Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection

Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of tox...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 15; pp. 8415 - 8418
Main Authors Li, Dong, Liu, Xitao, Wu, Wentao, Peng, Yu, Zhao, Sangen, Li, Lina, Hong, Maochun, Luo, Junhua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.04.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [(R)‐β‐MPA]4AgBiI8 ((R)‐β‐MPA=(R)‐(+)‐β‐methylphenethylammonium, 1‐R), and [(S)‐β‐MPA]4AgBiI8 ((S)‐β‐MPA=(S)‐(−)‐β‐methylphenethylammonium, 1‐S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance. Chiral lead‐free double hybrid perovskites are successfully acquired by assembling chiral organic cation with Ag+ and Bi3+ double metals. Benefitting from chiral polar bulk photovoltaic effects induced by polar structure, self‐powered circularly polarized light detection with a high anisotropy factor of 0.3 is unprecedentedly achieved in chiral hybrid perovskites.
AbstractList Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [(R)‐β‐MPA]4AgBiI8 ((R)‐β‐MPA=(R)‐(+)‐β‐methylphenethylammonium, 1‐R), and [(S)‐β‐MPA]4AgBiI8 ((S)‐β‐MPA=(S)‐(−)‐β‐methylphenethylammonium, 1‐S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance. Chiral lead‐free double hybrid perovskites are successfully acquired by assembling chiral organic cation with Ag+ and Bi3+ double metals. Benefitting from chiral polar bulk photovoltaic effects induced by polar structure, self‐powered circularly polarized light detection with a high anisotropy factor of 0.3 is unprecedentedly achieved in chiral hybrid perovskites.
Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [(R)‐β‐MPA]4AgBiI8 ((R)‐β‐MPA=(R)‐(+)‐β‐methylphenethylammonium, 1‐R), and [(S)‐β‐MPA]4AgBiI8 ((S)‐β‐MPA=(S)‐(−)‐β‐methylphenethylammonium, 1‐S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance.
Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead‐free halide double perovskites, [( R )‐β‐MPA] 4 AgBiI 8 (( R )‐β‐MPA=( R )‐(+)‐β‐methylphenethylammonium, 1‐ R ), and [( S )‐β‐MPA] 4 AgBiI 8 (( S )‐β‐MPA=( S )‐(−)‐β‐methylphenethylammonium, 1‐ S ). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self‐powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self‐powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new “green” circularly polarized light‐sensitive materials with high performance.
Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead-free halide double perovskites, [(R)-β-MPA] AgBiI ((R)-β-MPA=(R)-(+)-β-methylphenethylammonium, 1-R), and [(S)-β-MPA] AgBiI ((S)-β-MPA=(S)-(-)-β-methylphenethylammonium, 1-S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self-powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self-powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new "green" circularly polarized light-sensitive materials with high performance.
Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead-free halide double perovskites, [(R)-β-MPA]4 AgBiI8 ((R)-β-MPA=(R)-(+)-β-methylphenethylammonium, 1-R), and [(S)-β-MPA]4 AgBiI8 ((S)-β-MPA=(S)-(-)-β-methylphenethylammonium, 1-S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self-powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self-powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new "green" circularly polarized light-sensitive materials with high performance.Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics and efficient charge transport of inorganic frameworks. However, most of these reported chiral perovskites involve high concentrations of toxic Pb which will become the potential bottleneck for their further application. Herein, we successfully developed two lead-free halide double perovskites, [(R)-β-MPA]4 AgBiI8 ((R)-β-MPA=(R)-(+)-β-methylphenethylammonium, 1-R), and [(S)-β-MPA]4 AgBiI8 ((S)-β-MPA=(S)-(-)-β-methylphenethylammonium, 1-S). Circular dichroism measurements reveal that these perovskites exhibit notable chirality induced by organic cations to distinguish different polarization states of CPL photons. Significantly, they present unique chiral polar photovoltaic, and resulting self-powered CPL detection without an external power source is unprecedentedly achieved. Furthermore, an anisotropy factor up to 0.3 is acquired for the self-powered CPL detection, reaching the highest value among reported chiral perovskites. This work suggests hybrid double perovskites are promising photoelectronic candidates, and provides a new approach for exploring new "green" circularly polarized light-sensitive materials with high performance.
Author Li, Lina
Zhao, Sangen
Li, Dong
Peng, Yu
Liu, Xitao
Wu, Wentao
Luo, Junhua
Hong, Maochun
Author_xml – sequence: 1
  givenname: Dong
  surname: Li
  fullname: Li, Dong
  organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China
– sequence: 2
  givenname: Xitao
  surname: Liu
  fullname: Liu, Xitao
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Wentao
  surname: Wu
  fullname: Wu, Wentao
  organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China
– sequence: 4
  givenname: Yu
  surname: Peng
  fullname: Peng, Yu
  organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China
– sequence: 5
  givenname: Sangen
  surname: Zhao
  fullname: Zhao, Sangen
  organization: Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China
– sequence: 6
  givenname: Lina
  surname: Li
  fullname: Li, Lina
  email: lilina@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Maochun
  surname: Hong
  fullname: Hong, Maochun
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Junhua
  orcidid: 0000-0002-3179-7652
  surname: Luo
  fullname: Luo, Junhua
  email: jhluo@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33347688$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LXDEUhoNY6le3LuVCN93caT5ubpKljFqFoR2oXZaQmznRaObGJvdWpit_gr-xv6QZRi0IpasTwvOcnJN3D233sQeEDgmeEIzpR9N7mFBMMWGqEVtol3BKaiYE2y7nhrFaSE520F7ON4WXErdv0Q5jrBGtlLvo-_TaJxOqGZjF74fHswRQna-65BfVHFL8mW_9ALlyMVVfIbiCzOM9JFhUU5_sGEwKq2oeS_W_yuXMX10P1QkMYAcf-wP0xpmQ4d1T3Uffzk4vp-f17Muni-nxrLZlDFEDdwwrKRvHuIAWpKISA2DHadcZy4E4BdLSznHb2la0lhhlrKBKdJ1Qgu2jD5u-dyn-GCEPeumzhRBMD3HMmjaCEtxgIQv6_hV6E8fUl-k05bg8TBlXhTp6osZuCQt9l_zSpJV-_rgCNBvApphzAqetH8x65yEZHzTBep2PXuejX_Ip2uSV9tz5n4LaCPc-wOo_tD7-fHH61_0DawikLQ
CitedBy_id crossref_primary_10_1002_adom_202203014
crossref_primary_10_1002_adom_202102678
crossref_primary_10_1002_adom_202200146
crossref_primary_10_1002_ange_202108171
crossref_primary_10_1002_adom_202101905
crossref_primary_10_1038_s41467_022_35441_9
crossref_primary_10_1021_acsami_2c06856
crossref_primary_10_1021_acs_inorgchem_3c01640
crossref_primary_10_1002_adfm_202311726
crossref_primary_10_1002_adma_202211935
crossref_primary_10_1109_LED_2024_3417437
crossref_primary_10_1002_ange_202107239
crossref_primary_10_1039_D4QI01703J
crossref_primary_10_1002_advs_202307593
crossref_primary_10_1063_5_0180188
crossref_primary_10_1002_adom_202401011
crossref_primary_10_1038_s41557_024_01595_w
crossref_primary_10_1002_adma_202309906
crossref_primary_10_1002_anie_202307875
crossref_primary_10_1039_D4SC04748F
crossref_primary_10_1002_anie_202214161
crossref_primary_10_2139_ssrn_4172037
crossref_primary_10_1021_acsami_3c03201
crossref_primary_10_1021_acs_inorgchem_3c01497
crossref_primary_10_1364_OL_441505
crossref_primary_10_1126_sciadv_ado5942
crossref_primary_10_1021_acs_jpclett_2c00714
crossref_primary_10_1002_adfm_202314427
crossref_primary_10_1021_acsnano_1c11101
crossref_primary_10_1038_s41586_023_05877_0
crossref_primary_10_1021_acs_chemmater_1c03622
crossref_primary_10_1002_adom_202202700
crossref_primary_10_1021_acsami_5c01035
crossref_primary_10_1039_D2CE00009A
crossref_primary_10_1038_s41570_022_00399_1
crossref_primary_10_3390_nano13081379
crossref_primary_10_1002_ange_202309055
crossref_primary_10_1002_smll_202207663
crossref_primary_10_1002_anie_202205939
crossref_primary_10_1021_acs_inorgchem_2c02900
crossref_primary_10_1002_ange_202214161
crossref_primary_10_1039_D2TC01224C
crossref_primary_10_1039_D2TC03201E
crossref_primary_10_3390_molecules29225347
crossref_primary_10_1021_acs_chemmater_1c01952
crossref_primary_10_1002_adfm_202303523
crossref_primary_10_1093_nsr_nwac240
crossref_primary_10_1021_jacs_4c17796
crossref_primary_10_1002_ange_202309600
crossref_primary_10_1021_acs_chemmater_1c02084
crossref_primary_10_1021_jacs_3c09395
crossref_primary_10_1039_D1NR06407J
crossref_primary_10_1002_smtd_202200421
crossref_primary_10_1021_acsami_1c21262
crossref_primary_10_1360_SSC_2024_0074
crossref_primary_10_1002_anie_202108171
crossref_primary_10_1039_D1TC04163K
crossref_primary_10_1021_jacs_2c06048
crossref_primary_10_1002_adom_202200354
crossref_primary_10_1002_smll_202203571
crossref_primary_10_1021_jacs_4c10507
crossref_primary_10_1021_acsenergylett_3c00629
crossref_primary_10_1021_acs_jpclett_3c00755
crossref_primary_10_59717_j_xinn_mater_2024_100084
crossref_primary_10_1021_jacs_2c07891
crossref_primary_10_1002_adfm_202214660
crossref_primary_10_1021_acs_inorgchem_3c03098
crossref_primary_10_1002_adfm_202306199
crossref_primary_10_1002_adom_202303039
crossref_primary_10_1002_anie_202107239
crossref_primary_10_1039_D2TA02207A
crossref_primary_10_1016_j_jlumin_2024_120960
crossref_primary_10_3389_fchem_2021_711488
crossref_primary_10_1002_anie_202309600
crossref_primary_10_1007_s11426_023_1844_5
crossref_primary_10_1007_s40820_023_01161_y
crossref_primary_10_1016_j_matt_2022_06_011
crossref_primary_10_1002_adom_202101545
crossref_primary_10_1002_smll_202307454
crossref_primary_10_1021_acs_inorgchem_3c00998
crossref_primary_10_1021_acs_nanolett_2c05085
crossref_primary_10_1007_s11426_024_2473_6
crossref_primary_10_1021_acs_chemmater_2c03770
crossref_primary_10_1002_smll_202200011
crossref_primary_10_1002_adma_202419747
crossref_primary_10_1002_adma_202204119
crossref_primary_10_1002_adma_202300968
crossref_primary_10_1088_1674_4926_24060032
crossref_primary_10_1002_advs_202412506
crossref_primary_10_1002_adma_202312396
crossref_primary_10_1021_acscentsci_1c00649
crossref_primary_10_1002_anie_202214504
crossref_primary_10_1021_jacs_2c05849
crossref_primary_10_1039_D1QM00329A
crossref_primary_10_1002_anie_202309055
crossref_primary_10_1039_D1TC05836C
crossref_primary_10_1002_agt2_148
crossref_primary_10_1021_acsnano_2c03746
crossref_primary_10_1021_acs_jpclett_3c00458
crossref_primary_10_3390_molecules28166166
crossref_primary_10_1021_acs_chemmater_3c01733
crossref_primary_10_1038_s41566_023_01230_z
crossref_primary_10_1002_ange_202109054
crossref_primary_10_1002_ange_202205939
crossref_primary_10_1039_D4NR00644E
crossref_primary_10_1021_jacs_3c00634
crossref_primary_10_1021_jacs_4c05992
crossref_primary_10_1039_D2MH01429G
crossref_primary_10_1002_smll_202202941
crossref_primary_10_1002_anie_202422550
crossref_primary_10_1002_adom_202300337
crossref_primary_10_1016_j_pquantelec_2022_100375
crossref_primary_10_1002_adfm_202307896
crossref_primary_10_1016_j_chempr_2023_11_010
crossref_primary_10_1021_acsnano_4c00382
crossref_primary_10_1002_adfm_202214094
crossref_primary_10_1021_jacs_3c05080
crossref_primary_10_1002_ange_202309913
crossref_primary_10_1002_smll_202304332
crossref_primary_10_1039_D2DT00925K
crossref_primary_10_1002_adom_202300580
crossref_primary_10_1039_D3CC06010A
crossref_primary_10_1021_acs_inorgchem_2c03361
crossref_primary_10_1002_adom_202101044
crossref_primary_10_1016_j_optcom_2021_127599
crossref_primary_10_1039_D4MH01371A
crossref_primary_10_1002_advs_202102065
crossref_primary_10_1002_smll_202103855
crossref_primary_10_1016_j_phrs_2024_107386
crossref_primary_10_1002_ange_202400644
crossref_primary_10_1002_ange_202422550
crossref_primary_10_1002_smll_202102884
crossref_primary_10_1038_s41467_022_31186_7
crossref_primary_10_1021_acsami_3c14906
crossref_primary_10_1021_acsnano_1c09521
crossref_primary_10_1016_j_chempr_2022_01_014
crossref_primary_10_1002_adfm_202308862
crossref_primary_10_1002_anie_202109054
crossref_primary_10_1021_jacsau_3c00835
crossref_primary_10_1021_acsami_2c07208
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1039_D3MH00745F
crossref_primary_10_1016_j_cclet_2022_04_040
crossref_primary_10_1039_D3CC01739G
crossref_primary_10_1021_acs_analchem_3c02933
crossref_primary_10_1016_j_nantod_2023_102132
crossref_primary_10_1016_j_device_2023_100176
crossref_primary_10_1002_advs_202206070
crossref_primary_10_1002_advs_202206191
crossref_primary_10_1002_ange_202419776
crossref_primary_10_1021_acsami_4c00622
crossref_primary_10_1021_jacs_2c12527
crossref_primary_10_1002_adom_202102227
crossref_primary_10_1002_advs_202104598
crossref_primary_10_1002_anie_202309913
crossref_primary_10_1002_lpor_202400345
crossref_primary_10_1021_acsnano_1c01134
crossref_primary_10_1016_j_cclet_2022_107774
crossref_primary_10_1021_acs_analchem_3c05941
crossref_primary_10_1021_acsanm_1c03323
crossref_primary_10_1016_j_ica_2022_121254
crossref_primary_10_1039_D3CC04308H
crossref_primary_10_1002_adom_202300001
crossref_primary_10_1002_anie_202400644
crossref_primary_10_1002_aenm_202200792
crossref_primary_10_1039_D2DT00991A
crossref_primary_10_1002_anie_202419776
crossref_primary_10_1039_D3DT02960C
crossref_primary_10_1002_agt2_696
crossref_primary_10_1002_ange_202307875
crossref_primary_10_1021_jacs_2c01994
crossref_primary_10_1002_ange_202214504
crossref_primary_10_1021_acs_jpclett_2c00698
Cites_doi 10.1021/jacs.9b06815
10.1021/jacs.0c00101
10.1002/anie.201915912
10.1038/nmat3051
10.1038/s41563-020-0774-9
10.1021/acsnano.9b04437
10.1038/nature09256
10.1038/s41578-020-0181-5
10.1021/jacs.8b01543
10.1063/1.5141102
10.1126/sciadv.abd3274
10.1021/jacs.9b11453
10.1038/s41563-020-0659-y
10.1039/C7MH00197E
10.1039/C8CS00563J
10.1021/jacs.9b07178
10.1021/acs.chemrev.8b00539
10.1002/anie.201915094
10.1039/C9CC07796K
10.1021/acsphotonics.7b00837
10.1038/ncomms9379
10.1002/anie.201911551
10.1021/jacs.9b10919
10.1038/nphoton.2013.176
10.1002/ange.201915912
10.1021/acsnano.9b00302
10.1002/ange.201907660
10.1002/ange.201915094
10.1021/jacs.9b02909
10.1021/acsnano.0c03628
10.1002/anie.201909815
10.1002/ange.201911551
10.1063/1.3582917
10.1002/smll.201902237
10.1038/s41566-017-0012-4
10.1016/j.joule.2018.06.017
10.1002/anie.201907660
10.1021/acs.nanolett.8b01616
10.1038/s41467-019-09942-z
10.1021/jacs.9b09945
10.1038/nphoton.2015.156
10.1021/jacs.9b13291
10.1038/nphys4145
10.1002/ange.201909815
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202013947
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8418
ExternalDocumentID 33347688
10_1002_anie_202013947
ANIE202013947
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Youth Innovation Promotion of CAS.
– fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB20010200
– fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
  funderid: ZDBS-LY-SLH024
– fundername: the NSF of Fujian Province
  funderid: 2018H0047
– fundername: the National Natural Science Foundation of China
  funderid: 21971238, 21833010, 51802304, 21875251, 21975258, 61975207 and 21921001
– fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB20010200
– fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
  grantid: ZDBS-LY-SLH024
– fundername: the NSF of Fujian Province
  grantid: 2018H0047
– fundername: the National Natural Science Foundation of China
  grantid: 21971238, 21833010, 51802304, 21875251, 21975258, 61975207 and 21921001
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-e5f309884f357e6e89280ee0f52bbac5e1f9e8c2bf5c6c676c1a9ac7297bb7973
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:02:09 EDT 2025
Fri Jul 25 10:37:09 EDT 2025
Thu Apr 03 07:09:41 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Tue Jul 01 01:17:53 EDT 2025
Wed Jan 22 16:31:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords double hybrid perovskite
self-powered photodetection
circularly polarized light detection
lead-free
chiral polar photovoltaic
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-e5f309884f357e6e89280ee0f52bbac5e1f9e8c2bf5c6c676c1a9ac7297bb7973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3179-7652
PMID 33347688
PQID 2509282359
PQPubID 946352
PageCount 4
ParticipantIDs proquest_miscellaneous_2472104078
proquest_journals_2509282359
pubmed_primary_33347688
crossref_citationtrail_10_1002_anie_202013947
crossref_primary_10_1002_anie_202013947
wiley_primary_10_1002_anie_202013947_ANIE202013947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 6, 2021
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: April 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2018; 140
2017; 4
2020; 142
2019; 10
2010; 466
2019; 13
2019; 15
2020 2020; 59 132
2020; 14
2011; 98
2011; 10
2020; 56
2013; 7
2015; 9
2019; 141
2019 2019; 58 131
2020; 19
2018; 18
2020; 6
2020; 5
2018; 2
2018; 5
2017; 11
2019; 48
2017; 13
2020; 116
2019; 119
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_8_3
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_27_3
e_1_2_2_44_1
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_46_2
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 141
  start-page: 19099
  year: 2019
  end-page: 19109
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 4206
  year: 2020
  end-page: 4212
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 894
  year: 2017
  end-page: 899
  publication-title: Nat. Phys.
– volume: 140
  start-page: 5235
  year: 2018
  end-page: 5240
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 14504 14646
  year: 2019 2019
  end-page: 14508 14650
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 423
  year: 2020
  end-page: 439
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 726
  year: 2017
  end-page: 732
  publication-title: Nat. Photonics
– volume: 59 132
  start-page: 3429 3457
  year: 2020 2020
  end-page: 3433 3461
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 3206
  year: 2020
  end-page: 3209
  publication-title: Chem. Commun.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 4
  start-page: 851
  year: 2017
  end-page: 856
  publication-title: Mater. Horiz.
– volume: 142
  start-page: 6625
  year: 2020
  end-page: 6637
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 634
  year: 2013
  end-page: 638
  publication-title: Nat. Photonics
– volume: 19
  start-page: 1201
  year: 2020
  end-page: 1206
  publication-title: Nat. Mater.
– volume: 6
  start-page: 8379
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 398
  year: 2018
  end-page: 405
  publication-title: ACS Photonics
– volume: 59 132
  start-page: 3933 3961
  year: 2020 2020
  end-page: 3937 3965
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 4756
  year: 2020
  end-page: 4761
  publication-title: J. Am. Chem. Soc.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 59 132
  start-page: 6442 6504
  year: 2020 2020
  end-page: 6450 6512
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 19634
  year: 2019
  end-page: 19643
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3659
  year: 2019
  end-page: 3665
  publication-title: ACS Nano
– volume: 10
  start-page: 521
  year: 2011
  end-page: 526
  publication-title: Nat. Mater.
– volume: 119
  start-page: 3036
  year: 2019
  end-page: 3103
  publication-title: Chem. Rev.
– volume: 13
  start-page: 9473
  year: 2019
  end-page: 9481
  publication-title: ACS Nano
– volume: 19
  start-page: 605
  year: 2020
  end-page: 609
  publication-title: Nat. Mater.
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 466
  start-page: 730
  year: 2010
  end-page: 734
  publication-title: Nature
– volume: 10
  start-page: 1927
  year: 2019
  publication-title: Nat. Commun.
– volume: 141
  start-page: 14520
  year: 2019
  end-page: 14523
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 7610
  year: 2020
  end-page: 7616
  publication-title: ACS Nano
– volume: 18
  start-page: 5411
  year: 2018
  end-page: 5417
  publication-title: Nano Lett.
– volume: 48
  start-page: 517
  year: 2019
  end-page: 539
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 679
  year: 2015
  end-page: 686
  publication-title: Nat. Photonics
– volume: 141
  start-page: 7955
  year: 2019
  end-page: 7964
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 15757 15904
  year: 2019 2019
  end-page: 15761 15908
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 55
  year: 2020
  end-page: 59
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1662
  year: 2018
  end-page: 1673
  publication-title: Joule
– ident: e_1_2_2_32_1
– ident: e_1_2_2_15_2
  doi: 10.1021/jacs.9b06815
– ident: e_1_2_2_4_2
  doi: 10.1021/jacs.0c00101
– ident: e_1_2_2_27_2
  doi: 10.1002/anie.201915912
– ident: e_1_2_2_48_2
  doi: 10.1038/nmat3051
– ident: e_1_2_2_38_1
– ident: e_1_2_2_10_1
  doi: 10.1038/s41563-020-0774-9
– ident: e_1_2_2_43_1
  doi: 10.1021/acsnano.9b04437
– ident: e_1_2_2_20_2
  doi: 10.1038/nature09256
– ident: e_1_2_2_24_2
  doi: 10.1038/s41578-020-0181-5
– ident: e_1_2_2_45_1
– ident: e_1_2_2_33_2
  doi: 10.1021/jacs.8b01543
– ident: e_1_2_2_28_1
– ident: e_1_2_2_11_1
– ident: e_1_2_2_44_1
  doi: 10.1063/1.5141102
– ident: e_1_2_2_25_1
– ident: e_1_2_2_46_2
  doi: 10.1126/sciadv.abd3274
– ident: e_1_2_2_12_2
  doi: 10.1021/jacs.9b11453
– ident: e_1_2_2_5_2
  doi: 10.1038/s41563-020-0659-y
– ident: e_1_2_2_17_1
– ident: e_1_2_2_39_2
  doi: 10.1039/C7MH00197E
– ident: e_1_2_2_22_1
– ident: e_1_2_2_9_2
  doi: 10.1039/C8CS00563J
– ident: e_1_2_2_41_2
  doi: 10.1021/jacs.9b07178
– ident: e_1_2_2_3_2
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201915094
– ident: e_1_2_2_42_1
  doi: 10.1039/C9CC07796K
– ident: e_1_2_2_29_2
  doi: 10.1021/acsphotonics.7b00837
– ident: e_1_2_2_19_2
  doi: 10.1038/ncomms9379
– ident: e_1_2_2_37_1
  doi: 10.1002/anie.201911551
– ident: e_1_2_2_1_1
– ident: e_1_2_2_6_2
  doi: 10.1021/jacs.9b10919
– ident: e_1_2_2_21_2
  doi: 10.1038/nphoton.2013.176
– ident: e_1_2_2_27_3
  doi: 10.1002/ange.201915912
– ident: e_1_2_2_40_2
  doi: 10.1021/acsnano.9b00302
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201907660
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201915094
– ident: e_1_2_2_34_2
  doi: 10.1021/jacs.9b02909
– ident: e_1_2_2_13_2
  doi: 10.1021/acsnano.0c03628
– ident: e_1_2_2_36_1
  doi: 10.1002/anie.201909815
– ident: e_1_2_2_37_2
  doi: 10.1002/ange.201911551
– ident: e_1_2_2_18_2
  doi: 10.1063/1.3582917
– ident: e_1_2_2_23_2
  doi: 10.1002/smll.201902237
– ident: e_1_2_2_30_2
  doi: 10.1038/s41566-017-0012-4
– ident: e_1_2_2_31_2
  doi: 10.1016/j.joule.2018.06.017
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201907660
– ident: e_1_2_2_16_2
  doi: 10.1021/acs.nanolett.8b01616
– ident: e_1_2_2_26_2
  doi: 10.1038/s41467-019-09942-z
– ident: e_1_2_2_35_2
  doi: 10.1021/jacs.9b09945
– ident: e_1_2_2_2_2
  doi: 10.1038/nphoton.2015.156
– ident: e_1_2_2_14_2
  doi: 10.1021/jacs.9b13291
– ident: e_1_2_2_47_2
  doi: 10.1038/nphys4145
– ident: e_1_2_2_36_2
  doi: 10.1002/ange.201909815
SSID ssj0028806
Score 2.66636
Snippet Metal‐halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL‐sensitive property induced by chiral organics...
Metal-halide perovskites are recently emerging as the promising alternative for CPL detection owing to their CPL-sensitive property induced by chiral organics...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8415
SubjectTerms Anisotropy
Cations
Charge transport
chiral polar photovoltaic
Chirality
Circular dichroism
Circular polarization
circularly polarized light detection
Dichroism
double hybrid perovskite
Lead
lead-free
Perovskites
Photons
Photovoltaics
Polarized light
self-powered photodetection
Title Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013947
https://www.ncbi.nlm.nih.gov/pubmed/33347688
https://www.proquest.com/docview/2509282359
https://www.proquest.com/docview/2472104078
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2lD_pgC0WuhNRTIOtH7BzRltWCWrSiReJSRbZ3IlZdZavsLhKc-An8Rn4JM8kmsK2qSvSYeKzE4xn7G3sejO3IUW5tiCECJX2kXFdH1uXdyMSJs0YA7nFkKH49Tgan6uhMnz2I4q_zQ7QHbqQZ1XpNCu78bO8-aShFYKN9JwjDKAonJ4ctQkUnbf4ogcJZhxdJGVEV-iZrYyz2Vruv7kp_QM1V5FptPf0XzDU_XXuc_NxdzP1uuPotn-P_jOole77EpXy_FqRX7AkU6-xprykH95r96J2PS6Sgmpy31zf9EoAPLineiw-hnF7M6Bh4xhED828wyZFkSAXYYMR747Jydp1c8iEZ0uMrfPmFDgX4Z5hXrmDFG3baP_jeG0TL2gxRUAbXVtC5jFNrVS61gQRsKmwMEOdaeO-Chm6egg3C5zokITFJ6LrUBYTyxnuTGvmWrRXTAjYYR0AirEutAEAwRLHtWgXAfVKheJlR0mFRMzdZWCYup_oZk6xOuSwyYlrWMq3DPrX0v-qUHX-l3GqmOluq7ixDTIhjEVKnHfaxbUZm002KK2C6QBqFhnNMV6Ad9q4WkfZTUkrkkMUWUU30P_4h2z8-PGif3j-m0yZ7JsjThvyJki22Ni8X8AGh0txvV-pwB37ACyo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_n8CBRYJxMmts2t71wcOVdIooWkUQSv1goy9GYuIyEFOAkpPPAKvwqvwCDwJM_5DASEkpB442h7b692Z3W_HM98APFWT1BjrooOeShwvbvuOidO2o90gNloirXG8UTweBf1T7-WZf7YFX-tcmJIfonG4sWUU8zUbODuk93-yhnIKNm3wJIMYT1dxlUe4_kS7tsWLQZeG-JmUvcOTTt-pCgs41tM0MaCfKjc0xkuVrzFAE0rjIrqpL5Mktj620xCNlUnq28AGOrDtOIwt4VCdJDrUip57CS5zGXGm6---ahirJJlDmdCklMN172ueSFfub7Z3cx38DdxuYuVisetdg291N5UxLu_3Vstkz57_wiD5X_XjdbhaQW9xUNrKDdjC7CbsdOqKd7fgTefdNCcJLjv6_fOXXo4o-mtOaRNjzOcfF-zpXgiC-eI1zlISGXONOZyIzjQv4nlnazFmX8H0nE4O2e8hurgsot2y23B6IV93B7azeYb3QBDmkiYOjUQkvMfp-75nkaCARxakJ0ELnFoZIltxs3OJkFlUskrLiAcpagapBc8b-Q8lK8kfJXdr3Yqq2WkREeylb5HKD1vwpLlMnc0_i-IM5yuS8bSkrTohyBbcLXWyeZVSinrI0BVZaNZf2hAdjAaHzdH9f7npMez0T46H0XAwOnoAVyQHFnH4VLAL28t8hQ8JGS6TR4UtCnh70Ur7A81sahc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIgEX3tBAgUUCcXLr7MO7PnCokkYJLVEEVOoFufZmLKJGTuUkoPTET-Cn8Ff4C_wSZv1CASEkpB442ju29zGz-814HgDPxDg1xvrooRSJJ-O28kyctj3tB7HRHOmMc4ri62HQP5KvjtXxBnytY2HK_BCNwc1JRrFfOwE_G6e7P5OGughs0u-4wzBSV26VB7j6RErb_OWgSyv8nPPe_rtO36vqCnhWatoXUKXCD42RqVAaAzQhNz6inyqeJLFV2E5DNJYnqbKBDXRg23EYW4KhOkl0qAW99xJcloEfumIR3TdNwipO0lDGMwnhubL3dZpIn--u93f9GPwN265D5eKs692Ab_UslS4upzvLRbJjz39JIPk_TeNNuF4Bb7ZXSsot2MDsNlzt1PXu7sD7zodJThSu6Oj3z196OSLrr1xAGxthPvs4d3buOSOQz97iNCWSkaswh2PWmeSFN-90xUbOUjA5p5uHzurBurgofN2yu3B0IaO7B5vZLMMtYIS4uIlDwxEJ7bngfSUtEhCQJD96HLTAq3khslVmdlcgZBqVOaV55BYpahapBS8a-rMyJ8kfKbdr1oqqvWkeEeilsXChwhY8bZppst2vojjD2ZJopOakqBN-bMH9kiWbTwkhaIYMtfCCsf7Sh2hvONhvrh78y0NP4Mqo24sOB8ODh3CNO68i5zsVbMPmIl_iI4KFi-RxIYkMTi6aZ38ACohoxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Lead%E2%80%90Free+Hybrid+Perovskites+for+Self%E2%80%90Powered+Circularly+Polarized+Light+Detection&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Dong&rft.au=Liu%2C+Xitao&rft.au=Wu%2C+Wentao&rft.au=Peng%2C+Yu&rft.date=2021-04-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8415&rft.epage=8418&rft_id=info:doi/10.1002%2Fanie.202013947&rft.externalDBID=10.1002%252Fanie.202013947&rft.externalDocID=ANIE202013947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon