossref_primary_10_1016_j_electacta_2019_04_164
crossref_primary_10_1021_acsnano_1c10663
crossref_primary_10_3390_ma14174984
crossref_primary_10_1039_D3NR05344J
crossref_primary_10_1002_smll_202310099
crossref_primary_10_1016_j_snb_2023_134083
crossref_primary_10_1002_celc_201701357
crossref_primary_10_1016_j_electacta_2020_135749
crossref_primary_10_1016_j_jelechem_2019_01_010
crossref_primary_10_1016_j_cej_2021_130454
crossref_primary_10_1021_acscatal_8b04566
crossref_primary_10_1002_slct_202101301
crossref_primary_10_1039_D3DT01179H
crossref_primary_10_1016_j_ijhydene_2022_12_184
crossref_primary_10_1016_j_carbon_2017_12_046
crossref_primary_10_1016_j_jcat_2021_04_003
crossref_primary_10_1016_j_jallcom_2021_161955
crossref_primary_10_1016_j_mtnano_2023_100412
crossref_primary_10_1007_s12274_023_5777_9
crossref_primary_10_1021_acsaenm_4c00321
crossref_primary_10_1016_j_jcis_2019_12_061
crossref_primary_10_1002_ange_201712549
crossref_primary_10_1039_D0NR00007H
crossref_primary_10_1021_acs_inorgchem_8b00503
crossref_primary_10_1039_D2QI01324J
crossref_primary_10_1016_j_jallcom_2022_164786
crossref_primary_10_1021_acs_chemmater_2c01131
crossref_primary_10_1039_C7CC07962A
crossref_primary_10_1021_acsaenm_4c00415
crossref_primary_10_1039_D2RA05757C
crossref_primary_10_1016_j_fuel_2022_125264
crossref_primary_10_1016_j_electacta_2019_03_213
crossref_primary_10_1016_j_cej_2022_138515
crossref_primary_10_1016_j_jcis_2023_09_046
crossref_primary_10_1021_acs_langmuir_3c01613
crossref_primary_10_1016_j_ijhydene_2021_09_222
crossref_primary_10_1016_j_cej_2022_134798
crossref_primary_10_1002_cphc_201800870
crossref_primary_10_1002_cctc_201901151
crossref_primary_10_1088_1757_899X_892_1_012003
crossref_primary_10_1021_acs_jpcc_2c02102
crossref_primary_10_1039_D1MA00688F
crossref_primary_10_1038_s41467_019_13519_1
crossref_primary_10_1016_j_est_2021_103098
crossref_primary_10_1002_adma_201907112
crossref_primary_10_1016_j_ijhydene_2022_03_270
crossref_primary_10_1021_acs_analchem_2c04931
crossref_primary_10_1039_D3NJ04353C
crossref_primary_10_1021_acsmaterialsau_4c00014
crossref_primary_10_1002_anie_202211543
crossref_primary_10_1039_D4NA00930D
crossref_primary_10_1002_asia_202300317
crossref_primary_10_1021_acscatal_9b04216
crossref_primary_10_1021_acs_jpcc_0c08080
crossref_primary_10_1016_j_jcis_2024_12_040
crossref_primary_10_1002_adma_202007100
crossref_primary_10_1021_acsaem_1c01438
crossref_primary_10_1016_j_ijhydene_2023_01_178
crossref_primary_10_1021_jacs_9b01214
crossref_primary_10_1039_D0DT03085F
crossref_primary_10_1016_j_jpowsour_2019_227585
crossref_primary_10_1016_j_fuel_2020_118666
crossref_primary_10_1021_acssuschemeng_7b04309
crossref_primary_10_1088_1757_899X_577_1_012076
crossref_primary_10_1002_smll_202100129
crossref_primary_10_1016_j_jpowsour_2025_236244
crossref_primary_10_1021_acsami_3c07955
crossref_primary_10_1021_acs_inorgchem_2c04342
crossref_primary_10_1002_smll_202202033
crossref_primary_10_1039_C8CC06270F
crossref_primary_10_1002_smll_201804201
crossref_primary_10_1039_D1TA06313H
crossref_primary_10_1021_acs_energyfuels_0c04089
crossref_primary_10_1039_D0TA05100D
crossref_primary_10_1016_j_electacta_2019_05_047
crossref_primary_10_1016_j_ijhydene_2022_09_130
crossref_primary_10_1016_j_jcis_2023_12_159
crossref_primary_10_1016_j_electacta_2017_12_072
crossref_primary_10_1039_C7QI00681K
crossref_primary_10_1016_j_est_2023_107286
crossref_primary_10_1016_j_ccr_2022_214406
crossref_primary_10_1021_acsanm_1c01613
crossref_primary_10_1002_smll_202107968
crossref_primary_10_1002_aenm_201801127
crossref_primary_10_1002_ange_202211543
crossref_primary_10_1002_smll_202307059
crossref_primary_10_1021_acsomega_7b01965
crossref_primary_10_1007_s10562_023_04523_8
crossref_primary_10_1002_cphc_202400500
crossref_primary_10_1016_j_mtcomm_2022_103481
crossref_primary_10_1039_C8TA01244J
crossref_primary_10_1002_anie_201712549
crossref_primary_10_1007_s12274_021_4007_6
crossref_primary_10_1038_s41598_018_35831_4
crossref_primary_10_1016_j_jcis_2024_05_232
crossref_primary_10_1149_2_0101905jes
crossref_primary_10_1039_D0NR08237F
crossref_primary_10_1002_adma_201705442
crossref_primary_10_1002_chem_202303779
crossref_primary_10_1016_j_jpowsour_2024_234692
crossref_primary_10_1016_j_ccr_2025_216560
crossref_primary_10_1016_j_nanoen_2019_02_037
crossref_primary_10_1016_j_apsusc_2018_04_080
crossref_primary_10_3390_ma15103688
crossref_primary_10_1002_anie_201900109
crossref_primary_10_1016_j_coelec_2018_11_014
crossref_primary_10_1016_j_jcat_2024_115548
crossref_primary_10_1016_j_mtchem_2022_100871
crossref_primary_10_1016_j_electacta_2019_134656
crossref_primary_10_1002_anie_202012537
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_1021_jacs_3c01110
crossref_primary_10_1016_j_renene_2020_05_114
crossref_primary_10_1016_j_molliq_2018_07_036
crossref_primary_10_1021_acs_jpcc_0c00178
crossref_primary_10_1016_j_electacta_2023_142133
crossref_primary_10_1002_cssc_201801805
crossref_primary_10_1016_j_elecom_2018_01_014
crossref_primary_10_1016_j_electacta_2018_01_124
crossref_primary_10_1007_s12274_022_4337_z
crossref_primary_10_1016_j_mtnano_2022_100242
crossref_primary_10_1039_D3CC02261G
crossref_primary_10_1016_j_gee_2022_08_007
crossref_primary_10_1002_ange_201900109
crossref_primary_10_1016_j_jcis_2022_05_147
crossref_primary_10_1002_smtd_201900113
crossref_primary_10_3390_membranes13010113
crossref_primary_10_1039_C8CC05672B
crossref_primary_10_1002_adma_201704091
crossref_primary_10_1016_j_apcatb_2022_121355
crossref_primary_10_1039_D2SE00665K
crossref_primary_10_1002_advs_201900116
crossref_primary_10_1002_ange_202012537
crossref_primary_10_1039_D0CS00575D
crossref_primary_10_1039_D0QI00372G
crossref_primary_10_1016_j_apcatb_2018_11_081
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1016_j_jcis_2022_02_064
crossref_primary_10_1002_cctc_201901638
crossref_primary_10_1007_s00339_022_05988_x
crossref_primary_10_1016_j_ijhydene_2024_06_208
crossref_primary_10_1039_D0TA01809K
crossref_primary_10_1039_C9TA07171G
crossref_primary_10_1007_s12274_022_4537_6
crossref_primary_10_1016_j_mtener_2025_101796
crossref_primary_10_1016_j_coelec_2022_101031
crossref_primary_10_1016_j_est_2021_103617
crossref_primary_10_1016_j_ijhydene_2024_04_343
crossref_primary_10_1021_acs_jpcc_8b09259
crossref_primary_10_1021_acsami_7b09897
crossref_primary_10_26599_NRE_2022_9120029
crossref_primary_10_1016_j_matchemphys_2020_123691
Cites_doi 10.1126/science.1162018
10.1021/la053021l
10.1016/S0965-9773(99)00340-2
10.1002/ange.200907128
10.1039/b903216a
10.1021/ja900023k
10.1021/ic900245w
10.1021/ja908730h
10.1021/acscatal.6b01878
10.1021/cg7011364
10.1038/nmat3313
10.1021/ja405997s
10.1021/acsami.5b08501
10.1126/science.1209816
10.1016/j.jcrysgro.2009.08.007
10.1016/j.chemphys.2005.05.038
10.1002/anie.200907128
10.1021/nn4001885
10.1038/nmat3087
10.1021/jp904022e
10.1021/ja900506x
10.1021/ja206280g
10.1039/c2cp40841d
10.1021/ja307507a
10.1038/ncomms6982
10.1021/ic0262031
10.1021/ar300272m
10.1021/jp804164h
10.1126/science.1212858
10.1126/science.1215081
10.1126/science.1185372
10.1039/C1CP23212F
10.1021/ja211526y
10.1021/jacs.6b06250
10.1021/ja9016478
10.1021/ja807769r
10.1039/c0jm01777a
10.1021/ja200144w
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201701998
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 7773
ExternalDocumentID 28467678
10_1002_anie_201701998
ANIE201701998
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the Chinese Academy of Sciences
  funderid: KGZD-EW-T05; XDA090301001
– fundername: National Natural Science Foundation of China
  funderid: 21521001; 21431006; 21225315; 21321002; 91645202
– fundername: National Basic Research Program of China
  funderid: 2014CB931800; 2013CB834603; QYZDJ-SSW-SLH036
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4768-216e77e1030787c29d50db5bc277c2872c1ab02bcb5a9b7b65e66ee5c47eaa83
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:27:27 EDT 2025
Fri Jul 25 10:40:26 EDT 2025
Wed Feb 19 02:32:20 EST 2025
Tue Jul 01 03:27:30 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Wed Jan 22 16:26:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords tellurium
electrocatalyst
oxygen evolution reaction
cobalt
hierarchical structure
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4768-216e77e1030787c29d50db5bc277c2872c1ab02bcb5a9b7b65e66ee5c47eaa83
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3732-1011
PMID 28467678
PQID 1911694018
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1895272927
proquest_journals_1911694018
pubmed_primary_28467678
crossref_citationtrail_10_1002_anie_201701998
crossref_primary_10_1002_anie_201701998
wiley_primary_10_1002_anie_201701998_ANIE201701998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 26, 2017
PublicationDateYYYYMMDD 2017-06-26
PublicationDate_xml – month: 06
  year: 2017
  text: June 26, 2017
  day: 26
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2015; 6
2010; 328
2013; 46
2009; 113
2011; 10
2008; 8
2009; 311
2005; 319
2010 2010; 49 122
2009; 131
2008; 321
2013; 7
2012; 14
2012; 11
2015; 7
2011; 133
2009; 48
2016; 6
2010; 20
2012; 134
2006; 22
2010; 132
1999; 11
2013; 135
2016; 138
2008; 112
2009; 19
2003; 42
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_8_3
e_1_2_2_47_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_34_1
e_1_2_2_15_1
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_37_2
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_31_2
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 6
  start-page: 5982
  year: 2015
  publication-title: Nat. Commun.
– volume: 334
  start-page: 1355
  year: 2011
  publication-title: Science
– volume: 133
  start-page: 16742
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 2615
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 645
  year: 2011
  publication-title: Science
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 131
  start-page: 6086
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 6581
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 112
  start-page: 14825
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 2733
  year: 2013
  publication-title: ACS Nano
– volume: 48
  start-page: 4927
  year: 2009
  publication-title: Inorg. Chem.
– volume: 321
  start-page: 1072
  year: 2008
  publication-title: Science
– volume: 46
  start-page: 1450
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 328
  start-page: 342
  year: 2010
  publication-title: Science
– volume: 20
  start-page: 7634
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 42
  start-page: 2174
  year: 2003
  publication-title: Inorg. Chem.
– volume: 132
  start-page: 4202
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 49
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 539
  year: 1999
  publication-title: Nanostruct. Mater.
– volume: 113
  start-page: 15068
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 138
  start-page: 10770
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 49 122
  start-page: 4813 4923
  year: 2010 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 7486
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 2930
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 319
  start-page: 178
  year: 2005
  publication-title: Chem. Phys.
– volume: 7
  start-page: 25914
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 133
  start-page: 7264
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 3838
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 3830
  year: 2006
  publication-title: Langmuir
– volume: 14
  start-page: 14010
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 135
  start-page: 13521
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2838
  year: 2008
  publication-title: Cryst. Growth Des.
– volume: 311
  start-page: 4467
  year: 2009
  publication-title: J. Cryst. Growth
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 6
  start-page: 7393
  year: 2016
  publication-title: ACS Catal.
– volume: 134
  start-page: 17253
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– ident: e_1_2_2_3_2
  doi: 10.1126/science.1162018
– ident: e_1_2_2_38_1
  doi: 10.1021/la053021l
– ident: e_1_2_2_40_1
– ident: e_1_2_2_29_2
  doi: 10.1016/S0965-9773(99)00340-2
– ident: e_1_2_2_23_1
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.200907128
– ident: e_1_2_2_22_1
  doi: 10.1039/b903216a
– ident: e_1_2_2_15_1
– ident: e_1_2_2_14_2
  doi: 10.1021/ja900023k
– ident: e_1_2_2_31_2
  doi: 10.1021/ic900245w
– ident: e_1_2_2_16_2
  doi: 10.1021/ja908730h
– ident: e_1_2_2_24_2
  doi: 10.1021/acscatal.6b01878
– ident: e_1_2_2_27_2
  doi: 10.1021/cg7011364
– ident: e_1_2_2_5_1
  doi: 10.1038/nmat3313
– ident: e_1_2_2_46_2
  doi: 10.1021/ja405997s
– ident: e_1_2_2_30_1
– ident: e_1_2_2_25_2
  doi: 10.1021/acsami.5b08501
– ident: e_1_2_2_18_1
  doi: 10.1126/science.1209816
– ident: e_1_2_2_32_2
  doi: 10.1016/j.jcrysgro.2009.08.007
– ident: e_1_2_2_47_1
  doi: 10.1016/j.chemphys.2005.05.038
– ident: e_1_2_2_6_1
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.200907128
– ident: e_1_2_2_37_2
  doi: 10.1021/nn4001885
– ident: e_1_2_2_39_1
– ident: e_1_2_2_10_1
  doi: 10.1038/nmat3087
– ident: e_1_2_2_43_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_12_1
– ident: e_1_2_2_9_1
  doi: 10.1021/jp904022e
– ident: e_1_2_2_21_2
  doi: 10.1021/ja900506x
– ident: e_1_2_2_11_1
  doi: 10.1021/ja206280g
– ident: e_1_2_2_45_2
  doi: 10.1039/c2cp40841d
– ident: e_1_2_2_41_2
  doi: 10.1021/ja307507a
– ident: e_1_2_2_4_1
  doi: 10.1038/ncomms6982
– ident: e_1_2_2_28_2
  doi: 10.1021/ic0262031
– ident: e_1_2_2_35_2
  doi: 10.1021/ar300272m
– ident: e_1_2_2_33_2
  doi: 10.1021/jp804164h
– ident: e_1_2_2_34_1
– ident: e_1_2_2_42_2
  doi: 10.1126/science.1212858
– ident: e_1_2_2_44_2
  doi: 10.1126/science.1215081
– ident: e_1_2_2_2_2
  doi: 10.1126/science.1185372
– ident: e_1_2_2_48_1
  doi: 10.1039/C1CP23212F
– ident: e_1_2_2_20_2
  doi: 10.1021/ja211526y
– ident: e_1_2_2_36_2
  doi: 10.1021/jacs.6b06250
– ident: e_1_2_2_17_2
  doi: 10.1021/ja9016478
– ident: e_1_2_2_19_1
– ident: e_1_2_2_13_2
  doi: 10.1021/ja807769r
– ident: e_1_2_2_26_2
  doi: 10.1039/c0jm01777a
– ident: e_1_2_2_7_2
  doi: 10.1021/ja200144w
SSID ssj0028806
Score 2.5958734
Snippet Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report...
Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7769
SubjectTerms Catalysts
Chalcogenides
Cobalt
Density functional theory
electrocatalyst
Electrocatalysts
Evolution
hierarchical structure
Intermediates
Intermetallic compounds
Low cost
Nanomaterials
Nanotechnology
Oxygen
oxygen evolution reaction
Reaction intermediates
Ruthenium oxide
Tellurides
tellurium
Title Phase‐Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201701998
https://www.ncbi.nlm.nih.gov/pubmed/28467678
https://www.proquest.com/docview/1911694018
https://www.proquest.com/docview/1895272927
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLam3mw3wIBBoJuMhMRV2tSpneSyqloVpHUT7aTeRbZzIhBVipYUUa72CHvGPcnOyR8UhJDGXSzbimOfn8-Oz3cYe-vDQIJW0k11VJJqazfUkXTBMxrdp1ZGUuzw-VzNroYfVnL1SxR_xQ_RHriRZpT2mhRcm7z_kzSUIrDpahbxiUcU7UsXtggVfWz5owQKZxVe5PsuZaFvWBs90d_vvu-V_oCa-8i1dD3Tx0w3g65unHzpbQvTsz9-43P8n696wh7VuJSPKkE6ZgeQPWWH4yYd3DOWXH5Ch3d3c7soM-egkeSLXYbwMYecb1I-JmKRgi9hvd5ef06Ao93epGsANEQckTGflGQV6OP4xfcdii2ffKvFno_pDGmXF_lztpxOluOZW6docO0QNyquGCgIAqBcZaj5VkSJ9BIjjRUBlsJA2IE2njAWlzwygVESlAKQ2Bu0Dv0T1sk2GbxkPExCY9Fb2jT1iNMtUimkw8D3Ac2OSIXD3GaFYlvTl1MWjXVcES-LmKYubqfOYe_a9l8r4o6_tuw2Cx7XCpzHuI0dqAg3n1j9pq3GKaf_KTqDzRbbhJEUuDkRgcNeVILSvkoQrkMg4DBRLvc_xhCP5u8nbenVQzq9Zkf0TNfYhOqyTnG9hVMETIU5K5XiHuO9Dfw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lAutOVRtrTFSEic0madtZMcq9VW29eC6CJxi2xnolassqjJIpYTP4HfyC9hJi-0IIQER8e24njejucbgJcB9hUarbzMxBWotvEiEysPfWvIfBptFecOX030-N3g_L1qbxNyLkyND9EduLFkVPqaBZwPpI9_ooZyCjbfzWJA8Ti6Bxtc1ruKqt52CFKS2LNOMAoCj-vQt7iNvjxenb9ql35zNld918r4nG6BbZdd3zn5cLQo7ZH78gui43991zY8aFxTcVLz0g6sYf4QNodtRbhHkL65IZv3_eu366p4DulJcb3MyYMssBDzTAwZW6QUU5zNFne3KQpS3fNshki6SJBzLEYVXgWZOfH685I4V4w-NZwvhnyMtCzK4jFMT0fT4dhrqjR4bkCxiif7GsMQuVwZCb-Tcar81CrrZEitKJSub6wvrSOqxza0WqHWiIpmozFR8ATW83mOT0FEaWQdGUyXZT7DusU6w2wQBgGS5pGZ7IHXkihxDYI5F9KYJTX2skx465Ju63rwqhv_scbu-OPI_ZbiSSPDRUKRbF_HFH9S94uum7acf6mYHOcLGhPFSlJ8IsMe7Nac0r1KsmtHvkAPZEXvv6whOZmcjbrW3r9Meg6b4-nVZXJ5Nrl4Bvf5Od9qk3of1su7BR6Q_1Taw0pCfgC7ahIX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL78JCASMhcUqbddZOcqy2u2p5LBVdpN4i2xkLxCpbNVnEcuIn8Bv5JczkBQtCSHB0bCuO5-14vgF4GuFQodEq8CatQbVNkJhUBRhaQ-bTaKs4d_jVTB--HT0_Vac_ZfE3-BD9gRtLRq2vWcDPcr_3AzSUM7D5ahbjiafJRbg00mHCfH3wpgeQksSdTX5RFAVchr6DbQzl3ub8TbP0m6-56brWtmd6HUy36ubKyYfdVWV33edfAB3_57NuwLXWMRX7DSfdhAtY3IIr464e3G3Ij9-Rxfv25etJXTqHtKQ4WRfkP5ZYiqUXY0YWqcQcF4vV-fscBSnupV8gkiYS5BqLSY1WQUZOvP60Jr4Vk48t34sxHyKty6q8A_PpZD4-DNoaDYEbUaQSyKHGOEYuVkai72SaqzC3yjoZUyuJpRsaG0rriOapja1WqDWiotloTBJtw1axLPAeiCRPrCNz6bwPGdQt1R79KI4iJL0jvRxA0FEocy1-OZfRWGQN8rLMeOuyfusG8Kwff9Ygd_xx5E5H8KyV4DKjOHaoU4o-qftJ301bzj9UTIHLFY1JUiUpOpHxAO42jNK_SrJjR57AAGRN7r-sIdufHU361v1_mfQYLh8fTLOXR7MXD-AqP-YrbVLvwFZ1vsKH5DxV9lEtH98BkHIQzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase%E2%80%90Selective+Syntheses+of+Cobalt+Telluride+Nanofleeces+for+Efficient+Oxygen+Evolution+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Qiang&rft.au=Huang%2C+Chuan%E2%80%90Qi&rft.au=Ju%2C+Yi%E2%80%90Ming&rft.au=Gao%2C+Min%E2%80%90Rui&rft.date=2017-06-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=27&rft.spage=7769&rft.epage=7773&rft_id=info:doi/10.1002%2Fanie.201701998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201701998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon