Simple Non‐Fused Electron Acceptors Leading to Efficient Organic Photovoltaics

Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non‐fused electron acceptors, PTB4F and PTB4Cl, are developed via a two‐step synthesis from single aromat...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 23; pp. 12964 - 12970
Main Authors Wen, Tian‐Jiao, Liu, Zhi‐Xi, Chen, Zeng, Zhou, Jiadong, Shen, Ziqiu, Xiao, Yiqun, Lu, Xinhui, Xie, Zengqi, Zhu, Haiming, Li, Chang‐Zhi, Chen, Hongzheng
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 01.06.2021
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non‐fused electron acceptors, PTB4F and PTB4Cl, are developed via a two‐step synthesis from single aromatic units. The introduction of a two‐dimensional chain and halogenated terminals for these non‐fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge‐transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB‐TF polymer, has enabled single‐junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far. Two new non‐fused‐ring acceptors (NFRAs), denoted as PTB4F and PTB4Cl, are developed via a two‐step synthesis from simple phenyl and thiophene units. The corresponding organic photovoltaics based on PTB4Cl:PBDB‐TF have impressively achieved a power conversion efficiency of 12.76 %, representing the highest value among the fully non‐fused NFRAs reported so far.
AbstractList Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.
Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non‐fused electron acceptors, PTB4F and PTB4Cl, are developed via a two‐step synthesis from single aromatic units. The introduction of a two‐dimensional chain and halogenated terminals for these non‐fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge‐transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB‐TF polymer, has enabled single‐junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far. Two new non‐fused‐ring acceptors (NFRAs), denoted as PTB4F and PTB4Cl, are developed via a two‐step synthesis from simple phenyl and thiophene units. The corresponding organic photovoltaics based on PTB4Cl:PBDB‐TF have impressively achieved a power conversion efficiency of 12.76 %, representing the highest value among the fully non‐fused NFRAs reported so far.
Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.
Author Zhou, Jiadong
Shen, Ziqiu
Xiao, Yiqun
Lu, Xinhui
Chen, Zeng
Xie, Zengqi
Chen, Hongzheng
Li, Chang‐Zhi
Zhu, Haiming
Wen, Tian‐Jiao
Liu, Zhi‐Xi
Author_xml – sequence: 1
  givenname: Tian‐Jiao
  orcidid: 0000-0003-1065-1053
  surname: Wen
  fullname: Wen, Tian‐Jiao
  organization: Zhejiang University
– sequence: 2
  givenname: Zhi‐Xi
  surname: Liu
  fullname: Liu, Zhi‐Xi
  organization: Zhejiang University
– sequence: 3
  givenname: Zeng
  surname: Chen
  fullname: Chen, Zeng
  organization: Zhejiang University
– sequence: 4
  givenname: Jiadong
  surname: Zhou
  fullname: Zhou, Jiadong
  organization: South China University of Technology
– sequence: 5
  givenname: Ziqiu
  surname: Shen
  fullname: Shen, Ziqiu
  organization: Zhejiang University
– sequence: 6
  givenname: Yiqun
  surname: Xiao
  fullname: Xiao, Yiqun
  organization: The Chinese University of Hong Kong
– sequence: 7
  givenname: Xinhui
  surname: Lu
  fullname: Lu, Xinhui
  organization: The Chinese University of Hong Kong
– sequence: 8
  givenname: Zengqi
  surname: Xie
  fullname: Xie, Zengqi
  organization: South China University of Technology
– sequence: 9
  givenname: Haiming
  surname: Zhu
  fullname: Zhu, Haiming
  email: hmzhu@zju.edu.cn
  organization: Zhejiang University
– sequence: 10
  givenname: Chang‐Zhi
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
– sequence: 11
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33797187$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7Je3XsqANwWZ9WQymWQul2WrhaUtWK9DJnOmpswma5JRetef4G_0l5hltxUKolcJ5HnyHs57TA6cd0jIGwozClB90M7irIKKApWNeEGOKK9oyYRgB_leM1YKyekhOY7xLvNSQvOKHDImWkGlOCLXn-16M2Jx6d2vh5_nU8S-WI5oUvCumBuDm-RDLFaoe-tui-SL5TBYY9Gl4irc5nhTXH_1yX_3Y9LWxFPyctBjxNf784R8OV_eLD6Vq6uPF4v5qjS1aETZDVhRwyljABKQo2x7WTemQl3VHADBNLyBzsiGi15qY3Tf1QKYbBspasFOyNnu303w3yaMSa1tNDiO2qGfoqo4SC44Zzyj756hd34KLk-XKVZBzm1lpt7uqalbY682wa51uFePu8rA-x3wAzs_xO0ODD5hANDUQoo21wJAMy3_n17YpJP1buEnl7Ja71QTfIwBB2X27yloOyoKatu92navnrrP2uyZ9pj2V6Hdj2hHvP8HreaXF8s_7m8hNb4b
CitedBy_id crossref_primary_10_1016_j_macse_2024_100001
crossref_primary_10_1007_s11426_023_1717_y
crossref_primary_10_1016_j_cej_2024_150579
crossref_primary_10_1016_j_dyepig_2023_111808
crossref_primary_10_1002_ange_202316495
crossref_primary_10_1007_s10118_022_2825_y
crossref_primary_10_1039_D3TC01742G
crossref_primary_10_1002_solr_202300453
crossref_primary_10_1016_j_trechm_2021_09_008
crossref_primary_10_1016_j_dyepig_2022_110680
crossref_primary_10_1021_jacs_4c00090
crossref_primary_10_1002_aenm_202400928
crossref_primary_10_1016_j_cej_2024_149584
crossref_primary_10_1002_smll_202206547
crossref_primary_10_1002_adom_202200371
crossref_primary_10_1002_anie_202216340
crossref_primary_10_1039_D4TC05217J
crossref_primary_10_1002_smll_202405925
crossref_primary_10_1016_j_cej_2022_139312
crossref_primary_10_1021_acs_jpclett_1c01219
crossref_primary_10_1016_j_dyepig_2024_112629
crossref_primary_10_1007_s11426_022_1517_2
crossref_primary_10_1016_j_orgel_2022_106512
crossref_primary_10_1016_j_cej_2023_145131
crossref_primary_10_1039_D4TA00933A
crossref_primary_10_1002_solr_202400153
crossref_primary_10_1021_acsami_3c01194
crossref_primary_10_1021_acsmaterialslett_3c01020
crossref_primary_10_1039_D2EE00977C
crossref_primary_10_1016_j_cej_2025_159658
crossref_primary_10_1002_solr_202300310
crossref_primary_10_1021_acsami_3c01626
crossref_primary_10_1002_anie_202209580
crossref_primary_10_1039_D1TA02075G
crossref_primary_10_1002_agt2_488
crossref_primary_10_1016_j_mtener_2021_100938
crossref_primary_10_1002_pol_20241036
crossref_primary_10_1002_pol_20210947
crossref_primary_10_1039_D2TC01237E
crossref_primary_10_1002_adma_202110569
crossref_primary_10_1039_D3NJ00845B
crossref_primary_10_1039_D3QM00201B
crossref_primary_10_1039_D1TC02860J
crossref_primary_10_1002_anie_202104766
crossref_primary_10_1039_D2EE03902H
crossref_primary_10_1016_j_cej_2022_136509
crossref_primary_10_1016_j_jechem_2022_03_030
crossref_primary_10_1002_chem_202403972
crossref_primary_10_1002_anie_202214931
crossref_primary_10_1016_j_orgel_2022_106562
crossref_primary_10_1002_smtd_202300578
crossref_primary_10_1021_acs_jpclett_1c04247
crossref_primary_10_1002_adfm_202108861
crossref_primary_10_1016_j_cclet_2023_109099
crossref_primary_10_1002_anie_202314362
crossref_primary_10_1002_smll_202104215
crossref_primary_10_1002_marc_202200530
crossref_primary_10_1039_D2TA08367A
crossref_primary_10_1039_D4EE02027H
crossref_primary_10_1002_adma_202107330
crossref_primary_10_1016_j_cej_2023_142743
crossref_primary_10_1039_D2TC01077A
crossref_primary_10_1002_adma_202200044
crossref_primary_10_1016_j_dyepig_2022_110525
crossref_primary_10_1016_j_jechem_2024_04_050
crossref_primary_10_1002_ange_202214088
crossref_primary_10_1021_acsaem_3c03171
crossref_primary_10_1021_acsaem_2c04156
crossref_primary_10_1039_D2PY00139J
crossref_primary_10_1021_acsaem_2c00475
crossref_primary_10_1021_jacs_5c00004
crossref_primary_10_1002_aenm_202203402
crossref_primary_10_1021_acsaem_3c02429
crossref_primary_10_1002_aenm_202102591
crossref_primary_10_1016_j_dyepig_2022_110785
crossref_primary_10_1002_cjoc_202300547
crossref_primary_10_1039_D2NJ04513C
crossref_primary_10_1002_sus2_82
crossref_primary_10_1002_inf2_12276
crossref_primary_10_1002_agt2_281
crossref_primary_10_1007_s10118_022_2888_9
crossref_primary_10_1002_inf2_12271
crossref_primary_10_1039_D1TC04264E
crossref_primary_10_1002_ange_202308832
crossref_primary_10_1016_j_cclet_2022_06_015
crossref_primary_10_1016_j_cej_2023_144472
crossref_primary_10_1002_ange_202311686
crossref_primary_10_1002_aenm_202102000
crossref_primary_10_1016_j_joule_2024_05_011
crossref_primary_10_1039_D3EE00602F
crossref_primary_10_1088_2516_1075_ad1e3a
crossref_primary_10_1039_D2TC02373C
crossref_primary_10_1007_s11426_022_1449_4
crossref_primary_10_1002_anie_202308832
crossref_primary_10_1021_acsami_2c09323
crossref_primary_10_1038_s41467_023_38078_4
crossref_primary_10_1002_anie_202311686
crossref_primary_10_1039_D1EE01832A
crossref_primary_10_1039_D2TA02604J
crossref_primary_10_1002_smll_202407027
crossref_primary_10_1002_smtd_202200007
crossref_primary_10_1002_ange_202104766
crossref_primary_10_1039_D1TA10707K
crossref_primary_10_1021_acsami_1c09597
crossref_primary_10_1039_D4TC05497K
crossref_primary_10_1039_D3TA06601K
crossref_primary_10_1021_acs_jpcc_1c07320
crossref_primary_10_1002_smll_202405525
crossref_primary_10_1021_acsaem_2c01807
crossref_primary_10_1016_j_mtchem_2024_102290
crossref_primary_10_1002_aenm_202304063
crossref_primary_10_1016_j_dyepig_2022_110178
crossref_primary_10_1021_acs_jpcc_3c04584
crossref_primary_10_1016_j_jphotochemrev_2025_100690
crossref_primary_10_1039_D3TC00625E
crossref_primary_10_1038_s41428_022_00706_z
crossref_primary_10_2139_ssrn_4011672
crossref_primary_10_1021_acs_jpcc_1c09734
crossref_primary_10_1021_acsami_2c04530
crossref_primary_10_1039_D1TA09392D
crossref_primary_10_1016_j_nanoen_2024_109583
crossref_primary_10_1002_ange_202314362
crossref_primary_10_1016_j_cclet_2022_107968
crossref_primary_10_1002_ange_202216340
crossref_primary_10_1002_adfm_202211385
crossref_primary_10_1007_s10118_022_2769_2
crossref_primary_10_1039_D2ME00068G
crossref_primary_10_1021_acsami_3c09076
crossref_primary_10_1055_a_2191_6011
crossref_primary_10_1016_j_solener_2021_11_077
crossref_primary_10_1002_adma_202313105
crossref_primary_10_1016_j_dyepig_2022_111033
crossref_primary_10_1002_aenm_202203452
crossref_primary_10_1002_anie_202214088
crossref_primary_10_1039_D2NJ01108E
crossref_primary_10_1360_TB_2024_0449
crossref_primary_10_1021_acsaem_2c01831
crossref_primary_10_1002_smll_202203454
crossref_primary_10_1016_j_cej_2021_131828
crossref_primary_10_1007_s11426_022_1222_y
crossref_primary_10_1021_acsenergylett_2c00476
crossref_primary_10_1002_solr_202100806
crossref_primary_10_1007_s11426_021_1180_6
crossref_primary_10_1016_j_dyepig_2023_111737
crossref_primary_10_1016_j_xcrp_2022_100765
crossref_primary_10_1002_anie_202316495
crossref_primary_10_1021_acs_accounts_4c00592
crossref_primary_10_1021_acsaem_2c01945
crossref_primary_10_1039_D2IM00037G
crossref_primary_10_1016_j_cej_2024_151806
crossref_primary_10_1002_anie_202219245
crossref_primary_10_1007_s11426_024_1948_6
crossref_primary_10_1039_D1EE02977K
crossref_primary_10_1016_j_dyepig_2025_112667
crossref_primary_10_1002_anie_202209316
crossref_primary_10_1016_j_cej_2022_135384
crossref_primary_10_1007_s10118_022_2750_0
crossref_primary_10_1002_chem_202102252
crossref_primary_10_1021_acs_jpcc_2c08546
crossref_primary_10_1002_ange_202214931
crossref_primary_10_1039_D4SC02199A
crossref_primary_10_1016_j_synthmet_2024_117574
crossref_primary_10_1021_acsaem_3c02238
crossref_primary_10_1021_acsapm_4c02826
crossref_primary_10_1002_ange_202209580
crossref_primary_10_1002_anie_202209454
crossref_primary_10_1016_j_mtener_2024_101591
crossref_primary_10_1016_j_cej_2022_134987
crossref_primary_10_1039_D1TC04097A
crossref_primary_10_1039_D3TC03919F
crossref_primary_10_1002_adma_202302005
crossref_primary_10_1039_D1MA00954K
crossref_primary_10_1021_acsaem_3c03231
crossref_primary_10_1039_D3RA01454A
crossref_primary_10_1246_cl_230303
crossref_primary_10_1021_acsaem_4c00735
crossref_primary_10_1002_smtd_202300036
crossref_primary_10_1007_s13391_022_00378_0
crossref_primary_10_1016_j_jmgm_2023_108563
crossref_primary_10_1038_s41467_021_25394_w
crossref_primary_10_1016_j_solener_2022_02_040
crossref_primary_10_1016_j_cej_2021_132298
crossref_primary_10_1002_ange_202403753
crossref_primary_10_1002_ange_202209454
crossref_primary_10_1002_ange_202219245
crossref_primary_10_1021_acs_jpcc_2c05378
crossref_primary_10_1016_j_surfin_2022_102185
crossref_primary_10_1016_j_nanoen_2023_108661
crossref_primary_10_1002_adma_202300631
crossref_primary_10_1002_adma_202302259
crossref_primary_10_1016_j_molliq_2023_122473
crossref_primary_10_1039_D2TA09159C
crossref_primary_10_1002_ange_202209316
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1002_anie_202403753
crossref_primary_10_1021_acs_macromol_1c01301
crossref_primary_10_1021_acsami_4c03446
crossref_primary_10_1039_D1NJ04136C
crossref_primary_10_3389_femat_2022_851294
crossref_primary_10_1021_accountsmr_2c00052
crossref_primary_10_1021_acs_macromol_2c02184
crossref_primary_10_1039_D4EE01943A
Cites_doi 10.1039/D0TA06907H
10.1002/adma.201404317
10.1021/acs.chemrev.7b00535
10.1038/s41560-018-0181-5
10.1002/adma.202001160
10.1039/C9TA11285E
10.1021/acs.chemmater.0c00097
10.1021/ja054661d
10.1021/jacs.8b12982
10.1021/acs.chemmater.8b02276
10.1021/acs.chemrev.7b00084
10.1038/nmat5063
10.1021/acs.accounts.0c00009
10.1039/C8TA09370A
10.1021/acs.jpclett.9b01931
10.1016/j.chempr.2020.08.003
10.1002/ange.202010856
10.1039/C8TA03753A
10.1039/C8EE00151K
10.1002/adma.201707170
10.1021/acsami.9b18076
10.1021/acsami.0c00837
10.1002/aenm.201801352
10.1038/s41467-019-10098-z
10.1002/anie.202007907
10.1021/acsapm.0c00791
10.1021/acsenergylett.0c00537
10.1039/D0TA12288B
10.1021/acs.chemmater.8b04087
10.1016/j.nanoen.2020.105087
10.1021/acsami.0c12100
10.1002/anie.202010856
10.1002/adma.201705208
10.1002/anie.201915030
10.1038/natrevmats.2018.3
10.1038/s41566-018-0104-9
10.1039/D0CS00084A
10.3866/PKU.WHXB201805091
10.1002/ange.202007907
10.1021/jacs.7b00566
10.1016/j.joule.2020.02.004
10.1021/jacs.6b00853
10.1038/s41563-018-0128-z
10.1021/acsami.0c13993
10.1002/aenm.201803677
10.1002/ange.201915030
10.1038/s41467-019-11001-6
10.1021/acs.jpclett.0c00919
10.1016/j.joule.2019.01.004
10.1002/aenm.201700465
10.1002/solr.202000421
10.1021/jacs.0c04084
10.1103/PhysRevApplied.11.024060
10.1038/NMAT5063
10.1002/aenm.201804021
10.1039/d0cs00084a
10.1039/c8ta09370a
10.1039/c9ta11285e
10.1039/d0ta12288b
10.1007/s11426-020-9868-8
10.1039/c8ee00151k
10.1039/d0ta06907h
10.1039/c8ta03753a
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
HGBXW
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202101867
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2021
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList Web of Science
CrossRef
PubMed

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 12970
ExternalDocumentID 33797187
000647879100001
10_1002_anie_202101867
ANIE202101867
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21722404; 21674093; 21733005; 51761135101
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705900; 2017YFA0207700
– fundername: Research Grant Council of Hong Kong (CUHK Direct Grant)
  grantid: 4053304
– fundername: Research Grant Council of Hong Kong; Hong Kong Research Grants Council
  grantid: N_CUHK418/17
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21733005; 51761135101; 21722404; 21674093
– fundername: Research Grant Council of Hong Kong (General Research Fund)
  grantid: 14303519
– fundername: National Key Research and Development Program of China; National Key Research & Development Program of China
  grantid: 2019YFA0705900; 2017YFA0207700
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0705900
– fundername: National Natural Science Foundation of China
  grantid: 51761135101
– fundername: National Natural Science Foundation of China
  grantid: 21674093
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0207700
– fundername: National Natural Science Foundation of China
  grantid: 21733005
– fundername: National Natural Science Foundation of China
  grantid: 21722404
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-bfe21c51330080e5e89d846c2ea24500e0c6560bc8657d8accadb470389687473
IEDL.DBID DR2
ISICitedReferencesCount 206
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000647879100001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 02:46:37 EDT 2025
Fri Jul 25 12:01:40 EDT 2025
Thu Apr 03 06:58:36 EDT 2025
Wed Jul 09 18:27:26 EDT 2025
Fri Aug 29 16:12:51 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Tue Jul 01 01:17:59 EDT 2025
Wed Jan 22 16:30:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords POLYMER SOLAR-CELLS
energy conversion
solar cells
non-fused-ring acceptors
organic photovoltaics
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4767-bfe21c51330080e5e89d846c2ea24500e0c6560bc8657d8accadb470389687473
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1065-1053
0000-0003-0826-840X
0000-0002-5970-5350
0000-0002-1908-3294
0000-0003-1968-2032
PMID 33797187
PQID 2532084698
PQPubID 946352
PageCount 7
ParticipantIDs proquest_journals_2532084698
proquest_miscellaneous_2508575535
crossref_citationtrail_10_1002_anie_202101867
pubmed_primary_33797187
wiley_primary_10_1002_anie_202101867_ANIE202101867
webofscience_primary_000647879100001
webofscience_primary_000647879100001CitationCount
crossref_primary_10_1002_anie_202101867
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2017; 7
2019; 9
2019; 3
2021; 3
2020; 64
2019; 31
2020; 142
2019; 11
2019; 10
2019; 35
2020 2020; 59 132
2020; 12
2020; 11
2020; 32
2020; 76
2019; 141
2017; 139
2017; 117
2020; 8
2018; 6
2020; 6
2018; 17
2020; 5
2018; 8
2018; 3
2020; 4
2015; 27
2020; 53
2018; 118
2005; 127
2020; 49
2018; 30
2016; 138
2018; 12
2018; 11
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_19_2
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_36_2
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_45_2
e_1_2_6_24_3
e_1_2_6_26_1
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_54_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_18_2
Hui H. (e_1_2_6_30_2) 2020; 64
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_58_1
e_1_2_6_42_2
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_25_1
e_1_2_6_46_3
e_1_2_6_48_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_29_1
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_46_2
Lin, YZ (WOS:000350057400002) 2015; 27
Hou, R (WOS:000582345700050) 2020; 12
Xu, Y (WOS:000535062900042) 2020; 59
Huang, H (WOS:000407540500008) 2017; 117
Xie, ZQ (WOS:000232605600016) 2005; 127
Yu, ZP (WOS:000467836900006) 2019; 10
Yuan, J (WOS:000575403300005) 2020; 6
Wen, TJ (WOS:000569268800068) 2020; 12
Chen, YN (WOS:000575557600001) 2020; 59
Ma, YL (WOS:000569154800001) 2020; 59
He, CL (WOS:000569873400023) 2020; 8
Huang, H (WOS:000474732500011) 2019; 10
Yao, HF (WOS:000527732000011) 2020; 53
Wang, YM (WOS:000446421200012) 2018; 8
Liu, YH (WOS:000396185700013) 2017; 139
Chai, GD (WOS:000571080400002) 2020; 76
CHEN (000647879100001.40) 2020; 132
Feng, SY (WOS:000510532000048) 2020; 12
Yue, QH (WOS:000550639000001) 2020; 142
Chen, Z (WOS:000535177500009) 2020; 11
Yan, CQ (WOS:000427559200007) 2018; 3
Li, N (WOS:000435351000001) 2018; 11
Qin, R (WOS:000502302300043) 2019; 7
Qian, DP (WOS:000439573400015) 2018; 17
Liu, X (WOS:000459923300001) 2019; 11
Yu, ZP (WOS:000609249200008) 2021; 3
Lai, HJ (WOS:000481568500036) 2019; 10
MA (000647879100001.20) 2020; 132
Lin, YZ (WOS:000371945800026) 2016; 138
Zhang, ZQ (WOS:000447761900011) 2019; 35
Li, SX (WOS:000531322900001) 2020; 32
He, CL (WOS:000526583500076) 2020; 12
Li, WN (WOS:000430460100022) 2018; 30
Huang, CY (WOS:000442186500063) 2018; 30
Li, SX (WOS:000436516700057) 2018; 6
Li, SX (WOS:000535176100025) 2020; 5
Cheng, P (WOS:000426153800012) 2018; 12
Zhang, GY (WOS:000430156100006) 2018; 118
Chandrabose, S (WOS:000466987900023) 2019; 141
Peng, WH (WOS:000452482900033) 2018; 6
Min, J (WOS:000411182500023) 2017; 7
Li, SX (WOS:000424485100025) 2018; 30
Lai, HJ (WOS:000520874200016) 2020; 4
Wu, ZH (WOS:000618794400010) 2021; 9
Liu, XZ (WOS:000590994200001) 2021; 64
Chang, MJ (WOS:000526391300039) 2020; 32
Lee, T (WOS:000467988900009) 2019; 9
Wan, XJ (WOS:000533976700007) 2020; 49
Yu, H (WOS:000563286900001) 2020; 4
Yi, YQQ (WOS:000458937800031) 2019; 31
Yuan, J (WOS:000465149000023) 2019; 3
Hou, JH (WOS:000423153800009) 2018; 17
References_xml – volume: 142
  start-page: 11613
  year: 2020
  end-page: 11628
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 60
  year: 2021
  end-page: 92
  publication-title: ACS Appl. Polym. Mater.
– volume: 4
  start-page: 688
  year: 2020
  end-page: 700
  publication-title: Joule
– volume: 6
  start-page: 24267
  year: 2018
  end-page: 24276
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 1355
  year: 2018
  end-page: 1361
  publication-title: Energy Environ. Sci.
– volume: 59 132
  start-page: 21627 21811
  year: 2020 2020
  end-page: 21633 21817
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 2147
  year: 2020
  end-page: 2161
  publication-title: Chem
– volume: 138
  start-page: 2973
  year: 2016
  end-page: 2976
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4737
  year: 2019
  end-page: 4743
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 12
  start-page: 4638
  year: 2020
  end-page: 4648
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 3356
  year: 2017
  end-page: 3359
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 27632
  year: 2019
  end-page: 27639
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 39515
  year: 2020
  end-page: 39523
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 3038
  year: 2019
  publication-title: Nat. Commun.
– volume: 118
  start-page: 3447
  year: 2018
  end-page: 3507
  publication-title: Chem. Rev.
– volume: 11
  start-page: 3226
  year: 2020
  end-page: 3233
  publication-title: J. Phys. Chem. Lett.
– volume: 59 132
  start-page: 9004 9089
  year: 2020 2020
  end-page: 9010 9095
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 127
  start-page: 14152
  year: 2005
  end-page: 14153
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 720
  year: 2018
  end-page: 731
  publication-title: Nat. Energy
– volume: 64
  start-page: 228
  year: 2020
  end-page: 231
  publication-title: Sci. China Chem.
– volume: 35
  start-page: 394
  year: 2019
  end-page: 400
  publication-title: Acta Phys.-Chim. Sin.
– volume: 49
  start-page: 2828
  year: 2020
  end-page: 2842
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 5429
  year: 2018
  end-page: 5434
  publication-title: Chem. Mater.
– volume: 117
  start-page: 10291
  year: 2017
  end-page: 10318
  publication-title: Chem. Rev.
– volume: 12
  start-page: 16700
  year: 2020
  end-page: 16706
  publication-title: ACS Appl. Mater. Interfaces
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 6
  start-page: 12132
  year: 2018
  end-page: 12141
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 703
  year: 2018
  end-page: 709
  publication-title: Nat. Mater.
– volume: 12
  start-page: 46220
  year: 2020
  end-page: 46230
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 131
  year: 2018
  end-page: 142
  publication-title: Nat. Photonics
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 10
  start-page: 2152
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1140
  year: 2019
  end-page: 1151
  publication-title: Joule
– volume: 8
  start-page: 18154
  year: 2020
  end-page: 18161
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 1170
  year: 2015
  end-page: 1174
  publication-title: Adv. Mater.
– volume: 32
  start-page: 2593
  year: 2020
  end-page: 2604
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1554
  year: 2020
  end-page: 1567
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 18003
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 822
  year: 2020
  end-page: 832
  publication-title: Acc. Chem. Res.
– volume: 59 132
  start-page: 22714 22903
  year: 2020 2020
  end-page: 22720 22909
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  start-page: 904
  year: 2019
  end-page: 911
  publication-title: Chem. Mater.
– volume: 141
  start-page: 6922
  year: 2019
  end-page: 6929
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3314
  year: 2021
  end-page: 3321
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 119
  year: 2018
  end-page: 128
  publication-title: Nat. Mater.
– ident: e_1_2_6_18_2
  doi: 10.1039/D0TA06907H
– ident: e_1_2_6_11_2
  doi: 10.1002/adma.201404317
– ident: e_1_2_6_23_2
  doi: 10.1021/acs.chemrev.7b00535
– ident: e_1_2_6_29_1
– ident: e_1_2_6_16_2
  doi: 10.1038/s41560-018-0181-5
– volume: 64
  start-page: 228
  year: 2020
  ident: e_1_2_6_30_2
  publication-title: Sci. China Chem.
– ident: e_1_2_6_17_2
  doi: 10.1002/adma.202001160
– ident: e_1_2_6_19_2
  doi: 10.1039/C9TA11285E
– ident: e_1_2_6_39_2
  doi: 10.1021/acs.chemmater.0c00097
– ident: e_1_2_6_53_1
  doi: 10.1021/ja054661d
– ident: e_1_2_6_54_1
  doi: 10.1021/jacs.8b12982
– ident: e_1_2_6_20_2
  doi: 10.1021/acs.chemmater.8b02276
– ident: e_1_2_6_28_2
  doi: 10.1021/acs.chemrev.7b00084
– ident: e_1_2_6_2_2
  doi: 10.1038/nmat5063
– ident: e_1_2_6_50_2
  doi: 10.1021/acs.accounts.0c00009
– ident: e_1_2_6_41_2
  doi: 10.1039/C8TA09370A
– ident: e_1_2_6_52_2
  doi: 10.1021/acs.jpclett.9b01931
– ident: e_1_2_6_3_2
  doi: 10.1016/j.chempr.2020.08.003
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.202010856
– ident: e_1_2_6_34_2
  doi: 10.1039/C8TA03753A
– ident: e_1_2_6_9_1
  doi: 10.1039/C8EE00151K
– ident: e_1_2_6_12_2
  doi: 10.1002/adma.201707170
– ident: e_1_2_6_15_1
– ident: e_1_2_6_36_2
  doi: 10.1021/acsami.9b18076
– ident: e_1_2_6_37_2
  doi: 10.1021/acsami.0c00837
– ident: e_1_2_6_55_1
  doi: 10.1002/aenm.201801352
– ident: e_1_2_6_45_2
  doi: 10.1038/s41467-019-10098-z
– ident: e_1_2_6_24_2
  doi: 10.1002/anie.202007907
– ident: e_1_2_6_26_1
– ident: e_1_2_6_14_2
  doi: 10.1021/acsapm.0c00791
– ident: e_1_2_6_1_1
– ident: e_1_2_6_8_2
  doi: 10.1021/acsenergylett.0c00537
– ident: e_1_2_6_38_2
  doi: 10.1039/D0TA12288B
– ident: e_1_2_6_42_2
  doi: 10.1021/acs.chemmater.8b04087
– ident: e_1_2_6_48_1
  doi: 10.1016/j.nanoen.2020.105087
– ident: e_1_2_6_33_2
  doi: 10.1021/acsami.0c12100
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.202010856
– ident: e_1_2_6_32_2
  doi: 10.1002/adma.201705208
– ident: e_1_2_6_58_1
  doi: 10.1002/anie.201915030
– ident: e_1_2_6_5_2
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_6_6_2
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_6_4_2
  doi: 10.1039/D0CS00084A
– ident: e_1_2_6_44_2
  doi: 10.3866/PKU.WHXB201805091
– ident: e_1_2_6_24_3
  doi: 10.1002/ange.202007907
– ident: e_1_2_6_10_1
– ident: e_1_2_6_27_2
  doi: 10.1021/jacs.7b00566
– ident: e_1_2_6_51_2
  doi: 10.1016/j.joule.2020.02.004
– ident: e_1_2_6_22_2
  doi: 10.1021/jacs.6b00853
– ident: e_1_2_6_21_1
– ident: e_1_2_6_56_1
  doi: 10.1038/s41563-018-0128-z
– ident: e_1_2_6_35_2
  doi: 10.1021/acsami.0c13993
– ident: e_1_2_6_47_2
  doi: 10.1002/aenm.201803677
– ident: e_1_2_6_58_2
  doi: 10.1002/ange.201915030
– ident: e_1_2_6_31_2
  doi: 10.1038/s41467-019-11001-6
– ident: e_1_2_6_59_1
  doi: 10.1021/acs.jpclett.0c00919
– ident: e_1_2_6_43_1
– ident: e_1_2_6_13_2
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_6_25_1
  doi: 10.1002/aenm.201700465
– ident: e_1_2_6_40_2
  doi: 10.1002/solr.202000421
– ident: e_1_2_6_7_2
  doi: 10.1021/jacs.0c04084
– ident: e_1_2_6_49_1
– ident: e_1_2_6_57_1
  doi: 10.1103/PhysRevApplied.11.024060
– volume: 30
  start-page: 5429
  year: 2018
  ident: WOS:000442186500063
  article-title: Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.8b02276
– volume: 118
  start-page: 3447
  year: 2018
  ident: WOS:000430156100006
  article-title: Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00535
– volume: 12
  start-page: 39515
  year: 2020
  ident: WOS:000569268800068
  article-title: Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c12100
– volume: 4
  start-page: ARTN 2000421
  year: 2020
  ident: WOS:000563286900001
  article-title: Modulating Energy Level on an A-D-A′-D-A-Type Unfused Acceptor by a Benzothiadiazole Core Enables Organic Solar Cells with Simple Procedure and High Performance
  publication-title: SOLAR RRL
  doi: 10.1002/solr.202000421
– volume: 59
  start-page: 21627
  year: 2020
  ident: WOS:000569154800001
  article-title: Ladder-Type Heteroheptacenes with Different Heterocycles for Nonfullerene Acceptors
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202007907
– volume: 17
  start-page: 119
  year: 2018
  ident: WOS:000423153800009
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT5063
– volume: 127
  start-page: 14152
  year: 2005
  ident: WOS:000232605600016
  article-title: Cross dipole stacking in the crystal of distyrylbenzene derivative: The approach toward high solid-state luminescence efficiency
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja054661d
– volume: 3
  start-page: 1140
  year: 2019
  ident: WOS:000465149000023
  article-title: Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core
  publication-title: JOULE
  doi: 10.1016/j.joule.2019.01.004
– volume: 27
  start-page: 1170
  year: 2015
  ident: WOS:000350057400002
  article-title: An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201404317
– volume: 9
  start-page: ARTN 1804021
  year: 2019
  ident: WOS:000467988900009
  article-title: Simple Bithiophene-Rhodanine-Based Small Molecule Acceptor for Use in Additive-Free Nonfullerene OPVs with Low Energy Loss of 0.51 eV
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201804021
– volume: 7
  start-page: ARTN 1700465
  year: 2017
  ident: WOS:000411182500023
  article-title: Evaluation of Electron Donor Materials for Solution-Processed Organic Solar Cells via a Novel Figure of Merit
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201700465
– volume: 12
  start-page: 4638
  year: 2020
  ident: WOS:000510532000048
  article-title: Regulating the Packing of Non-Fullerene Acceptors via Multiple Noncovalent Interactions for Enhancing the Performance of Organic Solar Cells
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.9b18076
– volume: 117
  start-page: 10291
  year: 2017
  ident: WOS:000407540500008
  article-title: Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00084
– volume: 3
  start-page: ARTN 18003
  year: 2018
  ident: WOS:000427559200007
  article-title: Non-fullerene acceptors for organic solar cells
  publication-title: NATURE REVIEWS MATERIALS
  doi: 10.1038/natrevmats.2018.3
– volume: 59
  start-page: 9004
  year: 2020
  ident: WOS:000535062900042
  article-title: Tuning the Hybridization of Local Exciton and Charge-Transfer States in Highly Efficient Organic Photovoltaic Cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201915030
– volume: 32
  start-page: 2593
  year: 2020
  ident: WOS:000526391300039
  article-title: Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.0c00097
– volume: 35
  start-page: 394
  year: 2019
  ident: WOS:000447761900011
  article-title: A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells
  publication-title: ACTA PHYSICO-CHIMICA SINICA
  doi: 10.3866/PKU.WHXB201805091
– volume: 11
  start-page: 3226
  year: 2020
  ident: WOS:000535177500009
  article-title: Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
  doi: 10.1021/acs.jpclett.0c00919
– volume: 141
  start-page: 6922
  year: 2019
  ident: WOS:000466987900023
  article-title: High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b12982
– volume: 3
  start-page: 60
  year: 2021
  ident: WOS:000609249200008
  article-title: Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions
  publication-title: ACS APPLIED POLYMER MATERIALS
  doi: 10.1021/acsapm.0c00791
– volume: 138
  start-page: 2973
  year: 2016
  ident: WOS:000371945800026
  article-title: A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b00853
– volume: 132
  start-page: 21811
  year: 2020
  ident: 000647879100001.20
  publication-title: Angew. Chem
– volume: 49
  start-page: 2828
  year: 2020
  ident: WOS:000533976700007
  article-title: Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs00084a
– volume: 10
  start-page: ARTN 3038
  year: 2019
  ident: WOS:000474732500011
  article-title: Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-11001-6
– volume: 76
  start-page: ARTN 105087
  year: 2020
  ident: WOS:000571080400002
  article-title: Enhanced hindrance from phenyl outer side chains on nonfullerene acceptor enables unprecedented simultaneous enhancement in organic solar cell performances with 16.7% efficiency
  publication-title: NANO ENERGY
  doi: 10.1016/j.nanoen.2020.105087
– volume: 4
  start-page: 688
  year: 2020
  ident: WOS:000520874200016
  article-title: Trifluoromethylation Enables a 3D Interpenetrated Low-Band-Gap Acceptor for Efficient Organic Solar Cells
  publication-title: JOULE
  doi: 10.1016/j.joule.2020.02.004
– volume: 30
  start-page: ARTN 1707170
  year: 2018
  ident: WOS:000430460100022
  article-title: A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201707170
– volume: 6
  start-page: 24267
  year: 2018
  ident: WOS:000452482900033
  article-title: Simple-structured small molecule acceptors constructed by a weakly electron-deficient thiazolothiazole core for high-efficiency non-fullerene organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/c8ta09370a
– volume: 7
  start-page: 27632
  year: 2019
  ident: WOS:000502302300043
  article-title: Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/c9ta11285e
– volume: 12
  start-page: 46220
  year: 2020
  ident: WOS:000582345700050
  article-title: Noncovalently Fused-Ring Electron Acceptors with C2v Symmetry for Regulating the Morphology of Organic Solar Cells
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c13993
– volume: 11
  start-page: ARTN 024060
  year: 2019
  ident: WOS:000459923300001
  article-title: Energy Loss in Organic Photovoltaics: Nonfullerene Versus Fullerene Acceptors
  publication-title: PHYSICAL REVIEW APPLIED
  doi: 10.1103/PhysRevApplied.11.024060
– volume: 5
  start-page: 1554
  year: 2020
  ident: WOS:000535176100025
  article-title: New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.0c00537
– volume: 53
  start-page: 822
  year: 2020
  ident: WOS:000527732000011
  article-title: Recent Progress in Chlorinated Organic Photovoltaic Materials
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00009
– volume: 9
  start-page: 3314
  year: 2021
  ident: WOS:000618794400010
  article-title: A ligand-free direct heteroarylation approach for benzodithiophenedione-based simple small molecular acceptors toward high efficiency polymer solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d0ta12288b
– volume: 59
  start-page: 22714
  year: 2020
  ident: WOS:000575557600001
  article-title: A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202010856
– volume: 64
  start-page: 228
  year: 2021
  ident: WOS:000590994200001
  article-title: An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-020-9868-8
– volume: 139
  start-page: 3356
  year: 2017
  ident: WOS:000396185700013
  article-title: Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b00566
– volume: 31
  start-page: 904
  year: 2019
  ident: WOS:000458937800031
  article-title: Small Molecule Acceptors with a Nonfused Architecture for High-Performance Organic Photovoltaics
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.8b04087
– volume: 11
  start-page: 1355
  year: 2018
  ident: WOS:000435351000001
  article-title: Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c8ee00151k
– volume: 17
  start-page: 703
  year: 2018
  ident: WOS:000439573400015
  article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells
  publication-title: NATURE MATERIALS
  doi: 10.1038/s41563-018-0128-z
– volume: 32
  start-page: ARTN 2001160
  year: 2020
  ident: WOS:000531322900001
  article-title: Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202001160
– volume: 8
  start-page: ARTN 1801352
  year: 2018
  ident: WOS:000446421200012
  article-title: Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201801352
– volume: 30
  start-page: ARTN 1705208
  year: 2018
  ident: WOS:000424485100025
  article-title: An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201705208
– volume: 8
  start-page: 18154
  year: 2020
  ident: WOS:000569873400023
  article-title: Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d0ta06907h
– volume: 6
  start-page: 2147
  year: 2020
  ident: WOS:000575403300005
  article-title: Reducing Voltage Losses in the A-DA'D-A Acceptor-Based Organic Solar Cells
  publication-title: CHEM
  doi: 10.1016/j.chempr.2020.08.003
– volume: 12
  start-page: 131
  year: 2018
  ident: WOS:000426153800012
  article-title: Next-generation organic photovoltaics based on non-fullerene acceptors
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-018-0104-9
– volume: 132
  start-page: 22903
  year: 2020
  ident: 000647879100001.40
  publication-title: Angew. Chem
– volume: 12
  start-page: 16700
  year: 2020
  ident: WOS:000526583500076
  article-title: Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c00837
– volume: 10
  start-page: ARTN 2152
  year: 2019
  ident: WOS:000467836900006
  article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-10098-z
– volume: 142
  start-page: 11613
  year: 2020
  ident: WOS:000550639000001
  article-title: n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c04084
– volume: 6
  start-page: 12132
  year: 2018
  ident: WOS:000436516700057
  article-title: Revealing the effects of molecular packing on the performances of polymer solar cells based on A-D-C-D-A type non-fullerene acceptors
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/c8ta03753a
– volume: 10
  start-page: 4737
  year: 2019
  ident: WOS:000481568500036
  article-title: 3D Interpenetrating Network for High-Performance Nonfullerene Acceptors via Asymmetric Chlorine Substitution
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
  doi: 10.1021/acs.jpclett.9b01931
SSID ssj0028806
Score 2.6764889
Snippet Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency,...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12964
SubjectTerms Charge transfer
Chemistry
Chemistry, Multidisciplinary
Electrons
Energy conversion
Energy conversion efficiency
Excitons
Heterojunctions
non-fused-ring acceptors
organic photovoltaics
Photovoltaic cells
Photovoltaics
Physical Sciences
Polymer blends
Polymers
Science & Technology
solar cells
Title Simple Non‐Fused Electron Acceptors Leading to Efficient Organic Photovoltaics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202101867
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000647879100001
https://www.ncbi.nlm.nih.gov/pubmed/33797187
https://www.proquest.com/docview/2532084698
https://www.proquest.com/docview/2508575535
Volume 60
WOS 000647879100001
WOSCitedRecordID wos000647879100001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXODSQukjPCojIXEKJHacx3G12tWCYIVKkbhFflUgUIJI9sKJn8Bv5JfgiZOwS1WB2lui2InGHntm4pnvA9gNQpHIJIt9zW2sGmkd-UIjbGUsRSA1C2mMtcMn03hyHh1d8Iu5Kn6HD9H_cMOV0ezXuMCFrA5eQEOxAtvGdxQhp2IsJ8eELfSKfvb4UdQqpysvYsxHFvoOtTGgB4vdF63SH67mK6u06Mg2lmj8CUQng0tAud6f1XJf3b-Cd_wfIVfhY-umkoHTqzX4YIrPsDzs2OHW4fTsCnGFybQsnh4ex7PKaDJqKXXIQGGyTHlXkWOXo0_qkowasApr44ir_1Tk9LKsS7s91uJKVV_gfDz6NZz4LTuDr6LE7q7yt6GhQnoY9DoNN2mmrTOjqBE04kFgAoXAPlKlMU90KqyqaBklCOgXpzaIYV9hqSgL8x0IkzpTwnqiitlo0aCWGG7jMsaFDJmOPfC72clVC12ODBo3uQNdpjmOU96Pkwd7fftbB9rx15Zb3WTn7eKtcopkGSlSa3qw0z-244tnKaIw5QzbNNymnHEPvjkl6T_FWJJZk29fvjuvNf3zwFX4Jpk7W_EgfE-zYSs4YhXUHtBGbd4QLx9MD0f93ca_dNqEFbx22XFbsFTfzcy29cNq-aNZa8-gyydl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOMCFFtpCWkpdCYlTILHjPI6rZVdLWVaogNRb5BcCtUoqNnvpqT-hv5FfgidOAktVFcExsZ3I9tgzY898H8BuEIpEJlnsa2591UjryBcaYStjKQKpWUhjzB0-mcSji-jLN95GE2IujMOH6A7ccGXU-zUucDyQPrhHDcUUbOvgUcScipNFWEZab4TPP_zaIUhRK54uwYgxH3noW9zGgB7Mt5_XS38Zm4_00rwpW-ui4SuQbS9cCMr3_Vkl99WvRwCPL-rma1hrLFXSc6K1Dgum2ICVfksQ9wZOz64RWphMyuL295_hbGo0GTSsOqSnMF6mvJmSsQvTJ1VJBjVehVVzxKWAKnJ6VVal3SErca2mb-FiODjvj_yGoMFXUWI3WHlpaKiQIQYNT8NNmmlrzyhqBI14EJhAIbaPVGnME50KKy1aRgli-sWp9WPYO1gqysJsAWFSZ0pYY1Qx6zAaFBTDrWvGuJAh07EHfjs9uWrQy5FE40fucJdpjuOUd-PkwV5X_6fD7fhnze12tvNm_U5zinwZKbJrevC5K7bji9cpojDlDOvU9KaccQ82nZR0v2IsyazWtx_ffSg2XXngknyTzF2veBA-pVq_6TjCFVQe0Fpu_tO9vDc5GnRP75_T6BOsjM5Pxvn4aHL8AVbxvQuW24al6mZmPlqzrJI79cK7AxISK4E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkFoulP5BKLSuhNRTILFjJzmull1BS1ertkjcIv-holYJYrMXTjxCn7FPgidOAguqWrXHJONEtseemXjm-wB2o1imKs1FaLiLVRNjklAahK0USkbKsJgKrB3-NBGHJ8mHU356p4rf40P0P9xwZTT7NS7wC3O2fwsaihXYLr6jCDkl0kewkogoR_KGg889gBR12unrixgLkYa-g22M6P5i-0Wz9MDXvGeWFj3ZxhSNn4LsOuEzUL7vzWu1p6_u4Tv-Ty_XYa31U8nAK9YzWLLlc3gy7OjhXsD0yzkCC5NJVf66_jmez6who5ZThww0ZstUlzNy7JP0SV2RUYNW4Ywc8QWgmky_VXXl9sdanuvZSzgZj74OD8OWniHUSeq2V3VmaayRHwbdTsttlhvnzWhqJU14FNlII7KP0pngqcmk0xWjkhQR_UTmohj2CpbLqrSbQJgyuZbOFdXMhYsW1cRyF5gxLlXMjAgg7Gan0C12OVJo_Cg86jItcJyKfpwCeN_LX3jUjt9KbneTXbSrd1ZQZMvIkFszgHf9Yze-eJgiS1vNUaYhN-WMB7DhlaT_FGNp7my-e_nuXa3pn0e-xDfN_eFKAPHfiA3bjiNYQR0AbdTmD90rBpOjUX-19S-N3sLj6cG4OD6afHwNq3jbZ8ptw3J9Obc7zier1Ztm2d0AYJsqMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+Non%E2%80%90Fused+Electron+Acceptors+Leading+to+Efficient+Organic+Photovoltaics&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wen%2C+Tian%E2%80%90Jiao&rft.au=Liu%2C+Zhi%E2%80%90Xi&rft.au=Chen%2C+Zeng&rft.au=Zhou%2C+Jiadong&rft.date=2021-06-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=23&rft.spage=12964&rft.epage=12970&rft_id=info:doi/10.1002%2Fanie.202101867&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202101867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon