Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System
Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MO...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 31; pp. 9660 - 9664 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.07.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.
An iron atom in an Fe3 cluster is replaced by a second metal to form Fe2M clusters, which can serve as nodes to bridge with organic ligands and construct stable bimetallic MOFs. The introduction of the second metal atom can improve the activity of the original atom and thus improve the oxygen evolution reaction performance of electrocatalysts. |
---|---|
AbstractList | Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.
An iron atom in an Fe3 cluster is replaced by a second metal to form Fe2M clusters, which can serve as nodes to bridge with organic ligands and construct stable bimetallic MOFs. The introduction of the second metal atom can improve the activity of the original atom and thus improve the oxygen evolution reaction performance of electrocatalysts. Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24 ) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms. Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal-organic frameworks (MOFs: NNU-21-24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU-23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms. Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal-organic frameworks (MOFs: NNU-21-24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU-23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal-organic frameworks (MOFs: NNU-21-24) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU-23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms. |
Author | Tang, Yu‐Jia Wang, Xiao‐Li Qiao, Man Lan, Ya‐Qian Liu, Jiang Dong, Long‐Zhang Li, Shun‐Li Li, Yafei Su, Jia‐Xin |
Author_xml | – sequence: 1 givenname: Xiao‐Li surname: Wang fullname: Wang, Xiao‐Li organization: Nanjing Normal University – sequence: 2 givenname: Long‐Zhang surname: Dong fullname: Dong, Long‐Zhang organization: Nanjing Normal University – sequence: 3 givenname: Man surname: Qiao fullname: Qiao, Man organization: Nanjing Normal University – sequence: 4 givenname: Yu‐Jia surname: Tang fullname: Tang, Yu‐Jia organization: Nanjing Normal University – sequence: 5 givenname: Jiang surname: Liu fullname: Liu, Jiang organization: Nanjing Normal University – sequence: 6 givenname: Yafei surname: Li fullname: Li, Yafei email: liyafei.abc@gmail.com organization: Nanjing Normal University – sequence: 7 givenname: Shun‐Li surname: Li fullname: Li, Shun‐Li organization: Nanjing Normal University – sequence: 8 givenname: Jia‐Xin surname: Su fullname: Su, Jia‐Xin organization: Nanjing Normal University – sequence: 9 givenname: Ya‐Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya‐Qian email: yqlan@njnu.edu.cn organization: Nanjing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29660248$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhq2Kqny01x4rS71wydZfiZ0jRUtZCXURtGfL8U62pom9tRNgb_0P_EN-CV4WWgmp6mleaZ53NDPvPtrxwQNC7ymZUELYJ-MdTBihivBSyVdoj5aMFlxKvpO14LyQqqS7aD-lq8wrRao3aJfVVUWYUHtonN6uuhCdX-LhB-BziG2IvfEW8KxfxXANPfgBh_axPb9dL8Hj6XXoxsEFjy_A2EfhPDb4cjBNB_iz62Ew3f3vu3lc5gUtPommh5sQf-LLdRqgf4tet6ZL8O6pHqDvJ9Nvx6fF2fzL7PjorLBCVrKwnJtSEGKtNZJA2Vha00UjDSiQHIiQSsiFasvcb-uFskqwMsvGQA1gBT9Ah9u5-ZJfI6RB9y5Z6DrjIYxJM8IqQWpKZUY_vkCvwhh93i5TkteCMMYz9eGJGpseFnoVXW_iWj8_NANiC9gYUorQausGs3nREI3rNCV6k5ve5Kb_5JZtkxe258n_NNRbw43rYP0fWh99nU3_eh8A4Vutdw |
CitedBy_id | crossref_primary_10_1039_D0MA00348D crossref_primary_10_1016_j_jcis_2021_11_150 crossref_primary_10_1002_ange_201813634 crossref_primary_10_1016_j_jssc_2020_121751 crossref_primary_10_1016_j_electacta_2024_143884 crossref_primary_10_1039_D0QI00191K crossref_primary_10_1016_j_jmrt_2023_02_135 crossref_primary_10_1039_C9TC05113A crossref_primary_10_1016_j_cej_2021_134255 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1002_anie_202214707 crossref_primary_10_1002_ange_202423070 crossref_primary_10_1002_ente_202401578 crossref_primary_10_1039_D1TA10440C crossref_primary_10_1039_D3SC05891C crossref_primary_10_1016_j_ijhydene_2023_01_308 crossref_primary_10_1039_C9NR10109H crossref_primary_10_1039_D0SC04684A crossref_primary_10_1021_acscatal_1c01447 crossref_primary_10_1039_C9CS00880B crossref_primary_10_1002_anie_202014362 crossref_primary_10_1039_D1EN00250C crossref_primary_10_1016_j_flatc_2021_100240 crossref_primary_10_1016_j_jcis_2021_09_115 crossref_primary_10_1016_j_cclet_2024_110049 crossref_primary_10_1016_j_ijhydene_2023_04_181 crossref_primary_10_1039_D2NJ03815C crossref_primary_10_1021_acsaem_4c02717 crossref_primary_10_1039_C8NR09680E crossref_primary_10_1002_adfm_202103318 crossref_primary_10_1002_aenm_202406139 crossref_primary_10_1016_j_apcatb_2019_03_007 crossref_primary_10_1021_acs_cgd_3c00086 crossref_primary_10_1016_j_jpcs_2021_110311 crossref_primary_10_1002_anie_201913284 crossref_primary_10_1021_acs_cgd_4c00890 crossref_primary_10_1039_C9SC00505F crossref_primary_10_1039_D0DT00533A crossref_primary_10_1002_ange_202210753 crossref_primary_10_1016_j_apcatb_2021_120665 crossref_primary_10_1021_acsanm_4c01898 crossref_primary_10_1039_D0NR02697B crossref_primary_10_1002_asia_202100916 crossref_primary_10_1002_anie_202004420 crossref_primary_10_1021_jacs_2c10823 crossref_primary_10_1021_acs_inorgchem_3c00703 crossref_primary_10_1002_ange_201809144 crossref_primary_10_1016_j_cej_2024_150322 crossref_primary_10_1039_C9TA01603A crossref_primary_10_1039_D0CY02163F crossref_primary_10_1016_j_apcatb_2019_117979 crossref_primary_10_1021_acssuschemeng_8b06525 crossref_primary_10_1039_C9SC05669F crossref_primary_10_1016_j_apcatb_2019_117973 crossref_primary_10_1002_smll_202003824 crossref_primary_10_1021_acs_inorgchem_9b01301 crossref_primary_10_1002_adsu_202200394 crossref_primary_10_1002_ange_201913284 crossref_primary_10_1002_cssc_201902118 crossref_primary_10_1016_j_apmt_2025_102658 crossref_primary_10_1016_j_electacta_2019_134679 crossref_primary_10_1002_smll_202306085 crossref_primary_10_1007_s11426_022_1217_7 crossref_primary_10_1016_j_jcis_2021_08_210 crossref_primary_10_1002_adfm_202101792 crossref_primary_10_1016_j_electacta_2018_12_118 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1002_smll_202202033 crossref_primary_10_1016_j_apsusc_2024_161269 crossref_primary_10_1002_adma_201906015 crossref_primary_10_1039_D3NR06194A crossref_primary_10_1002_ange_201901343 crossref_primary_10_1039_D4TA07263D crossref_primary_10_1002_ange_202300532 crossref_primary_10_1021_acs_inorgchem_0c03359 crossref_primary_10_1039_D2QI02436E crossref_primary_10_1021_acs_inorgchem_9b02762 crossref_primary_10_1016_j_seppur_2022_122526 crossref_primary_10_1021_acsmaterialslett_0c00229 crossref_primary_10_1016_j_cej_2020_127111 crossref_primary_10_1016_j_ijhydene_2024_05_228 crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_1002_ange_202012354 crossref_primary_10_1021_acssuschemeng_0c03376 crossref_primary_10_1039_D2CP05522H crossref_primary_10_1002_advs_202205077 crossref_primary_10_1002_chem_202001039 crossref_primary_10_1039_C9NR09742B crossref_primary_10_1021_acscatal_9b03790 crossref_primary_10_1002_anie_201813634 crossref_primary_10_1039_D1CC01492G crossref_primary_10_20964_2021_09_22 crossref_primary_10_3390_molecules29245845 crossref_primary_10_1016_j_apcatb_2023_123448 crossref_primary_10_1002_adfm_201807418 crossref_primary_10_1002_anie_201809144 crossref_primary_10_1002_ange_202004420 crossref_primary_10_1515_revic_2024_0098 crossref_primary_10_1002_smll_202203148 crossref_primary_10_1016_j_jssc_2020_121694 crossref_primary_10_1002_smll_202206533 crossref_primary_10_1002_smll_202500135 crossref_primary_10_1016_j_xcrp_2020_100077 crossref_primary_10_1016_j_ijhydene_2022_02_043 crossref_primary_10_1016_j_jcis_2022_03_139 crossref_primary_10_20517_cs_2024_15 crossref_primary_10_1016_j_jcat_2022_01_008 crossref_primary_10_3390_molecules27175374 crossref_primary_10_1016_j_ccr_2019_01_016 crossref_primary_10_1016_j_apcatb_2022_122167 crossref_primary_10_1038_s41560_020_00709_1 crossref_primary_10_1002_ange_201900106 crossref_primary_10_1038_s41467_024_49005_6 crossref_primary_10_1002_chem_202403141 crossref_primary_10_1021_acs_inorgchem_2c00082 crossref_primary_10_1016_j_jpowsour_2019_227375 crossref_primary_10_1016_j_apcatb_2019_04_067 crossref_primary_10_1002_cctc_202400622 crossref_primary_10_1016_j_mcat_2023_113537 crossref_primary_10_1021_acscatal_2c02181 crossref_primary_10_1016_j_cej_2025_159864 crossref_primary_10_1016_j_jcis_2021_12_026 crossref_primary_10_1021_acsanm_4c06084 crossref_primary_10_1002_ange_201902884 crossref_primary_10_1016_j_micromeso_2020_110626 crossref_primary_10_1021_acs_inorgchem_9b00495 crossref_primary_10_1002_anie_202423070 crossref_primary_10_1002_cjoc_202100361 crossref_primary_10_1002_ange_202216008 crossref_primary_10_1016_j_jssc_2019_120929 crossref_primary_10_1016_j_ccr_2020_213488 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1039_D0CE01796E crossref_primary_10_1002_asia_202301039 crossref_primary_10_1016_j_colsurfa_2025_136524 crossref_primary_10_1016_j_electacta_2024_143927 crossref_primary_10_1016_j_enconman_2022_115262 crossref_primary_10_1002_adma_202006042 crossref_primary_10_1002_aenm_202301224 crossref_primary_10_1039_D0CS01191F crossref_primary_10_1002_advs_202205031 crossref_primary_10_1016_j_jssc_2019_120913 crossref_primary_10_1016_j_jcis_2020_10_119 crossref_primary_10_1002_smll_202007484 crossref_primary_10_1002_smll_202310373 crossref_primary_10_1039_D3NJ00887H crossref_primary_10_1016_j_inoche_2021_108758 crossref_primary_10_1002_ejic_202200625 crossref_primary_10_1016_j_ijhydene_2025_01_035 crossref_primary_10_1021_acsomega_9b03295 crossref_primary_10_3389_fmats_2020_00194 crossref_primary_10_1002_cctc_201801966 crossref_primary_10_1016_j_carbon_2019_04_021 crossref_primary_10_1016_j_electacta_2019_06_103 crossref_primary_10_1002_anie_202300532 crossref_primary_10_1021_jacs_8b07627 crossref_primary_10_1016_j_cej_2020_125799 crossref_primary_10_1002_tcr_202200149 crossref_primary_10_1039_D0CY00567C crossref_primary_10_1039_D0TA05866A crossref_primary_10_1039_D0TA00205D crossref_primary_10_1016_j_mattod_2023_12_006 crossref_primary_10_1016_j_electacta_2020_137211 crossref_primary_10_1016_j_electacta_2020_137692 crossref_primary_10_3389_fmats_2019_00154 crossref_primary_10_1016_j_nanoen_2024_109333 crossref_primary_10_1021_acsami_8b17583 crossref_primary_10_1002_ange_202214707 crossref_primary_10_1039_D3DT01892J crossref_primary_10_1002_anie_201901343 crossref_primary_10_1039_D4DT01656D crossref_primary_10_1016_j_seppur_2023_124251 crossref_primary_10_1016_j_apmt_2020_100692 crossref_primary_10_1002_adma_202007344 crossref_primary_10_1039_C9NR10781A crossref_primary_10_1039_D1NR05982C crossref_primary_10_3390_molecules28083622 crossref_primary_10_1016_j_jallcom_2022_164004 crossref_primary_10_1039_D4DT01459F crossref_primary_10_1039_C9DT04295D crossref_primary_10_1021_acs_inorgchem_3c04271 crossref_primary_10_1016_j_foodchem_2025_144021 crossref_primary_10_1016_j_jpowsour_2021_230532 crossref_primary_10_1039_D2NJ01994A crossref_primary_10_1002_anie_202005577 crossref_primary_10_1039_D2DT02908A crossref_primary_10_1002_cnma_202200115 crossref_primary_10_1002_aenm_201902625 crossref_primary_10_1039_D1DT04231A crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1039_C9CC05708K crossref_primary_10_1002_adma_202207747 crossref_primary_10_1002_aenm_202301391 crossref_primary_10_1002_adma_202006351 crossref_primary_10_1039_D1TA01970H crossref_primary_10_1016_j_jechem_2021_05_024 crossref_primary_10_1016_j_nanoen_2024_110497 crossref_primary_10_1039_D1NR03006J crossref_primary_10_1002_aenm_202400871 crossref_primary_10_1021_acscatal_0c00989 crossref_primary_10_1016_j_ccr_2025_216577 crossref_primary_10_14233_ajchem_2023_26907 crossref_primary_10_1002_cnma_202000056 crossref_primary_10_1016_j_fuel_2022_125746 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1039_D1DT03048E crossref_primary_10_1021_jacs_0c11450 crossref_primary_10_1016_j_ijhydene_2023_05_247 crossref_primary_10_1016_j_jechem_2021_04_015 crossref_primary_10_1039_D3RA07925B crossref_primary_10_1002_ange_201907136 crossref_primary_10_1039_C9DT03619A crossref_primary_10_1002_cssc_202301607 crossref_primary_10_1021_acsami_9b17492 crossref_primary_10_1039_D0SC01432J crossref_primary_10_1016_j_diamond_2024_111275 crossref_primary_10_1016_j_electacta_2019_03_196 crossref_primary_10_1002_adma_202408094 crossref_primary_10_1021_acs_inorgchem_3c02332 crossref_primary_10_1002_anie_202100371 crossref_primary_10_1021_acs_inorgchem_9b03011 crossref_primary_10_1039_C9QM00052F crossref_primary_10_1007_s40242_020_0190_3 crossref_primary_10_1016_j_jelechem_2021_115516 crossref_primary_10_1021_acs_inorgchem_0c02504 crossref_primary_10_1021_acsnano_9b08458 crossref_primary_10_1016_j_electacta_2024_144046 crossref_primary_10_3390_molecules28114366 crossref_primary_10_1016_j_gee_2020_10_003 crossref_primary_10_1016_j_apcatb_2019_118151 crossref_primary_10_1016_j_jhazmat_2022_129875 crossref_primary_10_1002_eem2_12290 crossref_primary_10_1016_j_jcis_2022_08_141 crossref_primary_10_1002_advs_201801920 crossref_primary_10_1021_acsami_4c03262 crossref_primary_10_1002_aenm_202204177 crossref_primary_10_1021_acsenergylett_9b00874 crossref_primary_10_1002_ange_202418272 crossref_primary_10_1016_j_ccr_2024_215926 crossref_primary_10_1039_C9TA14023A crossref_primary_10_1021_acscatal_2c02715 crossref_primary_10_1002_smll_201805511 crossref_primary_10_1002_anie_202012615 crossref_primary_10_3389_fchem_2020_00426 crossref_primary_10_1016_j_jechem_2022_02_010 crossref_primary_10_1016_j_cej_2024_156303 crossref_primary_10_1021_acs_inorgchem_0c00100 crossref_primary_10_1002_ange_202305246 crossref_primary_10_1007_s12598_022_02239_z crossref_primary_10_1016_j_jcis_2023_03_120 crossref_primary_10_1021_acsami_9b15311 crossref_primary_10_1016_j_jcis_2019_08_005 crossref_primary_10_1039_D4TA06346E crossref_primary_10_1002_anie_202207845 crossref_primary_10_1007_s40820_021_00768_3 crossref_primary_10_1039_C9DT03679B crossref_primary_10_1021_acs_inorgchem_4c03077 crossref_primary_10_1002_chem_202002702 crossref_primary_10_1016_j_jelechem_2023_117144 crossref_primary_10_2139_ssrn_4104264 crossref_primary_10_1002_ange_202012615 crossref_primary_10_1007_s12274_023_6003_5 crossref_primary_10_1002_anie_202305246 crossref_primary_10_1016_j_nanoen_2019_104371 crossref_primary_10_1039_D2SC04898A crossref_primary_10_1002_adfm_202107651 crossref_primary_10_1002_anie_201902884 crossref_primary_10_1039_D3DT01295F crossref_primary_10_1039_D1EE03918K crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1021_acssuschemeng_4c04551 crossref_primary_10_1016_j_jcis_2025_01_181 crossref_primary_10_1016_j_jpowsour_2021_230812 crossref_primary_10_1002_anie_202216008 crossref_primary_10_1021_acsami_2c09998 crossref_primary_10_1021_acsami_3c01228 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1021_acsanm_1c03619 crossref_primary_10_1039_C8TA11568K crossref_primary_10_1021_acsnano_3c10867 crossref_primary_10_1002_anie_201900106 crossref_primary_10_1021_acs_jpcc_9b06838 crossref_primary_10_1039_C8CS00337H crossref_primary_10_1016_j_jpowsour_2025_236524 crossref_primary_10_1021_acs_inorgchem_1c03216 crossref_primary_10_1016_j_colsurfa_2020_125650 crossref_primary_10_1016_j_ijhydene_2023_08_287 crossref_primary_10_1021_acssuschemeng_0c02993 crossref_primary_10_1016_j_materresbull_2023_112597 crossref_primary_10_1002_cssc_201801805 crossref_primary_10_1016_S1872_2067_20_63686_5 crossref_primary_10_1039_C9TA00708C crossref_primary_10_1002_anie_202418272 crossref_primary_10_1039_D1DT00302J crossref_primary_10_1016_j_apsusc_2021_150706 crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1002_cey2_459 crossref_primary_10_1016_j_jcis_2023_11_144 crossref_primary_10_1021_acsami_0c06241 crossref_primary_10_1016_j_ccr_2019_05_018 crossref_primary_10_1016_j_cej_2024_153464 crossref_primary_10_1002_ange_202100371 crossref_primary_10_1039_D3TA04970A crossref_primary_10_1039_C9DT02178G crossref_primary_10_1016_j_jechem_2020_05_023 crossref_primary_10_1002_cssc_202100179 crossref_primary_10_3390_inorganics11110424 crossref_primary_10_1016_j_jallcom_2023_170483 crossref_primary_10_1021_acsaem_9b01977 crossref_primary_10_1002_anie_202012354 crossref_primary_10_1039_D1CE00350J crossref_primary_10_1007_s40820_020_00504_3 crossref_primary_10_1016_j_jpowsour_2019_226988 crossref_primary_10_1016_j_aca_2024_343547 crossref_primary_10_1016_j_cej_2024_155184 crossref_primary_10_1039_D1SE01478A crossref_primary_10_1002_celc_202100492 crossref_primary_10_1002_asia_201900355 crossref_primary_10_1038_s41467_020_19236_4 crossref_primary_10_1039_D2CP04299A crossref_primary_10_1002_adfm_202308946 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1039_C9NA00719A crossref_primary_10_1002_anie_202210753 crossref_primary_10_1021_acsami_1c13757 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1016_j_fuel_2025_134416 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1039_D0CE01702G crossref_primary_10_1021_acsenergylett_8b02345 crossref_primary_10_1016_j_jpowsour_2019_226887 crossref_primary_10_1021_acs_inorgchem_0c03216 crossref_primary_10_1021_acsmaterialslett_4c00853 crossref_primary_10_1039_D0NR01218A crossref_primary_10_3390_ma17092142 crossref_primary_10_1002_advs_201901129 crossref_primary_10_1016_j_ijhydene_2022_07_013 crossref_primary_10_1039_D0SE01087A crossref_primary_10_1016_j_apmt_2019_05_013 crossref_primary_10_1016_S1872_2067_19_63513_8 crossref_primary_10_1016_j_nanoen_2020_105418 crossref_primary_10_1002_adfm_202314247 crossref_primary_10_1016_j_est_2023_108743 crossref_primary_10_1002_aesr_202100055 crossref_primary_10_1016_j_solidstatesciences_2025_107913 crossref_primary_10_1002_cctc_202001876 crossref_primary_10_1002_adma_201903942 crossref_primary_10_1002_ange_202014362 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1007_s12598_020_01440_2 crossref_primary_10_1002_cssc_202000376 crossref_primary_10_1039_C9SC03224J crossref_primary_10_1002_ange_202207845 crossref_primary_10_1002_anie_201907136 crossref_primary_10_1021_acsenergylett_9b02625 crossref_primary_10_1002_smtd_201800438 crossref_primary_10_1002_aesr_202100100 crossref_primary_10_1016_j_jssc_2019_02_006 crossref_primary_10_1039_C8QI00811F crossref_primary_10_1007_s11705_022_2247_y crossref_primary_10_1021_acsami_0c05094 crossref_primary_10_1002_chem_201903482 crossref_primary_10_1039_D2TA04951A crossref_primary_10_1021_acsanm_0c03310 crossref_primary_10_1021_acs_inorgchem_9b02497 crossref_primary_10_1021_acsami_9b14995 crossref_primary_10_1039_D1DT03437E crossref_primary_10_1002_smll_202100629 crossref_primary_10_1016_j_fuel_2022_123915 crossref_primary_10_1039_C9TA01948K crossref_primary_10_1016_j_surfin_2022_102294 crossref_primary_10_1039_D3CS00822C crossref_primary_10_1016_j_checat_2024_101154 crossref_primary_10_1039_D1QI00112D crossref_primary_10_1016_j_ccr_2020_213619 crossref_primary_10_1021_acs_inorgchem_0c00024 crossref_primary_10_1016_j_jcis_2025_01_123 crossref_primary_10_1016_j_jcis_2022_11_014 crossref_primary_10_1021_acs_inorgchem_1c03982 crossref_primary_10_1016_j_jelechem_2022_116904 crossref_primary_10_1039_D0TA04016A crossref_primary_10_1007_s11426_023_1725_8 crossref_primary_10_1016_j_apsusc_2021_152065 crossref_primary_10_1039_D2QI01885C crossref_primary_10_1002_ange_202005577 crossref_primary_10_1039_C9CE00944B crossref_primary_10_1039_D0NR00138D |
Cites_doi | 10.1126/science.1212858 10.1002/adma.201602270 10.1021/jacs.6b12353 10.1039/C7CC02113E 10.1038/s41467-017-01949-8 10.1021/jacs.6b12529 10.1002/adma.201700404 10.1002/ange.201505691 10.1002/anie.201608601 10.1021/ja9061344 10.1039/C3CS60404G 10.1021/acsami.6b05375 10.1016/j.electacta.2017.07.178 10.1039/C4CS00103F 10.1039/C5CC02550H 10.1021/cr200139g 10.1021/acsami.6b12189 10.1002/anie.201612635 10.1021/jacs.6b03125 10.1039/C2CS35360A 10.1107/S090744490804362X 10.1021/jacs.5b08212 10.1038/ncomms15341 10.1039/C2CS35272A 10.1002/ange.201608601 10.1002/ange.201612635 10.1039/c0ce00636j 10.1021/acsenergylett.6b00408 10.1039/C4CS00081A 10.1038/ncomms3390 10.1038/ncomms10942 10.1021/acsami.7b06231 10.1002/smll.201701931 10.1038/s41467-017-00778-z 10.1021/acscatal.7b01070 10.1002/adma.201606570 10.1002/anie.201711376 10.1021/jacs.5b02688 10.1021/acs.chemmater.5b03148 10.1002/adma.201604437 10.1021/am507033x 10.1002/anie.201505691 10.1039/C7TA03629A 10.1016/j.nanoen.2017.11.071 10.1038/nenergy.2015.6 10.1002/ange.201711376 10.1039/C4CS00470A 10.1021/jacs.5b08186 10.1038/ncomms6723 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201803587 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 9664 |
ExternalDocumentID | 29660248 10_1002_anie_201803587 ANIE201803587 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: the Natural Science Foundation of Jiangsu Province of China funderid: BK20171032 – fundername: the Natural Science Foundation of China funderid: 21622104,21471080,21701085 – fundername: the Natural Science Research of Jiangsu Higher Education Institutions of China funderid: 17KJB150025 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-c33a5400ccca70e5bc191db7ae8e73e047847d8f5ccaf9d8c8425cafbae9eec43 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:45:28 EDT 2025 Fri Jul 25 10:36:23 EDT 2025 Wed Feb 19 02:34:50 EST 2025 Tue Jul 01 02:26:23 EDT 2025 Thu Apr 24 22:54:09 EDT 2025 Wed Jan 22 16:28:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | bimetallic electrocatalysts oxygen evolution reaction iron clusters metal-organic frameworks |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-c33a5400ccca70e5bc191db7ae8e73e047847d8f5ccaf9d8c8425cafbae9eec43 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 |
PMID | 29660248 |
PQID | 2073940223 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2026409117 proquest_journals_2073940223 pubmed_primary_29660248 crossref_citationtrail_10_1002_anie_201803587 crossref_primary_10_1002_anie_201803587 wiley_primary_10_1002_anie_201803587_ANIE201803587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 26, 2018 |
PublicationDateYYYYMMDD | 2018-07-26 |
PublicationDate_xml | – month: 07 year: 2018 text: July 26, 2018 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2011; 334 2017; 7 2017; 8 2013; 4 2009; 65 2015; 51 2013; 42 2011; 13 2017; 29 2017 2017; 56 129 2009; 131 2018; 44 2015; 7 2017; 9 2014; 43 2017; 139 2017; 53 2016; 7 2014; 5 2016; 1 2015; 27 2012; 112 2015; 137 2018 2018; 57 130 2015; 44 2017; 13 2015 2015; 54 127 2016; 138 2014 2016; 28 2016; 8 2017; 249 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_28_3 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_59_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_1 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_34_1 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_57_2 e_1_2_2_3_2 e_1_2_2_48_1 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_5_3 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 Bosch M. (e_1_2_2_35_2) 2014 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_58_2 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_52_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_33_1 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_56_3 e_1_2_2_58_1 e_1_2_2_14_2 e_1_2_2_56_2 e_1_2_2_50_1 |
References_xml | – volume: 44 start-page: 2060 year: 2015 end-page: 2086 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 8336 year: 2016 end-page: 8339 publication-title: J. Am. Chem. Soc. – volume: 249 start-page: 253 year: 2017 end-page: 262 publication-title: Electrochim. Acta – volume: 57 130 start-page: 1888 1906 year: 2018 2018 end-page: 1892 1910 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 5723 year: 2014 publication-title: Nat. Commun. – volume: 29 start-page: 1606570 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 10942 year: 2016 publication-title: Nat. Commun. – volume: 112 start-page: 1001 year: 2012 end-page: 1033 publication-title: Chem. Rev. – volume: 42 start-page: 2388 year: 2013 end-page: 2400 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 5994 6088 year: 2017 2017 end-page: 6021 6117 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 15901 year: 2017 end-page: 15912 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1700404 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 16736 year: 2016 end-page: 16743 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 5399 year: 2017 end-page: 5409 publication-title: ACS Catal. – volume: 8 start-page: 2022 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 2390 year: 2013 publication-title: Nat. Commun. – volume: 51 start-page: 10194 year: 2015 end-page: 10197 publication-title: Chem. Commun. – volume: 65 start-page: 148 year: 2009 end-page: 155 publication-title: Acta Crystallogr. Sect. D – volume: 27 start-page: 7549 year: 2015 end-page: 7558 publication-title: Chem. Mater. – volume: 28 start-page: 9266 year: 2016 end-page: 9291 publication-title: Adv. Mater. – volume: 44 start-page: 345 year: 2018 end-page: 352 publication-title: Nano Energy – volume: 42 start-page: 2423 year: 2013 end-page: 2436 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 5982 year: 2014 end-page: 5993 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1604437 year: 2017 publication-title: Adv. Mater. – volume: 137 start-page: 7169 year: 2015 end-page: 7177 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1701931 year: 2017 publication-title: Small – volume: 13 start-page: 3947 year: 2011 end-page: 3958 publication-title: CrystEngComm – volume: 1 start-page: 15006 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 1207 year: 2015 end-page: 1218 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 15341 year: 2017 publication-title: Nat. Commun. – volume: 139 start-page: 1077 year: 2017 end-page: 1080 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 24600 year: 2017 end-page: 24607 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 362 year: 2017 end-page: 370 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 14129 year: 2015 end-page: 14135 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 3897 3955 year: 2017 2017 end-page: 3900 3958 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 792 year: 2016 end-page: 796 publication-title: ACS Energy Lett. – start-page: 182327 year: 2014 end-page: 182335 publication-title: Adv. Chem. – volume: 43 start-page: 4615 year: 2014 end-page: 4632 publication-title: Chem. Soc. Rev. – volume: 54 127 start-page: 12928 13120 year: 2015 2015 end-page: 12932 13124 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 6097 year: 2014 end-page: 6115 publication-title: Chem. Soc. Rev. – volume: 131 start-page: 15834 year: 2009 end-page: 15842 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 137 start-page: 14023 year: 2015 end-page: 14026 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 645 year: 2017 publication-title: Nat. Commun. – volume: 53 start-page: 6496 year: 2017 end-page: 6499 publication-title: Chem. Commun. – volume: 139 start-page: 1778 year: 2017 end-page: 1781 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_8_2 doi: 10.1126/science.1212858 – ident: e_1_2_2_42_2 doi: 10.1002/adma.201602270 – ident: e_1_2_2_45_2 doi: 10.1021/jacs.6b12353 – ident: e_1_2_2_31_2 doi: 10.1039/C7CC02113E – ident: e_1_2_2_40_1 – ident: e_1_2_2_21_1 doi: 10.1038/s41467-017-01949-8 – ident: e_1_2_2_54_2 doi: 10.1021/jacs.6b12529 – ident: e_1_2_2_15_2 doi: 10.1002/adma.201700404 – ident: e_1_2_2_58_2 doi: 10.1002/ange.201505691 – ident: e_1_2_2_5_2 doi: 10.1002/anie.201608601 – ident: e_1_2_2_37_1 – ident: e_1_2_2_36_2 doi: 10.1021/ja9061344 – ident: e_1_2_2_33_1 doi: 10.1039/C3CS60404G – ident: e_1_2_2_47_2 doi: 10.1021/acsami.6b05375 – ident: e_1_2_2_11_2 doi: 10.1016/j.electacta.2017.07.178 – ident: e_1_2_2_24_2 doi: 10.1039/C4CS00103F – ident: e_1_2_2_48_1 doi: 10.1039/C5CC02550H – ident: e_1_2_2_32_1 doi: 10.1021/cr200139g – ident: e_1_2_2_17_2 doi: 10.1021/acsami.6b12189 – ident: e_1_2_2_56_2 doi: 10.1002/anie.201612635 – ident: e_1_2_2_27_2 – ident: e_1_2_2_22_1 – ident: e_1_2_2_23_2 doi: 10.1021/jacs.6b03125 – ident: e_1_2_2_4_2 doi: 10.1039/C2CS35360A – ident: e_1_2_2_55_1 – ident: e_1_2_2_44_1 – ident: e_1_2_2_52_1 – ident: e_1_2_2_6_1 – ident: e_1_2_2_50_1 doi: 10.1107/S090744490804362X – ident: e_1_2_2_26_2 doi: 10.1021/jacs.5b08212 – ident: e_1_2_2_29_2 doi: 10.1038/ncomms15341 – ident: e_1_2_2_43_2 doi: 10.1039/C2CS35272A – ident: e_1_2_2_5_3 doi: 10.1002/ange.201608601 – start-page: 182327 year: 2014 ident: e_1_2_2_35_2 publication-title: Adv. Chem. – ident: e_1_2_2_1_1 – ident: e_1_2_2_56_3 doi: 10.1002/ange.201612635 – ident: e_1_2_2_49_1 doi: 10.1039/c0ce00636j – ident: e_1_2_2_18_2 doi: 10.1021/acsenergylett.6b00408 – ident: e_1_2_2_39_2 doi: 10.1039/C4CS00081A – ident: e_1_2_2_7_2 doi: 10.1038/ncomms3390 – ident: e_1_2_2_30_2 doi: 10.1038/ncomms10942 – ident: e_1_2_2_20_1 doi: 10.1021/acsami.7b06231 – ident: e_1_2_2_41_2 doi: 10.1002/smll.201701931 – ident: e_1_2_2_9_2 doi: 10.1038/s41467-017-00778-z – ident: e_1_2_2_51_1 doi: 10.1021/acscatal.7b01070 – ident: e_1_2_2_57_2 doi: 10.1002/adma.201606570 – ident: e_1_2_2_28_2 doi: 10.1002/anie.201711376 – ident: e_1_2_2_34_1 – ident: e_1_2_2_25_2 doi: 10.1021/jacs.5b02688 – ident: e_1_2_2_14_2 doi: 10.1021/acs.chemmater.5b03148 – ident: e_1_2_2_59_1 doi: 10.1002/adma.201604437 – ident: e_1_2_2_19_1 doi: 10.1021/am507033x – ident: e_1_2_2_58_1 doi: 10.1002/anie.201505691 – ident: e_1_2_2_12_2 doi: 10.1039/C7TA03629A – ident: e_1_2_2_13_1 – ident: e_1_2_2_46_2 doi: 10.1016/j.nanoen.2017.11.071 – ident: e_1_2_2_16_1 – ident: e_1_2_2_3_2 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_2_10_1 – ident: e_1_2_2_28_3 doi: 10.1002/ange.201711376 – ident: e_1_2_2_2_2 doi: 10.1039/C4CS00470A – ident: e_1_2_2_53_2 doi: 10.1021/jacs.5b08186 – ident: e_1_2_2_38_2 doi: 10.1038/ncomms6723 |
SSID | ssj0028806 |
Score | 2.6717198 |
Snippet | Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9660 |
SubjectTerms | bimetallic electrocatalysts Bimetals Catalysts Catalytic converters clusters Electrocatalysts Energy storage iron Metal-organic frameworks Oxygen oxygen evolution reaction Oxygen evolution reactions |
Title | Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803587 https://www.ncbi.nlm.nih.gov/pubmed/29660248 https://www.proquest.com/docview/2073940223 https://www.proquest.com/docview/2026409117 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xfpk3Igg-1a1NsraPc2yo4JSh4FtJ0hSGsxPdRH3yP_gP_SWe07SdU0TQt5QkbZqcJF9OzvkOIfuCx1rFLndC6YYOb2jXUUL6DlLHaObizRAq9M-6jeMrfnotrj958Vt-iFLhhjMjW69xgkv1UJuQhqIHNppmBXUmAnQnR4MtREW9kj_KA-G07kWMORiFvmBtrHu16erTu9I3qDmNXLOtp7NAZNFoa3FyczgeqUP98oXP8T9_tUjmc1xKm1aQlsiMSZfJbKsIB7dCxqW1HgXMSC8mDgfUKiYyPSMdJln2-dMzSCZtP-aSTXvGelDQfkolBYirBoYe9W8NgP_31zfrEqppp7AVo5ZKfZVcddqXrWMnj9ngaO7DmqsZkwAC6xokw68boTQcCGPlSxMYnxnkAuJ-HCQC8pMwDjReA0JSSRMaozlbI5V0mJoNQqFmnHAvlkYAzGF-mMSKudyVAo45DSWqxCnGLNI5oTnG1RhElorZi7Azo7Izq-SgLH9nqTx-LLldiECUT-kHyPUxijzAqSrZK7NhEPCGRaZmOMYygC8BgbnwinUrOuWnPORB9XhQJV4mAL-0IWp2T9rl0-ZfKm2ROUyjJtprbJPK6H5sdgBCjdRuNk0-AOVQFIo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiXUn67UMBIIE5pN_5ZJ4ceSrurXdouqGql3oLtOFJFySK6C5QT78CT8Co8Ak_CTJykWhBCQuqBWxI7iRPP2J_HM98APFEydzaPZZSaOI1kz8WRVUZHRB3jREw7Q2TQ3x_3hkfyxbE6XoBvTSxM4IdoDW6kGdV4TQpOBumNC9ZQCsEm36ykK1Sia7_KXX_-EVdtZ5ujHezip5wP-ofbw6hOLBA5qXFgcEIYRCpdh83XXa-sw1VLbrXxidfCE2GN1HlSKCwv0jxxtFeFh9b41HsnBT73ClylNOJE179z0DJWcVSHENAkRER57xueyC7fmG_v_Dz4G7idx8rVZDe4Dt-b3xR8XN6sz6Z23X3-hUHyv_qPK7BcQ2-2FXTlBiz48iYsbTcZ727BrHVIZAiL2auLmAoWbC-VKZVNiqr45adzVD7W_1ArLzvwIUiEnZTMMETx9tSz5ydvPa5vfnz5GqJeHRs07nAssMXfhqNL-eo7sFhOSr8KDO_MC8lz4xUiOaHTIrcilrFRuJLrWdWBqBGSzNWc7ZQ65DQLbNM8o87L2s7rwLO2_rvAVvLHmmuNzGX1qHWGpVqkElGd6MDjthg7gTaRTOknM6qDEBpBZoyPuBtktX0VJ6pXLpMO8Eri_tKGbGs86rdn9_7lpkewNDzc38v2RuPd-3CNrpPhnffWYHH6fuYfIGKc2oeVjjJ4fdnC_BMZzHZi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgGX8g9LCxgJxClt4p84OXAo3V11KSxVRaXeUv9FqijZqt0F2hPvwIvwKrwCT8I4TlItCCEh9cAtiZ3EiWfsz-OZbwCeCm6NtgmPcpXkEU9NEmmhZOSpYwxL_M6QN-i_Gaebu_zVnthbgG9tLEzgh-gMbl4z6vHaK_iRLdfOSUN9BLZ3zcpiJjLZuFVuudNPuGg7eTHqYw8_o3Q4eLexGTV5BSLDJY4LhjGFQCU22HoZO6ENLlqslsplTjLn-Wq4tFkpsLzMbWb8VhUeauVy5wxn-NxLcJmnce6TRfR3OsIqitoQ4pkYi3za-5YmMqZr8-2dnwZ_w7bzULme64bX4Xv7l4KLy_vV2VSvmrNfCCT_p994A5Ya4E3Wg6bchAVX3YKrG22-u9sw69wRCYJisn0eUUGC5aU2pJJJWRe__XyKqkcGHxvVJTsuhIiQg4ooghheHzry8uCDw9XNjy9fQ8yrIcPWGY4Ervg7sHshX30XFqtJ5e4DwTttyalVTiCOYzIvrWYJT5TAdVyqRQ-iVkYK0zC2-8Qhh0XgmqaF77yi67wePO_qHwWukj_WXGlFrmjGrBMslSzniOlYD550xdgJfgtJVW4y83UQQCPETPAR94Kodq-inuiV8qwHtBa4v7ShWB-PBt3Zg3-56TFc2e4Pi9ej8dYyXPOXvdWdpiuwOD2euYcIF6f6Ua2hBPYvWpZ_AjRhdRE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Performance+Improvement+of+the+Oxygen+Evolution+Reaction+in+a+Stable+Bimetal%E2%80%93Organic+Framework+System&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Xiao%E2%80%90Li&rft.au=Dong%2C+Long%E2%80%90Zhang&rft.au=Qiao%2C+Man&rft.au=Tang%2C+Yu%E2%80%90Jia&rft.date=2018-07-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=31&rft.spage=9660&rft.epage=9664&rft_id=info:doi/10.1002%2Fanie.201803587&rft.externalDBID=10.1002%252Fanie.201803587&rft.externalDocID=ANIE201803587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |