Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System

Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MO...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 31; pp. 9660 - 9664
Main Authors Wang, Xiao‐Li, Dong, Long‐Zhang, Qiao, Man, Tang, Yu‐Jia, Liu, Jiang, Li, Yafei, Li, Shun‐Li, Su, Jia‐Xin, Lan, Ya‐Qian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.07.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms. An iron atom in an Fe3 cluster is replaced by a second metal to form Fe2M clusters, which can serve as nodes to bridge with organic ligands and construct stable bimetallic MOFs. The introduction of the second metal atom can improve the activity of the original atom and thus improve the oxygen evolution reaction performance of electrocatalysts.
AbstractList Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms. An iron atom in an Fe3 cluster is replaced by a second metal to form Fe2M clusters, which can serve as nodes to bridge with organic ligands and construct stable bimetallic MOFs. The introduction of the second metal atom can improve the activity of the original atom and thus improve the oxygen evolution reaction performance of electrocatalysts.
Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24 ) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.
Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal-organic frameworks (MOFs: NNU-21-24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU-23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.
Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal-organic frameworks (MOFs: NNU-21-24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU-23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal-organic frameworks (MOFs: NNU-21-24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU-23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.
Author Tang, Yu‐Jia
Wang, Xiao‐Li
Qiao, Man
Lan, Ya‐Qian
Liu, Jiang
Dong, Long‐Zhang
Li, Shun‐Li
Li, Yafei
Su, Jia‐Xin
Author_xml – sequence: 1
  givenname: Xiao‐Li
  surname: Wang
  fullname: Wang, Xiao‐Li
  organization: Nanjing Normal University
– sequence: 2
  givenname: Long‐Zhang
  surname: Dong
  fullname: Dong, Long‐Zhang
  organization: Nanjing Normal University
– sequence: 3
  givenname: Man
  surname: Qiao
  fullname: Qiao, Man
  organization: Nanjing Normal University
– sequence: 4
  givenname: Yu‐Jia
  surname: Tang
  fullname: Tang, Yu‐Jia
  organization: Nanjing Normal University
– sequence: 5
  givenname: Jiang
  surname: Liu
  fullname: Liu, Jiang
  organization: Nanjing Normal University
– sequence: 6
  givenname: Yafei
  surname: Li
  fullname: Li, Yafei
  email: liyafei.abc@gmail.com
  organization: Nanjing Normal University
– sequence: 7
  givenname: Shun‐Li
  surname: Li
  fullname: Li, Shun‐Li
  organization: Nanjing Normal University
– sequence: 8
  givenname: Jia‐Xin
  surname: Su
  fullname: Su, Jia‐Xin
  organization: Nanjing Normal University
– sequence: 9
  givenname: Ya‐Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya‐Qian
  email: yqlan@njnu.edu.cn
  organization: Nanjing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29660248$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq2Kqny01x4rS71wydZfiZ0jRUtZCXURtGfL8U62pom9tRNgb_0P_EN-CV4WWgmp6mleaZ53NDPvPtrxwQNC7ymZUELYJ-MdTBihivBSyVdoj5aMFlxKvpO14LyQqqS7aD-lq8wrRao3aJfVVUWYUHtonN6uuhCdX-LhB-BziG2IvfEW8KxfxXANPfgBh_axPb9dL8Hj6XXoxsEFjy_A2EfhPDb4cjBNB_iz62Ew3f3vu3lc5gUtPommh5sQf-LLdRqgf4tet6ZL8O6pHqDvJ9Nvx6fF2fzL7PjorLBCVrKwnJtSEGKtNZJA2Vha00UjDSiQHIiQSsiFasvcb-uFskqwMsvGQA1gBT9Ah9u5-ZJfI6RB9y5Z6DrjIYxJM8IqQWpKZUY_vkCvwhh93i5TkteCMMYz9eGJGpseFnoVXW_iWj8_NANiC9gYUorQausGs3nREI3rNCV6k5ve5Kb_5JZtkxe258n_NNRbw43rYP0fWh99nU3_eh8A4Vutdw
CitedBy_id crossref_primary_10_1039_D0MA00348D
crossref_primary_10_1016_j_jcis_2021_11_150
crossref_primary_10_1002_ange_201813634
crossref_primary_10_1016_j_jssc_2020_121751
crossref_primary_10_1016_j_electacta_2024_143884
crossref_primary_10_1039_D0QI00191K
crossref_primary_10_1016_j_jmrt_2023_02_135
crossref_primary_10_1039_C9TC05113A
crossref_primary_10_1016_j_cej_2021_134255
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1002_anie_202214707
crossref_primary_10_1002_ange_202423070
crossref_primary_10_1002_ente_202401578
crossref_primary_10_1039_D1TA10440C
crossref_primary_10_1039_D3SC05891C
crossref_primary_10_1016_j_ijhydene_2023_01_308
crossref_primary_10_1039_C9NR10109H
crossref_primary_10_1039_D0SC04684A
crossref_primary_10_1021_acscatal_1c01447
crossref_primary_10_1039_C9CS00880B
crossref_primary_10_1002_anie_202014362
crossref_primary_10_1039_D1EN00250C
crossref_primary_10_1016_j_flatc_2021_100240
crossref_primary_10_1016_j_jcis_2021_09_115
crossref_primary_10_1016_j_cclet_2024_110049
crossref_primary_10_1016_j_ijhydene_2023_04_181
crossref_primary_10_1039_D2NJ03815C
crossref_primary_10_1021_acsaem_4c02717
crossref_primary_10_1039_C8NR09680E
crossref_primary_10_1002_adfm_202103318
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1016_j_apcatb_2019_03_007
crossref_primary_10_1021_acs_cgd_3c00086
crossref_primary_10_1016_j_jpcs_2021_110311
crossref_primary_10_1002_anie_201913284
crossref_primary_10_1021_acs_cgd_4c00890
crossref_primary_10_1039_C9SC00505F
crossref_primary_10_1039_D0DT00533A
crossref_primary_10_1002_ange_202210753
crossref_primary_10_1016_j_apcatb_2021_120665
crossref_primary_10_1021_acsanm_4c01898
crossref_primary_10_1039_D0NR02697B
crossref_primary_10_1002_asia_202100916
crossref_primary_10_1002_anie_202004420
crossref_primary_10_1021_jacs_2c10823
crossref_primary_10_1021_acs_inorgchem_3c00703
crossref_primary_10_1002_ange_201809144
crossref_primary_10_1016_j_cej_2024_150322
crossref_primary_10_1039_C9TA01603A
crossref_primary_10_1039_D0CY02163F
crossref_primary_10_1016_j_apcatb_2019_117979
crossref_primary_10_1021_acssuschemeng_8b06525
crossref_primary_10_1039_C9SC05669F
crossref_primary_10_1016_j_apcatb_2019_117973
crossref_primary_10_1002_smll_202003824
crossref_primary_10_1021_acs_inorgchem_9b01301
crossref_primary_10_1002_adsu_202200394
crossref_primary_10_1002_ange_201913284
crossref_primary_10_1002_cssc_201902118
crossref_primary_10_1016_j_apmt_2025_102658
crossref_primary_10_1016_j_electacta_2019_134679
crossref_primary_10_1002_smll_202306085
crossref_primary_10_1007_s11426_022_1217_7
crossref_primary_10_1016_j_jcis_2021_08_210
crossref_primary_10_1002_adfm_202101792
crossref_primary_10_1016_j_electacta_2018_12_118
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1002_smll_202202033
crossref_primary_10_1016_j_apsusc_2024_161269
crossref_primary_10_1002_adma_201906015
crossref_primary_10_1039_D3NR06194A
crossref_primary_10_1002_ange_201901343
crossref_primary_10_1039_D4TA07263D
crossref_primary_10_1002_ange_202300532
crossref_primary_10_1021_acs_inorgchem_0c03359
crossref_primary_10_1039_D2QI02436E
crossref_primary_10_1021_acs_inorgchem_9b02762
crossref_primary_10_1016_j_seppur_2022_122526
crossref_primary_10_1021_acsmaterialslett_0c00229
crossref_primary_10_1016_j_cej_2020_127111
crossref_primary_10_1016_j_ijhydene_2024_05_228
crossref_primary_10_1016_j_ccr_2021_214264
crossref_primary_10_1002_ange_202012354
crossref_primary_10_1021_acssuschemeng_0c03376
crossref_primary_10_1039_D2CP05522H
crossref_primary_10_1002_advs_202205077
crossref_primary_10_1002_chem_202001039
crossref_primary_10_1039_C9NR09742B
crossref_primary_10_1021_acscatal_9b03790
crossref_primary_10_1002_anie_201813634
crossref_primary_10_1039_D1CC01492G
crossref_primary_10_20964_2021_09_22
crossref_primary_10_3390_molecules29245845
crossref_primary_10_1016_j_apcatb_2023_123448
crossref_primary_10_1002_adfm_201807418
crossref_primary_10_1002_anie_201809144
crossref_primary_10_1002_ange_202004420
crossref_primary_10_1515_revic_2024_0098
crossref_primary_10_1002_smll_202203148
crossref_primary_10_1016_j_jssc_2020_121694
crossref_primary_10_1002_smll_202206533
crossref_primary_10_1002_smll_202500135
crossref_primary_10_1016_j_xcrp_2020_100077
crossref_primary_10_1016_j_ijhydene_2022_02_043
crossref_primary_10_1016_j_jcis_2022_03_139
crossref_primary_10_20517_cs_2024_15
crossref_primary_10_1016_j_jcat_2022_01_008
crossref_primary_10_3390_molecules27175374
crossref_primary_10_1016_j_ccr_2019_01_016
crossref_primary_10_1016_j_apcatb_2022_122167
crossref_primary_10_1038_s41560_020_00709_1
crossref_primary_10_1002_ange_201900106
crossref_primary_10_1038_s41467_024_49005_6
crossref_primary_10_1002_chem_202403141
crossref_primary_10_1021_acs_inorgchem_2c00082
crossref_primary_10_1016_j_jpowsour_2019_227375
crossref_primary_10_1016_j_apcatb_2019_04_067
crossref_primary_10_1002_cctc_202400622
crossref_primary_10_1016_j_mcat_2023_113537
crossref_primary_10_1021_acscatal_2c02181
crossref_primary_10_1016_j_cej_2025_159864
crossref_primary_10_1016_j_jcis_2021_12_026
crossref_primary_10_1021_acsanm_4c06084
crossref_primary_10_1002_ange_201902884
crossref_primary_10_1016_j_micromeso_2020_110626
crossref_primary_10_1021_acs_inorgchem_9b00495
crossref_primary_10_1002_anie_202423070
crossref_primary_10_1002_cjoc_202100361
crossref_primary_10_1002_ange_202216008
crossref_primary_10_1016_j_jssc_2019_120929
crossref_primary_10_1016_j_ccr_2020_213488
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1039_D0CE01796E
crossref_primary_10_1002_asia_202301039
crossref_primary_10_1016_j_colsurfa_2025_136524
crossref_primary_10_1016_j_electacta_2024_143927
crossref_primary_10_1016_j_enconman_2022_115262
crossref_primary_10_1002_adma_202006042
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_1039_D0CS01191F
crossref_primary_10_1002_advs_202205031
crossref_primary_10_1016_j_jssc_2019_120913
crossref_primary_10_1016_j_jcis_2020_10_119
crossref_primary_10_1002_smll_202007484
crossref_primary_10_1002_smll_202310373
crossref_primary_10_1039_D3NJ00887H
crossref_primary_10_1016_j_inoche_2021_108758
crossref_primary_10_1002_ejic_202200625
crossref_primary_10_1016_j_ijhydene_2025_01_035
crossref_primary_10_1021_acsomega_9b03295
crossref_primary_10_3389_fmats_2020_00194
crossref_primary_10_1002_cctc_201801966
crossref_primary_10_1016_j_carbon_2019_04_021
crossref_primary_10_1016_j_electacta_2019_06_103
crossref_primary_10_1002_anie_202300532
crossref_primary_10_1021_jacs_8b07627
crossref_primary_10_1016_j_cej_2020_125799
crossref_primary_10_1002_tcr_202200149
crossref_primary_10_1039_D0CY00567C
crossref_primary_10_1039_D0TA05866A
crossref_primary_10_1039_D0TA00205D
crossref_primary_10_1016_j_mattod_2023_12_006
crossref_primary_10_1016_j_electacta_2020_137211
crossref_primary_10_1016_j_electacta_2020_137692
crossref_primary_10_3389_fmats_2019_00154
crossref_primary_10_1016_j_nanoen_2024_109333
crossref_primary_10_1021_acsami_8b17583
crossref_primary_10_1002_ange_202214707
crossref_primary_10_1039_D3DT01892J
crossref_primary_10_1002_anie_201901343
crossref_primary_10_1039_D4DT01656D
crossref_primary_10_1016_j_seppur_2023_124251
crossref_primary_10_1016_j_apmt_2020_100692
crossref_primary_10_1002_adma_202007344
crossref_primary_10_1039_C9NR10781A
crossref_primary_10_1039_D1NR05982C
crossref_primary_10_3390_molecules28083622
crossref_primary_10_1016_j_jallcom_2022_164004
crossref_primary_10_1039_D4DT01459F
crossref_primary_10_1039_C9DT04295D
crossref_primary_10_1021_acs_inorgchem_3c04271
crossref_primary_10_1016_j_foodchem_2025_144021
crossref_primary_10_1016_j_jpowsour_2021_230532
crossref_primary_10_1039_D2NJ01994A
crossref_primary_10_1002_anie_202005577
crossref_primary_10_1039_D2DT02908A
crossref_primary_10_1002_cnma_202200115
crossref_primary_10_1002_aenm_201902625
crossref_primary_10_1039_D1DT04231A
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1039_C9CC05708K
crossref_primary_10_1002_adma_202207747
crossref_primary_10_1002_aenm_202301391
crossref_primary_10_1002_adma_202006351
crossref_primary_10_1039_D1TA01970H
crossref_primary_10_1016_j_jechem_2021_05_024
crossref_primary_10_1016_j_nanoen_2024_110497
crossref_primary_10_1039_D1NR03006J
crossref_primary_10_1002_aenm_202400871
crossref_primary_10_1021_acscatal_0c00989
crossref_primary_10_1016_j_ccr_2025_216577
crossref_primary_10_14233_ajchem_2023_26907
crossref_primary_10_1002_cnma_202000056
crossref_primary_10_1016_j_fuel_2022_125746
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1039_D1DT03048E
crossref_primary_10_1021_jacs_0c11450
crossref_primary_10_1016_j_ijhydene_2023_05_247
crossref_primary_10_1016_j_jechem_2021_04_015
crossref_primary_10_1039_D3RA07925B
crossref_primary_10_1002_ange_201907136
crossref_primary_10_1039_C9DT03619A
crossref_primary_10_1002_cssc_202301607
crossref_primary_10_1021_acsami_9b17492
crossref_primary_10_1039_D0SC01432J
crossref_primary_10_1016_j_diamond_2024_111275
crossref_primary_10_1016_j_electacta_2019_03_196
crossref_primary_10_1002_adma_202408094
crossref_primary_10_1021_acs_inorgchem_3c02332
crossref_primary_10_1002_anie_202100371
crossref_primary_10_1021_acs_inorgchem_9b03011
crossref_primary_10_1039_C9QM00052F
crossref_primary_10_1007_s40242_020_0190_3
crossref_primary_10_1016_j_jelechem_2021_115516
crossref_primary_10_1021_acs_inorgchem_0c02504
crossref_primary_10_1021_acsnano_9b08458
crossref_primary_10_1016_j_electacta_2024_144046
crossref_primary_10_3390_molecules28114366
crossref_primary_10_1016_j_gee_2020_10_003
crossref_primary_10_1016_j_apcatb_2019_118151
crossref_primary_10_1016_j_jhazmat_2022_129875
crossref_primary_10_1002_eem2_12290
crossref_primary_10_1016_j_jcis_2022_08_141
crossref_primary_10_1002_advs_201801920
crossref_primary_10_1021_acsami_4c03262
crossref_primary_10_1002_aenm_202204177
crossref_primary_10_1021_acsenergylett_9b00874
crossref_primary_10_1002_ange_202418272
crossref_primary_10_1016_j_ccr_2024_215926
crossref_primary_10_1039_C9TA14023A
crossref_primary_10_1021_acscatal_2c02715
crossref_primary_10_1002_smll_201805511
crossref_primary_10_1002_anie_202012615
crossref_primary_10_3389_fchem_2020_00426
crossref_primary_10_1016_j_jechem_2022_02_010
crossref_primary_10_1016_j_cej_2024_156303
crossref_primary_10_1021_acs_inorgchem_0c00100
crossref_primary_10_1002_ange_202305246
crossref_primary_10_1007_s12598_022_02239_z
crossref_primary_10_1016_j_jcis_2023_03_120
crossref_primary_10_1021_acsami_9b15311
crossref_primary_10_1016_j_jcis_2019_08_005
crossref_primary_10_1039_D4TA06346E
crossref_primary_10_1002_anie_202207845
crossref_primary_10_1007_s40820_021_00768_3
crossref_primary_10_1039_C9DT03679B
crossref_primary_10_1021_acs_inorgchem_4c03077
crossref_primary_10_1002_chem_202002702
crossref_primary_10_1016_j_jelechem_2023_117144
crossref_primary_10_2139_ssrn_4104264
crossref_primary_10_1002_ange_202012615
crossref_primary_10_1007_s12274_023_6003_5
crossref_primary_10_1002_anie_202305246
crossref_primary_10_1016_j_nanoen_2019_104371
crossref_primary_10_1039_D2SC04898A
crossref_primary_10_1002_adfm_202107651
crossref_primary_10_1002_anie_201902884
crossref_primary_10_1039_D3DT01295F
crossref_primary_10_1039_D1EE03918K
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1021_acssuschemeng_4c04551
crossref_primary_10_1016_j_jcis_2025_01_181
crossref_primary_10_1016_j_jpowsour_2021_230812
crossref_primary_10_1002_anie_202216008
crossref_primary_10_1021_acsami_2c09998
crossref_primary_10_1021_acsami_3c01228
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1021_acsanm_1c03619
crossref_primary_10_1039_C8TA11568K
crossref_primary_10_1021_acsnano_3c10867
crossref_primary_10_1002_anie_201900106
crossref_primary_10_1021_acs_jpcc_9b06838
crossref_primary_10_1039_C8CS00337H
crossref_primary_10_1016_j_jpowsour_2025_236524
crossref_primary_10_1021_acs_inorgchem_1c03216
crossref_primary_10_1016_j_colsurfa_2020_125650
crossref_primary_10_1016_j_ijhydene_2023_08_287
crossref_primary_10_1021_acssuschemeng_0c02993
crossref_primary_10_1016_j_materresbull_2023_112597
crossref_primary_10_1002_cssc_201801805
crossref_primary_10_1016_S1872_2067_20_63686_5
crossref_primary_10_1039_C9TA00708C
crossref_primary_10_1002_anie_202418272
crossref_primary_10_1039_D1DT00302J
crossref_primary_10_1016_j_apsusc_2021_150706
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1002_cey2_459
crossref_primary_10_1016_j_jcis_2023_11_144
crossref_primary_10_1021_acsami_0c06241
crossref_primary_10_1016_j_ccr_2019_05_018
crossref_primary_10_1016_j_cej_2024_153464
crossref_primary_10_1002_ange_202100371
crossref_primary_10_1039_D3TA04970A
crossref_primary_10_1039_C9DT02178G
crossref_primary_10_1016_j_jechem_2020_05_023
crossref_primary_10_1002_cssc_202100179
crossref_primary_10_3390_inorganics11110424
crossref_primary_10_1016_j_jallcom_2023_170483
crossref_primary_10_1021_acsaem_9b01977
crossref_primary_10_1002_anie_202012354
crossref_primary_10_1039_D1CE00350J
crossref_primary_10_1007_s40820_020_00504_3
crossref_primary_10_1016_j_jpowsour_2019_226988
crossref_primary_10_1016_j_aca_2024_343547
crossref_primary_10_1016_j_cej_2024_155184
crossref_primary_10_1039_D1SE01478A
crossref_primary_10_1002_celc_202100492
crossref_primary_10_1002_asia_201900355
crossref_primary_10_1038_s41467_020_19236_4
crossref_primary_10_1039_D2CP04299A
crossref_primary_10_1002_adfm_202308946
crossref_primary_10_1021_acs_chemrev_9b00757
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1039_C9NA00719A
crossref_primary_10_1002_anie_202210753
crossref_primary_10_1021_acsami_1c13757
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1016_j_fuel_2025_134416
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1039_D0CE01702G
crossref_primary_10_1021_acsenergylett_8b02345
crossref_primary_10_1016_j_jpowsour_2019_226887
crossref_primary_10_1021_acs_inorgchem_0c03216
crossref_primary_10_1021_acsmaterialslett_4c00853
crossref_primary_10_1039_D0NR01218A
crossref_primary_10_3390_ma17092142
crossref_primary_10_1002_advs_201901129
crossref_primary_10_1016_j_ijhydene_2022_07_013
crossref_primary_10_1039_D0SE01087A
crossref_primary_10_1016_j_apmt_2019_05_013
crossref_primary_10_1016_S1872_2067_19_63513_8
crossref_primary_10_1016_j_nanoen_2020_105418
crossref_primary_10_1002_adfm_202314247
crossref_primary_10_1016_j_est_2023_108743
crossref_primary_10_1002_aesr_202100055
crossref_primary_10_1016_j_solidstatesciences_2025_107913
crossref_primary_10_1002_cctc_202001876
crossref_primary_10_1002_adma_201903942
crossref_primary_10_1002_ange_202014362
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1007_s12598_020_01440_2
crossref_primary_10_1002_cssc_202000376
crossref_primary_10_1039_C9SC03224J
crossref_primary_10_1002_ange_202207845
crossref_primary_10_1002_anie_201907136
crossref_primary_10_1021_acsenergylett_9b02625
crossref_primary_10_1002_smtd_201800438
crossref_primary_10_1002_aesr_202100100
crossref_primary_10_1016_j_jssc_2019_02_006
crossref_primary_10_1039_C8QI00811F
crossref_primary_10_1007_s11705_022_2247_y
crossref_primary_10_1021_acsami_0c05094
crossref_primary_10_1002_chem_201903482
crossref_primary_10_1039_D2TA04951A
crossref_primary_10_1021_acsanm_0c03310
crossref_primary_10_1021_acs_inorgchem_9b02497
crossref_primary_10_1021_acsami_9b14995
crossref_primary_10_1039_D1DT03437E
crossref_primary_10_1002_smll_202100629
crossref_primary_10_1016_j_fuel_2022_123915
crossref_primary_10_1039_C9TA01948K
crossref_primary_10_1016_j_surfin_2022_102294
crossref_primary_10_1039_D3CS00822C
crossref_primary_10_1016_j_checat_2024_101154
crossref_primary_10_1039_D1QI00112D
crossref_primary_10_1016_j_ccr_2020_213619
crossref_primary_10_1021_acs_inorgchem_0c00024
crossref_primary_10_1016_j_jcis_2025_01_123
crossref_primary_10_1016_j_jcis_2022_11_014
crossref_primary_10_1021_acs_inorgchem_1c03982
crossref_primary_10_1016_j_jelechem_2022_116904
crossref_primary_10_1039_D0TA04016A
crossref_primary_10_1007_s11426_023_1725_8
crossref_primary_10_1016_j_apsusc_2021_152065
crossref_primary_10_1039_D2QI01885C
crossref_primary_10_1002_ange_202005577
crossref_primary_10_1039_C9CE00944B
crossref_primary_10_1039_D0NR00138D
Cites_doi 10.1126/science.1212858
10.1002/adma.201602270
10.1021/jacs.6b12353
10.1039/C7CC02113E
10.1038/s41467-017-01949-8
10.1021/jacs.6b12529
10.1002/adma.201700404
10.1002/ange.201505691
10.1002/anie.201608601
10.1021/ja9061344
10.1039/C3CS60404G
10.1021/acsami.6b05375
10.1016/j.electacta.2017.07.178
10.1039/C4CS00103F
10.1039/C5CC02550H
10.1021/cr200139g
10.1021/acsami.6b12189
10.1002/anie.201612635
10.1021/jacs.6b03125
10.1039/C2CS35360A
10.1107/S090744490804362X
10.1021/jacs.5b08212
10.1038/ncomms15341
10.1039/C2CS35272A
10.1002/ange.201608601
10.1002/ange.201612635
10.1039/c0ce00636j
10.1021/acsenergylett.6b00408
10.1039/C4CS00081A
10.1038/ncomms3390
10.1038/ncomms10942
10.1021/acsami.7b06231
10.1002/smll.201701931
10.1038/s41467-017-00778-z
10.1021/acscatal.7b01070
10.1002/adma.201606570
10.1002/anie.201711376
10.1021/jacs.5b02688
10.1021/acs.chemmater.5b03148
10.1002/adma.201604437
10.1021/am507033x
10.1002/anie.201505691
10.1039/C7TA03629A
10.1016/j.nanoen.2017.11.071
10.1038/nenergy.2015.6
10.1002/ange.201711376
10.1039/C4CS00470A
10.1021/jacs.5b08186
10.1038/ncomms6723
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201803587
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 9664
ExternalDocumentID 29660248
10_1002_anie_201803587
ANIE201803587
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: the Natural Science Foundation of Jiangsu Province of China
  funderid: BK20171032
– fundername: the Natural Science Foundation of China
  funderid: 21622104,21471080,21701085
– fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China
  funderid: 17KJB150025
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-c33a5400ccca70e5bc191db7ae8e73e047847d8f5ccaf9d8c8425cafbae9eec43
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:45:28 EDT 2025
Fri Jul 25 10:36:23 EDT 2025
Wed Feb 19 02:34:50 EST 2025
Tue Jul 01 02:26:23 EDT 2025
Thu Apr 24 22:54:09 EDT 2025
Wed Jan 22 16:28:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords bimetallic electrocatalysts
oxygen evolution reaction
iron
clusters
metal-organic frameworks
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-c33a5400ccca70e5bc191db7ae8e73e047847d8f5ccaf9d8c8425cafbae9eec43
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
PMID 29660248
PQID 2073940223
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2026409117
proquest_journals_2073940223
pubmed_primary_29660248
crossref_citationtrail_10_1002_anie_201803587
crossref_primary_10_1002_anie_201803587
wiley_primary_10_1002_anie_201803587_ANIE201803587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 26, 2018
PublicationDateYYYYMMDD 2018-07-26
PublicationDate_xml – month: 07
  year: 2018
  text: July 26, 2018
  day: 26
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2011; 334
2017; 7
2017; 8
2013; 4
2009; 65
2015; 51
2013; 42
2011; 13
2017; 29
2017 2017; 56 129
2009; 131
2018; 44
2015; 7
2017; 9
2014; 43
2017; 139
2017; 53
2016; 7
2014; 5
2016; 1
2015; 27
2012; 112
2015; 137
2018 2018; 57 130
2015; 44
2017; 13
2015 2015; 54 127
2016; 138
2014
2016; 28
2016; 8
2017; 249
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_28_3
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_59_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_1
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_34_1
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_57_2
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_5_3
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
Bosch M. (e_1_2_2_35_2) 2014
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_58_2
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_33_1
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_56_3
e_1_2_2_58_1
e_1_2_2_14_2
e_1_2_2_56_2
e_1_2_2_50_1
References_xml – volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 8336
  year: 2016
  end-page: 8339
  publication-title: J. Am. Chem. Soc.
– volume: 249
  start-page: 253
  year: 2017
  end-page: 262
  publication-title: Electrochim. Acta
– volume: 57 130
  start-page: 1888 1906
  year: 2018 2018
  end-page: 1892 1910
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 5723
  year: 2014
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1606570
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 10942
  year: 2016
  publication-title: Nat. Commun.
– volume: 112
  start-page: 1001
  year: 2012
  end-page: 1033
  publication-title: Chem. Rev.
– volume: 42
  start-page: 2388
  year: 2013
  end-page: 2400
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 5994 6088
  year: 2017 2017
  end-page: 6021 6117
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 15901
  year: 2017
  end-page: 15912
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1700404
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 16736
  year: 2016
  end-page: 16743
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 5399
  year: 2017
  end-page: 5409
  publication-title: ACS Catal.
– volume: 8
  start-page: 2022
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2390
  year: 2013
  publication-title: Nat. Commun.
– volume: 51
  start-page: 10194
  year: 2015
  end-page: 10197
  publication-title: Chem. Commun.
– volume: 65
  start-page: 148
  year: 2009
  end-page: 155
  publication-title: Acta Crystallogr. Sect. D
– volume: 27
  start-page: 7549
  year: 2015
  end-page: 7558
  publication-title: Chem. Mater.
– volume: 28
  start-page: 9266
  year: 2016
  end-page: 9291
  publication-title: Adv. Mater.
– volume: 44
  start-page: 345
  year: 2018
  end-page: 352
  publication-title: Nano Energy
– volume: 42
  start-page: 2423
  year: 2013
  end-page: 2436
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 5982
  year: 2014
  end-page: 5993
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1604437
  year: 2017
  publication-title: Adv. Mater.
– volume: 137
  start-page: 7169
  year: 2015
  end-page: 7177
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1701931
  year: 2017
  publication-title: Small
– volume: 13
  start-page: 3947
  year: 2011
  end-page: 3958
  publication-title: CrystEngComm
– volume: 1
  start-page: 15006
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 1207
  year: 2015
  end-page: 1218
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 15341
  year: 2017
  publication-title: Nat. Commun.
– volume: 139
  start-page: 1077
  year: 2017
  end-page: 1080
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 24600
  year: 2017
  end-page: 24607
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 362
  year: 2017
  end-page: 370
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 14129
  year: 2015
  end-page: 14135
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 3897 3955
  year: 2017 2017
  end-page: 3900 3958
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 792
  year: 2016
  end-page: 796
  publication-title: ACS Energy Lett.
– start-page: 182327
  year: 2014
  end-page: 182335
  publication-title: Adv. Chem.
– volume: 43
  start-page: 4615
  year: 2014
  end-page: 4632
  publication-title: Chem. Soc. Rev.
– volume: 54 127
  start-page: 12928 13120
  year: 2015 2015
  end-page: 12932 13124
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 6097
  year: 2014
  end-page: 6115
  publication-title: Chem. Soc. Rev.
– volume: 131
  start-page: 15834
  year: 2009
  end-page: 15842
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 137
  start-page: 14023
  year: 2015
  end-page: 14026
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 645
  year: 2017
  publication-title: Nat. Commun.
– volume: 53
  start-page: 6496
  year: 2017
  end-page: 6499
  publication-title: Chem. Commun.
– volume: 139
  start-page: 1778
  year: 2017
  end-page: 1781
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_8_2
  doi: 10.1126/science.1212858
– ident: e_1_2_2_42_2
  doi: 10.1002/adma.201602270
– ident: e_1_2_2_45_2
  doi: 10.1021/jacs.6b12353
– ident: e_1_2_2_31_2
  doi: 10.1039/C7CC02113E
– ident: e_1_2_2_40_1
– ident: e_1_2_2_21_1
  doi: 10.1038/s41467-017-01949-8
– ident: e_1_2_2_54_2
  doi: 10.1021/jacs.6b12529
– ident: e_1_2_2_15_2
  doi: 10.1002/adma.201700404
– ident: e_1_2_2_58_2
  doi: 10.1002/ange.201505691
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.201608601
– ident: e_1_2_2_37_1
– ident: e_1_2_2_36_2
  doi: 10.1021/ja9061344
– ident: e_1_2_2_33_1
  doi: 10.1039/C3CS60404G
– ident: e_1_2_2_47_2
  doi: 10.1021/acsami.6b05375
– ident: e_1_2_2_11_2
  doi: 10.1016/j.electacta.2017.07.178
– ident: e_1_2_2_24_2
  doi: 10.1039/C4CS00103F
– ident: e_1_2_2_48_1
  doi: 10.1039/C5CC02550H
– ident: e_1_2_2_32_1
  doi: 10.1021/cr200139g
– ident: e_1_2_2_17_2
  doi: 10.1021/acsami.6b12189
– ident: e_1_2_2_56_2
  doi: 10.1002/anie.201612635
– ident: e_1_2_2_27_2
– ident: e_1_2_2_22_1
– ident: e_1_2_2_23_2
  doi: 10.1021/jacs.6b03125
– ident: e_1_2_2_4_2
  doi: 10.1039/C2CS35360A
– ident: e_1_2_2_55_1
– ident: e_1_2_2_44_1
– ident: e_1_2_2_52_1
– ident: e_1_2_2_6_1
– ident: e_1_2_2_50_1
  doi: 10.1107/S090744490804362X
– ident: e_1_2_2_26_2
  doi: 10.1021/jacs.5b08212
– ident: e_1_2_2_29_2
  doi: 10.1038/ncomms15341
– ident: e_1_2_2_43_2
  doi: 10.1039/C2CS35272A
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.201608601
– start-page: 182327
  year: 2014
  ident: e_1_2_2_35_2
  publication-title: Adv. Chem.
– ident: e_1_2_2_1_1
– ident: e_1_2_2_56_3
  doi: 10.1002/ange.201612635
– ident: e_1_2_2_49_1
  doi: 10.1039/c0ce00636j
– ident: e_1_2_2_18_2
  doi: 10.1021/acsenergylett.6b00408
– ident: e_1_2_2_39_2
  doi: 10.1039/C4CS00081A
– ident: e_1_2_2_7_2
  doi: 10.1038/ncomms3390
– ident: e_1_2_2_30_2
  doi: 10.1038/ncomms10942
– ident: e_1_2_2_20_1
  doi: 10.1021/acsami.7b06231
– ident: e_1_2_2_41_2
  doi: 10.1002/smll.201701931
– ident: e_1_2_2_9_2
  doi: 10.1038/s41467-017-00778-z
– ident: e_1_2_2_51_1
  doi: 10.1021/acscatal.7b01070
– ident: e_1_2_2_57_2
  doi: 10.1002/adma.201606570
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.201711376
– ident: e_1_2_2_34_1
– ident: e_1_2_2_25_2
  doi: 10.1021/jacs.5b02688
– ident: e_1_2_2_14_2
  doi: 10.1021/acs.chemmater.5b03148
– ident: e_1_2_2_59_1
  doi: 10.1002/adma.201604437
– ident: e_1_2_2_19_1
  doi: 10.1021/am507033x
– ident: e_1_2_2_58_1
  doi: 10.1002/anie.201505691
– ident: e_1_2_2_12_2
  doi: 10.1039/C7TA03629A
– ident: e_1_2_2_13_1
– ident: e_1_2_2_46_2
  doi: 10.1016/j.nanoen.2017.11.071
– ident: e_1_2_2_16_1
– ident: e_1_2_2_3_2
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_2_10_1
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.201711376
– ident: e_1_2_2_2_2
  doi: 10.1039/C4CS00470A
– ident: e_1_2_2_53_2
  doi: 10.1021/jacs.5b08186
– ident: e_1_2_2_38_2
  doi: 10.1038/ncomms6723
SSID ssj0028806
Score 2.6717198
Snippet Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9660
SubjectTerms bimetallic electrocatalysts
Bimetals
Catalysts
Catalytic converters
clusters
Electrocatalysts
Energy storage
iron
Metal-organic frameworks
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Title Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803587
https://www.ncbi.nlm.nih.gov/pubmed/29660248
https://www.proquest.com/docview/2073940223
https://www.proquest.com/docview/2026409117
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xfpk3Igg-1a1NsraPc2yo4JSh4FtJ0hSGsxPdRH3yP_gP_SWe07SdU0TQt5QkbZqcJF9OzvkOIfuCx1rFLndC6YYOb2jXUUL6DlLHaObizRAq9M-6jeMrfnotrj958Vt-iFLhhjMjW69xgkv1UJuQhqIHNppmBXUmAnQnR4MtREW9kj_KA-G07kWMORiFvmBtrHu16erTu9I3qDmNXLOtp7NAZNFoa3FyczgeqUP98oXP8T9_tUjmc1xKm1aQlsiMSZfJbKsIB7dCxqW1HgXMSC8mDgfUKiYyPSMdJln2-dMzSCZtP-aSTXvGelDQfkolBYirBoYe9W8NgP_31zfrEqppp7AVo5ZKfZVcddqXrWMnj9ngaO7DmqsZkwAC6xokw68boTQcCGPlSxMYnxnkAuJ-HCQC8pMwDjReA0JSSRMaozlbI5V0mJoNQqFmnHAvlkYAzGF-mMSKudyVAo45DSWqxCnGLNI5oTnG1RhElorZi7Azo7Izq-SgLH9nqTx-LLldiECUT-kHyPUxijzAqSrZK7NhEPCGRaZmOMYygC8BgbnwinUrOuWnPORB9XhQJV4mAL-0IWp2T9rl0-ZfKm2ROUyjJtprbJPK6H5sdgBCjdRuNk0-AOVQFIo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiXUn67UMBIIE5pN_5ZJ4ceSrurXdouqGql3oLtOFJFySK6C5QT78CT8Co8Ak_CTJykWhBCQuqBWxI7iRPP2J_HM98APFEydzaPZZSaOI1kz8WRVUZHRB3jREw7Q2TQ3x_3hkfyxbE6XoBvTSxM4IdoDW6kGdV4TQpOBumNC9ZQCsEm36ykK1Sia7_KXX_-EVdtZ5ujHezip5wP-ofbw6hOLBA5qXFgcEIYRCpdh83XXa-sw1VLbrXxidfCE2GN1HlSKCwv0jxxtFeFh9b41HsnBT73ClylNOJE179z0DJWcVSHENAkRER57xueyC7fmG_v_Dz4G7idx8rVZDe4Dt-b3xR8XN6sz6Z23X3-hUHyv_qPK7BcQ2-2FXTlBiz48iYsbTcZ727BrHVIZAiL2auLmAoWbC-VKZVNiqr45adzVD7W_1ArLzvwIUiEnZTMMETx9tSz5ydvPa5vfnz5GqJeHRs07nAssMXfhqNL-eo7sFhOSr8KDO_MC8lz4xUiOaHTIrcilrFRuJLrWdWBqBGSzNWc7ZQ65DQLbNM8o87L2s7rwLO2_rvAVvLHmmuNzGX1qHWGpVqkElGd6MDjthg7gTaRTOknM6qDEBpBZoyPuBtktX0VJ6pXLpMO8Eri_tKGbGs86rdn9_7lpkewNDzc38v2RuPd-3CNrpPhnffWYHH6fuYfIGKc2oeVjjJ4fdnC_BMZzHZi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgGX8g9LCxgJxClt4p84OXAo3V11KSxVRaXeUv9FqijZqt0F2hPvwIvwKrwCT8I4TlItCCEh9cAtiZ3EiWfsz-OZbwCeCm6NtgmPcpXkEU9NEmmhZOSpYwxL_M6QN-i_Gaebu_zVnthbgG9tLEzgh-gMbl4z6vHaK_iRLdfOSUN9BLZ3zcpiJjLZuFVuudNPuGg7eTHqYw8_o3Q4eLexGTV5BSLDJY4LhjGFQCU22HoZO6ENLlqslsplTjLn-Wq4tFkpsLzMbWb8VhUeauVy5wxn-NxLcJmnce6TRfR3OsIqitoQ4pkYi3za-5YmMqZr8-2dnwZ_w7bzULme64bX4Xv7l4KLy_vV2VSvmrNfCCT_p994A5Ya4E3Wg6bchAVX3YKrG22-u9sw69wRCYJisn0eUUGC5aU2pJJJWRe__XyKqkcGHxvVJTsuhIiQg4ooghheHzry8uCDw9XNjy9fQ8yrIcPWGY4Ervg7sHshX30XFqtJ5e4DwTttyalVTiCOYzIvrWYJT5TAdVyqRQ-iVkYK0zC2-8Qhh0XgmqaF77yi67wePO_qHwWukj_WXGlFrmjGrBMslSzniOlYD550xdgJfgtJVW4y83UQQCPETPAR94Kodq-inuiV8qwHtBa4v7ShWB-PBt3Zg3-56TFc2e4Pi9ej8dYyXPOXvdWdpiuwOD2euYcIF6f6Ua2hBPYvWpZ_AjRhdRE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Performance+Improvement+of+the+Oxygen+Evolution+Reaction+in+a+Stable+Bimetal%E2%80%93Organic+Framework+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Xiao%E2%80%90Li&rft.au=Dong%2C+Long%E2%80%90Zhang&rft.au=Qiao%2C+Man&rft.au=Tang%2C+Yu%E2%80%90Jia&rft.date=2018-07-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=31&rft.spage=9660&rft.epage=9664&rft_id=info:doi/10.1002%2Fanie.201803587&rft.externalDBID=10.1002%252Fanie.201803587&rft.externalDocID=ANIE201803587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon