Phosphorene Co‐catalyst Advancing Highly Efficient Visible‐Light Photocatalytic Hydrogen Production

Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density fu...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 35; pp. 10373 - 10377
Main Authors Ran, Jingrun, Zhu, Bicheng, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.08.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high‐efficiency metal‐free co‐catalyst for CdS, Zn0.8Cd0.2S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron‐based X‐ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly‐active, cheap and green photocatalysts. Density functional calculations were used to direct the design of phosphorene as a metal‐free co‐catalyst promoting photocatalytic H2 production in metal sulfide photocatalyst systems. The enhanced photocatalytic performance arises from the pronounced electronic coupling between metal sulfides and phosphorene, together with its advantageous band structure and excellent charge carrier mobility.
AbstractList Transitional metals are widely used as co-catalysts boosting photocatalytic H production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn Cd S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts.
Transitional metals are widely used as co‐catalysts boosting photocatalytic H 2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high‐efficiency metal‐free co‐catalyst for CdS, Zn 0.8 Cd 0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron‐based X‐ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly‐active, cheap and green photocatalysts.
Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high‐efficiency metal‐free co‐catalyst for CdS, Zn0.8Cd0.2S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron‐based X‐ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly‐active, cheap and green photocatalysts. Density functional calculations were used to direct the design of phosphorene as a metal‐free co‐catalyst promoting photocatalytic H2 production in metal sulfide photocatalyst systems. The enhanced photocatalytic performance arises from the pronounced electronic coupling between metal sulfides and phosphorene, together with its advantageous band structure and excellent charge carrier mobility.
Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn0.8Cd0.2S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7% at 420nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts.
Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn0.8 Cd0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts.Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn0.8 Cd0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts.
Author Zhu, Bicheng
Qiao, Shi‐Zhang
Ran, Jingrun
Author_xml – sequence: 1
  givenname: Jingrun
  surname: Ran
  fullname: Ran, Jingrun
  organization: University of Adelaide
– sequence: 2
  givenname: Bicheng
  surname: Zhu
  fullname: Zhu, Bicheng
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28670856$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVJaS7ttssy0E024-oyuszSGCcOmDaLtNtBozljK4wlV9K0zK6P0GfMk1TGaQqBkpUO6PvOkc5_jk6cd4DQe4JnBGP6STsLM4qJxExR-QqdEU5JyaRkJ7muGCul4uQUncd4n3mlsHiDTqkSEisuztDmduvjfusDOCgW_uHXb6OTHqaYinn3Qztj3aZY2c12mIpl31tjwaXim422HSDT63yVitwk-aOYrClWUxf8BlxxG3w3mmS9e4te93qI8O7xvEBfr5Z3i1W5_nJ9s5ivS1NJIUvgptUdk0A0BQK4hr7vOQhWMUmwoExVPe3yt6TJiCItMRURolet7FrCgV2gy2PfffDfR4ip2dloYBi0Az_GhtSEcy4kqzP68Rl678fg8usyRWtGCeZVpj48UmO7g67ZB7vTYWr-rjADsyNggo8xQP-EENwcMmoOGTVPGWWheiYYm_RhSSloO_xfq4_aTzvA9MKQZv75ZvnP_QN1Iqi7
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_05_278
crossref_primary_10_1039_C8DT02803F
crossref_primary_10_1021_acscatal_7b03437
crossref_primary_10_1039_C7CC05466A
crossref_primary_10_1016_j_jcis_2018_04_066
crossref_primary_10_1002_crat_202000091
crossref_primary_10_1002_ange_201811211
crossref_primary_10_1039_C8TA09647C
crossref_primary_10_1039_D4CS00317A
crossref_primary_10_1016_j_cej_2018_02_031
crossref_primary_10_1016_j_apsusc_2019_05_113
crossref_primary_10_1088_2053_1583_aae869
crossref_primary_10_1016_j_ijhydene_2020_05_027
crossref_primary_10_1016_j_ccr_2020_213516
crossref_primary_10_1002_admi_202200771
crossref_primary_10_1021_acs_iecr_8b01376
crossref_primary_10_1016_j_apcatb_2022_121577
crossref_primary_10_1016_j_ijhydene_2020_08_252
crossref_primary_10_1016_j_jcis_2021_11_159
crossref_primary_10_1016_j_apcatb_2018_10_018
crossref_primary_10_1002_cctc_202001847
crossref_primary_10_1016_j_eng_2021_06_004
crossref_primary_10_1021_acsaem_3c01863
crossref_primary_10_1002_anie_201906416
crossref_primary_10_1016_j_physe_2020_114009
crossref_primary_10_1016_j_apcatb_2021_119992
crossref_primary_10_1016_j_ccr_2024_216345
crossref_primary_10_1002_cnma_202200153
crossref_primary_10_1002_adma_201804770
crossref_primary_10_1016_j_surfin_2020_100786
crossref_primary_10_1002_cnma_201900176
crossref_primary_10_1002_smll_201801705
crossref_primary_10_1016_j_jallcom_2018_11_292
crossref_primary_10_1016_j_jhazmat_2023_132413
crossref_primary_10_1038_s41467_019_10034_1
crossref_primary_10_1039_D0NH00491J
crossref_primary_10_1016_j_mtener_2021_100720
crossref_primary_10_1002_aesr_202400033
crossref_primary_10_1016_j_seppur_2022_122833
crossref_primary_10_1039_C7DT04912A
crossref_primary_10_1002_advs_201700870
crossref_primary_10_1088_2053_1583_ab39c6
crossref_primary_10_1021_acsanm_9b00265
crossref_primary_10_1016_j_apmt_2019_07_016
crossref_primary_10_1021_acs_langmuir_4c02635
crossref_primary_10_1038_s41524_021_00654_x
crossref_primary_10_1002_adfm_202418427
crossref_primary_10_1002_solr_202000050
crossref_primary_10_1016_j_apcatb_2019_117864
crossref_primary_10_1021_acs_jpclett_1c03527
crossref_primary_10_1007_s10853_018_2830_2
crossref_primary_10_1016_j_nantod_2023_101885
crossref_primary_10_1039_C9CC06146K
crossref_primary_10_1016_j_jechem_2022_03_025
crossref_primary_10_1007_s12274_020_2955_x
crossref_primary_10_1016_j_apsusc_2022_156249
crossref_primary_10_1002_anie_201913600
crossref_primary_10_1002_cssc_201900844
crossref_primary_10_1007_s10853_018_03227_4
crossref_primary_10_1002_anie_201904571
crossref_primary_10_1002_chem_201904594
crossref_primary_10_1016_j_apsusc_2019_06_158
crossref_primary_10_1016_j_mcat_2021_111630
crossref_primary_10_1021_acs_langmuir_4c00462
crossref_primary_10_1039_D0SE00394H
crossref_primary_10_3390_coatings14091141
crossref_primary_10_1016_j_envres_2024_119060
crossref_primary_10_1002_adfm_202002021
crossref_primary_10_1016_j_apsusc_2019_05_246
crossref_primary_10_1002_smll_202409735
crossref_primary_10_1016_j_jcat_2023_115270
crossref_primary_10_1016_j_apsusc_2021_151441
crossref_primary_10_1007_s12274_022_4593_y
crossref_primary_10_1016_j_cej_2019_03_231
crossref_primary_10_1002_adfm_201705407
crossref_primary_10_1039_C7EE02220D
crossref_primary_10_1007_s10853_020_05752_7
crossref_primary_10_1016_j_cej_2020_127681
crossref_primary_10_1002_ange_201913600
crossref_primary_10_1016_j_jcis_2018_10_097
crossref_primary_10_1002_smll_201804565
crossref_primary_10_1039_D2NR05099D
crossref_primary_10_1016_j_mser_2018_04_002
crossref_primary_10_1039_C9CY02435B
crossref_primary_10_1016_j_apcatb_2019_118466
crossref_primary_10_1016_j_apsusc_2023_157164
crossref_primary_10_1021_acsomega_0c06038
crossref_primary_10_1021_acs_jpcc_1c09021
crossref_primary_10_1021_acs_jpcc_7b06493
crossref_primary_10_1039_C8CS00324F
crossref_primary_10_1039_C8TA08497A
crossref_primary_10_1021_acs_joc_1c02987
crossref_primary_10_1002_advs_202001431
crossref_primary_10_1021_acscatal_4c02285
crossref_primary_10_1021_acsanm_0c01886
crossref_primary_10_1007_s11581_023_05004_z
crossref_primary_10_1016_j_apsusc_2023_156402
crossref_primary_10_1016_j_cej_2020_124634
crossref_primary_10_1063_5_0014867
crossref_primary_10_1039_D0TA02588G
crossref_primary_10_1016_j_watres_2023_120014
crossref_primary_10_1039_C9CP04143E
crossref_primary_10_1002_advs_201903568
crossref_primary_10_1002_cssc_201702278
crossref_primary_10_1016_j_apcatb_2017_11_038
crossref_primary_10_1016_j_apcatb_2020_118760
crossref_primary_10_1016_j_mssp_2021_106287
crossref_primary_10_1016_j_apcatb_2020_119051
crossref_primary_10_1016_j_apcatb_2023_123445
crossref_primary_10_1021_acs_chemmater_9b03031
crossref_primary_10_1002_adfm_202005197
crossref_primary_10_1016_j_apcatb_2018_07_052
crossref_primary_10_1002_cctc_201800555
crossref_primary_10_1039_D2MA00866A
crossref_primary_10_1002_ange_202211373
crossref_primary_10_1016_j_cogsc_2019_01_002
crossref_primary_10_1016_j_ensm_2018_08_013
crossref_primary_10_1149_1945_7111_abd64b
crossref_primary_10_1002_ange_202015756
crossref_primary_10_1088_1361_6528_ac6f64
crossref_primary_10_1021_acscatal_4c00758
crossref_primary_10_1016_j_envres_2023_116910
crossref_primary_10_1039_D4TA06803C
crossref_primary_10_1016_j_cej_2021_129390
crossref_primary_10_1016_j_jelechem_2019_113595
crossref_primary_10_1039_D2TC01814D
crossref_primary_10_1002_ente_202101136
crossref_primary_10_1002_adfm_201910005
crossref_primary_10_1039_C8EE00886H
crossref_primary_10_1039_D2TA05490F
crossref_primary_10_1016_j_ijhydene_2022_12_258
crossref_primary_10_1002_adma_202004561
crossref_primary_10_1021_acs_jpclett_2c02406
crossref_primary_10_1016_j_nantod_2021_101080
crossref_primary_10_1039_D2MA00191H
crossref_primary_10_1016_j_apcatb_2020_119759
crossref_primary_10_1016_j_jhazmat_2020_122023
crossref_primary_10_1002_anie_202015756
crossref_primary_10_1016_j_apcatb_2018_09_100
crossref_primary_10_1016_j_optmat_2023_114512
crossref_primary_10_1039_C8EE02096E
crossref_primary_10_1002_adfm_201804055
crossref_primary_10_1039_C9CC05952K
crossref_primary_10_1016_j_ijhydene_2023_05_084
crossref_primary_10_1039_D2GC01553F
crossref_primary_10_1007_s12274_020_2949_8
crossref_primary_10_1016_j_cclet_2019_12_013
crossref_primary_10_1021_acssuschemeng_4c06987
crossref_primary_10_1021_acsnano_3c05265
crossref_primary_10_1039_D0EE04013D
crossref_primary_10_1039_C8TA09358J
crossref_primary_10_1016_j_apcatb_2018_01_023
crossref_primary_10_1016_j_ijhydene_2024_01_278
crossref_primary_10_1016_j_ijhydene_2022_12_002
crossref_primary_10_1021_acssuschemeng_0c04372
crossref_primary_10_1039_D0TA04068A
crossref_primary_10_1016_j_rinp_2024_107520
crossref_primary_10_1002_cctc_202300647
crossref_primary_10_1039_C9NR10257D
crossref_primary_10_1016_j_apcatb_2021_119923
crossref_primary_10_1016_j_colsurfa_2022_130029
crossref_primary_10_1021_acs_nanolett_9b01431
crossref_primary_10_1002_adma_201707377
crossref_primary_10_1016_j_chemosphere_2022_137161
crossref_primary_10_1016_j_cej_2023_143007
crossref_primary_10_1002_chem_201901250
crossref_primary_10_1016_j_jcou_2018_02_013
crossref_primary_10_1002_ange_202302919
crossref_primary_10_3390_catal13061006
crossref_primary_10_1016_j_scitotenv_2021_150062
crossref_primary_10_1021_acsenergylett_8b00145
crossref_primary_10_1007_s10562_020_03408_4
crossref_primary_10_1039_D4NR02567A
crossref_primary_10_1039_C7TA10404A
crossref_primary_10_1016_j_jallcom_2020_154885
crossref_primary_10_1016_j_jmst_2022_02_038
crossref_primary_10_1021_acs_jpca_9b08726
crossref_primary_10_1002_anie_202106874
crossref_primary_10_1016_j_cej_2018_04_038
crossref_primary_10_70322_prp_2025_10007
crossref_primary_10_1016_j_ceramint_2020_07_105
crossref_primary_10_1016_j_jcis_2021_05_043
crossref_primary_10_1016_j_renene_2022_06_064
crossref_primary_10_1002_solr_201900567
crossref_primary_10_1039_D2CS01018F
crossref_primary_10_1016_j_jcis_2022_07_056
crossref_primary_10_1021_acs_jpcc_1c08777
crossref_primary_10_1016_S1872_2067_20_63717_2
crossref_primary_10_1039_D0TA08045D
crossref_primary_10_1016_j_mcat_2021_111691
crossref_primary_10_1039_C9TC00290A
crossref_primary_10_1021_acsaem_4c00360
crossref_primary_10_1039_C9QI00750D
crossref_primary_10_1016_j_cej_2019_122812
crossref_primary_10_1039_D0CC01874K
crossref_primary_10_1002_solr_202000414
crossref_primary_10_1021_acs_accounts_4c00251
crossref_primary_10_1002_celc_201900530
crossref_primary_10_1002_ange_201906416
crossref_primary_10_1002_anie_201810694
crossref_primary_10_1016_j_apsusc_2021_149755
crossref_primary_10_1002_cptc_201800064
crossref_primary_10_1016_j_trechm_2019_06_009
crossref_primary_10_1016_j_nanoen_2020_105318
crossref_primary_10_1016_j_ijhydene_2019_03_247
crossref_primary_10_1016_j_jechem_2020_01_020
crossref_primary_10_1002_aenm_201800101
crossref_primary_10_1002_adfm_202001478
crossref_primary_10_1002_smll_202410300
crossref_primary_10_1039_C9TA01863H
crossref_primary_10_1039_C8TA02922A
crossref_primary_10_1039_D0CY01743D
crossref_primary_10_1002_anie_201805425
crossref_primary_10_1016_j_apmt_2023_101944
crossref_primary_10_1021_acsanm_3c02909
crossref_primary_10_1039_C8SC05540H
crossref_primary_10_1039_D0RA10246F
crossref_primary_10_1002_adma_201800128
crossref_primary_10_1021_acs_jpcc_1c07651
crossref_primary_10_1021_acs_inorgchem_3c03005
crossref_primary_10_1039_C9TA13487E
crossref_primary_10_1039_D3CY01352A
crossref_primary_10_1007_s10570_020_03139_0
crossref_primary_10_3389_fenvs_2022_766743
crossref_primary_10_1002_anie_201811211
crossref_primary_10_1002_smll_202101070
crossref_primary_10_1002_adfm_201801769
crossref_primary_10_1002_anie_202211373
crossref_primary_10_1021_acs_iecr_1c01838
crossref_primary_10_1016_j_jpcs_2020_109793
crossref_primary_10_1016_j_elecom_2018_02_010
crossref_primary_10_1039_D0QM00286K
crossref_primary_10_1002_anie_201711357
crossref_primary_10_1016_j_inoche_2024_112874
crossref_primary_10_1039_D2CP03247C
crossref_primary_10_1007_s10853_019_03796_y
crossref_primary_10_1021_acscentsci_0c01466
crossref_primary_10_1021_acsami_9b21810
crossref_primary_10_1021_acsami_8b22115
crossref_primary_10_1002_adma_201900961
crossref_primary_10_1016_j_cej_2019_121944
crossref_primary_10_1016_j_commatsci_2019_109230
crossref_primary_10_1002_eom2_12007
crossref_primary_10_1016_S1872_2067_21_63817_2
crossref_primary_10_1039_D1TA09347A
crossref_primary_10_1002_ange_201711357
crossref_primary_10_1016_j_cej_2022_140601
crossref_primary_10_1016_j_apsusc_2018_08_126
crossref_primary_10_1016_j_carbon_2018_08_003
crossref_primary_10_1080_16583655_2021_2005911
crossref_primary_10_1021_acsami_9b05471
crossref_primary_10_1002_advs_201800575
crossref_primary_10_1002_cssc_201801294
crossref_primary_10_1016_j_mtener_2020_100524
crossref_primary_10_1039_C8NA00084K
crossref_primary_10_1016_j_jcou_2021_101745
crossref_primary_10_1002_cctc_202000546
crossref_primary_10_1016_j_apcatb_2018_09_055
crossref_primary_10_1002_advs_202309293
crossref_primary_10_1021_acsami_9b21167
crossref_primary_10_1016_j_apcatb_2023_122859
crossref_primary_10_1002_ange_201904571
crossref_primary_10_1002_adma_202004747
crossref_primary_10_1021_acs_accounts_8b00193
crossref_primary_10_1002_smtd_202201258
crossref_primary_10_1016_j_ijhydene_2022_01_068
crossref_primary_10_1002_cctc_201800827
crossref_primary_10_1002_adfm_202111875
crossref_primary_10_1016_j_jcis_2022_07_097
crossref_primary_10_3389_fchem_2020_00779
crossref_primary_10_1021_acs_jpcc_2c00146
crossref_primary_10_1016_j_apcatb_2019_118075
crossref_primary_10_1021_acs_nanolett_0c01484
crossref_primary_10_1002_ange_201810694
crossref_primary_10_1002_anie_202302919
crossref_primary_10_1016_j_ceramint_2021_04_192
crossref_primary_10_1039_C9CC02680K
crossref_primary_10_1016_j_nantod_2020_101059
crossref_primary_10_1039_D2TA01932A
crossref_primary_10_1016_j_nexres_2025_100162
crossref_primary_10_1016_j_chemosphere_2021_131254
crossref_primary_10_1021_acsami_9b19408
crossref_primary_10_1002_ejic_202000048
crossref_primary_10_1002_cnma_202000609
crossref_primary_10_1016_j_pmatsci_2019_100576
crossref_primary_10_1016_j_ceramint_2021_10_147
crossref_primary_10_1039_C8TA00386F
crossref_primary_10_1039_C9TA07319A
crossref_primary_10_1002_adfm_201803471
crossref_primary_10_1021_acssuschemeng_4c03529
crossref_primary_10_1016_j_envres_2024_118690
crossref_primary_10_1016_j_jcis_2018_04_041
crossref_primary_10_1073_pnas_1800069115
crossref_primary_10_1039_D1TA02975D
crossref_primary_10_1007_s11164_022_04752_3
crossref_primary_10_1016_j_flatc_2021_100232
crossref_primary_10_26599_POM_2023_9140030
crossref_primary_10_1016_j_jechem_2021_11_023
crossref_primary_10_1016_j_ijhydene_2022_10_009
crossref_primary_10_1021_acsanm_2c00154
crossref_primary_10_1016_j_cej_2019_123997
crossref_primary_10_1016_j_apcatb_2018_10_054
crossref_primary_10_1039_D1QI00516B
crossref_primary_10_1002_ange_201805425
crossref_primary_10_1016_j_ijhydene_2019_06_087
crossref_primary_10_1002_adfm_201901825
crossref_primary_10_1002_adfm_202402797
crossref_primary_10_1016_j_apcatb_2020_118828
crossref_primary_10_1016_j_jcis_2020_03_066
crossref_primary_10_1088_1361_648X_ab482b
crossref_primary_10_1021_acssuschemeng_8b05917
crossref_primary_10_1016_j_apsusc_2020_148619
crossref_primary_10_1021_acsami_9b06910
crossref_primary_10_1039_D1NR03409J
crossref_primary_10_1002_tcr_202400127
crossref_primary_10_1021_acscatal_8b00347
crossref_primary_10_1002_adfm_201802029
crossref_primary_10_1016_j_apsusc_2018_11_014
crossref_primary_10_1039_D0TA11201A
crossref_primary_10_18321_cpc409
crossref_primary_10_1002_ange_202106874
crossref_primary_10_1002_adfm_201902486
crossref_primary_10_1039_D0TA04977H
crossref_primary_10_1039_D2NJ02309A
crossref_primary_10_1039_C9NR06608J
crossref_primary_10_1039_D1EE02359D
Cites_doi 10.1021/acscatal.6b02520
10.1021/jp508618t
10.1039/C6CY00753H
10.1002/anie.201606102
10.1039/C6TA08140A
10.1103/PhysRevB.89.235319
10.1039/c1cp22059d
10.1038/natrevmats.2016.61
10.1038/nenergy.2016.151
10.1039/C5TA03949E
10.1002/anie.201612315
10.1002/adma.201602382
10.1021/nn5019945
10.1039/c3ta14493c
10.1039/C5CC01799H
10.1021/acs.accounts.6b00036
10.1039/C3CS60425J
10.1002/anie.201410172
10.1021/nn501226z
10.1021/acs.nanolett.5b02895
10.1039/C4TA06871H
10.1039/c2nr30129f
10.1021/jacs.5b06025
10.1002/adma.201605776
10.1039/C5EE02650D
10.1038/ncomms13907
10.3390/nano6110194
10.1039/c1gc15465f
10.1038/srep08691
10.1021/acs.jpclett.5b01686
10.1002/ange.201410172
10.1039/C3CS60378D
10.1038/nenergy.2016.185
10.1021/ar300227e
10.1021/acsnano.5b02599
10.1039/C5EE03732H
10.1021/cr1001645
10.1002/ange.201606102
10.1021/jp306947d
10.1038/srep06677
10.1002/anie.201603331
10.1002/ange.201603331
10.1039/B800489G
10.1002/ange.201612315
10.1039/C6RA10539D
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201703827
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 10377
ExternalDocumentID 28670856
10_1002_anie_201703827
ANIE201703827
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP140104062, DP160104866, DP170104464
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-e5cbad37e1a2e1e09efff5e634371062384f2d4337ce1a81b1c4166f8b7db15e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:59:00 EDT 2025
Sun Jul 13 04:33:47 EDT 2025
Mon Jul 21 06:03:46 EDT 2025
Tue Jul 01 02:26:06 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Wed Jan 22 16:43:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords co-catalysts
density functional calculations
photocatalysis
hydrogen production
phosphorene
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-e5cbad37e1a2e1e09efff5e634371062384f2d4337ce1a81b1c4166f8b7db15e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4568-8422
PMID 28670856
PQID 1929321054
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1915556739
proquest_journals_1929321054
pubmed_primary_28670856
crossref_primary_10_1002_anie_201703827
crossref_citationtrail_10_1002_anie_201703827
wiley_primary_10_1002_anie_201703827_ANIE201703827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 21, 2017
PublicationDateYYYYMMDD 2017-08-21
PublicationDate_xml – month: 08
  year: 2017
  text: August 21, 2017
  day: 21
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2017; 5
2017; 8
2015; 6
2015; 5
2015; 3
2013; 46
2015; 51
2011; 13
2017; 29
2017 2017; 56 129
2015; 9
2016; 16
2015; 8
2014; 89
2014; 43
2016; 6
2016; 1
2016 2016; 55 128
2014; 4
2016; 2
2014; 2
2015; 137
2010; 110
2015 2015; 54 127
2016; 28
2014; 8
2016; 49
2012; 116
2012; 4
2009; 38
2016; 9
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_28_3
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_13_3
e_1_2_2_3_2
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_31_2
e_1_2_2_18_1
e_1_2_2_31_3
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 55 128
  start-page: 11512 11684
  year: 2016 2016
  end-page: 11516 11688
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 8280
  year: 2017
  end-page: 8286
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 911
  year: 2016
  end-page: 921
  publication-title: Acc. Chem. Res.
– volume: 16
  start-page: 74
  year: 2016
  end-page: 79
  publication-title: Nano Lett.
– volume: 55 128
  start-page: 9580 9732
  year: 2016 2016
  end-page: 9585 9737
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 7787
  year: 2014
  end-page: 7812
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 3407
  year: 2014
  end-page: 3416
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 8937
  year: 2016
  end-page: 8944
  publication-title: Adv. Mater.
– volume: 6
  start-page: 194
  year: 2016
  publication-title: Nanomaterials
– volume: 51
  start-page: 8708
  year: 2015
  end-page: 8711
  publication-title: Chem. Commun.
– volume: 6
  start-page: 6207
  year: 2016
  end-page: 6216
  publication-title: Catal. Sci. Technol.
– volume: 116
  start-page: 22720
  year: 2012
  end-page: 22726
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 2708
  year: 2011
  end-page: 2713
  publication-title: Green Chem.
– volume: 29
  start-page: 1605776
  year: 2017
  publication-title: Adv. Mater.
– volume: 137
  start-page: 11376
  year: 2015
  end-page: 11382
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 1210 1226
  year: 2015 2015
  end-page: 1214 1230
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 16061
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 6
  start-page: 4280
  year: 2015
  end-page: 4291
  publication-title: J. Phys. Chem. Lett.
– volume: 56 129
  start-page: 2064 2096
  year: 2017 2017
  end-page: 2068 2100
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 3708
  year: 2015
  end-page: 3717
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 6677
  year: 2014
  publication-title: Sci. Rep.
– volume: 6
  start-page: 57446
  year: 2016
  end-page: 57463
  publication-title: RSC Adv.
– volume: 3
  start-page: 16941
  year: 2015
  end-page: 16947
  publication-title: J. Mater. Chem. A
– volume: 110
  start-page: 6503
  year: 2010
  end-page: 6570
  publication-title: Chem. Rev.
– volume: 9
  start-page: 709
  year: 2016
  end-page: 728
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 3285
  year: 2015
  end-page: 3288
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 7078
  year: 2014
  end-page: 7087
  publication-title: ACS Nano
– volume: 38
  start-page: 253
  year: 2009
  end-page: 278
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 16185
  year: 2016
  publication-title: Nat. Energy
– volume: 1
  start-page: 16151
  year: 2016
  publication-title: Nat. Energy
– volume: 118
  start-page: 26560
  year: 2014
  end-page: 26568
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 8869
  year: 2015
  end-page: 8884
  publication-title: ACS Nano
– volume: 6
  start-page: 8009
  year: 2016
  end-page: 8020
  publication-title: ACS Catal.
– volume: 8
  start-page: 13907
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  start-page: 21496
  year: 2011
  end-page: 21502
  publication-title: Phys. Chem. Chem. Phys.
– volume: 89
  start-page: 235319
  year: 2014
  publication-title: Phys. Rev. B
– volume: 46
  start-page: 1900
  year: 2013
  end-page: 1909
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 4033
  year: 2014
  end-page: 4041
  publication-title: ACS Nano
– volume: 5
  start-page: 8691
  year: 2015
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2670
  year: 2012
  end-page: 2677
  publication-title: Nanoscale
– volume: 43
  start-page: 7520
  year: 2014
  end-page: 7535
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_2_17_2
  doi: 10.1021/acscatal.6b02520
– ident: e_1_2_2_6_2
  doi: 10.1021/jp508618t
– ident: e_1_2_2_49_2
  doi: 10.1039/C6CY00753H
– ident: e_1_2_2_40_1
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201606102
– ident: e_1_2_2_16_2
  doi: 10.1039/C6TA08140A
– ident: e_1_2_2_37_2
  doi: 10.1103/PhysRevB.89.235319
– ident: e_1_2_2_43_2
  doi: 10.1039/c1cp22059d
– ident: e_1_2_2_4_2
  doi: 10.1038/natrevmats.2016.61
– ident: e_1_2_2_30_2
  doi: 10.1038/nenergy.2016.151
– ident: e_1_2_2_48_2
  doi: 10.1039/C5TA03949E
– ident: e_1_2_2_13_2
  doi: 10.1002/anie.201612315
– ident: e_1_2_2_45_1
– ident: e_1_2_2_7_2
  doi: 10.1002/adma.201602382
– ident: e_1_2_2_29_2
  doi: 10.1021/nn5019945
– ident: e_1_2_2_41_2
  doi: 10.1039/c3ta14493c
– ident: e_1_2_2_47_2
  doi: 10.1039/C5CC01799H
– ident: e_1_2_2_33_2
  doi: 10.1021/acs.accounts.6b00036
– ident: e_1_2_2_22_2
  doi: 10.1039/C3CS60425J
– ident: e_1_2_2_9_1
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.201410172
– ident: e_1_2_2_38_2
  doi: 10.1021/nn501226z
– ident: e_1_2_2_1_1
– ident: e_1_2_2_11_2
  doi: 10.1021/acs.nanolett.5b02895
– ident: e_1_2_2_14_2
  doi: 10.1039/C4TA06871H
– ident: e_1_2_2_35_1
– ident: e_1_2_2_44_2
  doi: 10.1039/c2nr30129f
– ident: e_1_2_2_12_2
  doi: 10.1021/jacs.5b06025
– ident: e_1_2_2_15_2
  doi: 10.1002/adma.201605776
– ident: e_1_2_2_20_2
  doi: 10.1039/C5EE02650D
– ident: e_1_2_2_25_2
  doi: 10.1038/ncomms13907
– ident: e_1_2_2_39_2
  doi: 10.3390/nano6110194
– ident: e_1_2_2_46_2
  doi: 10.1039/c1gc15465f
– ident: e_1_2_2_10_2
  doi: 10.1038/srep08691
– ident: e_1_2_2_8_2
  doi: 10.1021/acs.jpclett.5b01686
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.201410172
– ident: e_1_2_2_23_2
  doi: 10.1039/C3CS60378D
– ident: e_1_2_2_18_1
– ident: e_1_2_2_26_1
– ident: e_1_2_2_24_2
  doi: 10.1038/nenergy.2016.185
– ident: e_1_2_2_27_2
  doi: 10.1021/ar300227e
– ident: e_1_2_2_2_2
  doi: 10.1021/acsnano.5b02599
– ident: e_1_2_2_3_2
  doi: 10.1039/C5EE03732H
– ident: e_1_2_2_21_2
  doi: 10.1021/cr1001645
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201606102
– ident: e_1_2_2_42_2
  doi: 10.1021/jp306947d
– ident: e_1_2_2_36_2
  doi: 10.1038/srep06677
– ident: e_1_2_2_34_1
  doi: 10.1002/anie.201603331
– ident: e_1_2_2_34_2
  doi: 10.1002/ange.201603331
– ident: e_1_2_2_5_1
– ident: e_1_2_2_19_2
  doi: 10.1039/B800489G
– ident: e_1_2_2_13_3
  doi: 10.1002/ange.201612315
– ident: e_1_2_2_32_2
  doi: 10.1039/C6RA10539D
SSID ssj0028806
Score 2.6404626
Snippet Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited...
Transitional metals are widely used as co‐catalysts boosting photocatalytic H 2 production. However, metal‐based co‐catalysts suffer from high cost, limited...
Transitional metals are widely used as co-catalysts boosting photocatalytic H production. However, metal-based co-catalysts suffer from high cost, limited...
Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10373
SubjectTerms Abundance
Band structure of solids
Catalysts
co-catalysts
density functional calculations
Environmental impact
Hydrogen production
Metals
Phosphorene
Photocatalysis
Spectroscopy
Zinc sulfide
Title Phosphorene Co‐catalyst Advancing Highly Efficient Visible‐Light Photocatalytic Hydrogen Production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201703827
https://www.ncbi.nlm.nih.gov/pubmed/28670856
https://www.proquest.com/docview/1929321054
https://www.proquest.com/docview/1915556739
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLnAp0AekPORKSD0FNrZjJ0e02tW2alcIAeIW5WED6mqD2OxhOfET-hv7S5iJN4GlQkhwS5Rx7Ngz9pex5xuAfa1iJbNO7GshpC_T0PpRKIWP_20F7fpIUWdv-D1UgzP58yK8eBLF7_ghWocbWUY9X5OBp9nk8JE0lCKw6WgWqmzEKZycDmwRKjpp-aM4KqcLLxLCpyz0DWtjhx8uFl9clf6DmovItV56-muQNo12J07-HEyr7CC_e8bn-J6vWocPc1zKjpwibcCSGX-ElW6TDu4TXB5flZObq5IoMFm3_Hf_t_b8zCYVqzMz57gGMjo1MpqxXs1LgcsZO79GkxsZlP5FXgCGL6lKVxArYoNZcVuiCrNjRzyLSvIZzvq90-7An2dp8HOpcZY1YZ6lhdAmSLkJTCc21trQKCEFohdEV5G0vMAR0DmKIEoOcgSBykaZLrIgNOILLI_LsdkCZhF75BGBNm2JKT_VNsi4jFScam072gO_GaUkn1OYUyaNUeLIl3lC3Ze03efB91b-xpF3vCi50wx6MjfiSYLgN6YQp1B68K19jN1Oeyrp2JRTkkFAFiotYg82nbK0VfFIaUS0ygNeD_krbUiOhj967d3XtxTahlW6Jp83D3Zgubqdml0ETVW2VxvGA-krDro
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EAvQF8QHq0rVeopsLEdOzmiZdHSLitUQdVblIcNiNUGsdnDcuIn8Bv5JczEm6Atqiq1xyTj2LFn7C9jzzcAX7SKlcw6sa-FkL5MQ-tHoRQ-_rcVtOsjRZ294Xio-mfy26-wOU1IsTCOH6J1uJFl1PM1GTg5pPeeWEMpBJvOZqHORly_hFeU1pvo8w9-tAxSHNXTBRgJ4VMe-oa3scP3FssvrkvPwOYidq0Xn8NVyJpmuzMnV7vTKtvNb39jdPyv71qDlTk0ZftOl97ACzN-C8vdJiPcOzg_uSgn1xclsWCybvlwd187f2aTitXJmXNcBhkdHBnNWK-mpsAVjf28RKsbGZQekCOA4Uuq0hXEilh_VtyUqMXsxHHPop68h7PD3mm3788TNfi51DjRmjDP0kJoE6TcBKYTG2ttaJSQAgEMAqxIWl7gEOgcRRAoBzniQGWjTBdZEBrxAZbG5dhsALMIP_KIcJu2RJafahtkXEYqTrW2He2B3wxTks9ZzCmZxihx_Ms8oe5L2u7z4Gsrf-34O_4oud2MejK340mC-DemKKdQevC5fYzdTtsq6diUU5JBTBYqLWIP1p22tFXxSGkEtcoDXo_5X9qQ7A-Peu3V5r8U-gTL_dPjQTI4Gn7fgtd0n1zgPNiGpepmanYQQ1XZx9pKHgHOABLW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCX8m5TChgJiVPaxHbs5Fhtd7WFslohinqL8rApYrVZdbOH7ak_ob-RX8JMvEm7IIQExyTj2PHMeL748Q3AW60SJfMg8bUQ0pdZZP04ksLH_7aSVn2kaLI3fByp4al8fxad3TrF7_ghugk38oxmvCYHn5X24IY0lE5g09YsNNmY67twT6ogoeQNR586AimO1unOFwnhUxr6lrYx4Afr5dfD0m9Ycx26NrFn8BCyttVuy8n3_UWd7xeXvxA6_s9nPYKtFTBlh86SHsMdM30CD3ptPrin8HV8Xs1n5xVxYLJe9ePqupn6Wc5r1qRmLjAIMto2MlmyfkNMgfGMffmGPjcxKH1C0wAMX1JXriBWxIbL8qJCG2ZjxzyLVvIMTgf9z72hv0rT4BdS4zBroiLPSqFNmHETmiAx1trIKCEFwheEV7G0vEQN6AJFECaHBaJAZeNcl3kYGfEcNqbV1OwAswg-iphQm7ZElZ9pG-ZcxirJtLaB9sBvtZQWKw5zSqUxSR37Mk-p-9Ku-zx418nPHHvHHyX3WqWnKy-ep4h-EzrjFEkP3nSPsdtpUSWbmmpBMojIIqVF4sG2M5auKh4rjZBWecAblf-lDenh6LjfXe3-S6HXcH98NEhPjkcfXsAm3ab5bx7uwUZ9sTAvEUDV-avGR34ChKERhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorene+Co%E2%80%90catalyst+Advancing+Highly+Efficient+Visible%E2%80%90Light+Photocatalytic+Hydrogen+Production&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ran%2C+Jingrun&rft.au=Zhu%2C+Bicheng&rft.au=Qiao%2C+Shi%E2%80%90Zhang&rft.date=2017-08-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=35&rft.spage=10373&rft.epage=10377&rft_id=info:doi/10.1002%2Fanie.201703827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201703827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon