A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect‐Free Metal–Organic Framework Composite Membrane
Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expen...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 11; pp. 2965 - 2968 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.03.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra‐diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly‐thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF‐8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness—within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.
Thin‐film interference: An extremely thin, smooth, and defect‐free zeolitic imidazolate framework (ZIF‐8) layer displays interference colors similar to an oily film on water. The film was grown on top of a metal‐chelating polymer; the thickness was controlled by a contra‐diffusion preparative method. |
---|---|
AbstractList | Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity. Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly-thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity. Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra‐diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating poly‐thiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF‐8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness—within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity. Thin‐film interference: An extremely thin, smooth, and defect‐free zeolitic imidazolate framework (ZIF‐8) layer displays interference colors similar to an oily film on water. The film was grown on top of a metal‐chelating polymer; the thickness was controlled by a contra‐diffusion preparative method. |
Author | Tan, Xiaoyu Peinemann, Klaus‐Viktor Villalobos, Luis Francisco Litwiller, Eric Barankova, Eva |
Author_xml | – sequence: 1 givenname: Eva surname: Barankova fullname: Barankova, Eva organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Xiaoyu surname: Tan fullname: Tan, Xiaoyu organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Luis Francisco orcidid: 0000-0002-0745-4246 surname: Villalobos fullname: Villalobos, Luis Francisco organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Eric orcidid: 0000-0001-5366-0967 surname: Litwiller fullname: Litwiller, Eric organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Klaus‐Viktor orcidid: 0000-0003-0309-9598 surname: Peinemann fullname: Peinemann, Klaus‐Viktor email: klausviktor.peinemann@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28165189$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaT6vPRZBL714q09L7m3ZZtvApikkOQvZHidKbMuRbMIeCvkJhf7D_JJq2TSFQOlp5vC8M-_Mu492et8DQm8pmVFC2EfbO5gxQnNKC6ZeoT0qGc24Unwn9YLzTGlJd9F-jDeJ15rkb9Au0zSXVBd76Mccn8JoW7y4htaOrr_C333wU0ylXXcQXIXPp2HwYfyEL64Bn7oYN9TK9be48QFb_BkaqMbHh5_LALAd9_jw6yxcJXMVXgbbwb0Pt3jhu8FHN26Yrgy2h0P0urFthKOneoAul8cXi6_Z6uzLyWK-yiqhcpXVFW9sKaGRheACpKprzmqtNdVgZckKLlRpc0FsUzPO02VKW1mTugRLGQd-gD5s5w7B300QR9O5WEHbJg_pVkN1LqUQXKuEvn-B3vgp9MmdoUWenikEI4l690RNZQe1GYLrbFibP49NwGwLVMHHGKB5Rigxm-TMJjnznFwSiBeCyo0pEN-Pwbr237JiK7t3Laz_s8TMv50c_9X-BlGUrxw |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2019_04_050 crossref_primary_10_1039_C8TA06083E crossref_primary_10_1021_jacs_0c07481 crossref_primary_10_1021_acssuschemeng_8b05409 crossref_primary_10_1016_j_jcis_2023_01_027 crossref_primary_10_1021_acsami_0c10895 crossref_primary_10_1039_C7CC09905C crossref_primary_10_1016_j_jiec_2020_04_031 crossref_primary_10_1021_acs_jpca_8b09610 crossref_primary_10_1016_j_scitotenv_2021_145706 crossref_primary_10_1002_anie_202309095 crossref_primary_10_1016_j_rineng_2022_100609 crossref_primary_10_1021_acsami_4c08304 crossref_primary_10_1002_anie_201809872 crossref_primary_10_1002_adfm_202209239 crossref_primary_10_1002_ange_201802694 crossref_primary_10_1016_j_memsci_2018_10_086 crossref_primary_10_1021_acsmaterialslett_0c00560 crossref_primary_10_1021_acs_chemmater_7b03211 crossref_primary_10_1016_j_pmatsci_2018_09_003 crossref_primary_10_1016_j_cjche_2022_08_008 crossref_primary_10_1016_j_compositesb_2019_107685 crossref_primary_10_3390_cryst8110412 crossref_primary_10_1039_C7EE02820B crossref_primary_10_34133_2020_1583451 crossref_primary_10_1039_C9TA06534B crossref_primary_10_1002_ange_202008943 crossref_primary_10_1016_j_polymer_2022_124607 crossref_primary_10_1016_j_seppur_2023_124512 crossref_primary_10_1038_s42004_021_00522_1 crossref_primary_10_1039_C9MH00409B crossref_primary_10_1016_j_memsci_2020_118288 crossref_primary_10_1021_acsami_8b07309 crossref_primary_10_1002_jctb_6433 crossref_primary_10_1016_j_micromeso_2017_10_010 crossref_primary_10_1002_adma_201900855 crossref_primary_10_1016_j_seppur_2023_124486 crossref_primary_10_2139_ssrn_4054197 crossref_primary_10_1021_acsami_8b20570 crossref_primary_10_1039_C9TA05383B crossref_primary_10_3390_membranes13090751 crossref_primary_10_1016_j_jtice_2019_08_012 crossref_primary_10_1146_annurev_chembioeng_092320_120148 crossref_primary_10_1016_j_seppur_2024_130031 crossref_primary_10_1088_1742_6596_2680_1_012035 crossref_primary_10_1039_C7TA06924C crossref_primary_10_1016_j_memsci_2020_118608 crossref_primary_10_1002_anie_201802694 crossref_primary_10_1039_C8TA11748A crossref_primary_10_1002_adfm_201707427 crossref_primary_10_1016_j_apmt_2017_12_009 crossref_primary_10_1002_anie_201911359 crossref_primary_10_1002_anie_202410043 crossref_primary_10_1021_acsami_8b20422 crossref_primary_10_1016_j_cej_2023_143048 crossref_primary_10_1016_j_coche_2018_03_002 crossref_primary_10_1021_acs_est_9b00408 crossref_primary_10_1002_admi_201800032 crossref_primary_10_1016_j_memsci_2019_01_011 crossref_primary_10_1039_C8TA07234E crossref_primary_10_1016_j_advmem_2022_100035 crossref_primary_10_1007_s10311_021_01349_x crossref_primary_10_1016_j_seppur_2022_121837 crossref_primary_10_1002_advs_202001398 crossref_primary_10_1002_cssc_201900706 crossref_primary_10_1155_2020_1018347 crossref_primary_10_1016_j_memsci_2020_118612 crossref_primary_10_1021_acsami_3c19491 crossref_primary_10_1088_1755_1315_170_5_052040 crossref_primary_10_1126_sciadv_aau1393 crossref_primary_10_1039_D1TA08705C crossref_primary_10_1016_j_memsci_2022_120419 crossref_primary_10_1039_C9EE01238A crossref_primary_10_1002_admi_201800287 crossref_primary_10_3390_membranes13020244 crossref_primary_10_1007_s11705_019_1872_6 crossref_primary_10_1021_acs_chemrev_0c00119 crossref_primary_10_1002_ange_201809872 crossref_primary_10_1002_anie_202003287 crossref_primary_10_1016_j_seppur_2023_123987 crossref_primary_10_1039_D0RA02254C crossref_primary_10_1038_s41467_020_19404_6 crossref_primary_10_1002_ange_202114479 crossref_primary_10_1002_ange_202309095 crossref_primary_10_1021_acsami_7b13618 crossref_primary_10_1016_j_desal_2022_115929 crossref_primary_10_3390_pr8030377 crossref_primary_10_1016_j_memsci_2024_123163 crossref_primary_10_1126_sciadv_abm5899 crossref_primary_10_1021_acsanm_0c00570 crossref_primary_10_1039_C7CC03887A crossref_primary_10_1002_ange_202003287 crossref_primary_10_1002_ange_201911359 crossref_primary_10_1002_ange_202410043 crossref_primary_10_1016_j_memsci_2018_09_055 crossref_primary_10_1002_anie_202114479 crossref_primary_10_1002_anie_202008943 crossref_primary_10_1016_j_gee_2022_12_010 crossref_primary_10_1039_C8SC01591K crossref_primary_10_1002_cssc_202000633 crossref_primary_10_1016_j_ces_2018_02_046 crossref_primary_10_1016_j_memsci_2021_119355 crossref_primary_10_1002_marc_201900333 crossref_primary_10_1039_C9CC04851K crossref_primary_10_1016_j_jiec_2021_03_047 |
Cites_doi | 10.1039/c2cc36233c 10.1021/acs.jpclett.5b01602 10.1002/ange.201511340 10.1021/acs.nanolett.5b00275 10.1016/j.micromeso.2013.05.015 10.1016/j.reactfunctpolym.2014.09.011 10.1126/science.1251181 10.1021/ja907359t 10.1016/j.micromeso.2012.07.049 10.1002/pol.1962.1206217411 10.1021/acsami.5b12684 10.1016/j.micromeso.2015.08.038 10.1016/j.cattod.2013.10.067 10.1002/anie.201511340 10.1002/chem.201500007 10.1039/C4CC06699E 10.1002/(SICI)1099-0488(19960930)34:13<2209::AID-POLB10>3.0.CO;2-9 10.1016/S0376-7388(02)00430-1 10.1016/j.ces.2015.04.011 10.1002/pol.1962.1206217410 10.1002/marc.201500735 10.1016/j.memsci.2014.03.070 10.1039/c3cc45196h 10.1039/C3TA13781C 10.1016/j.seppur.2014.08.027 10.1039/c0cc04734a |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201611927 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2968 |
ExternalDocumentID | 28165189 10_1002_anie_201611927 ANIE201611927 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-dc3fab5ef59434e57dd32d88818ea5b29347ba640afd23351878a5d0dbea123e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:47:23 EDT 2025 Fri Jul 25 10:29:00 EDT 2025 Mon Jul 21 05:38:33 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Jul 01 03:27:26 EDT 2025 Wed Jan 22 16:49:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | propylene/propane separation contra-diffusion composite membranes gas separation metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-dc3fab5ef59434e57dd32d88818ea5b29347ba640afd23351878a5d0dbea123e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0745-4246 0000-0003-0309-9598 0000-0001-5366-0967 |
PMID | 28165189 |
PQID | 1967854420 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1865544387 proquest_journals_1967854420 pubmed_primary_28165189 crossref_primary_10_1002_anie_201611927 crossref_citationtrail_10_1002_anie_201611927 wiley_primary_10_1002_anie_201611927_ANIE201611927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 6, 2017 |
PublicationDateYYYYMMDD | 2017-03-06 |
PublicationDate_xml | – month: 03 year: 2017 text: March 6, 2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2015; 6 2016 2016; 55 128 2014; 2 2013; 49 2015; 135 2015; 51 2015; 86 2015; 21 2016; 220 2013; 179 2013; 165 2009; 131 2011; 47 2012; 48 1962; 62 2016; 37 2003; 211 2016; 8 2014; 345 2014; 136 2014; 236 2014; 464 1996; 34 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_9_1 e_1_2_2_8_1 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_19_1 e_1_2_2_18_1 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_16_1 e_1_2_2_15_1 |
References_xml | – volume: 136 start-page: 94 year: 2014 end-page: 104 publication-title: Sep. Purif. Technol. – volume: 34 start-page: 2209 year: 1996 end-page: 2222 publication-title: J. Polym. Sci. Part B – volume: 48 start-page: 11434 year: 2012 end-page: 11436 publication-title: Chem. Commun. – volume: 15 start-page: 3166 year: 2015 end-page: 3171 publication-title: Nano Lett. – volume: 62 start-page: 387 year: 1962 end-page: 399 publication-title: J. Polym. Sci. – volume: 86 start-page: 225 year: 2015 end-page: 232 publication-title: React. Funct. Polym. – volume: 21 start-page: 7224 year: 2015 end-page: 7230 publication-title: Chem. Eur. J. – volume: 165 start-page: 32 year: 2013 end-page: 39 publication-title: Microporous Mesoporous Mater. – volume: 464 start-page: 119 year: 2014 end-page: 126 publication-title: J. Membr. Sci. – volume: 51 start-page: 918 year: 2015 end-page: 920 publication-title: Chem. Commun. – volume: 47 start-page: 2559 year: 2011 end-page: 2561 publication-title: Chem. Commun. – volume: 2 start-page: 2110 year: 2014 end-page: 2118 publication-title: J. Mater. Chem. A – volume: 62 start-page: 379 year: 1962 end-page: 386 publication-title: J. Polym. Sci. – volume: 179 start-page: 10 year: 2013 end-page: 16 publication-title: Microporous Mesoporous Mater. – volume: 135 start-page: 232 year: 2015 end-page: 257 publication-title: Chem. Eng. Sci. – volume: 131 start-page: 16000 year: 2009 end-page: 16001 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3841 year: 2015 end-page: 3849 publication-title: J. Phys. Chem. Lett. – volume: 236 start-page: 92 year: 2014 end-page: 97 publication-title: Catal. Today – volume: 37 start-page: 700 year: 2016 end-page: 704 publication-title: Macromol. Rapid Commun. – volume: 8 start-page: 6236 year: 2016 end-page: 6244 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 9419 year: 2013 end-page: 9421 publication-title: Chem. Commun. – volume: 55 128 start-page: 3947 4015 year: 2016 2016 end-page: 3951 4019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 220 start-page: 215 year: 2016 end-page: 219 publication-title: Microporous Mesoporous Mater. – volume: 345 start-page: 72 year: 2014 end-page: 75 publication-title: Science – volume: 211 start-page: 299 year: 2003 end-page: 309 publication-title: J. Membr. Sci. – ident: e_1_2_2_14_1 doi: 10.1039/c2cc36233c – ident: e_1_2_2_2_1 doi: 10.1021/acs.jpclett.5b01602 – ident: e_1_2_2_15_2 doi: 10.1002/ange.201511340 – ident: e_1_2_2_20_1 doi: 10.1021/acs.nanolett.5b00275 – ident: e_1_2_2_23_1 doi: 10.1016/j.micromeso.2013.05.015 – ident: e_1_2_2_18_1 doi: 10.1016/j.reactfunctpolym.2014.09.011 – ident: e_1_2_2_12_1 doi: 10.1126/science.1251181 – ident: e_1_2_2_4_1 doi: 10.1021/ja907359t – ident: e_1_2_2_3_1 doi: 10.1016/j.micromeso.2012.07.049 – ident: e_1_2_2_17_1 doi: 10.1002/pol.1962.1206217411 – ident: e_1_2_2_11_1 doi: 10.1021/acsami.5b12684 – ident: e_1_2_2_6_1 doi: 10.1016/j.micromeso.2015.08.038 – ident: e_1_2_2_21_1 doi: 10.1016/j.cattod.2013.10.067 – ident: e_1_2_2_15_1 doi: 10.1002/anie.201511340 – ident: e_1_2_2_10_1 doi: 10.1002/chem.201500007 – ident: e_1_2_2_13_1 doi: 10.1039/C4CC06699E – ident: e_1_2_2_24_1 doi: 10.1002/(SICI)1099-0488(19960930)34:13<2209::AID-POLB10>3.0.CO;2-9 – ident: e_1_2_2_25_1 doi: 10.1016/S0376-7388(02)00430-1 – ident: e_1_2_2_1_1 doi: 10.1016/j.ces.2015.04.011 – ident: e_1_2_2_16_1 doi: 10.1002/pol.1962.1206217410 – ident: e_1_2_2_22_1 doi: 10.1002/marc.201500735 – ident: e_1_2_2_9_1 doi: 10.1016/j.memsci.2014.03.070 – ident: e_1_2_2_8_1 doi: 10.1039/c3cc45196h – ident: e_1_2_2_7_1 doi: 10.1039/C3TA13781C – ident: e_1_2_2_19_1 doi: 10.1016/j.seppur.2014.08.027 – ident: e_1_2_2_5_1 doi: 10.1039/c0cc04734a |
SSID | ssj0028806 |
Score | 2.5393202 |
Snippet | Since the discovery of size‐selective metal–organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes.... Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2965 |
SubjectTerms | Chelation Composite materials composite membranes contra-diffusion Crystal growth Diffusion layers Gas separation Membranes Metal concentrations Metal-organic frameworks Polymers Propane Propylene propylene/propane separation Selectivity |
Title | A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect‐Free Metal–Organic Framework Composite Membrane |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201611927 https://www.ncbi.nlm.nih.gov/pubmed/28165189 https://www.proquest.com/docview/1967854420 https://www.proquest.com/docview/1865544387 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754v0ynRBB8qra5tJ1vY25MYUNEwbeStKkPaie7PCgI_gTBf7hf4jnNWp0igj6U0jZNm-RL8rU55zuE7PswRSW-lzrcx79VKg2dULvGkamrUgUEmuer552u374SZ9fy-pMXv9WHKH-4Yc_Ix2vs4EoPjj5EQ9EDG02zfA9ICrqTo8EWsqKLUj-KATitexHnDkahL1QbXXY0ffv0rPSNak4z13zqaS0SVby0tTi5PRwN9WH89EXP8T-lWiILE15K6xZIy2TGZCtkrlGEg1slz3XaMcDUKZxD-7nshp73-r3RAHZ3j_m6D8UQoUDnjymAj3agSTEVfu1SoMZU0RODxiPjl9dW3xib3fjlzbqDxrRV2IlRHKTQmAzT3ENpMrNGrlrNy0bbmcRucGIRwNibxDxVWppUogCdkUGScJbA57YXGiU1kAwRaOULQETCOJdeGIRKJm6ijYLJ1PB1Mpv1MrNJqKzFmtdiHgJ-RFrztUAFmyCFLZZK6ApxiraL4omwOcbXuIusJDOLsFKjslIr5KBM_2AlPX5MWS2gEE269iCCIQugJARzK2SvvAyNgSstUCFQ8ZGH7r5C8BCy2LAQKh_FQs-H4tYqhOVA-OUdonr3tFkebf3lpm0yz5CM5HEjq2R22B-ZHaBSQ72bd5d3BR0WQA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1q6YJugL6HR-tKlboKJH4kHnYjYDS0zKiqQOrOshOHRWkGDTOLVkLiE5D4Q76Ee-NJqmmFKtFFFCVxnMQ-tk_se88F-JDiEFWkSRmJlGarbKkj7WIfqTK2pUUCLerV8-EoHZzIT99UY01IvjBBH6KdcKOWUffX1MBpQnrnt2oouWCTbVaaIEvJHsMTCutN8vn7X1sFKY7wDA5GQkQUh77RbYz5zuL9i-PSX2RzkbvWg09_FVzz2sHm5Pv2bOq2819_KDr-13etwcqcmrJewNIzeOSr57C810SEewGXPTb0SNYZniMTuuqUfRlPxrML3J39rJd-GEUJRUa_yxB_bIi1Sqnoh5chO2aW7XuyH7m9uu5PvA_Z3V7dBI_QnPUbUzFG_RTZk1GaH_g5lX8JJ_2D471BNA_fEOUyw-63yEVpnfKlIg06r7KiELzAP-5Ee6sc8gyZOZtKBEXBhVCJzrRVRVw4b3E89eIVLFXjyr8Bprq5E91caISQLLupkyRik5W45cpK14GoqTyTz7XNKcTGmQmqzNxQoZq2UDvwsU1_HlQ97k252WDBzFv3hcFeC7EkJY878L69jJVBiy1YIFjwJiGPXymFxixeBwy1j-I6Qajqbgd4jYR_vIPpjQ4P2qP1h9z0DpYHx8Mjc3Q4-rwBTzlxkzqM5CYsTSczv4XMaure1m3nDmDVGlw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgSMCGd2FoASMhsUqb-JWku1GnUQvMqEJU6s6yY5sFJVNNZxYgIfUTkPqH_ZLeG08CA0JIsIiiJI4T28f2SXzvuYS8UjBFOZWFhCv8W2VCkRQ29YkMqQkGCDRvV8_HE7V_JN4cy-OfvPijPkT_ww17RjteYwc_dWH7h2goemCjaZbKgKTk18kNodISgzeM3vcCUgzQGf2LOE8wDH0n25iy7dX7V6el37jmKnVt557qLjHdW0eTk09bi7ndqr_-Iuj4P8W6R-4siSkdRiTdJ9d884Dc2u3iwT0k34Z07IGqUziHBnTNR3o4nU0XZ7A7-dIu_FCMEQp8focC-ugY2hRT4ecuBW5MDR15tB65PP9ezbyP2V2eX0R_0JpWnaEYxVEKrckwzWcoTeMfkaNq78PufrIM3pDUIofB19U8GCt9kKhA52XuHGcOvrezwhtpgWWI3BolABKOcS6zIi-MdKmz3sBs6vk6WWumjX9CqCxry8uaFwAgEUplBUrY5AG2WhphByTp2k7XS2VzDLBxoqMmM9NYqbqv1AF53ac_jZoef0y52UFBL_v2mYYxC6AkBEsH5GV_GRoDl1qgQqDidYb-vkLwArJ4HCHUP4oVmYLilgPCWiD85R30cHKw1x89_ZebXpCbh6NKvzuYvN0gtxkSkzaG5CZZm88W_hnQqrl93vacK_lXGQs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Metal+Chelating+Porous+Polymeric+Support%3A+The+Missing+Link+for+a+Defect-Free+Metal-Organic+Framework+Composite+Membrane&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Barankova%2C+Eva&rft.au=Tan%2C+Xiaoyu&rft.au=Villalobos%2C+Luis+Francisco&rft.au=Litwiller%2C+Eric&rft.date=2017-03-06&rft.eissn=1521-3773&rft.volume=56&rft.issue=11&rft.spage=2965&rft_id=info:doi/10.1002%2Fanie.201611927&rft_id=info%3Apmid%2F28165189&rft.externalDocID=28165189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |