Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection
Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of tox...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 15; pp. 8415 - 8418 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.04.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [(R)‐β‐MPA]4AgBiI8 ((R)‐β‐MPA=(R)‐(+)‐β‐methylphenethylammonium, 1‐R), and [(S)‐β‐MPA]4AgBiI8 ((S)‐β‐MPA=(S)‐(−)‐β‐methylphenethylammonium, 1‐S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance.
Chiral lead‐free double hybrid perovskites are successfully acquired by assembling chiral organic cation with Ag+ and Bi3+ double metals. Benefitting from chiral polar bulk photovoltaic effects induced by polar structure, self‐powered circularly polarized light detection with a high anisotropy factor of 0.3 is unprecedentedly achieved in chiral hybrid perovskites. |
---|---|
AbstractList | Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [(R)‐β‐MPA]4AgBiI8 ((R)‐β‐MPA=(R)‐(+)‐β‐methylphenethylammonium, 1‐R), and [(S)‐β‐MPA]4AgBiI8 ((S)‐β‐MPA=(S)‐(−)‐β‐methylphenethylammonium, 1‐S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance.
Chiral lead‐free double hybrid perovskites are successfully acquired by assembling chiral organic cation with Ag+ and Bi3+ double metals. Benefitting from chiral polar bulk photovoltaic effects induced by polar structure, self‐powered circularly polarized light detection with a high anisotropy factor of 0.3 is unprecedentedly achieved in chiral hybrid perovskites. Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [(R)‐β‐MPA]4AgBiI8 ((R)‐β‐MPA=(R)‐(+)‐β‐methylphenethylammonium, 1‐R), and [(S)‐β‐MPA]4AgBiI8 ((S)‐β‐MPA=(S)‐(−)‐β‐methylphenethylammonium, 1‐S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance. Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [( R )‐β‐MPA] 4 AgBiI 8 (( R )‐β‐MPA=( R )‐(+)‐β‐methylphenethylammonium, 1‐ R ), and [( S )‐β‐MPA] 4 AgBiI 8 (( S )‐β‐MPA=( S )‐(−)‐β‐methylphenethylammonium, 1‐ S ). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance. Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead-free halide double perovskites, [(R)-β-MPA] AgBiI ((R)-β-MPA=(R)-(+)-β-methylphenethylammonium, 1-R), and [(S)-β-MPA] AgBiI ((S)-β-MPA=(S)-(-)-β-methylphenethylammonium, 1-S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self-powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self-powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new "green" circularly polarized light-sensitive materials with high performance. Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead-free halide double perovskites, [(R)-β-MPA]4 AgBiI8 ((R)-β-MPA=(R)-(+)-β-methylphenethylammonium, 1-R), and [(S)-β-MPA]4 AgBiI8 ((S)-β-MPA=(S)-(-)-β-methylphenethylammonium, 1-S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self-powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self-powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new "green" circularly polarized light-sensitive materials with high performance.Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead-free halide double perovskites, [(R)-β-MPA]4 AgBiI8 ((R)-β-MPA=(R)-(+)-β-methylphenethylammonium, 1-R), and [(S)-β-MPA]4 AgBiI8 ((S)-β-MPA=(S)-(-)-β-methylphenethylammonium, 1-S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self-powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self-powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new "green" circularly polarized light-sensitive materials with high performance. |
Author | Li, Lina Zhao, Sangen Li, Dong Peng, Yu Liu, Xitao Wu, Wentao Luo, Junhua Hong, Maochun |
Author_xml | – sequence: 1 givenname: Dong surname: Li fullname: Li, Dong organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China – sequence: 2 givenname: Xitao surname: Liu fullname: Liu, Xitao organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Wentao surname: Wu fullname: Wu, Wentao organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China – sequence: 4 givenname: Yu surname: Peng fullname: Peng, Yu organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China – sequence: 5 givenname: Sangen surname: Zhao fullname: Zhao, Sangen organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China – sequence: 6 givenname: Lina surname: Li fullname: Li, Lina email: lilina@fjirsm.ac.cn organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Maochun surname: Hong fullname: Hong, Maochun organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Junhua orcidid: 0000-0002-3179-7652 surname: Luo fullname: Luo, Junhua email: jhluo@fjirsm.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33347688$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LXDEUhoNY6le3LuVCN93caT5ubpKljFqFoR2oXZaQmznRaObGJvdWpit_gr-xv6QZRi0IpasTwvOcnJN3D233sQeEDgmeEIzpR9N7mFBMMWGqEVtol3BKaiYE2y7nhrFaSE520F7ON4WXErdv0Q5jrBGtlLvo-_TaJxOqGZjF74fHswRQna-65BfVHFL8mW_9ALlyMVVfIbiCzOM9JFhUU5_sGEwKq2oeS_W_yuXMX10P1QkMYAcf-wP0xpmQ4d1T3Uffzk4vp-f17Muni-nxrLZlDFEDdwwrKRvHuIAWpKISA2DHadcZy4E4BdLSznHb2la0lhhlrKBKdJ1Qgu2jD5u-dyn-GCEPeumzhRBMD3HMmjaCEtxgIQv6_hV6E8fUl-k05bg8TBlXhTp6osZuCQt9l_zSpJV-_rgCNBvApphzAqetH8x65yEZHzTBep2PXuejX_Ip2uSV9tz5n4LaCPc-wOo_tD7-fHH61_0DawikLQ |
CitedBy_id | crossref_primary_10_1002_adom_202203014 crossref_primary_10_1002_adom_202102678 crossref_primary_10_1002_adom_202200146 crossref_primary_10_1002_ange_202108171 crossref_primary_10_1002_adom_202101905 crossref_primary_10_1038_s41467_022_35441_9 crossref_primary_10_1021_acsami_2c06856 crossref_primary_10_1021_acs_inorgchem_3c01640 crossref_primary_10_1002_adfm_202311726 crossref_primary_10_1002_adma_202211935 crossref_primary_10_1109_LED_2024_3417437 crossref_primary_10_1002_ange_202107239 crossref_primary_10_1039_D4QI01703J crossref_primary_10_1002_advs_202307593 crossref_primary_10_1063_5_0180188 crossref_primary_10_1002_adom_202401011 crossref_primary_10_1038_s41557_024_01595_w crossref_primary_10_1002_adma_202309906 crossref_primary_10_1002_anie_202307875 crossref_primary_10_1039_D4SC04748F crossref_primary_10_1002_anie_202214161 crossref_primary_10_2139_ssrn_4172037 crossref_primary_10_1021_acsami_3c03201 crossref_primary_10_1021_acs_inorgchem_3c01497 crossref_primary_10_1364_OL_441505 crossref_primary_10_1126_sciadv_ado5942 crossref_primary_10_1021_acs_jpclett_2c00714 crossref_primary_10_1002_adfm_202314427 crossref_primary_10_1021_acsnano_1c11101 crossref_primary_10_1038_s41586_023_05877_0 crossref_primary_10_1021_acs_chemmater_1c03622 crossref_primary_10_1002_adom_202202700 crossref_primary_10_1021_acsami_5c01035 crossref_primary_10_1039_D2CE00009A crossref_primary_10_1038_s41570_022_00399_1 crossref_primary_10_3390_nano13081379 crossref_primary_10_1002_ange_202309055 crossref_primary_10_1002_smll_202207663 crossref_primary_10_1002_anie_202205939 crossref_primary_10_1021_acs_inorgchem_2c02900 crossref_primary_10_1002_ange_202214161 crossref_primary_10_1039_D2TC01224C crossref_primary_10_1039_D2TC03201E crossref_primary_10_3390_molecules29225347 crossref_primary_10_1021_acs_chemmater_1c01952 crossref_primary_10_1002_adfm_202303523 crossref_primary_10_1093_nsr_nwac240 crossref_primary_10_1021_jacs_4c17796 crossref_primary_10_1002_ange_202309600 crossref_primary_10_1021_acs_chemmater_1c02084 crossref_primary_10_1021_jacs_3c09395 crossref_primary_10_1039_D1NR06407J crossref_primary_10_1002_smtd_202200421 crossref_primary_10_1021_acsami_1c21262 crossref_primary_10_1360_SSC_2024_0074 crossref_primary_10_1002_anie_202108171 crossref_primary_10_1039_D1TC04163K crossref_primary_10_1021_jacs_2c06048 crossref_primary_10_1002_adom_202200354 crossref_primary_10_1002_smll_202203571 crossref_primary_10_1021_jacs_4c10507 crossref_primary_10_1021_acsenergylett_3c00629 crossref_primary_10_1021_acs_jpclett_3c00755 crossref_primary_10_59717_j_xinn_mater_2024_100084 crossref_primary_10_1021_jacs_2c07891 crossref_primary_10_1002_adfm_202214660 crossref_primary_10_1021_acs_inorgchem_3c03098 crossref_primary_10_1002_adfm_202306199 crossref_primary_10_1002_adom_202303039 crossref_primary_10_1002_anie_202107239 crossref_primary_10_1039_D2TA02207A crossref_primary_10_1016_j_jlumin_2024_120960 crossref_primary_10_3389_fchem_2021_711488 crossref_primary_10_1002_anie_202309600 crossref_primary_10_1007_s11426_023_1844_5 crossref_primary_10_1007_s40820_023_01161_y crossref_primary_10_1016_j_matt_2022_06_011 crossref_primary_10_1002_adom_202101545 crossref_primary_10_1002_smll_202307454 crossref_primary_10_1021_acs_inorgchem_3c00998 crossref_primary_10_1021_acs_nanolett_2c05085 crossref_primary_10_1007_s11426_024_2473_6 crossref_primary_10_1021_acs_chemmater_2c03770 crossref_primary_10_1002_smll_202200011 crossref_primary_10_1002_adma_202419747 crossref_primary_10_1002_adma_202204119 crossref_primary_10_1002_adma_202300968 crossref_primary_10_1088_1674_4926_24060032 crossref_primary_10_1002_advs_202412506 crossref_primary_10_1002_adma_202312396 crossref_primary_10_1021_acscentsci_1c00649 crossref_primary_10_1002_anie_202214504 crossref_primary_10_1021_jacs_2c05849 crossref_primary_10_1039_D1QM00329A crossref_primary_10_1002_anie_202309055 crossref_primary_10_1039_D1TC05836C crossref_primary_10_1002_agt2_148 crossref_primary_10_1021_acsnano_2c03746 crossref_primary_10_1021_acs_jpclett_3c00458 crossref_primary_10_3390_molecules28166166 crossref_primary_10_1021_acs_chemmater_3c01733 crossref_primary_10_1038_s41566_023_01230_z crossref_primary_10_1002_ange_202109054 crossref_primary_10_1002_ange_202205939 crossref_primary_10_1039_D4NR00644E crossref_primary_10_1021_jacs_3c00634 crossref_primary_10_1021_jacs_4c05992 crossref_primary_10_1039_D2MH01429G crossref_primary_10_1002_smll_202202941 crossref_primary_10_1002_anie_202422550 crossref_primary_10_1002_adom_202300337 crossref_primary_10_1016_j_pquantelec_2022_100375 crossref_primary_10_1002_adfm_202307896 crossref_primary_10_1016_j_chempr_2023_11_010 crossref_primary_10_1021_acsnano_4c00382 crossref_primary_10_1002_adfm_202214094 crossref_primary_10_1021_jacs_3c05080 crossref_primary_10_1002_ange_202309913 crossref_primary_10_1002_smll_202304332 crossref_primary_10_1039_D2DT00925K crossref_primary_10_1002_adom_202300580 crossref_primary_10_1039_D3CC06010A crossref_primary_10_1021_acs_inorgchem_2c03361 crossref_primary_10_1002_adom_202101044 crossref_primary_10_1016_j_optcom_2021_127599 crossref_primary_10_1039_D4MH01371A crossref_primary_10_1002_advs_202102065 crossref_primary_10_1002_smll_202103855 crossref_primary_10_1016_j_phrs_2024_107386 crossref_primary_10_1002_ange_202400644 crossref_primary_10_1002_ange_202422550 crossref_primary_10_1002_smll_202102884 crossref_primary_10_1038_s41467_022_31186_7 crossref_primary_10_1021_acsami_3c14906 crossref_primary_10_1021_acsnano_1c09521 crossref_primary_10_1016_j_chempr_2022_01_014 crossref_primary_10_1002_adfm_202308862 crossref_primary_10_1002_anie_202109054 crossref_primary_10_1021_jacsau_3c00835 crossref_primary_10_1021_acsami_2c07208 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1039_D3MH00745F crossref_primary_10_1016_j_cclet_2022_04_040 crossref_primary_10_1039_D3CC01739G crossref_primary_10_1021_acs_analchem_3c02933 crossref_primary_10_1016_j_nantod_2023_102132 crossref_primary_10_1016_j_device_2023_100176 crossref_primary_10_1002_advs_202206070 crossref_primary_10_1002_advs_202206191 crossref_primary_10_1002_ange_202419776 crossref_primary_10_1021_acsami_4c00622 crossref_primary_10_1021_jacs_2c12527 crossref_primary_10_1002_adom_202102227 crossref_primary_10_1002_advs_202104598 crossref_primary_10_1002_anie_202309913 crossref_primary_10_1002_lpor_202400345 crossref_primary_10_1021_acsnano_1c01134 crossref_primary_10_1016_j_cclet_2022_107774 crossref_primary_10_1021_acs_analchem_3c05941 crossref_primary_10_1021_acsanm_1c03323 crossref_primary_10_1016_j_ica_2022_121254 crossref_primary_10_1039_D3CC04308H crossref_primary_10_1002_adom_202300001 crossref_primary_10_1002_anie_202400644 crossref_primary_10_1002_aenm_202200792 crossref_primary_10_1039_D2DT00991A crossref_primary_10_1002_anie_202419776 crossref_primary_10_1039_D3DT02960C crossref_primary_10_1002_agt2_696 crossref_primary_10_1002_ange_202307875 crossref_primary_10_1021_jacs_2c01994 crossref_primary_10_1002_ange_202214504 crossref_primary_10_1021_acs_jpclett_2c00698 |
Cites_doi | 10.1021/jacs.9b06815 10.1021/jacs.0c00101 10.1002/anie.201915912 10.1038/nmat3051 10.1038/s41563-020-0774-9 10.1021/acsnano.9b04437 10.1038/nature09256 10.1038/s41578-020-0181-5 10.1021/jacs.8b01543 10.1063/1.5141102 10.1126/sciadv.abd3274 10.1021/jacs.9b11453 10.1038/s41563-020-0659-y 10.1039/C7MH00197E 10.1039/C8CS00563J 10.1021/jacs.9b07178 10.1021/acs.chemrev.8b00539 10.1002/anie.201915094 10.1039/C9CC07796K 10.1021/acsphotonics.7b00837 10.1038/ncomms9379 10.1002/anie.201911551 10.1021/jacs.9b10919 10.1038/nphoton.2013.176 10.1002/ange.201915912 10.1021/acsnano.9b00302 10.1002/ange.201907660 10.1002/ange.201915094 10.1021/jacs.9b02909 10.1021/acsnano.0c03628 10.1002/anie.201909815 10.1002/ange.201911551 10.1063/1.3582917 10.1002/smll.201902237 10.1038/s41566-017-0012-4 10.1016/j.joule.2018.06.017 10.1002/anie.201907660 10.1021/acs.nanolett.8b01616 10.1038/s41467-019-09942-z 10.1021/jacs.9b09945 10.1038/nphoton.2015.156 10.1021/jacs.9b13291 10.1038/nphys4145 10.1002/ange.201909815 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202013947 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8418 |
ExternalDocumentID | 33347688 10_1002_anie_202013947 ANIE202013947 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Youth Innovation Promotion of CAS. – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20010200 – fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences funderid: ZDBS-LY-SLH024 – fundername: the NSF of Fujian Province funderid: 2018H0047 – fundername: the National Natural Science Foundation of China funderid: 21971238, 21833010, 51802304, 21875251, 21975258, 61975207 and 21921001 – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB20010200 – fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences grantid: ZDBS-LY-SLH024 – fundername: the NSF of Fujian Province grantid: 2018H0047 – fundername: the National Natural Science Foundation of China grantid: 21971238, 21833010, 51802304, 21875251, 21975258, 61975207 and 21921001 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-e5f309884f357e6e89280ee0f52bbac5e1f9e8c2bf5c6c676c1a9ac7297bb7973 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:02:09 EDT 2025 Fri Jul 25 10:37:09 EDT 2025 Thu Apr 03 07:09:41 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Tue Jul 01 01:17:53 EDT 2025 Wed Jan 22 16:31:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | double hybrid perovskite self-powered photodetection circularly polarized light detection lead-free chiral polar photovoltaic |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-e5f309884f357e6e89280ee0f52bbac5e1f9e8c2bf5c6c676c1a9ac7297bb7973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3179-7652 |
PMID | 33347688 |
PQID | 2509282359 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2472104078 proquest_journals_2509282359 pubmed_primary_33347688 crossref_citationtrail_10_1002_anie_202013947 crossref_primary_10_1002_anie_202013947 wiley_primary_10_1002_anie_202013947_ANIE202013947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 6, 2021 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: April 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2018; 140 2017; 4 2020; 142 2019; 10 2010; 466 2019; 13 2019; 15 2020 2020; 59 132 2020; 14 2011; 98 2011; 10 2020; 56 2013; 7 2015; 9 2019; 141 2019 2019; 58 131 2020; 19 2018; 18 2020; 6 2020; 5 2018; 2 2018; 5 2017; 11 2019; 48 2017; 13 2020; 116 2019; 119 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_8_3 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_32_1 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_27_3 e_1_2_2_44_1 e_1_2_2_7_3 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_46_2 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 141 start-page: 19099 year: 2019 end-page: 19109 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 4206 year: 2020 end-page: 4212 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 894 year: 2017 end-page: 899 publication-title: Nat. Phys. – volume: 140 start-page: 5235 year: 2018 end-page: 5240 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 14504 14646 year: 2019 2019 end-page: 14508 14650 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 423 year: 2020 end-page: 439 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 726 year: 2017 end-page: 732 publication-title: Nat. Photonics – volume: 59 132 start-page: 3429 3457 year: 2020 2020 end-page: 3433 3461 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 56 start-page: 3206 year: 2020 end-page: 3209 publication-title: Chem. Commun. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 4 start-page: 851 year: 2017 end-page: 856 publication-title: Mater. Horiz. – volume: 142 start-page: 6625 year: 2020 end-page: 6637 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 634 year: 2013 end-page: 638 publication-title: Nat. Photonics – volume: 19 start-page: 1201 year: 2020 end-page: 1206 publication-title: Nat. Mater. – volume: 6 start-page: 8379 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 398 year: 2018 end-page: 405 publication-title: ACS Photonics – volume: 59 132 start-page: 3933 3961 year: 2020 2020 end-page: 3937 3965 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 4756 year: 2020 end-page: 4761 publication-title: J. Am. Chem. Soc. – volume: 15 year: 2019 publication-title: Small – volume: 59 132 start-page: 6442 6504 year: 2020 2020 end-page: 6450 6512 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 19634 year: 2019 end-page: 19643 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3659 year: 2019 end-page: 3665 publication-title: ACS Nano – volume: 10 start-page: 521 year: 2011 end-page: 526 publication-title: Nat. Mater. – volume: 119 start-page: 3036 year: 2019 end-page: 3103 publication-title: Chem. Rev. – volume: 13 start-page: 9473 year: 2019 end-page: 9481 publication-title: ACS Nano – volume: 19 start-page: 605 year: 2020 end-page: 609 publication-title: Nat. Mater. – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 466 start-page: 730 year: 2010 end-page: 734 publication-title: Nature – volume: 10 start-page: 1927 year: 2019 publication-title: Nat. Commun. – volume: 141 start-page: 14520 year: 2019 end-page: 14523 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 7610 year: 2020 end-page: 7616 publication-title: ACS Nano – volume: 18 start-page: 5411 year: 2018 end-page: 5417 publication-title: Nano Lett. – volume: 48 start-page: 517 year: 2019 end-page: 539 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 679 year: 2015 end-page: 686 publication-title: Nat. Photonics – volume: 141 start-page: 7955 year: 2019 end-page: 7964 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 15757 15904 year: 2019 2019 end-page: 15761 15908 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 55 year: 2020 end-page: 59 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1662 year: 2018 end-page: 1673 publication-title: Joule – ident: e_1_2_2_32_1 – ident: e_1_2_2_15_2 doi: 10.1021/jacs.9b06815 – ident: e_1_2_2_4_2 doi: 10.1021/jacs.0c00101 – ident: e_1_2_2_27_2 doi: 10.1002/anie.201915912 – ident: e_1_2_2_48_2 doi: 10.1038/nmat3051 – ident: e_1_2_2_38_1 – ident: e_1_2_2_10_1 doi: 10.1038/s41563-020-0774-9 – ident: e_1_2_2_43_1 doi: 10.1021/acsnano.9b04437 – ident: e_1_2_2_20_2 doi: 10.1038/nature09256 – ident: e_1_2_2_24_2 doi: 10.1038/s41578-020-0181-5 – ident: e_1_2_2_45_1 – ident: e_1_2_2_33_2 doi: 10.1021/jacs.8b01543 – ident: e_1_2_2_28_1 – ident: e_1_2_2_11_1 – ident: e_1_2_2_44_1 doi: 10.1063/1.5141102 – ident: e_1_2_2_25_1 – ident: e_1_2_2_46_2 doi: 10.1126/sciadv.abd3274 – ident: e_1_2_2_12_2 doi: 10.1021/jacs.9b11453 – ident: e_1_2_2_5_2 doi: 10.1038/s41563-020-0659-y – ident: e_1_2_2_17_1 – ident: e_1_2_2_39_2 doi: 10.1039/C7MH00197E – ident: e_1_2_2_22_1 – ident: e_1_2_2_9_2 doi: 10.1039/C8CS00563J – ident: e_1_2_2_41_2 doi: 10.1021/jacs.9b07178 – ident: e_1_2_2_3_2 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_2_2_8_2 doi: 10.1002/anie.201915094 – ident: e_1_2_2_42_1 doi: 10.1039/C9CC07796K – ident: e_1_2_2_29_2 doi: 10.1021/acsphotonics.7b00837 – ident: e_1_2_2_19_2 doi: 10.1038/ncomms9379 – ident: e_1_2_2_37_1 doi: 10.1002/anie.201911551 – ident: e_1_2_2_1_1 – ident: e_1_2_2_6_2 doi: 10.1021/jacs.9b10919 – ident: e_1_2_2_21_2 doi: 10.1038/nphoton.2013.176 – ident: e_1_2_2_27_3 doi: 10.1002/ange.201915912 – ident: e_1_2_2_40_2 doi: 10.1021/acsnano.9b00302 – ident: e_1_2_2_7_3 doi: 10.1002/ange.201907660 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201915094 – ident: e_1_2_2_34_2 doi: 10.1021/jacs.9b02909 – ident: e_1_2_2_13_2 doi: 10.1021/acsnano.0c03628 – ident: e_1_2_2_36_1 doi: 10.1002/anie.201909815 – ident: e_1_2_2_37_2 doi: 10.1002/ange.201911551 – ident: e_1_2_2_18_2 doi: 10.1063/1.3582917 – ident: e_1_2_2_23_2 doi: 10.1002/smll.201902237 – ident: e_1_2_2_30_2 doi: 10.1038/s41566-017-0012-4 – ident: e_1_2_2_31_2 doi: 10.1016/j.joule.2018.06.017 – ident: e_1_2_2_7_2 doi: 10.1002/anie.201907660 – ident: e_1_2_2_16_2 doi: 10.1021/acs.nanolett.8b01616 – ident: e_1_2_2_26_2 doi: 10.1038/s41467-019-09942-z – ident: e_1_2_2_35_2 doi: 10.1021/jacs.9b09945 – ident: e_1_2_2_2_2 doi: 10.1038/nphoton.2015.156 – ident: e_1_2_2_14_2 doi: 10.1021/jacs.9b13291 – ident: e_1_2_2_47_2 doi: 10.1038/nphys4145 – ident: e_1_2_2_36_2 doi: 10.1002/ange.201909815 |
SSID | ssj0028806 |
Score | 2.66636 |
Snippet | Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics... Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8415 |
SubjectTerms | Anisotropy Cations Charge transport chiral polar photovoltaic Chirality Circular dichroism Circular polarization circularly polarized light detection Dichroism double hybrid perovskite Lead lead-free Perovskites Photons Photovoltaics Polarized light self-powered photodetection |
Title | Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013947 https://www.ncbi.nlm.nih.gov/pubmed/33347688 https://www.proquest.com/docview/2509282359 https://www.proquest.com/docview/2472104078 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2lD_pgC0WuhNRTIOtH7BzRltWCWrSiReJSRbZ3IlZdZavsLhKc-An8Rn4JM8kmsK2qSvSYeKzE4xn7G3sejO3IUW5tiCECJX2kXFdH1uXdyMSJs0YA7nFkKH49Tgan6uhMnz2I4q_zQ7QHbqQZ1XpNCu78bO8-aShFYKN9JwjDKAonJ4ctQkUnbf4ogcJZhxdJGVEV-iZrYyz2Vruv7kp_QM1V5FptPf0XzDU_XXuc_NxdzP1uuPotn-P_jOole77EpXy_FqRX7AkU6-xprykH95r96J2PS6Sgmpy31zf9EoAPLineiw-hnF7M6Bh4xhED828wyZFkSAXYYMR747Jydp1c8iEZ0uMrfPmFDgX4Z5hXrmDFG3baP_jeG0TL2gxRUAbXVtC5jFNrVS61gQRsKmwMEOdaeO-Chm6egg3C5zokITFJ6LrUBYTyxnuTGvmWrRXTAjYYR0AirEutAEAwRLHtWgXAfVKheJlR0mFRMzdZWCYup_oZk6xOuSwyYlrWMq3DPrX0v-qUHX-l3GqmOluq7ixDTIhjEVKnHfaxbUZm002KK2C6QBqFhnNMV6Ad9q4WkfZTUkrkkMUWUU30P_4h2z8-PGif3j-m0yZ7JsjThvyJki22Ni8X8AGh0txvV-pwB37ACyo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_n8CBRYJxMmts2t71wcOVdIooWkUQSv1goy9GYuIyEFOAkpPPAKvwqvwCDwJM_5DASEkpB442h7b692Z3W_HM98APFWT1BjrooOeShwvbvuOidO2o90gNloirXG8UTweBf1T7-WZf7YFX-tcmJIfonG4sWUU8zUbODuk93-yhnIKNm3wJIMYT1dxlUe4_kS7tsWLQZeG-JmUvcOTTt-pCgs41tM0MaCfKjc0xkuVrzFAE0rjIrqpL5Mktj620xCNlUnq28AGOrDtOIwt4VCdJDrUip57CS5zGXGm6---ahirJJlDmdCklMN172ueSFfub7Z3cx38DdxuYuVisetdg291N5UxLu_3Vstkz57_wiD5X_XjdbhaQW9xUNrKDdjC7CbsdOqKd7fgTefdNCcJLjv6_fOXXo4o-mtOaRNjzOcfF-zpXgiC-eI1zlISGXONOZyIzjQv4nlnazFmX8H0nE4O2e8hurgsot2y23B6IV93B7azeYb3QBDmkiYOjUQkvMfp-75nkaCARxakJ0ELnFoZIltxs3OJkFlUskrLiAcpagapBc8b-Q8lK8kfJXdr3Yqq2WkREeylb5HKD1vwpLlMnc0_i-IM5yuS8bSkrTohyBbcLXWyeZVSinrI0BVZaNZf2hAdjAaHzdH9f7npMez0T46H0XAwOnoAVyQHFnH4VLAL28t8hQ8JGS6TR4UtCnh70Ur7A81sahc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIgEX3tBAgUUCcXLr7MO7PnCokkYJLVEEVOoFufZmLKJGTuUkoPTET-Cn8Ff4C_wSZv1CASEkpB442ju29zGz-814HgDPxDg1xvrooRSJJ-O28kyctj3tB7HRHOmMc4ri62HQP5KvjtXxBnytY2HK_BCNwc1JRrFfOwE_G6e7P5OGughs0u-4wzBSV26VB7j6RErb_OWgSyv8nPPe_rtO36vqCnhWatoXUKXCD42RqVAaAzQhNz6inyqeJLFV2E5DNJYnqbKBDXRg23EYW4KhOkl0qAW99xJcloEfumIR3TdNwipO0lDGMwnhubL3dZpIn--u93f9GPwN265D5eKs692Ab_UslS4upzvLRbJjz39JIPk_TeNNuF4Bb7ZXSsot2MDsNlzt1PXu7sD7zodJThSu6Oj3z196OSLrr1xAGxthPvs4d3buOSOQz97iNCWSkaswh2PWmeSFN-90xUbOUjA5p5uHzurBurgofN2yu3B0IaO7B5vZLMMtYIS4uIlDwxEJ7bngfSUtEhCQJD96HLTAq3khslVmdlcgZBqVOaV55BYpahapBS8a-rMyJ8kfKbdr1oqqvWkeEeilsXChwhY8bZppst2vojjD2ZJopOakqBN-bMH9kiWbTwkhaIYMtfCCsf7Sh2hvONhvrh78y0NP4Mqo24sOB8ODh3CNO68i5zsVbMPmIl_iI4KFi-RxIYkMTi6aZ38ACohoxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Lead%E2%80%90Free+Hybrid+Perovskites+for+Self%E2%80%90Powered+Circularly+Polarized+Light+Detection&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Dong&rft.au=Liu%2C+Xitao&rft.au=Wu%2C+Wentao&rft.au=Peng%2C+Yu&rft.date=2021-04-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8415&rft.epage=8418&rft_id=info:doi/10.1002%2Fanie.202013947&rft.externalDBID=10.1002%252Fanie.202013947&rft.externalDocID=ANIE202013947 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |