Phosphorene Co‐catalyst Advancing Highly Efficient Visible‐Light Photocatalytic Hydrogen Production
Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density fu...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 35; pp. 10373 - 10377 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.08.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high‐efficiency metal‐free co‐catalyst for CdS, Zn0.8Cd0.2S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron‐based X‐ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly‐active, cheap and green photocatalysts.
Density functional calculations were used to direct the design of phosphorene as a metal‐free co‐catalyst promoting photocatalytic H2 production in metal sulfide photocatalyst systems. The enhanced photocatalytic performance arises from the pronounced electronic coupling between metal sulfides and phosphorene, together with its advantageous band structure and excellent charge carrier mobility. |
---|---|
AbstractList | Transitional metals are widely used as co-catalysts boosting photocatalytic H
production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn
Cd
S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts. Transitional metals are widely used as co‐catalysts boosting photocatalytic H 2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high‐efficiency metal‐free co‐catalyst for CdS, Zn 0.8 Cd 0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron‐based X‐ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly‐active, cheap and green photocatalysts. Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high‐efficiency metal‐free co‐catalyst for CdS, Zn0.8Cd0.2S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron‐based X‐ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly‐active, cheap and green photocatalysts. Density functional calculations were used to direct the design of phosphorene as a metal‐free co‐catalyst promoting photocatalytic H2 production in metal sulfide photocatalyst systems. The enhanced photocatalytic performance arises from the pronounced electronic coupling between metal sulfides and phosphorene, together with its advantageous band structure and excellent charge carrier mobility. Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn0.8Cd0.2S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7% at 420nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts. Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn0.8 Cd0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts.Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn0.8 Cd0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts. |
Author | Zhu, Bicheng Qiao, Shi‐Zhang Ran, Jingrun |
Author_xml | – sequence: 1 givenname: Jingrun surname: Ran fullname: Ran, Jingrun organization: University of Adelaide – sequence: 2 givenname: Bicheng surname: Zhu fullname: Zhu, Bicheng organization: Wuhan University of Technology – sequence: 3 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28670856$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVJaS7ttssy0E024-oyuszSGCcOmDaLtNtBozljK4wlV9K0zK6P0GfMk1TGaQqBkpUO6PvOkc5_jk6cd4DQe4JnBGP6STsLM4qJxExR-QqdEU5JyaRkJ7muGCul4uQUncd4n3mlsHiDTqkSEisuztDmduvjfusDOCgW_uHXb6OTHqaYinn3Qztj3aZY2c12mIpl31tjwaXim422HSDT63yVitwk-aOYrClWUxf8BlxxG3w3mmS9e4te93qI8O7xvEBfr5Z3i1W5_nJ9s5ivS1NJIUvgptUdk0A0BQK4hr7vOQhWMUmwoExVPe3yt6TJiCItMRURolet7FrCgV2gy2PfffDfR4ip2dloYBi0Az_GhtSEcy4kqzP68Rl678fg8usyRWtGCeZVpj48UmO7g67ZB7vTYWr-rjADsyNggo8xQP-EENwcMmoOGTVPGWWheiYYm_RhSSloO_xfq4_aTzvA9MKQZv75ZvnP_QN1Iqi7 |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_05_278 crossref_primary_10_1039_C8DT02803F crossref_primary_10_1021_acscatal_7b03437 crossref_primary_10_1039_C7CC05466A crossref_primary_10_1016_j_jcis_2018_04_066 crossref_primary_10_1002_crat_202000091 crossref_primary_10_1002_ange_201811211 crossref_primary_10_1039_C8TA09647C crossref_primary_10_1039_D4CS00317A crossref_primary_10_1016_j_cej_2018_02_031 crossref_primary_10_1016_j_apsusc_2019_05_113 crossref_primary_10_1088_2053_1583_aae869 crossref_primary_10_1016_j_ijhydene_2020_05_027 crossref_primary_10_1016_j_ccr_2020_213516 crossref_primary_10_1002_admi_202200771 crossref_primary_10_1021_acs_iecr_8b01376 crossref_primary_10_1016_j_apcatb_2022_121577 crossref_primary_10_1016_j_ijhydene_2020_08_252 crossref_primary_10_1016_j_jcis_2021_11_159 crossref_primary_10_1016_j_apcatb_2018_10_018 crossref_primary_10_1002_cctc_202001847 crossref_primary_10_1016_j_eng_2021_06_004 crossref_primary_10_1021_acsaem_3c01863 crossref_primary_10_1002_anie_201906416 crossref_primary_10_1016_j_physe_2020_114009 crossref_primary_10_1016_j_apcatb_2021_119992 crossref_primary_10_1016_j_ccr_2024_216345 crossref_primary_10_1002_cnma_202200153 crossref_primary_10_1002_adma_201804770 crossref_primary_10_1016_j_surfin_2020_100786 crossref_primary_10_1002_cnma_201900176 crossref_primary_10_1002_smll_201801705 crossref_primary_10_1016_j_jallcom_2018_11_292 crossref_primary_10_1016_j_jhazmat_2023_132413 crossref_primary_10_1038_s41467_019_10034_1 crossref_primary_10_1039_D0NH00491J crossref_primary_10_1016_j_mtener_2021_100720 crossref_primary_10_1002_aesr_202400033 crossref_primary_10_1016_j_seppur_2022_122833 crossref_primary_10_1039_C7DT04912A crossref_primary_10_1002_advs_201700870 crossref_primary_10_1088_2053_1583_ab39c6 crossref_primary_10_1021_acsanm_9b00265 crossref_primary_10_1016_j_apmt_2019_07_016 crossref_primary_10_1021_acs_langmuir_4c02635 crossref_primary_10_1038_s41524_021_00654_x crossref_primary_10_1002_adfm_202418427 crossref_primary_10_1002_solr_202000050 crossref_primary_10_1016_j_apcatb_2019_117864 crossref_primary_10_1021_acs_jpclett_1c03527 crossref_primary_10_1007_s10853_018_2830_2 crossref_primary_10_1016_j_nantod_2023_101885 crossref_primary_10_1039_C9CC06146K crossref_primary_10_1016_j_jechem_2022_03_025 crossref_primary_10_1007_s12274_020_2955_x crossref_primary_10_1016_j_apsusc_2022_156249 crossref_primary_10_1002_anie_201913600 crossref_primary_10_1002_cssc_201900844 crossref_primary_10_1007_s10853_018_03227_4 crossref_primary_10_1002_anie_201904571 crossref_primary_10_1002_chem_201904594 crossref_primary_10_1016_j_apsusc_2019_06_158 crossref_primary_10_1016_j_mcat_2021_111630 crossref_primary_10_1021_acs_langmuir_4c00462 crossref_primary_10_1039_D0SE00394H crossref_primary_10_3390_coatings14091141 crossref_primary_10_1016_j_envres_2024_119060 crossref_primary_10_1002_adfm_202002021 crossref_primary_10_1016_j_apsusc_2019_05_246 crossref_primary_10_1002_smll_202409735 crossref_primary_10_1016_j_jcat_2023_115270 crossref_primary_10_1016_j_apsusc_2021_151441 crossref_primary_10_1007_s12274_022_4593_y crossref_primary_10_1016_j_cej_2019_03_231 crossref_primary_10_1002_adfm_201705407 crossref_primary_10_1039_C7EE02220D crossref_primary_10_1007_s10853_020_05752_7 crossref_primary_10_1016_j_cej_2020_127681 crossref_primary_10_1002_ange_201913600 crossref_primary_10_1016_j_jcis_2018_10_097 crossref_primary_10_1002_smll_201804565 crossref_primary_10_1039_D2NR05099D crossref_primary_10_1016_j_mser_2018_04_002 crossref_primary_10_1039_C9CY02435B crossref_primary_10_1016_j_apcatb_2019_118466 crossref_primary_10_1016_j_apsusc_2023_157164 crossref_primary_10_1021_acsomega_0c06038 crossref_primary_10_1021_acs_jpcc_1c09021 crossref_primary_10_1021_acs_jpcc_7b06493 crossref_primary_10_1039_C8CS00324F crossref_primary_10_1039_C8TA08497A crossref_primary_10_1021_acs_joc_1c02987 crossref_primary_10_1002_advs_202001431 crossref_primary_10_1021_acscatal_4c02285 crossref_primary_10_1021_acsanm_0c01886 crossref_primary_10_1007_s11581_023_05004_z crossref_primary_10_1016_j_apsusc_2023_156402 crossref_primary_10_1016_j_cej_2020_124634 crossref_primary_10_1063_5_0014867 crossref_primary_10_1039_D0TA02588G crossref_primary_10_1016_j_watres_2023_120014 crossref_primary_10_1039_C9CP04143E crossref_primary_10_1002_advs_201903568 crossref_primary_10_1002_cssc_201702278 crossref_primary_10_1016_j_apcatb_2017_11_038 crossref_primary_10_1016_j_apcatb_2020_118760 crossref_primary_10_1016_j_mssp_2021_106287 crossref_primary_10_1016_j_apcatb_2020_119051 crossref_primary_10_1016_j_apcatb_2023_123445 crossref_primary_10_1021_acs_chemmater_9b03031 crossref_primary_10_1002_adfm_202005197 crossref_primary_10_1016_j_apcatb_2018_07_052 crossref_primary_10_1002_cctc_201800555 crossref_primary_10_1039_D2MA00866A crossref_primary_10_1002_ange_202211373 crossref_primary_10_1016_j_cogsc_2019_01_002 crossref_primary_10_1016_j_ensm_2018_08_013 crossref_primary_10_1149_1945_7111_abd64b crossref_primary_10_1002_ange_202015756 crossref_primary_10_1088_1361_6528_ac6f64 crossref_primary_10_1021_acscatal_4c00758 crossref_primary_10_1016_j_envres_2023_116910 crossref_primary_10_1039_D4TA06803C crossref_primary_10_1016_j_cej_2021_129390 crossref_primary_10_1016_j_jelechem_2019_113595 crossref_primary_10_1039_D2TC01814D crossref_primary_10_1002_ente_202101136 crossref_primary_10_1002_adfm_201910005 crossref_primary_10_1039_C8EE00886H crossref_primary_10_1039_D2TA05490F crossref_primary_10_1016_j_ijhydene_2022_12_258 crossref_primary_10_1002_adma_202004561 crossref_primary_10_1021_acs_jpclett_2c02406 crossref_primary_10_1016_j_nantod_2021_101080 crossref_primary_10_1039_D2MA00191H crossref_primary_10_1016_j_apcatb_2020_119759 crossref_primary_10_1016_j_jhazmat_2020_122023 crossref_primary_10_1002_anie_202015756 crossref_primary_10_1016_j_apcatb_2018_09_100 crossref_primary_10_1016_j_optmat_2023_114512 crossref_primary_10_1039_C8EE02096E crossref_primary_10_1002_adfm_201804055 crossref_primary_10_1039_C9CC05952K crossref_primary_10_1016_j_ijhydene_2023_05_084 crossref_primary_10_1039_D2GC01553F crossref_primary_10_1007_s12274_020_2949_8 crossref_primary_10_1016_j_cclet_2019_12_013 crossref_primary_10_1021_acssuschemeng_4c06987 crossref_primary_10_1021_acsnano_3c05265 crossref_primary_10_1039_D0EE04013D crossref_primary_10_1039_C8TA09358J crossref_primary_10_1016_j_apcatb_2018_01_023 crossref_primary_10_1016_j_ijhydene_2024_01_278 crossref_primary_10_1016_j_ijhydene_2022_12_002 crossref_primary_10_1021_acssuschemeng_0c04372 crossref_primary_10_1039_D0TA04068A crossref_primary_10_1016_j_rinp_2024_107520 crossref_primary_10_1002_cctc_202300647 crossref_primary_10_1039_C9NR10257D crossref_primary_10_1016_j_apcatb_2021_119923 crossref_primary_10_1016_j_colsurfa_2022_130029 crossref_primary_10_1021_acs_nanolett_9b01431 crossref_primary_10_1002_adma_201707377 crossref_primary_10_1016_j_chemosphere_2022_137161 crossref_primary_10_1016_j_cej_2023_143007 crossref_primary_10_1002_chem_201901250 crossref_primary_10_1016_j_jcou_2018_02_013 crossref_primary_10_1002_ange_202302919 crossref_primary_10_3390_catal13061006 crossref_primary_10_1016_j_scitotenv_2021_150062 crossref_primary_10_1021_acsenergylett_8b00145 crossref_primary_10_1007_s10562_020_03408_4 crossref_primary_10_1039_D4NR02567A crossref_primary_10_1039_C7TA10404A crossref_primary_10_1016_j_jallcom_2020_154885 crossref_primary_10_1016_j_jmst_2022_02_038 crossref_primary_10_1021_acs_jpca_9b08726 crossref_primary_10_1002_anie_202106874 crossref_primary_10_1016_j_cej_2018_04_038 crossref_primary_10_70322_prp_2025_10007 crossref_primary_10_1016_j_ceramint_2020_07_105 crossref_primary_10_1016_j_jcis_2021_05_043 crossref_primary_10_1016_j_renene_2022_06_064 crossref_primary_10_1002_solr_201900567 crossref_primary_10_1039_D2CS01018F crossref_primary_10_1016_j_jcis_2022_07_056 crossref_primary_10_1021_acs_jpcc_1c08777 crossref_primary_10_1016_S1872_2067_20_63717_2 crossref_primary_10_1039_D0TA08045D crossref_primary_10_1016_j_mcat_2021_111691 crossref_primary_10_1039_C9TC00290A crossref_primary_10_1021_acsaem_4c00360 crossref_primary_10_1039_C9QI00750D crossref_primary_10_1016_j_cej_2019_122812 crossref_primary_10_1039_D0CC01874K crossref_primary_10_1002_solr_202000414 crossref_primary_10_1021_acs_accounts_4c00251 crossref_primary_10_1002_celc_201900530 crossref_primary_10_1002_ange_201906416 crossref_primary_10_1002_anie_201810694 crossref_primary_10_1016_j_apsusc_2021_149755 crossref_primary_10_1002_cptc_201800064 crossref_primary_10_1016_j_trechm_2019_06_009 crossref_primary_10_1016_j_nanoen_2020_105318 crossref_primary_10_1016_j_ijhydene_2019_03_247 crossref_primary_10_1016_j_jechem_2020_01_020 crossref_primary_10_1002_aenm_201800101 crossref_primary_10_1002_adfm_202001478 crossref_primary_10_1002_smll_202410300 crossref_primary_10_1039_C9TA01863H crossref_primary_10_1039_C8TA02922A crossref_primary_10_1039_D0CY01743D crossref_primary_10_1002_anie_201805425 crossref_primary_10_1016_j_apmt_2023_101944 crossref_primary_10_1021_acsanm_3c02909 crossref_primary_10_1039_C8SC05540H crossref_primary_10_1039_D0RA10246F crossref_primary_10_1002_adma_201800128 crossref_primary_10_1021_acs_jpcc_1c07651 crossref_primary_10_1021_acs_inorgchem_3c03005 crossref_primary_10_1039_C9TA13487E crossref_primary_10_1039_D3CY01352A crossref_primary_10_1007_s10570_020_03139_0 crossref_primary_10_3389_fenvs_2022_766743 crossref_primary_10_1002_anie_201811211 crossref_primary_10_1002_smll_202101070 crossref_primary_10_1002_adfm_201801769 crossref_primary_10_1002_anie_202211373 crossref_primary_10_1021_acs_iecr_1c01838 crossref_primary_10_1016_j_jpcs_2020_109793 crossref_primary_10_1016_j_elecom_2018_02_010 crossref_primary_10_1039_D0QM00286K crossref_primary_10_1002_anie_201711357 crossref_primary_10_1016_j_inoche_2024_112874 crossref_primary_10_1039_D2CP03247C crossref_primary_10_1007_s10853_019_03796_y crossref_primary_10_1021_acscentsci_0c01466 crossref_primary_10_1021_acsami_9b21810 crossref_primary_10_1021_acsami_8b22115 crossref_primary_10_1002_adma_201900961 crossref_primary_10_1016_j_cej_2019_121944 crossref_primary_10_1016_j_commatsci_2019_109230 crossref_primary_10_1002_eom2_12007 crossref_primary_10_1016_S1872_2067_21_63817_2 crossref_primary_10_1039_D1TA09347A crossref_primary_10_1002_ange_201711357 crossref_primary_10_1016_j_cej_2022_140601 crossref_primary_10_1016_j_apsusc_2018_08_126 crossref_primary_10_1016_j_carbon_2018_08_003 crossref_primary_10_1080_16583655_2021_2005911 crossref_primary_10_1021_acsami_9b05471 crossref_primary_10_1002_advs_201800575 crossref_primary_10_1002_cssc_201801294 crossref_primary_10_1016_j_mtener_2020_100524 crossref_primary_10_1039_C8NA00084K crossref_primary_10_1016_j_jcou_2021_101745 crossref_primary_10_1002_cctc_202000546 crossref_primary_10_1016_j_apcatb_2018_09_055 crossref_primary_10_1002_advs_202309293 crossref_primary_10_1021_acsami_9b21167 crossref_primary_10_1016_j_apcatb_2023_122859 crossref_primary_10_1002_ange_201904571 crossref_primary_10_1002_adma_202004747 crossref_primary_10_1021_acs_accounts_8b00193 crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1016_j_ijhydene_2022_01_068 crossref_primary_10_1002_cctc_201800827 crossref_primary_10_1002_adfm_202111875 crossref_primary_10_1016_j_jcis_2022_07_097 crossref_primary_10_3389_fchem_2020_00779 crossref_primary_10_1021_acs_jpcc_2c00146 crossref_primary_10_1016_j_apcatb_2019_118075 crossref_primary_10_1021_acs_nanolett_0c01484 crossref_primary_10_1002_ange_201810694 crossref_primary_10_1002_anie_202302919 crossref_primary_10_1016_j_ceramint_2021_04_192 crossref_primary_10_1039_C9CC02680K crossref_primary_10_1016_j_nantod_2020_101059 crossref_primary_10_1039_D2TA01932A crossref_primary_10_1016_j_nexres_2025_100162 crossref_primary_10_1016_j_chemosphere_2021_131254 crossref_primary_10_1021_acsami_9b19408 crossref_primary_10_1002_ejic_202000048 crossref_primary_10_1002_cnma_202000609 crossref_primary_10_1016_j_pmatsci_2019_100576 crossref_primary_10_1016_j_ceramint_2021_10_147 crossref_primary_10_1039_C8TA00386F crossref_primary_10_1039_C9TA07319A crossref_primary_10_1002_adfm_201803471 crossref_primary_10_1021_acssuschemeng_4c03529 crossref_primary_10_1016_j_envres_2024_118690 crossref_primary_10_1016_j_jcis_2018_04_041 crossref_primary_10_1073_pnas_1800069115 crossref_primary_10_1039_D1TA02975D crossref_primary_10_1007_s11164_022_04752_3 crossref_primary_10_1016_j_flatc_2021_100232 crossref_primary_10_26599_POM_2023_9140030 crossref_primary_10_1016_j_jechem_2021_11_023 crossref_primary_10_1016_j_ijhydene_2022_10_009 crossref_primary_10_1021_acsanm_2c00154 crossref_primary_10_1016_j_cej_2019_123997 crossref_primary_10_1016_j_apcatb_2018_10_054 crossref_primary_10_1039_D1QI00516B crossref_primary_10_1002_ange_201805425 crossref_primary_10_1016_j_ijhydene_2019_06_087 crossref_primary_10_1002_adfm_201901825 crossref_primary_10_1002_adfm_202402797 crossref_primary_10_1016_j_apcatb_2020_118828 crossref_primary_10_1016_j_jcis_2020_03_066 crossref_primary_10_1088_1361_648X_ab482b crossref_primary_10_1021_acssuschemeng_8b05917 crossref_primary_10_1016_j_apsusc_2020_148619 crossref_primary_10_1021_acsami_9b06910 crossref_primary_10_1039_D1NR03409J crossref_primary_10_1002_tcr_202400127 crossref_primary_10_1021_acscatal_8b00347 crossref_primary_10_1002_adfm_201802029 crossref_primary_10_1016_j_apsusc_2018_11_014 crossref_primary_10_1039_D0TA11201A crossref_primary_10_18321_cpc409 crossref_primary_10_1002_ange_202106874 crossref_primary_10_1002_adfm_201902486 crossref_primary_10_1039_D0TA04977H crossref_primary_10_1039_D2NJ02309A crossref_primary_10_1039_C9NR06608J crossref_primary_10_1039_D1EE02359D |
Cites_doi | 10.1021/acscatal.6b02520 10.1021/jp508618t 10.1039/C6CY00753H 10.1002/anie.201606102 10.1039/C6TA08140A 10.1103/PhysRevB.89.235319 10.1039/c1cp22059d 10.1038/natrevmats.2016.61 10.1038/nenergy.2016.151 10.1039/C5TA03949E 10.1002/anie.201612315 10.1002/adma.201602382 10.1021/nn5019945 10.1039/c3ta14493c 10.1039/C5CC01799H 10.1021/acs.accounts.6b00036 10.1039/C3CS60425J 10.1002/anie.201410172 10.1021/nn501226z 10.1021/acs.nanolett.5b02895 10.1039/C4TA06871H 10.1039/c2nr30129f 10.1021/jacs.5b06025 10.1002/adma.201605776 10.1039/C5EE02650D 10.1038/ncomms13907 10.3390/nano6110194 10.1039/c1gc15465f 10.1038/srep08691 10.1021/acs.jpclett.5b01686 10.1002/ange.201410172 10.1039/C3CS60378D 10.1038/nenergy.2016.185 10.1021/ar300227e 10.1021/acsnano.5b02599 10.1039/C5EE03732H 10.1021/cr1001645 10.1002/ange.201606102 10.1021/jp306947d 10.1038/srep06677 10.1002/anie.201603331 10.1002/ange.201603331 10.1039/B800489G 10.1002/ange.201612315 10.1039/C6RA10539D |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201703827 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 10377 |
ExternalDocumentID | 28670856 10_1002_anie_201703827 ANIE201703827 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP140104062, DP160104866, DP170104464 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-e5cbad37e1a2e1e09efff5e634371062384f2d4337ce1a81b1c4166f8b7db15e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:59:00 EDT 2025 Sun Jul 13 04:33:47 EDT 2025 Mon Jul 21 06:03:46 EDT 2025 Tue Jul 01 02:26:06 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed Jan 22 16:43:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | co-catalysts density functional calculations photocatalysis hydrogen production phosphorene |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-e5cbad37e1a2e1e09efff5e634371062384f2d4337ce1a81b1c4166f8b7db15e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4568-8422 |
PMID | 28670856 |
PQID | 1929321054 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1915556739 proquest_journals_1929321054 pubmed_primary_28670856 crossref_primary_10_1002_anie_201703827 crossref_citationtrail_10_1002_anie_201703827 wiley_primary_10_1002_anie_201703827_ANIE201703827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 21, 2017 |
PublicationDateYYYYMMDD | 2017-08-21 |
PublicationDate_xml | – month: 08 year: 2017 text: August 21, 2017 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2017; 5 2017; 8 2015; 6 2015; 5 2015; 3 2013; 46 2015; 51 2011; 13 2017; 29 2017 2017; 56 129 2015; 9 2016; 16 2015; 8 2014; 89 2014; 43 2016; 6 2016; 1 2016 2016; 55 128 2014; 4 2016; 2 2014; 2 2015; 137 2010; 110 2015 2015; 54 127 2016; 28 2014; 8 2016; 49 2012; 116 2012; 4 2009; 38 2016; 9 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_28_3 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_13_3 e_1_2_2_3_2 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_31_2 e_1_2_2_18_1 e_1_2_2_31_3 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 55 128 start-page: 11512 11684 year: 2016 2016 end-page: 11516 11688 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 8280 year: 2017 end-page: 8286 publication-title: J. Mater. Chem. A – volume: 49 start-page: 911 year: 2016 end-page: 921 publication-title: Acc. Chem. Res. – volume: 16 start-page: 74 year: 2016 end-page: 79 publication-title: Nano Lett. – volume: 55 128 start-page: 9580 9732 year: 2016 2016 end-page: 9585 9737 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 7787 year: 2014 end-page: 7812 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 3407 year: 2014 end-page: 3416 publication-title: J. Mater. Chem. A – volume: 28 start-page: 8937 year: 2016 end-page: 8944 publication-title: Adv. Mater. – volume: 6 start-page: 194 year: 2016 publication-title: Nanomaterials – volume: 51 start-page: 8708 year: 2015 end-page: 8711 publication-title: Chem. Commun. – volume: 6 start-page: 6207 year: 2016 end-page: 6216 publication-title: Catal. Sci. Technol. – volume: 116 start-page: 22720 year: 2012 end-page: 22726 publication-title: J. Phys. Chem. C – volume: 13 start-page: 2708 year: 2011 end-page: 2713 publication-title: Green Chem. – volume: 29 start-page: 1605776 year: 2017 publication-title: Adv. Mater. – volume: 137 start-page: 11376 year: 2015 end-page: 11382 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 1210 1226 year: 2015 2015 end-page: 1214 1230 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 16061 year: 2016 publication-title: Nat. Rev. Mater. – volume: 6 start-page: 4280 year: 2015 end-page: 4291 publication-title: J. Phys. Chem. Lett. – volume: 56 129 start-page: 2064 2096 year: 2017 2017 end-page: 2068 2100 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3708 year: 2015 end-page: 3717 publication-title: Energy Environ. Sci. – volume: 4 start-page: 6677 year: 2014 publication-title: Sci. Rep. – volume: 6 start-page: 57446 year: 2016 end-page: 57463 publication-title: RSC Adv. – volume: 3 start-page: 16941 year: 2015 end-page: 16947 publication-title: J. Mater. Chem. A – volume: 110 start-page: 6503 year: 2010 end-page: 6570 publication-title: Chem. Rev. – volume: 9 start-page: 709 year: 2016 end-page: 728 publication-title: Energy Environ. Sci. – volume: 3 start-page: 3285 year: 2015 end-page: 3288 publication-title: J. Mater. Chem. A – volume: 8 start-page: 7078 year: 2014 end-page: 7087 publication-title: ACS Nano – volume: 38 start-page: 253 year: 2009 end-page: 278 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 16185 year: 2016 publication-title: Nat. Energy – volume: 1 start-page: 16151 year: 2016 publication-title: Nat. Energy – volume: 118 start-page: 26560 year: 2014 end-page: 26568 publication-title: J. Phys. Chem. C – volume: 9 start-page: 8869 year: 2015 end-page: 8884 publication-title: ACS Nano – volume: 6 start-page: 8009 year: 2016 end-page: 8020 publication-title: ACS Catal. – volume: 8 start-page: 13907 year: 2017 publication-title: Nat. Commun. – volume: 13 start-page: 21496 year: 2011 end-page: 21502 publication-title: Phys. Chem. Chem. Phys. – volume: 89 start-page: 235319 year: 2014 publication-title: Phys. Rev. B – volume: 46 start-page: 1900 year: 2013 end-page: 1909 publication-title: Acc. Chem. Res. – volume: 8 start-page: 4033 year: 2014 end-page: 4041 publication-title: ACS Nano – volume: 5 start-page: 8691 year: 2015 publication-title: Sci. Rep. – volume: 4 start-page: 2670 year: 2012 end-page: 2677 publication-title: Nanoscale – volume: 43 start-page: 7520 year: 2014 end-page: 7535 publication-title: Chem. Soc. Rev. – ident: e_1_2_2_17_2 doi: 10.1021/acscatal.6b02520 – ident: e_1_2_2_6_2 doi: 10.1021/jp508618t – ident: e_1_2_2_49_2 doi: 10.1039/C6CY00753H – ident: e_1_2_2_40_1 – ident: e_1_2_2_31_2 doi: 10.1002/anie.201606102 – ident: e_1_2_2_16_2 doi: 10.1039/C6TA08140A – ident: e_1_2_2_37_2 doi: 10.1103/PhysRevB.89.235319 – ident: e_1_2_2_43_2 doi: 10.1039/c1cp22059d – ident: e_1_2_2_4_2 doi: 10.1038/natrevmats.2016.61 – ident: e_1_2_2_30_2 doi: 10.1038/nenergy.2016.151 – ident: e_1_2_2_48_2 doi: 10.1039/C5TA03949E – ident: e_1_2_2_13_2 doi: 10.1002/anie.201612315 – ident: e_1_2_2_45_1 – ident: e_1_2_2_7_2 doi: 10.1002/adma.201602382 – ident: e_1_2_2_29_2 doi: 10.1021/nn5019945 – ident: e_1_2_2_41_2 doi: 10.1039/c3ta14493c – ident: e_1_2_2_47_2 doi: 10.1039/C5CC01799H – ident: e_1_2_2_33_2 doi: 10.1021/acs.accounts.6b00036 – ident: e_1_2_2_22_2 doi: 10.1039/C3CS60425J – ident: e_1_2_2_9_1 – ident: e_1_2_2_28_2 doi: 10.1002/anie.201410172 – ident: e_1_2_2_38_2 doi: 10.1021/nn501226z – ident: e_1_2_2_1_1 – ident: e_1_2_2_11_2 doi: 10.1021/acs.nanolett.5b02895 – ident: e_1_2_2_14_2 doi: 10.1039/C4TA06871H – ident: e_1_2_2_35_1 – ident: e_1_2_2_44_2 doi: 10.1039/c2nr30129f – ident: e_1_2_2_12_2 doi: 10.1021/jacs.5b06025 – ident: e_1_2_2_15_2 doi: 10.1002/adma.201605776 – ident: e_1_2_2_20_2 doi: 10.1039/C5EE02650D – ident: e_1_2_2_25_2 doi: 10.1038/ncomms13907 – ident: e_1_2_2_39_2 doi: 10.3390/nano6110194 – ident: e_1_2_2_46_2 doi: 10.1039/c1gc15465f – ident: e_1_2_2_10_2 doi: 10.1038/srep08691 – ident: e_1_2_2_8_2 doi: 10.1021/acs.jpclett.5b01686 – ident: e_1_2_2_28_3 doi: 10.1002/ange.201410172 – ident: e_1_2_2_23_2 doi: 10.1039/C3CS60378D – ident: e_1_2_2_18_1 – ident: e_1_2_2_26_1 – ident: e_1_2_2_24_2 doi: 10.1038/nenergy.2016.185 – ident: e_1_2_2_27_2 doi: 10.1021/ar300227e – ident: e_1_2_2_2_2 doi: 10.1021/acsnano.5b02599 – ident: e_1_2_2_3_2 doi: 10.1039/C5EE03732H – ident: e_1_2_2_21_2 doi: 10.1021/cr1001645 – ident: e_1_2_2_31_3 doi: 10.1002/ange.201606102 – ident: e_1_2_2_42_2 doi: 10.1021/jp306947d – ident: e_1_2_2_36_2 doi: 10.1038/srep06677 – ident: e_1_2_2_34_1 doi: 10.1002/anie.201603331 – ident: e_1_2_2_34_2 doi: 10.1002/ange.201603331 – ident: e_1_2_2_5_1 – ident: e_1_2_2_19_2 doi: 10.1039/B800489G – ident: e_1_2_2_13_3 doi: 10.1002/ange.201612315 – ident: e_1_2_2_32_2 doi: 10.1039/C6RA10539D |
SSID | ssj0028806 |
Score | 2.6404626 |
Snippet | Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited... Transitional metals are widely used as co‐catalysts boosting photocatalytic H 2 production. However, metal‐based co‐catalysts suffer from high cost, limited... Transitional metals are widely used as co-catalysts boosting photocatalytic H production. However, metal-based co-catalysts suffer from high cost, limited... Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10373 |
SubjectTerms | Abundance Band structure of solids Catalysts co-catalysts density functional calculations Environmental impact Hydrogen production Metals Phosphorene Photocatalysis Spectroscopy Zinc sulfide |
Title | Phosphorene Co‐catalyst Advancing Highly Efficient Visible‐Light Photocatalytic Hydrogen Production |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201703827 https://www.ncbi.nlm.nih.gov/pubmed/28670856 https://www.proquest.com/docview/1929321054 https://www.proquest.com/docview/1915556739 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLnAp0AekPORKSD0FNrZjJ0e02tW2alcIAeIW5WED6mqD2OxhOfET-hv7S5iJN4GlQkhwS5Rx7Ngz9pex5xuAfa1iJbNO7GshpC_T0PpRKIWP_20F7fpIUWdv-D1UgzP58yK8eBLF7_ghWocbWUY9X5OBp9nk8JE0lCKw6WgWqmzEKZycDmwRKjpp-aM4KqcLLxLCpyz0DWtjhx8uFl9clf6DmovItV56-muQNo12J07-HEyr7CC_e8bn-J6vWocPc1zKjpwibcCSGX-ElW6TDu4TXB5flZObq5IoMFm3_Hf_t_b8zCYVqzMz57gGMjo1MpqxXs1LgcsZO79GkxsZlP5FXgCGL6lKVxArYoNZcVuiCrNjRzyLSvIZzvq90-7An2dp8HOpcZY1YZ6lhdAmSLkJTCc21trQKCEFohdEV5G0vMAR0DmKIEoOcgSBykaZLrIgNOILLI_LsdkCZhF75BGBNm2JKT_VNsi4jFScam072gO_GaUkn1OYUyaNUeLIl3lC3Ze03efB91b-xpF3vCi50wx6MjfiSYLgN6YQp1B68K19jN1Oeyrp2JRTkkFAFiotYg82nbK0VfFIaUS0ygNeD_krbUiOhj967d3XtxTahlW6Jp83D3Zgubqdml0ETVW2VxvGA-krDro |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EAvQF8QHq0rVeopsLEdOzmiZdHSLitUQdVblIcNiNUGsdnDcuIn8Bv5JczEm6Atqiq1xyTj2LFn7C9jzzcAX7SKlcw6sa-FkL5MQ-tHoRQ-_rcVtOsjRZ294Xio-mfy26-wOU1IsTCOH6J1uJFl1PM1GTg5pPeeWEMpBJvOZqHORly_hFeU1pvo8w9-tAxSHNXTBRgJ4VMe-oa3scP3FssvrkvPwOYidq0Xn8NVyJpmuzMnV7vTKtvNb39jdPyv71qDlTk0ZftOl97ACzN-C8vdJiPcOzg_uSgn1xclsWCybvlwd187f2aTitXJmXNcBhkdHBnNWK-mpsAVjf28RKsbGZQekCOA4Uuq0hXEilh_VtyUqMXsxHHPop68h7PD3mm3788TNfi51DjRmjDP0kJoE6TcBKYTG2ttaJSQAgEMAqxIWl7gEOgcRRAoBzniQGWjTBdZEBrxAZbG5dhsALMIP_KIcJu2RJafahtkXEYqTrW2He2B3wxTks9ZzCmZxihx_Ms8oe5L2u7z4Gsrf-34O_4oud2MejK340mC-DemKKdQevC5fYzdTtsq6diUU5JBTBYqLWIP1p22tFXxSGkEtcoDXo_5X9qQ7A-Peu3V5r8U-gTL_dPjQTI4Gn7fgtd0n1zgPNiGpepmanYQQ1XZx9pKHgHOABLW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCX8m5TChgJiVPaxHbs5Fhtd7WFslohinqL8rApYrVZdbOH7ak_ob-RX8JMvEm7IIQExyTj2PHMeL748Q3AW60SJfMg8bUQ0pdZZP04ksLH_7aSVn2kaLI3fByp4al8fxad3TrF7_ghugk38oxmvCYHn5X24IY0lE5g09YsNNmY67twT6ogoeQNR586AimO1unOFwnhUxr6lrYx4Afr5dfD0m9Ycx26NrFn8BCyttVuy8n3_UWd7xeXvxA6_s9nPYKtFTBlh86SHsMdM30CD3ptPrin8HV8Xs1n5xVxYLJe9ePqupn6Wc5r1qRmLjAIMto2MlmyfkNMgfGMffmGPjcxKH1C0wAMX1JXriBWxIbL8qJCG2ZjxzyLVvIMTgf9z72hv0rT4BdS4zBroiLPSqFNmHETmiAx1trIKCEFwheEV7G0vEQN6AJFECaHBaJAZeNcl3kYGfEcNqbV1OwAswg-iphQm7ZElZ9pG-ZcxirJtLaB9sBvtZQWKw5zSqUxSR37Mk-p-9Ku-zx418nPHHvHHyX3WqWnKy-ep4h-EzrjFEkP3nSPsdtpUSWbmmpBMojIIqVF4sG2M5auKh4rjZBWecAblf-lDenh6LjfXe3-S6HXcH98NEhPjkcfXsAm3ab5bx7uwUZ9sTAvEUDV-avGR34ChKERhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorene+Co%E2%80%90catalyst+Advancing+Highly+Efficient+Visible%E2%80%90Light+Photocatalytic+Hydrogen+Production&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ran%2C+Jingrun&rft.au=Zhu%2C+Bicheng&rft.au=Qiao%2C+Shi%E2%80%90Zhang&rft.date=2017-08-21&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=35&rft.spage=10373&rft.epage=10377&rft_id=info:doi/10.1002%2Fanie.201703827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201703827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |