A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect‐Free Metal–Organic Framework Composite Membrane

Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expen...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 11; pp. 2965 - 2968
Main Authors Barankova, Eva, Tan, Xiaoyu, Villalobos, Luis Francisco, Litwiller, Eric, Peinemann, Klaus‐Viktor
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.03.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra‐diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly‐thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF‐8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness—within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity. Thin‐film interference: An extremely thin, smooth, and defect‐free zeolitic imidazolate framework (ZIF‐8) layer displays interference colors similar to an oily film on water. The film was grown on top of a metal‐chelating polymer; the thickness was controlled by a contra‐diffusion preparative method.
AbstractList Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.
Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.
Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra‐diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly‐thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF‐8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness—within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity. Thin‐film interference: An extremely thin, smooth, and defect‐free zeolitic imidazolate framework (ZIF‐8) layer displays interference colors similar to an oily film on water. The film was grown on top of a metal‐chelating polymer; the thickness was controlled by a contra‐diffusion preparative method.
Author Tan, Xiaoyu
Peinemann, Klaus‐Viktor
Villalobos, Luis Francisco
Litwiller, Eric
Barankova, Eva
Author_xml – sequence: 1
  givenname: Eva
  surname: Barankova
  fullname: Barankova, Eva
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Xiaoyu
  surname: Tan
  fullname: Tan, Xiaoyu
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Luis Francisco
  orcidid: 0000-0002-0745-4246
  surname: Villalobos
  fullname: Villalobos, Luis Francisco
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Eric
  orcidid: 0000-0001-5366-0967
  surname: Litwiller
  fullname: Litwiller, Eric
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Klaus‐Viktor
  orcidid: 0000-0003-0309-9598
  surname: Peinemann
  fullname: Peinemann, Klaus‐Viktor
  email: klausviktor.peinemann@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28165189$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaT6vPRZBL714q09L7m3ZZtvApikkOQvZHidKbMuRbMIeCvkJhf7D_JJq2TSFQOlp5vC8M-_Mu492et8DQm8pmVFC2EfbO5gxQnNKC6ZeoT0qGc24Unwn9YLzTGlJd9F-jDeJ15rkb9Au0zSXVBd76Mccn8JoW7y4htaOrr_C333wU0ylXXcQXIXPp2HwYfyEL64Bn7oYN9TK9be48QFb_BkaqMbHh5_LALAd9_jw6yxcJXMVXgbbwb0Pt3jhu8FHN26Yrgy2h0P0urFthKOneoAul8cXi6_Z6uzLyWK-yiqhcpXVFW9sKaGRheACpKprzmqtNdVgZckKLlRpc0FsUzPO02VKW1mTugRLGQd-gD5s5w7B300QR9O5WEHbJg_pVkN1LqUQXKuEvn-B3vgp9MmdoUWenikEI4l690RNZQe1GYLrbFibP49NwGwLVMHHGKB5Rigxm-TMJjnznFwSiBeCyo0pEN-Pwbr237JiK7t3Laz_s8TMv50c_9X-BlGUrxw
CitedBy_id crossref_primary_10_1016_j_ijhydene_2019_04_050
crossref_primary_10_1039_C8TA06083E
crossref_primary_10_1021_jacs_0c07481
crossref_primary_10_1021_acssuschemeng_8b05409
crossref_primary_10_1016_j_jcis_2023_01_027
crossref_primary_10_1021_acsami_0c10895
crossref_primary_10_1039_C7CC09905C
crossref_primary_10_1016_j_jiec_2020_04_031
crossref_primary_10_1021_acs_jpca_8b09610
crossref_primary_10_1016_j_scitotenv_2021_145706
crossref_primary_10_1002_anie_202309095
crossref_primary_10_1016_j_rineng_2022_100609
crossref_primary_10_1021_acsami_4c08304
crossref_primary_10_1002_anie_201809872
crossref_primary_10_1002_adfm_202209239
crossref_primary_10_1002_ange_201802694
crossref_primary_10_1016_j_memsci_2018_10_086
crossref_primary_10_1021_acsmaterialslett_0c00560
crossref_primary_10_1021_acs_chemmater_7b03211
crossref_primary_10_1016_j_pmatsci_2018_09_003
crossref_primary_10_1016_j_cjche_2022_08_008
crossref_primary_10_1016_j_compositesb_2019_107685
crossref_primary_10_3390_cryst8110412
crossref_primary_10_1039_C7EE02820B
crossref_primary_10_34133_2020_1583451
crossref_primary_10_1039_C9TA06534B
crossref_primary_10_1002_ange_202008943
crossref_primary_10_1016_j_polymer_2022_124607
crossref_primary_10_1016_j_seppur_2023_124512
crossref_primary_10_1038_s42004_021_00522_1
crossref_primary_10_1039_C9MH00409B
crossref_primary_10_1016_j_memsci_2020_118288
crossref_primary_10_1021_acsami_8b07309
crossref_primary_10_1002_jctb_6433
crossref_primary_10_1016_j_micromeso_2017_10_010
crossref_primary_10_1002_adma_201900855
crossref_primary_10_1016_j_seppur_2023_124486
crossref_primary_10_2139_ssrn_4054197
crossref_primary_10_1021_acsami_8b20570
crossref_primary_10_1039_C9TA05383B
crossref_primary_10_3390_membranes13090751
crossref_primary_10_1016_j_jtice_2019_08_012
crossref_primary_10_1146_annurev_chembioeng_092320_120148
crossref_primary_10_1016_j_seppur_2024_130031
crossref_primary_10_1088_1742_6596_2680_1_012035
crossref_primary_10_1039_C7TA06924C
crossref_primary_10_1016_j_memsci_2020_118608
crossref_primary_10_1002_anie_201802694
crossref_primary_10_1039_C8TA11748A
crossref_primary_10_1002_adfm_201707427
crossref_primary_10_1016_j_apmt_2017_12_009
crossref_primary_10_1002_anie_201911359
crossref_primary_10_1002_anie_202410043
crossref_primary_10_1021_acsami_8b20422
crossref_primary_10_1016_j_cej_2023_143048
crossref_primary_10_1016_j_coche_2018_03_002
crossref_primary_10_1021_acs_est_9b00408
crossref_primary_10_1002_admi_201800032
crossref_primary_10_1016_j_memsci_2019_01_011
crossref_primary_10_1039_C8TA07234E
crossref_primary_10_1016_j_advmem_2022_100035
crossref_primary_10_1007_s10311_021_01349_x
crossref_primary_10_1016_j_seppur_2022_121837
crossref_primary_10_1002_advs_202001398
crossref_primary_10_1002_cssc_201900706
crossref_primary_10_1155_2020_1018347
crossref_primary_10_1016_j_memsci_2020_118612
crossref_primary_10_1021_acsami_3c19491
crossref_primary_10_1088_1755_1315_170_5_052040
crossref_primary_10_1126_sciadv_aau1393
crossref_primary_10_1039_D1TA08705C
crossref_primary_10_1016_j_memsci_2022_120419
crossref_primary_10_1039_C9EE01238A
crossref_primary_10_1002_admi_201800287
crossref_primary_10_3390_membranes13020244
crossref_primary_10_1007_s11705_019_1872_6
crossref_primary_10_1021_acs_chemrev_0c00119
crossref_primary_10_1002_ange_201809872
crossref_primary_10_1002_anie_202003287
crossref_primary_10_1016_j_seppur_2023_123987
crossref_primary_10_1039_D0RA02254C
crossref_primary_10_1038_s41467_020_19404_6
crossref_primary_10_1002_ange_202114479
crossref_primary_10_1002_ange_202309095
crossref_primary_10_1021_acsami_7b13618
crossref_primary_10_1016_j_desal_2022_115929
crossref_primary_10_3390_pr8030377
crossref_primary_10_1016_j_memsci_2024_123163
crossref_primary_10_1126_sciadv_abm5899
crossref_primary_10_1021_acsanm_0c00570
crossref_primary_10_1039_C7CC03887A
crossref_primary_10_1002_ange_202003287
crossref_primary_10_1002_ange_201911359
crossref_primary_10_1002_ange_202410043
crossref_primary_10_1016_j_memsci_2018_09_055
crossref_primary_10_1002_anie_202114479
crossref_primary_10_1002_anie_202008943
crossref_primary_10_1016_j_gee_2022_12_010
crossref_primary_10_1039_C8SC01591K
crossref_primary_10_1002_cssc_202000633
crossref_primary_10_1016_j_ces_2018_02_046
crossref_primary_10_1016_j_memsci_2021_119355
crossref_primary_10_1002_marc_201900333
crossref_primary_10_1039_C9CC04851K
crossref_primary_10_1016_j_jiec_2021_03_047
Cites_doi 10.1039/c2cc36233c
10.1021/acs.jpclett.5b01602
10.1002/ange.201511340
10.1021/acs.nanolett.5b00275
10.1016/j.micromeso.2013.05.015
10.1016/j.reactfunctpolym.2014.09.011
10.1126/science.1251181
10.1021/ja907359t
10.1016/j.micromeso.2012.07.049
10.1002/pol.1962.1206217411
10.1021/acsami.5b12684
10.1016/j.micromeso.2015.08.038
10.1016/j.cattod.2013.10.067
10.1002/anie.201511340
10.1002/chem.201500007
10.1039/C4CC06699E
10.1002/(SICI)1099-0488(19960930)34:13<2209::AID-POLB10>3.0.CO;2-9
10.1016/S0376-7388(02)00430-1
10.1016/j.ces.2015.04.011
10.1002/pol.1962.1206217410
10.1002/marc.201500735
10.1016/j.memsci.2014.03.070
10.1039/c3cc45196h
10.1039/C3TA13781C
10.1016/j.seppur.2014.08.027
10.1039/c0cc04734a
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201611927
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2968
ExternalDocumentID 28165189
10_1002_anie_201611927
ANIE201611927
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-dc3fab5ef59434e57dd32d88818ea5b29347ba640afd23351878a5d0dbea123e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:47:23 EDT 2025
Fri Jul 25 10:29:00 EDT 2025
Mon Jul 21 05:38:33 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Jul 01 03:27:26 EDT 2025
Wed Jan 22 16:49:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords propylene/propane separation
contra-diffusion
composite membranes
gas separation
metal-organic frameworks
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-dc3fab5ef59434e57dd32d88818ea5b29347ba640afd23351878a5d0dbea123e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0745-4246
0000-0003-0309-9598
0000-0001-5366-0967
PMID 28165189
PQID 1967854420
PQPubID 946352
PageCount 4
ParticipantIDs proquest_miscellaneous_1865544387
proquest_journals_1967854420
pubmed_primary_28165189
crossref_primary_10_1002_anie_201611927
crossref_citationtrail_10_1002_anie_201611927
wiley_primary_10_1002_anie_201611927_ANIE201611927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 6, 2017
PublicationDateYYYYMMDD 2017-03-06
PublicationDate_xml – month: 03
  year: 2017
  text: March 6, 2017
  day: 06
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2015; 6
2016 2016; 55 128
2014; 2
2013; 49
2015; 135
2015; 51
2015; 86
2015; 21
2016; 220
2013; 179
2013; 165
2009; 131
2011; 47
2012; 48
1962; 62
2016; 37
2003; 211
2016; 8
2014; 345
2014; 136
2014; 236
2014; 464
1996; 34
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_9_1
e_1_2_2_8_1
e_1_2_2_14_1
e_1_2_2_13_1
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_19_1
e_1_2_2_18_1
e_1_2_2_17_1
e_1_2_2_15_2
e_1_2_2_16_1
e_1_2_2_15_1
References_xml – volume: 136
  start-page: 94
  year: 2014
  end-page: 104
  publication-title: Sep. Purif. Technol.
– volume: 34
  start-page: 2209
  year: 1996
  end-page: 2222
  publication-title: J. Polym. Sci. Part B
– volume: 48
  start-page: 11434
  year: 2012
  end-page: 11436
  publication-title: Chem. Commun.
– volume: 15
  start-page: 3166
  year: 2015
  end-page: 3171
  publication-title: Nano Lett.
– volume: 62
  start-page: 387
  year: 1962
  end-page: 399
  publication-title: J. Polym. Sci.
– volume: 86
  start-page: 225
  year: 2015
  end-page: 232
  publication-title: React. Funct. Polym.
– volume: 21
  start-page: 7224
  year: 2015
  end-page: 7230
  publication-title: Chem. Eur. J.
– volume: 165
  start-page: 32
  year: 2013
  end-page: 39
  publication-title: Microporous Mesoporous Mater.
– volume: 464
  start-page: 119
  year: 2014
  end-page: 126
  publication-title: J. Membr. Sci.
– volume: 51
  start-page: 918
  year: 2015
  end-page: 920
  publication-title: Chem. Commun.
– volume: 47
  start-page: 2559
  year: 2011
  end-page: 2561
  publication-title: Chem. Commun.
– volume: 2
  start-page: 2110
  year: 2014
  end-page: 2118
  publication-title: J. Mater. Chem. A
– volume: 62
  start-page: 379
  year: 1962
  end-page: 386
  publication-title: J. Polym. Sci.
– volume: 179
  start-page: 10
  year: 2013
  end-page: 16
  publication-title: Microporous Mesoporous Mater.
– volume: 135
  start-page: 232
  year: 2015
  end-page: 257
  publication-title: Chem. Eng. Sci.
– volume: 131
  start-page: 16000
  year: 2009
  end-page: 16001
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3841
  year: 2015
  end-page: 3849
  publication-title: J. Phys. Chem. Lett.
– volume: 236
  start-page: 92
  year: 2014
  end-page: 97
  publication-title: Catal. Today
– volume: 37
  start-page: 700
  year: 2016
  end-page: 704
  publication-title: Macromol. Rapid Commun.
– volume: 8
  start-page: 6236
  year: 2016
  end-page: 6244
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 9419
  year: 2013
  end-page: 9421
  publication-title: Chem. Commun.
– volume: 55 128
  start-page: 3947 4015
  year: 2016 2016
  end-page: 3951 4019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 220
  start-page: 215
  year: 2016
  end-page: 219
  publication-title: Microporous Mesoporous Mater.
– volume: 345
  start-page: 72
  year: 2014
  end-page: 75
  publication-title: Science
– volume: 211
  start-page: 299
  year: 2003
  end-page: 309
  publication-title: J. Membr. Sci.
– ident: e_1_2_2_14_1
  doi: 10.1039/c2cc36233c
– ident: e_1_2_2_2_1
  doi: 10.1021/acs.jpclett.5b01602
– ident: e_1_2_2_15_2
  doi: 10.1002/ange.201511340
– ident: e_1_2_2_20_1
  doi: 10.1021/acs.nanolett.5b00275
– ident: e_1_2_2_23_1
  doi: 10.1016/j.micromeso.2013.05.015
– ident: e_1_2_2_18_1
  doi: 10.1016/j.reactfunctpolym.2014.09.011
– ident: e_1_2_2_12_1
  doi: 10.1126/science.1251181
– ident: e_1_2_2_4_1
  doi: 10.1021/ja907359t
– ident: e_1_2_2_3_1
  doi: 10.1016/j.micromeso.2012.07.049
– ident: e_1_2_2_17_1
  doi: 10.1002/pol.1962.1206217411
– ident: e_1_2_2_11_1
  doi: 10.1021/acsami.5b12684
– ident: e_1_2_2_6_1
  doi: 10.1016/j.micromeso.2015.08.038
– ident: e_1_2_2_21_1
  doi: 10.1016/j.cattod.2013.10.067
– ident: e_1_2_2_15_1
  doi: 10.1002/anie.201511340
– ident: e_1_2_2_10_1
  doi: 10.1002/chem.201500007
– ident: e_1_2_2_13_1
  doi: 10.1039/C4CC06699E
– ident: e_1_2_2_24_1
  doi: 10.1002/(SICI)1099-0488(19960930)34:13<2209::AID-POLB10>3.0.CO;2-9
– ident: e_1_2_2_25_1
  doi: 10.1016/S0376-7388(02)00430-1
– ident: e_1_2_2_1_1
  doi: 10.1016/j.ces.2015.04.011
– ident: e_1_2_2_16_1
  doi: 10.1002/pol.1962.1206217410
– ident: e_1_2_2_22_1
  doi: 10.1002/marc.201500735
– ident: e_1_2_2_9_1
  doi: 10.1016/j.memsci.2014.03.070
– ident: e_1_2_2_8_1
  doi: 10.1039/c3cc45196h
– ident: e_1_2_2_7_1
  doi: 10.1039/C3TA13781C
– ident: e_1_2_2_19_1
  doi: 10.1016/j.seppur.2014.08.027
– ident: e_1_2_2_5_1
  doi: 10.1039/c0cc04734a
SSID ssj0028806
Score 2.5393202
Snippet Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes....
Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2965
SubjectTerms Chelation
Composite materials
composite membranes
contra-diffusion
Crystal growth
Diffusion layers
Gas separation
Membranes
Metal concentrations
Metal-organic frameworks
Polymers
Propane
Propylene
propylene/propane separation
Selectivity
Title A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect‐Free Metal–Organic Framework Composite Membrane
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201611927
https://www.ncbi.nlm.nih.gov/pubmed/28165189
https://www.proquest.com/docview/1967854420
https://www.proquest.com/docview/1865544387
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754v0ynRBB8qra5tJ1vY25MYUNEwbeStKkPaie7PCgI_gTBf7hf4jnNWp0igj6U0jZNm-RL8rU55zuE7PswRSW-lzrcx79VKg2dULvGkamrUgUEmuer552u374SZ9fy-pMXv9WHKH-4Yc_Ix2vs4EoPjj5EQ9EDG02zfA9ICrqTo8EWsqKLUj-KATitexHnDkahL1QbXXY0ffv0rPSNak4z13zqaS0SVby0tTi5PRwN9WH89EXP8T-lWiILE15K6xZIy2TGZCtkrlGEg1slz3XaMcDUKZxD-7nshp73-r3RAHZ3j_m6D8UQoUDnjymAj3agSTEVfu1SoMZU0RODxiPjl9dW3xib3fjlzbqDxrRV2IlRHKTQmAzT3ENpMrNGrlrNy0bbmcRucGIRwNibxDxVWppUogCdkUGScJbA57YXGiU1kAwRaOULQETCOJdeGIRKJm6ijYLJ1PB1Mpv1MrNJqKzFmtdiHgJ-RFrztUAFmyCFLZZK6ApxiraL4omwOcbXuIusJDOLsFKjslIr5KBM_2AlPX5MWS2gEE269iCCIQugJARzK2SvvAyNgSstUCFQ8ZGH7r5C8BCy2LAQKh_FQs-H4tYqhOVA-OUdonr3tFkebf3lpm0yz5CM5HEjq2R22B-ZHaBSQ72bd5d3BR0WQA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1q6YJugL6HR-tKlboKJH4kHnYjYDS0zKiqQOrOshOHRWkGDTOLVkLiE5D4Q76Ee-NJqmmFKtFFFCVxnMQ-tk_se88F-JDiEFWkSRmJlGarbKkj7WIfqTK2pUUCLerV8-EoHZzIT99UY01IvjBBH6KdcKOWUffX1MBpQnrnt2oouWCTbVaaIEvJHsMTCutN8vn7X1sFKY7wDA5GQkQUh77RbYz5zuL9i-PSX2RzkbvWg09_FVzz2sHm5Pv2bOq2819_KDr-13etwcqcmrJewNIzeOSr57C810SEewGXPTb0SNYZniMTuuqUfRlPxrML3J39rJd-GEUJRUa_yxB_bIi1Sqnoh5chO2aW7XuyH7m9uu5PvA_Z3V7dBI_QnPUbUzFG_RTZk1GaH_g5lX8JJ_2D471BNA_fEOUyw-63yEVpnfKlIg06r7KiELzAP-5Ee6sc8gyZOZtKBEXBhVCJzrRVRVw4b3E89eIVLFXjyr8Bprq5E91caISQLLupkyRik5W45cpK14GoqTyTz7XNKcTGmQmqzNxQoZq2UDvwsU1_HlQ97k252WDBzFv3hcFeC7EkJY878L69jJVBiy1YIFjwJiGPXymFxixeBwy1j-I6Qajqbgd4jYR_vIPpjQ4P2qP1h9z0DpYHx8Mjc3Q4-rwBTzlxkzqM5CYsTSczv4XMaure1m3nDmDVGlw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgSMCGd2FoASMhsUqb-JWku1GnUQvMqEJU6s6yY5sFJVNNZxYgIfUTkPqH_ZLeG08CA0JIsIiiJI4T28f2SXzvuYS8UjBFOZWFhCv8W2VCkRQ29YkMqQkGCDRvV8_HE7V_JN4cy-OfvPijPkT_ww17RjteYwc_dWH7h2goemCjaZbKgKTk18kNodISgzeM3vcCUgzQGf2LOE8wDH0n25iy7dX7V6el37jmKnVt557qLjHdW0eTk09bi7ndqr_-Iuj4P8W6R-4siSkdRiTdJ9d884Dc2u3iwT0k34Z07IGqUziHBnTNR3o4nU0XZ7A7-dIu_FCMEQp8focC-ugY2hRT4ecuBW5MDR15tB65PP9ezbyP2V2eX0R_0JpWnaEYxVEKrckwzWcoTeMfkaNq78PufrIM3pDUIofB19U8GCt9kKhA52XuHGcOvrezwhtpgWWI3BolABKOcS6zIi-MdKmz3sBs6vk6WWumjX9CqCxry8uaFwAgEUplBUrY5AG2WhphByTp2k7XS2VzDLBxoqMmM9NYqbqv1AF53ac_jZoef0y52UFBL_v2mYYxC6AkBEsH5GV_GRoDl1qgQqDidYb-vkLwArJ4HCHUP4oVmYLilgPCWiD85R30cHKw1x89_ZebXpCbh6NKvzuYvN0gtxkSkzaG5CZZm88W_hnQqrl93vacK_lXGQs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Metal+Chelating+Porous+Polymeric+Support%3A+The+Missing+Link+for+a+Defect-Free+Metal-Organic+Framework+Composite+Membrane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Barankova%2C+Eva&rft.au=Tan%2C+Xiaoyu&rft.au=Villalobos%2C+Luis+Francisco&rft.au=Litwiller%2C+Eric&rft.date=2017-03-06&rft.eissn=1521-3773&rft.volume=56&rft.issue=11&rft.spage=2965&rft_id=info:doi/10.1002%2Fanie.201611927&rft_id=info%3Apmid%2F28165189&rft.externalDocID=28165189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon