Phase‐Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts
Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellen...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 27; pp. 7769 - 7773 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.06.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides.
Fleeced: Hierarchical CoTe2 nanofleeces were synthesized by using ultrathin Te nanowires as templates. They exhibited excellent electrocatalytic activity and stablity for the oxygen evolution reaction (OER) in alkaline media. The CoTe2 catalyst exhibited superior OER activity to the CoTe catalyst and was comparable to the state‐of‐the‐art RuO2 catalyst. |
---|---|
AbstractList | Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides.
Fleeced: Hierarchical CoTe2 nanofleeces were synthesized by using ultrathin Te nanowires as templates. They exhibited excellent electrocatalytic activity and stablity for the oxygen evolution reaction (OER) in alkaline media. The CoTe2 catalyst exhibited superior OER activity to the CoTe catalyst and was comparable to the state‐of‐the‐art RuO2 catalyst. Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides. Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides.Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides. Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase-selective syntheses of novel hierarchical CoTe and CoTe nanofleeces for efficient OER catalysts. The CoTe nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state-of-the-art RuO catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble-metal-free OER catalysts with high performance and low cost by use of Co-based chalcogenides. Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe 2 and CoTe nanofleeces for efficient OER catalysts. The CoTe 2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe 2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO 2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe 2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides. |
Author | Liu, Jian‐Wei Huang, Chuan‐Qi Li, Wei‐Xue Gao, Min‐Rui Ju, Yi‐Ming Zheng, Ya‐Rong An, Duo Yu, Shu‐Hong Gao, Qiang Cui, Chun‐Hua |
Author_xml | – sequence: 1 givenname: Qiang surname: Gao fullname: Gao, Qiang organization: University of Science and Technology of China – sequence: 2 givenname: Chuan‐Qi surname: Huang fullname: Huang, Chuan‐Qi organization: University of Science and Technology of China – sequence: 3 givenname: Yi‐Ming surname: Ju fullname: Ju, Yi‐Ming organization: University of Science and Technology of China – sequence: 4 givenname: Min‐Rui surname: Gao fullname: Gao, Min‐Rui organization: University of Science and Technology of China – sequence: 5 givenname: Jian‐Wei surname: Liu fullname: Liu, Jian‐Wei organization: University of Science and Technology of China – sequence: 6 givenname: Duo surname: An fullname: An, Duo organization: University of Science and Technology of China – sequence: 7 givenname: Chun‐Hua surname: Cui fullname: Cui, Chun‐Hua organization: University of Science and Technology of China – sequence: 8 givenname: Ya‐Rong surname: Zheng fullname: Zheng, Ya‐Rong organization: University of Science and Technology of China – sequence: 9 givenname: Wei‐Xue surname: Li fullname: Li, Wei‐Xue email: wxli70@ustc.edu.cn organization: University of Science and Technology of China – sequence: 10 givenname: Shu‐Hong orcidid: 0000-0003-3732-1011 surname: Yu fullname: Yu, Shu‐Hong email: shyu@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28467678$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rHCEYh6WkNH_aa49F6CWX2aozo84xLJs2EJJA9i6O805jcDVVJ-3c8hHyGftJ6rJJC4GSk4rP8-PV3yHa88EDQh8pWVBC2BftLSwYoYLQrpNv0AFtGa1qIeq9sm_quhKypfvoMKXbwktJ-Du0z2TDBRfyAA1XNzrB74fHa3Bgsr0HfD37fAMJEg4jXoZeu4zX4NwU7QD4QvswOgBT7scQ8WocrbHgM778NX8Hj1f3wU3ZBo-XOms3p5zeo7ejdgk-PK1HaH26Wi-_VeeXX8-WJ-eVaQSXFaMchABKaiKkMKwbWjL0bW-YKCcpmKG6J6w3fau7XvS8Bc4B2mKD1rI-Qse72LsYfkyQstrYZMrk2kOYkqKya5lgHRMF_fwCvQ1T9GU4RTtKedcQug389ERN_QYGdRftRsdZPX9fAZodYGJIKcKojM16-_gctXWKErVtSW1bUn9bKtrihfac_F-h2wk_rYP5FVqdXJyt_rl_AGRdpiM |
CitedBy_id | crossref_primary_10_1016_j_mcat_2023_113586 crossref_primary_10_1002_ente_201900066 crossref_primary_10_3390_cryst14010046 crossref_primary_10_1021_acs_accounts_7b00187 crossref_primary_10_1039_C7CC09105B crossref_primary_10_1021_acsami_3c05055 crossref_primary_10_1039_C9CC02845E crossref_primary_10_1016_j_jcis_2024_01_026 crossref_primary_10_1002_smll_202305519 crossref_primary_10_1080_16583655_2021_1996944 crossref_primary_10_1016_j_mtener_2018_12_001 crossref_primary_10_1021_acsnano_8b01296 crossref_primary_10_1039_D2TA02620A crossref_primary_10_1016_j_electacta_2022_141106 crossref_primary_10_1016_j_electacta_2019_04_164 crossref_primary_10_1021_acsnano_1c10663 crossref_primary_10_3390_ma14174984 crossref_primary_10_1039_D3NR05344J crossref_primary_10_1002_smll_202310099 crossref_primary_10_1016_j_snb_2023_134083 crossref_primary_10_1002_celc_201701357 crossref_primary_10_1016_j_electacta_2020_135749 crossref_primary_10_1016_j_jelechem_2019_01_010 crossref_primary_10_1016_j_cej_2021_130454 crossref_primary_10_1021_acscatal_8b04566 crossref_primary_10_1002_slct_202101301 crossref_primary_10_1039_D3DT01179H crossref_primary_10_1016_j_ijhydene_2022_12_184 crossref_primary_10_1016_j_carbon_2017_12_046 crossref_primary_10_1016_j_jcat_2021_04_003 crossref_primary_10_1016_j_jallcom_2021_161955 crossref_primary_10_1016_j_mtnano_2023_100412 crossref_primary_10_1007_s12274_023_5777_9 crossref_primary_10_1021_acsaenm_4c00321 crossref_primary_10_1016_j_jcis_2019_12_061 crossref_primary_10_1002_ange_201712549 crossref_primary_10_1039_D0NR00007H crossref_primary_10_1021_acs_inorgchem_8b00503 crossref_primary_10_1039_D2QI01324J crossref_primary_10_1016_j_jallcom_2022_164786 crossref_primary_10_1021_acs_chemmater_2c01131 crossref_primary_10_1039_C7CC07962A crossref_primary_10_1021_acsaenm_4c00415 crossref_primary_10_1039_D2RA05757C crossref_primary_10_1016_j_fuel_2022_125264 crossref_primary_10_1016_j_electacta_2019_03_213 crossref_primary_10_1016_j_cej_2022_138515 crossref_primary_10_1016_j_jcis_2023_09_046 crossref_primary_10_1021_acs_langmuir_3c01613 crossref_primary_10_1016_j_ijhydene_2021_09_222 crossref_primary_10_1016_j_cej_2022_134798 crossref_primary_10_1002_cphc_201800870 crossref_primary_10_1002_cctc_201901151 crossref_primary_10_1088_1757_899X_892_1_012003 crossref_primary_10_1021_acs_jpcc_2c02102 crossref_primary_10_1039_D1MA00688F crossref_primary_10_1038_s41467_019_13519_1 crossref_primary_10_1016_j_est_2021_103098 crossref_primary_10_1002_adma_201907112 crossref_primary_10_1016_j_ijhydene_2022_03_270 crossref_primary_10_1021_acs_analchem_2c04931 crossref_primary_10_1039_D3NJ04353C crossref_primary_10_1021_acsmaterialsau_4c00014 crossref_primary_10_1002_anie_202211543 crossref_primary_10_1039_D4NA00930D crossref_primary_10_1002_asia_202300317 crossref_primary_10_1021_acscatal_9b04216 crossref_primary_10_1021_acs_jpcc_0c08080 crossref_primary_10_1016_j_jcis_2024_12_040 crossref_primary_10_1002_adma_202007100 crossref_primary_10_1021_acsaem_1c01438 crossref_primary_10_1016_j_ijhydene_2023_01_178 crossref_primary_10_1021_jacs_9b01214 crossref_primary_10_1039_D0DT03085F crossref_primary_10_1016_j_jpowsour_2019_227585 crossref_primary_10_1016_j_fuel_2020_118666 crossref_primary_10_1021_acssuschemeng_7b04309 crossref_primary_10_1088_1757_899X_577_1_012076 crossref_primary_10_1002_smll_202100129 crossref_primary_10_1016_j_jpowsour_2025_236244 crossref_primary_10_1021_acsami_3c07955 crossref_primary_10_1021_acs_inorgchem_2c04342 crossref_primary_10_1002_smll_202202033 crossref_primary_10_1039_C8CC06270F crossref_primary_10_1002_smll_201804201 crossref_primary_10_1039_D1TA06313H crossref_primary_10_1021_acs_energyfuels_0c04089 crossref_primary_10_1039_D0TA05100D crossref_primary_10_1016_j_electacta_2019_05_047 crossref_primary_10_1016_j_ijhydene_2022_09_130 crossref_primary_10_1016_j_jcis_2023_12_159 crossref_primary_10_1016_j_electacta_2017_12_072 crossref_primary_10_1039_C7QI00681K crossref_primary_10_1016_j_est_2023_107286 crossref_primary_10_1016_j_ccr_2022_214406 crossref_primary_10_1021_acsanm_1c01613 crossref_primary_10_1002_smll_202107968 crossref_primary_10_1002_aenm_201801127 crossref_primary_10_1002_ange_202211543 crossref_primary_10_1002_smll_202307059 crossref_primary_10_1021_acsomega_7b01965 crossref_primary_10_1007_s10562_023_04523_8 crossref_primary_10_1002_cphc_202400500 crossref_primary_10_1016_j_mtcomm_2022_103481 crossref_primary_10_1039_C8TA01244J crossref_primary_10_1002_anie_201712549 crossref_primary_10_1007_s12274_021_4007_6 crossref_primary_10_1038_s41598_018_35831_4 crossref_primary_10_1016_j_jcis_2024_05_232 crossref_primary_10_1149_2_0101905jes crossref_primary_10_1039_D0NR08237F crossref_primary_10_1002_adma_201705442 crossref_primary_10_1002_chem_202303779 crossref_primary_10_1016_j_jpowsour_2024_234692 crossref_primary_10_1016_j_ccr_2025_216560 crossref_primary_10_1016_j_nanoen_2019_02_037 crossref_primary_10_1016_j_apsusc_2018_04_080 crossref_primary_10_3390_ma15103688 crossref_primary_10_1002_anie_201900109 crossref_primary_10_1016_j_coelec_2018_11_014 crossref_primary_10_1016_j_jcat_2024_115548 crossref_primary_10_1016_j_mtchem_2022_100871 crossref_primary_10_1016_j_electacta_2019_134656 crossref_primary_10_1002_anie_202012537 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1021_jacs_3c01110 crossref_primary_10_1016_j_renene_2020_05_114 crossref_primary_10_1016_j_molliq_2018_07_036 crossref_primary_10_1021_acs_jpcc_0c00178 crossref_primary_10_1016_j_electacta_2023_142133 crossref_primary_10_1002_cssc_201801805 crossref_primary_10_1016_j_elecom_2018_01_014 crossref_primary_10_1016_j_electacta_2018_01_124 crossref_primary_10_1007_s12274_022_4337_z crossref_primary_10_1016_j_mtnano_2022_100242 crossref_primary_10_1039_D3CC02261G crossref_primary_10_1016_j_gee_2022_08_007 crossref_primary_10_1002_ange_201900109 crossref_primary_10_1016_j_jcis_2022_05_147 crossref_primary_10_1002_smtd_201900113 crossref_primary_10_3390_membranes13010113 crossref_primary_10_1039_C8CC05672B crossref_primary_10_1002_adma_201704091 crossref_primary_10_1016_j_apcatb_2022_121355 crossref_primary_10_1039_D2SE00665K crossref_primary_10_1002_advs_201900116 crossref_primary_10_1002_ange_202012537 crossref_primary_10_1039_D0CS00575D crossref_primary_10_1039_D0QI00372G crossref_primary_10_1016_j_apcatb_2018_11_081 crossref_primary_10_1002_adma_202107072 crossref_primary_10_1016_j_jcis_2022_02_064 crossref_primary_10_1002_cctc_201901638 crossref_primary_10_1007_s00339_022_05988_x crossref_primary_10_1016_j_ijhydene_2024_06_208 crossref_primary_10_1039_D0TA01809K crossref_primary_10_1039_C9TA07171G crossref_primary_10_1007_s12274_022_4537_6 crossref_primary_10_1016_j_mtener_2025_101796 crossref_primary_10_1016_j_coelec_2022_101031 crossref_primary_10_1016_j_est_2021_103617 crossref_primary_10_1016_j_ijhydene_2024_04_343 crossref_primary_10_1021_acs_jpcc_8b09259 crossref_primary_10_1021_acsami_7b09897 crossref_primary_10_26599_NRE_2022_9120029 crossref_primary_10_1016_j_matchemphys_2020_123691 |
Cites_doi | 10.1126/science.1162018 10.1021/la053021l 10.1016/S0965-9773(99)00340-2 10.1002/ange.200907128 10.1039/b903216a 10.1021/ja900023k 10.1021/ic900245w 10.1021/ja908730h 10.1021/acscatal.6b01878 10.1021/cg7011364 10.1038/nmat3313 10.1021/ja405997s 10.1021/acsami.5b08501 10.1126/science.1209816 10.1016/j.jcrysgro.2009.08.007 10.1016/j.chemphys.2005.05.038 10.1002/anie.200907128 10.1021/nn4001885 10.1038/nmat3087 10.1021/jp904022e 10.1021/ja900506x 10.1021/ja206280g 10.1039/c2cp40841d 10.1021/ja307507a 10.1038/ncomms6982 10.1021/ic0262031 10.1021/ar300272m 10.1021/jp804164h 10.1126/science.1212858 10.1126/science.1215081 10.1126/science.1185372 10.1039/C1CP23212F 10.1021/ja211526y 10.1021/jacs.6b06250 10.1021/ja9016478 10.1021/ja807769r 10.1039/c0jm01777a 10.1021/ja200144w |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201701998 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 7773 |
ExternalDocumentID | 28467678 10_1002_anie_201701998 ANIE201701998 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the Chinese Academy of Sciences funderid: KGZD-EW-T05; XDA090301001 – fundername: National Natural Science Foundation of China funderid: 21521001; 21431006; 21225315; 21321002; 91645202 – fundername: National Basic Research Program of China funderid: 2014CB931800; 2013CB834603; QYZDJ-SSW-SLH036 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4768-216e77e1030787c29d50db5bc277c2872c1ab02bcb5a9b7b65e66ee5c47eaa83 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:27:27 EDT 2025 Fri Jul 25 10:40:26 EDT 2025 Wed Feb 19 02:32:20 EST 2025 Tue Jul 01 03:27:30 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Wed Jan 22 16:26:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | tellurium electrocatalyst oxygen evolution reaction cobalt hierarchical structure |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4768-216e77e1030787c29d50db5bc277c2872c1ab02bcb5a9b7b65e66ee5c47eaa83 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3732-1011 |
PMID | 28467678 |
PQID | 1911694018 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1895272927 proquest_journals_1911694018 pubmed_primary_28467678 crossref_citationtrail_10_1002_anie_201701998 crossref_primary_10_1002_anie_201701998 wiley_primary_10_1002_anie_201701998_ANIE201701998 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 26, 2017 |
PublicationDateYYYYMMDD | 2017-06-26 |
PublicationDate_xml | – month: 06 year: 2017 text: June 26, 2017 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2015; 6 2010; 328 2013; 46 2009; 113 2011; 10 2008; 8 2009; 311 2005; 319 2010 2010; 49 122 2009; 131 2008; 321 2013; 7 2012; 14 2012; 11 2015; 7 2011; 133 2009; 48 2016; 6 2010; 20 2012; 134 2006; 22 2010; 132 1999; 11 2013; 135 2016; 138 2008; 112 2009; 19 2003; 42 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_8_3 e_1_2_2_47_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_34_1 e_1_2_2_15_1 e_1_2_2_3_2 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_37_2 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_31_2 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 6 start-page: 5982 year: 2015 publication-title: Nat. Commun. – volume: 334 start-page: 1355 year: 2011 publication-title: Science – volume: 133 start-page: 16742 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 2615 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 645 year: 2011 publication-title: Science – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 131 start-page: 6086 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 6581 year: 2009 publication-title: J. Mater. Chem. – volume: 112 start-page: 14825 year: 2008 publication-title: J. Phys. Chem. C – volume: 7 start-page: 2733 year: 2013 publication-title: ACS Nano – volume: 48 start-page: 4927 year: 2009 publication-title: Inorg. Chem. – volume: 321 start-page: 1072 year: 2008 publication-title: Science – volume: 46 start-page: 1450 year: 2013 publication-title: Acc. Chem. Res. – volume: 328 start-page: 342 year: 2010 publication-title: Science – volume: 20 start-page: 7634 year: 2010 publication-title: J. Mater. Chem. – volume: 42 start-page: 2174 year: 2003 publication-title: Inorg. Chem. – volume: 132 start-page: 4202 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 49 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 539 year: 1999 publication-title: Nanostruct. Mater. – volume: 113 start-page: 15068 year: 2009 publication-title: J. Phys. Chem. C – volume: 138 start-page: 10770 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 49 122 start-page: 4813 4923 year: 2010 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 131 start-page: 7486 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 2930 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 319 start-page: 178 year: 2005 publication-title: Chem. Phys. – volume: 7 start-page: 25914 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 133 start-page: 7264 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 3838 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 3830 year: 2006 publication-title: Langmuir – volume: 14 start-page: 14010 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 135 start-page: 13521 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2838 year: 2008 publication-title: Cryst. Growth Des. – volume: 311 start-page: 4467 year: 2009 publication-title: J. Cryst. Growth – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 6 start-page: 7393 year: 2016 publication-title: ACS Catal. – volume: 134 start-page: 17253 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – ident: e_1_2_2_3_2 doi: 10.1126/science.1162018 – ident: e_1_2_2_38_1 doi: 10.1021/la053021l – ident: e_1_2_2_40_1 – ident: e_1_2_2_29_2 doi: 10.1016/S0965-9773(99)00340-2 – ident: e_1_2_2_23_1 – ident: e_1_2_2_8_3 doi: 10.1002/ange.200907128 – ident: e_1_2_2_22_1 doi: 10.1039/b903216a – ident: e_1_2_2_15_1 – ident: e_1_2_2_14_2 doi: 10.1021/ja900023k – ident: e_1_2_2_31_2 doi: 10.1021/ic900245w – ident: e_1_2_2_16_2 doi: 10.1021/ja908730h – ident: e_1_2_2_24_2 doi: 10.1021/acscatal.6b01878 – ident: e_1_2_2_27_2 doi: 10.1021/cg7011364 – ident: e_1_2_2_5_1 doi: 10.1038/nmat3313 – ident: e_1_2_2_46_2 doi: 10.1021/ja405997s – ident: e_1_2_2_30_1 – ident: e_1_2_2_25_2 doi: 10.1021/acsami.5b08501 – ident: e_1_2_2_18_1 doi: 10.1126/science.1209816 – ident: e_1_2_2_32_2 doi: 10.1016/j.jcrysgro.2009.08.007 – ident: e_1_2_2_47_1 doi: 10.1016/j.chemphys.2005.05.038 – ident: e_1_2_2_6_1 – ident: e_1_2_2_8_2 doi: 10.1002/anie.200907128 – ident: e_1_2_2_37_2 doi: 10.1021/nn4001885 – ident: e_1_2_2_39_1 – ident: e_1_2_2_10_1 doi: 10.1038/nmat3087 – ident: e_1_2_2_43_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_12_1 – ident: e_1_2_2_9_1 doi: 10.1021/jp904022e – ident: e_1_2_2_21_2 doi: 10.1021/ja900506x – ident: e_1_2_2_11_1 doi: 10.1021/ja206280g – ident: e_1_2_2_45_2 doi: 10.1039/c2cp40841d – ident: e_1_2_2_41_2 doi: 10.1021/ja307507a – ident: e_1_2_2_4_1 doi: 10.1038/ncomms6982 – ident: e_1_2_2_28_2 doi: 10.1021/ic0262031 – ident: e_1_2_2_35_2 doi: 10.1021/ar300272m – ident: e_1_2_2_33_2 doi: 10.1021/jp804164h – ident: e_1_2_2_34_1 – ident: e_1_2_2_42_2 doi: 10.1126/science.1212858 – ident: e_1_2_2_44_2 doi: 10.1126/science.1215081 – ident: e_1_2_2_2_2 doi: 10.1126/science.1185372 – ident: e_1_2_2_48_1 doi: 10.1039/C1CP23212F – ident: e_1_2_2_20_2 doi: 10.1021/ja211526y – ident: e_1_2_2_36_2 doi: 10.1021/jacs.6b06250 – ident: e_1_2_2_17_2 doi: 10.1021/ja9016478 – ident: e_1_2_2_19_1 – ident: e_1_2_2_13_2 doi: 10.1021/ja807769r – ident: e_1_2_2_26_2 doi: 10.1039/c0jm01777a – ident: e_1_2_2_7_2 doi: 10.1021/ja200144w |
SSID | ssj0028806 |
Score | 2.5958734 |
Snippet | Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report... Cobalt-based nanomaterials have been intensively explored as promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. Herein, we report... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7769 |
SubjectTerms | Catalysts Chalcogenides Cobalt Density functional theory electrocatalyst Electrocatalysts Evolution hierarchical structure Intermediates Intermetallic compounds Low cost Nanomaterials Nanotechnology Oxygen oxygen evolution reaction Reaction intermediates Ruthenium oxide Tellurides tellurium |
Title | Phase‐Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201701998 https://www.ncbi.nlm.nih.gov/pubmed/28467678 https://www.proquest.com/docview/1911694018 https://www.proquest.com/docview/1895272927 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLam3mw3wIBBoJuMhMRV2tSpneSyqloVpHUT7aTeRbZzIhBVipYUUa72CHvGPcnOyR8UhJDGXSzbimOfn8-Oz3cYe-vDQIJW0k11VJJqazfUkXTBMxrdp1ZGUuzw-VzNroYfVnL1SxR_xQ_RHriRZpT2mhRcm7z_kzSUIrDpahbxiUcU7UsXtggVfWz5owQKZxVe5PsuZaFvWBs90d_vvu-V_oCa-8i1dD3Tx0w3g65unHzpbQvTsz9-43P8n696wh7VuJSPKkE6ZgeQPWWH4yYd3DOWXH5Ch3d3c7soM-egkeSLXYbwMYecb1I-JmKRgi9hvd5ef06Ao93epGsANEQckTGflGQV6OP4xfcdii2ffKvFno_pDGmXF_lztpxOluOZW6docO0QNyquGCgIAqBcZaj5VkSJ9BIjjRUBlsJA2IE2njAWlzwygVESlAKQ2Bu0Dv0T1sk2GbxkPExCY9Fb2jT1iNMtUimkw8D3Ac2OSIXD3GaFYlvTl1MWjXVcES-LmKYubqfOYe_a9l8r4o6_tuw2Cx7XCpzHuI0dqAg3n1j9pq3GKaf_KTqDzRbbhJEUuDkRgcNeVILSvkoQrkMg4DBRLvc_xhCP5u8nbenVQzq9Zkf0TNfYhOqyTnG9hVMETIU5K5XiHuO9Dfw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lAutOVRtrTFSEic0madtZMcq9VW29eC6CJxi2xnolassqjJIpYTP4HfyC9hJi-0IIQER8e24njejucbgJcB9hUarbzMxBWotvEiEysPfWvIfBptFecOX030-N3g_L1qbxNyLkyND9EduLFkVPqaBZwPpI9_ooZyCjbfzWJA8Ti6Bxtc1ruKqt52CFKS2LNOMAoCj-vQt7iNvjxenb9ql35zNld918r4nG6BbZdd3zn5cLQo7ZH78gui43991zY8aFxTcVLz0g6sYf4QNodtRbhHkL65IZv3_eu366p4DulJcb3MyYMssBDzTAwZW6QUU5zNFne3KQpS3fNshki6SJBzLEYVXgWZOfH685I4V4w-NZwvhnyMtCzK4jFMT0fT4dhrqjR4bkCxiif7GsMQuVwZCb-Tcar81CrrZEitKJSub6wvrSOqxza0WqHWiIpmozFR8ATW83mOT0FEaWQdGUyXZT7DusU6w2wQBgGS5pGZ7IHXkihxDYI5F9KYJTX2skx465Ju63rwqhv_scbu-OPI_ZbiSSPDRUKRbF_HFH9S94uum7acf6mYHOcLGhPFSlJ8IsMe7Nac0r1KsmtHvkAPZEXvv6whOZmcjbrW3r9Meg6b4-nVZXJ5Nrl4Bvf5Od9qk3of1su7BR6Q_1Taw0pCfgC7ahIX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL78JCASMhcUqbddZOcqy2u2p5LBVdpN4i2xkLxCpbNVnEcuIn8Bv5JczkBQtCSHB0bCuO5-14vgF4GuFQodEq8CatQbVNkJhUBRhaQ-bTaKs4d_jVTB--HT0_Vac_ZfE3-BD9gRtLRq2vWcDPcr_3AzSUM7D5ahbjiafJRbg00mHCfH3wpgeQksSdTX5RFAVchr6DbQzl3ub8TbP0m6-56brWtmd6HUy36ubKyYfdVWV33edfAB3_57NuwLXWMRX7DSfdhAtY3IIr464e3G3Ij9-Rxfv25etJXTqHtKQ4WRfkP5ZYiqUXY0YWqcQcF4vV-fscBSnupV8gkiYS5BqLSY1WQUZOvP60Jr4Vk48t34sxHyKty6q8A_PpZD4-DNoaDYEbUaQSyKHGOEYuVkai72SaqzC3yjoZUyuJpRsaG0rriOapja1WqDWiotloTBJtw1axLPAeiCRPrCNz6bwPGdQt1R79KI4iJL0jvRxA0FEocy1-OZfRWGQN8rLMeOuyfusG8Kwff9Ygd_xx5E5H8KyV4DKjOHaoU4o-qftJ301bzj9UTIHLFY1JUiUpOpHxAO42jNK_SrJjR57AAGRN7r-sIdufHU361v1_mfQYLh8fTLOXR7MXD-AqP-YrbVLvwFZ1vsKH5DxV9lEtH98BkHIQzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase%E2%80%90Selective+Syntheses+of+Cobalt+Telluride+Nanofleeces+for+Efficient+Oxygen+Evolution+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Qiang&rft.au=Huang%2C+Chuan%E2%80%90Qi&rft.au=Ju%2C+Yi%E2%80%90Ming&rft.au=Gao%2C+Min%E2%80%90Rui&rft.date=2017-06-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=27&rft.spage=7769&rft.epage=7773&rft_id=info:doi/10.1002%2Fanie.201701998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201701998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |