Simple Non‐Fused Electron Acceptors Leading to Efficient Organic Photovoltaics
Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non‐fused electron acceptors, PTB4F and PTB4Cl, are developed via a two‐step synthesis from single aromat...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 23; pp. 12964 - 12970 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
01.06.2021
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non‐fused electron acceptors, PTB4F and PTB4Cl, are developed via a two‐step synthesis from single aromatic units. The introduction of a two‐dimensional chain and halogenated terminals for these non‐fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge‐transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB‐TF polymer, has enabled single‐junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.
Two new non‐fused‐ring acceptors (NFRAs), denoted as PTB4F and PTB4Cl, are developed via a two‐step synthesis from simple phenyl and thiophene units. The corresponding organic photovoltaics based on PTB4Cl:PBDB‐TF have impressively achieved a power conversion efficiency of 12.76 %, representing the highest value among the fully non‐fused NFRAs reported so far. |
---|---|
AbstractList | Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far. Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non‐fused electron acceptors, PTB4F and PTB4Cl, are developed via a two‐step synthesis from single aromatic units. The introduction of a two‐dimensional chain and halogenated terminals for these non‐fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge‐transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB‐TF polymer, has enabled single‐junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far. Two new non‐fused‐ring acceptors (NFRAs), denoted as PTB4F and PTB4Cl, are developed via a two‐step synthesis from simple phenyl and thiophene units. The corresponding organic photovoltaics based on PTB4Cl:PBDB‐TF have impressively achieved a power conversion efficiency of 12.76 %, representing the highest value among the fully non‐fused NFRAs reported so far. Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far. |
Author | Zhou, Jiadong Shen, Ziqiu Xiao, Yiqun Lu, Xinhui Chen, Zeng Xie, Zengqi Chen, Hongzheng Li, Chang‐Zhi Zhu, Haiming Wen, Tian‐Jiao Liu, Zhi‐Xi |
Author_xml | – sequence: 1 givenname: Tian‐Jiao orcidid: 0000-0003-1065-1053 surname: Wen fullname: Wen, Tian‐Jiao organization: Zhejiang University – sequence: 2 givenname: Zhi‐Xi surname: Liu fullname: Liu, Zhi‐Xi organization: Zhejiang University – sequence: 3 givenname: Zeng surname: Chen fullname: Chen, Zeng organization: Zhejiang University – sequence: 4 givenname: Jiadong surname: Zhou fullname: Zhou, Jiadong organization: South China University of Technology – sequence: 5 givenname: Ziqiu surname: Shen fullname: Shen, Ziqiu organization: Zhejiang University – sequence: 6 givenname: Yiqun surname: Xiao fullname: Xiao, Yiqun organization: The Chinese University of Hong Kong – sequence: 7 givenname: Xinhui surname: Lu fullname: Lu, Xinhui organization: The Chinese University of Hong Kong – sequence: 8 givenname: Zengqi surname: Xie fullname: Xie, Zengqi organization: South China University of Technology – sequence: 9 givenname: Haiming surname: Zhu fullname: Zhu, Haiming email: hmzhu@zju.edu.cn organization: Zhejiang University – sequence: 10 givenname: Chang‐Zhi surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University – sequence: 11 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33797187$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEUhoNU7Je3XsqANwWZ9WQymWQul2WrhaUtWK9DJnOmpswma5JRetef4G_0l5hltxUKolcJ5HnyHs57TA6cd0jIGwozClB90M7irIKKApWNeEGOKK9oyYRgB_leM1YKyekhOY7xLvNSQvOKHDImWkGlOCLXn-16M2Jx6d2vh5_nU8S-WI5oUvCumBuDm-RDLFaoe-tui-SL5TBYY9Gl4irc5nhTXH_1yX_3Y9LWxFPyctBjxNf784R8OV_eLD6Vq6uPF4v5qjS1aETZDVhRwyljABKQo2x7WTemQl3VHADBNLyBzsiGi15qY3Tf1QKYbBspasFOyNnu303w3yaMSa1tNDiO2qGfoqo4SC44Zzyj756hd34KLk-XKVZBzm1lpt7uqalbY682wa51uFePu8rA-x3wAzs_xO0ODD5hANDUQoo21wJAMy3_n17YpJP1buEnl7Ja71QTfIwBB2X27yloOyoKatu92navnrrP2uyZ9pj2V6Hdj2hHvP8HreaXF8s_7m8hNb4b |
CitedBy_id | crossref_primary_10_1016_j_macse_2024_100001 crossref_primary_10_1007_s11426_023_1717_y crossref_primary_10_1016_j_cej_2024_150579 crossref_primary_10_1016_j_dyepig_2023_111808 crossref_primary_10_1002_ange_202316495 crossref_primary_10_1007_s10118_022_2825_y crossref_primary_10_1039_D3TC01742G crossref_primary_10_1002_solr_202300453 crossref_primary_10_1016_j_trechm_2021_09_008 crossref_primary_10_1016_j_dyepig_2022_110680 crossref_primary_10_1021_jacs_4c00090 crossref_primary_10_1002_aenm_202400928 crossref_primary_10_1016_j_cej_2024_149584 crossref_primary_10_1002_smll_202206547 crossref_primary_10_1002_adom_202200371 crossref_primary_10_1002_anie_202216340 crossref_primary_10_1039_D4TC05217J crossref_primary_10_1002_smll_202405925 crossref_primary_10_1016_j_cej_2022_139312 crossref_primary_10_1021_acs_jpclett_1c01219 crossref_primary_10_1016_j_dyepig_2024_112629 crossref_primary_10_1007_s11426_022_1517_2 crossref_primary_10_1016_j_orgel_2022_106512 crossref_primary_10_1016_j_cej_2023_145131 crossref_primary_10_1039_D4TA00933A crossref_primary_10_1002_solr_202400153 crossref_primary_10_1021_acsami_3c01194 crossref_primary_10_1021_acsmaterialslett_3c01020 crossref_primary_10_1039_D2EE00977C crossref_primary_10_1016_j_cej_2025_159658 crossref_primary_10_1002_solr_202300310 crossref_primary_10_1021_acsami_3c01626 crossref_primary_10_1002_anie_202209580 crossref_primary_10_1039_D1TA02075G crossref_primary_10_1002_agt2_488 crossref_primary_10_1016_j_mtener_2021_100938 crossref_primary_10_1002_pol_20241036 crossref_primary_10_1002_pol_20210947 crossref_primary_10_1039_D2TC01237E crossref_primary_10_1002_adma_202110569 crossref_primary_10_1039_D3NJ00845B crossref_primary_10_1039_D3QM00201B crossref_primary_10_1039_D1TC02860J crossref_primary_10_1002_anie_202104766 crossref_primary_10_1039_D2EE03902H crossref_primary_10_1016_j_cej_2022_136509 crossref_primary_10_1016_j_jechem_2022_03_030 crossref_primary_10_1002_chem_202403972 crossref_primary_10_1002_anie_202214931 crossref_primary_10_1016_j_orgel_2022_106562 crossref_primary_10_1002_smtd_202300578 crossref_primary_10_1021_acs_jpclett_1c04247 crossref_primary_10_1002_adfm_202108861 crossref_primary_10_1016_j_cclet_2023_109099 crossref_primary_10_1002_anie_202314362 crossref_primary_10_1002_smll_202104215 crossref_primary_10_1002_marc_202200530 crossref_primary_10_1039_D2TA08367A crossref_primary_10_1039_D4EE02027H crossref_primary_10_1002_adma_202107330 crossref_primary_10_1016_j_cej_2023_142743 crossref_primary_10_1039_D2TC01077A crossref_primary_10_1002_adma_202200044 crossref_primary_10_1016_j_dyepig_2022_110525 crossref_primary_10_1016_j_jechem_2024_04_050 crossref_primary_10_1002_ange_202214088 crossref_primary_10_1021_acsaem_3c03171 crossref_primary_10_1021_acsaem_2c04156 crossref_primary_10_1039_D2PY00139J crossref_primary_10_1021_acsaem_2c00475 crossref_primary_10_1021_jacs_5c00004 crossref_primary_10_1002_aenm_202203402 crossref_primary_10_1021_acsaem_3c02429 crossref_primary_10_1002_aenm_202102591 crossref_primary_10_1016_j_dyepig_2022_110785 crossref_primary_10_1002_cjoc_202300547 crossref_primary_10_1039_D2NJ04513C crossref_primary_10_1002_sus2_82 crossref_primary_10_1002_inf2_12276 crossref_primary_10_1002_agt2_281 crossref_primary_10_1007_s10118_022_2888_9 crossref_primary_10_1002_inf2_12271 crossref_primary_10_1039_D1TC04264E crossref_primary_10_1002_ange_202308832 crossref_primary_10_1016_j_cclet_2022_06_015 crossref_primary_10_1016_j_cej_2023_144472 crossref_primary_10_1002_ange_202311686 crossref_primary_10_1002_aenm_202102000 crossref_primary_10_1016_j_joule_2024_05_011 crossref_primary_10_1039_D3EE00602F crossref_primary_10_1088_2516_1075_ad1e3a crossref_primary_10_1039_D2TC02373C crossref_primary_10_1007_s11426_022_1449_4 crossref_primary_10_1002_anie_202308832 crossref_primary_10_1021_acsami_2c09323 crossref_primary_10_1038_s41467_023_38078_4 crossref_primary_10_1002_anie_202311686 crossref_primary_10_1039_D1EE01832A crossref_primary_10_1039_D2TA02604J crossref_primary_10_1002_smll_202407027 crossref_primary_10_1002_smtd_202200007 crossref_primary_10_1002_ange_202104766 crossref_primary_10_1039_D1TA10707K crossref_primary_10_1021_acsami_1c09597 crossref_primary_10_1039_D4TC05497K crossref_primary_10_1039_D3TA06601K crossref_primary_10_1021_acs_jpcc_1c07320 crossref_primary_10_1002_smll_202405525 crossref_primary_10_1021_acsaem_2c01807 crossref_primary_10_1016_j_mtchem_2024_102290 crossref_primary_10_1002_aenm_202304063 crossref_primary_10_1016_j_dyepig_2022_110178 crossref_primary_10_1021_acs_jpcc_3c04584 crossref_primary_10_1016_j_jphotochemrev_2025_100690 crossref_primary_10_1039_D3TC00625E crossref_primary_10_1038_s41428_022_00706_z crossref_primary_10_2139_ssrn_4011672 crossref_primary_10_1021_acs_jpcc_1c09734 crossref_primary_10_1021_acsami_2c04530 crossref_primary_10_1039_D1TA09392D crossref_primary_10_1016_j_nanoen_2024_109583 crossref_primary_10_1002_ange_202314362 crossref_primary_10_1016_j_cclet_2022_107968 crossref_primary_10_1002_ange_202216340 crossref_primary_10_1002_adfm_202211385 crossref_primary_10_1007_s10118_022_2769_2 crossref_primary_10_1039_D2ME00068G crossref_primary_10_1021_acsami_3c09076 crossref_primary_10_1055_a_2191_6011 crossref_primary_10_1016_j_solener_2021_11_077 crossref_primary_10_1002_adma_202313105 crossref_primary_10_1016_j_dyepig_2022_111033 crossref_primary_10_1002_aenm_202203452 crossref_primary_10_1002_anie_202214088 crossref_primary_10_1039_D2NJ01108E crossref_primary_10_1360_TB_2024_0449 crossref_primary_10_1021_acsaem_2c01831 crossref_primary_10_1002_smll_202203454 crossref_primary_10_1016_j_cej_2021_131828 crossref_primary_10_1007_s11426_022_1222_y crossref_primary_10_1021_acsenergylett_2c00476 crossref_primary_10_1002_solr_202100806 crossref_primary_10_1007_s11426_021_1180_6 crossref_primary_10_1016_j_dyepig_2023_111737 crossref_primary_10_1016_j_xcrp_2022_100765 crossref_primary_10_1002_anie_202316495 crossref_primary_10_1021_acs_accounts_4c00592 crossref_primary_10_1021_acsaem_2c01945 crossref_primary_10_1039_D2IM00037G crossref_primary_10_1016_j_cej_2024_151806 crossref_primary_10_1002_anie_202219245 crossref_primary_10_1007_s11426_024_1948_6 crossref_primary_10_1039_D1EE02977K crossref_primary_10_1016_j_dyepig_2025_112667 crossref_primary_10_1002_anie_202209316 crossref_primary_10_1016_j_cej_2022_135384 crossref_primary_10_1007_s10118_022_2750_0 crossref_primary_10_1002_chem_202102252 crossref_primary_10_1021_acs_jpcc_2c08546 crossref_primary_10_1002_ange_202214931 crossref_primary_10_1039_D4SC02199A crossref_primary_10_1016_j_synthmet_2024_117574 crossref_primary_10_1021_acsaem_3c02238 crossref_primary_10_1021_acsapm_4c02826 crossref_primary_10_1002_ange_202209580 crossref_primary_10_1002_anie_202209454 crossref_primary_10_1016_j_mtener_2024_101591 crossref_primary_10_1016_j_cej_2022_134987 crossref_primary_10_1039_D1TC04097A crossref_primary_10_1039_D3TC03919F crossref_primary_10_1002_adma_202302005 crossref_primary_10_1039_D1MA00954K crossref_primary_10_1021_acsaem_3c03231 crossref_primary_10_1039_D3RA01454A crossref_primary_10_1246_cl_230303 crossref_primary_10_1021_acsaem_4c00735 crossref_primary_10_1002_smtd_202300036 crossref_primary_10_1007_s13391_022_00378_0 crossref_primary_10_1016_j_jmgm_2023_108563 crossref_primary_10_1038_s41467_021_25394_w crossref_primary_10_1016_j_solener_2022_02_040 crossref_primary_10_1016_j_cej_2021_132298 crossref_primary_10_1002_ange_202403753 crossref_primary_10_1002_ange_202209454 crossref_primary_10_1002_ange_202219245 crossref_primary_10_1021_acs_jpcc_2c05378 crossref_primary_10_1016_j_surfin_2022_102185 crossref_primary_10_1016_j_nanoen_2023_108661 crossref_primary_10_1002_adma_202300631 crossref_primary_10_1002_adma_202302259 crossref_primary_10_1016_j_molliq_2023_122473 crossref_primary_10_1039_D2TA09159C crossref_primary_10_1002_ange_202209316 crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1002_anie_202403753 crossref_primary_10_1021_acs_macromol_1c01301 crossref_primary_10_1021_acsami_4c03446 crossref_primary_10_1039_D1NJ04136C crossref_primary_10_3389_femat_2022_851294 crossref_primary_10_1021_accountsmr_2c00052 crossref_primary_10_1021_acs_macromol_2c02184 crossref_primary_10_1039_D4EE01943A |
Cites_doi | 10.1039/D0TA06907H 10.1002/adma.201404317 10.1021/acs.chemrev.7b00535 10.1038/s41560-018-0181-5 10.1002/adma.202001160 10.1039/C9TA11285E 10.1021/acs.chemmater.0c00097 10.1021/ja054661d 10.1021/jacs.8b12982 10.1021/acs.chemmater.8b02276 10.1021/acs.chemrev.7b00084 10.1038/nmat5063 10.1021/acs.accounts.0c00009 10.1039/C8TA09370A 10.1021/acs.jpclett.9b01931 10.1016/j.chempr.2020.08.003 10.1002/ange.202010856 10.1039/C8TA03753A 10.1039/C8EE00151K 10.1002/adma.201707170 10.1021/acsami.9b18076 10.1021/acsami.0c00837 10.1002/aenm.201801352 10.1038/s41467-019-10098-z 10.1002/anie.202007907 10.1021/acsapm.0c00791 10.1021/acsenergylett.0c00537 10.1039/D0TA12288B 10.1021/acs.chemmater.8b04087 10.1016/j.nanoen.2020.105087 10.1021/acsami.0c12100 10.1002/anie.202010856 10.1002/adma.201705208 10.1002/anie.201915030 10.1038/natrevmats.2018.3 10.1038/s41566-018-0104-9 10.1039/D0CS00084A 10.3866/PKU.WHXB201805091 10.1002/ange.202007907 10.1021/jacs.7b00566 10.1016/j.joule.2020.02.004 10.1021/jacs.6b00853 10.1038/s41563-018-0128-z 10.1021/acsami.0c13993 10.1002/aenm.201803677 10.1002/ange.201915030 10.1038/s41467-019-11001-6 10.1021/acs.jpclett.0c00919 10.1016/j.joule.2019.01.004 10.1002/aenm.201700465 10.1002/solr.202000421 10.1021/jacs.0c04084 10.1103/PhysRevApplied.11.024060 10.1038/NMAT5063 10.1002/aenm.201804021 10.1039/d0cs00084a 10.1039/c8ta09370a 10.1039/c9ta11285e 10.1039/d0ta12288b 10.1007/s11426-020-9868-8 10.1039/c8ee00151k 10.1039/d0ta06907h 10.1039/c8ta03753a |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ HGBXW NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202101867 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2021 PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | Web of Science CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 12970 |
ExternalDocumentID | 33797187 000647879100001 10_1002_anie_202101867 ANIE202101867 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21722404; 21674093; 21733005; 51761135101 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705900; 2017YFA0207700 – fundername: Research Grant Council of Hong Kong (CUHK Direct Grant) grantid: 4053304 – fundername: Research Grant Council of Hong Kong; Hong Kong Research Grants Council grantid: N_CUHK418/17 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21733005; 51761135101; 21722404; 21674093 – fundername: Research Grant Council of Hong Kong (General Research Fund) grantid: 14303519 – fundername: National Key Research and Development Program of China; National Key Research & Development Program of China grantid: 2019YFA0705900; 2017YFA0207700 – fundername: National Key Research and Development Program of China grantid: 2019YFA0705900 – fundername: National Natural Science Foundation of China grantid: 51761135101 – fundername: National Natural Science Foundation of China grantid: 21674093 – fundername: National Key Research and Development Program of China grantid: 2017YFA0207700 – fundername: National Natural Science Foundation of China grantid: 21733005 – fundername: National Natural Science Foundation of China grantid: 21722404 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-bfe21c51330080e5e89d846c2ea24500e0c6560bc8657d8accadb470389687473 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 206 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000647879100001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:46:37 EDT 2025 Fri Jul 25 12:01:40 EDT 2025 Thu Apr 03 06:58:36 EDT 2025 Wed Jul 09 18:27:26 EDT 2025 Fri Aug 29 16:12:51 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Tue Jul 01 01:17:59 EDT 2025 Wed Jan 22 16:30:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | POLYMER SOLAR-CELLS energy conversion solar cells non-fused-ring acceptors organic photovoltaics |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4767-bfe21c51330080e5e89d846c2ea24500e0c6560bc8657d8accadb470389687473 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1065-1053 0000-0003-0826-840X 0000-0002-5970-5350 0000-0002-1908-3294 0000-0003-1968-2032 |
PMID | 33797187 |
PQID | 2532084698 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2532084698 proquest_miscellaneous_2508575535 crossref_citationtrail_10_1002_anie_202101867 pubmed_primary_33797187 wiley_primary_10_1002_anie_202101867_ANIE202101867 webofscience_primary_000647879100001 webofscience_primary_000647879100001CitationCount crossref_primary_10_1002_anie_202101867 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2017; 7 2019; 9 2019; 3 2021; 3 2020; 64 2019; 31 2020; 142 2019; 11 2019; 10 2019; 35 2020 2020; 59 132 2020; 12 2020; 11 2020; 32 2020; 76 2019; 141 2017; 139 2017; 117 2020; 8 2018; 6 2020; 6 2018; 17 2020; 5 2018; 8 2018; 3 2020; 4 2015; 27 2020; 53 2018; 118 2005; 127 2020; 49 2018; 30 2016; 138 2018; 12 2018; 11 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_19_2 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_36_2 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_45_2 e_1_2_6_24_3 e_1_2_6_26_1 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_18_2 Hui H. (e_1_2_6_30_2) 2020; 64 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_58_1 e_1_2_6_42_2 e_1_2_6_21_1 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_25_1 e_1_2_6_46_3 e_1_2_6_48_1 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_29_1 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_46_2 Lin, YZ (WOS:000350057400002) 2015; 27 Hou, R (WOS:000582345700050) 2020; 12 Xu, Y (WOS:000535062900042) 2020; 59 Huang, H (WOS:000407540500008) 2017; 117 Xie, ZQ (WOS:000232605600016) 2005; 127 Yu, ZP (WOS:000467836900006) 2019; 10 Yuan, J (WOS:000575403300005) 2020; 6 Wen, TJ (WOS:000569268800068) 2020; 12 Chen, YN (WOS:000575557600001) 2020; 59 Ma, YL (WOS:000569154800001) 2020; 59 He, CL (WOS:000569873400023) 2020; 8 Huang, H (WOS:000474732500011) 2019; 10 Yao, HF (WOS:000527732000011) 2020; 53 Wang, YM (WOS:000446421200012) 2018; 8 Liu, YH (WOS:000396185700013) 2017; 139 Chai, GD (WOS:000571080400002) 2020; 76 CHEN (000647879100001.40) 2020; 132 Feng, SY (WOS:000510532000048) 2020; 12 Yue, QH (WOS:000550639000001) 2020; 142 Chen, Z (WOS:000535177500009) 2020; 11 Yan, CQ (WOS:000427559200007) 2018; 3 Li, N (WOS:000435351000001) 2018; 11 Qin, R (WOS:000502302300043) 2019; 7 Qian, DP (WOS:000439573400015) 2018; 17 Liu, X (WOS:000459923300001) 2019; 11 Yu, ZP (WOS:000609249200008) 2021; 3 Lai, HJ (WOS:000481568500036) 2019; 10 MA (000647879100001.20) 2020; 132 Lin, YZ (WOS:000371945800026) 2016; 138 Zhang, ZQ (WOS:000447761900011) 2019; 35 Li, SX (WOS:000531322900001) 2020; 32 He, CL (WOS:000526583500076) 2020; 12 Li, WN (WOS:000430460100022) 2018; 30 Huang, CY (WOS:000442186500063) 2018; 30 Li, SX (WOS:000436516700057) 2018; 6 Li, SX (WOS:000535176100025) 2020; 5 Cheng, P (WOS:000426153800012) 2018; 12 Zhang, GY (WOS:000430156100006) 2018; 118 Chandrabose, S (WOS:000466987900023) 2019; 141 Peng, WH (WOS:000452482900033) 2018; 6 Min, J (WOS:000411182500023) 2017; 7 Li, SX (WOS:000424485100025) 2018; 30 Lai, HJ (WOS:000520874200016) 2020; 4 Wu, ZH (WOS:000618794400010) 2021; 9 Liu, XZ (WOS:000590994200001) 2021; 64 Chang, MJ (WOS:000526391300039) 2020; 32 Lee, T (WOS:000467988900009) 2019; 9 Wan, XJ (WOS:000533976700007) 2020; 49 Yu, H (WOS:000563286900001) 2020; 4 Yi, YQQ (WOS:000458937800031) 2019; 31 Yuan, J (WOS:000465149000023) 2019; 3 Hou, JH (WOS:000423153800009) 2018; 17 |
References_xml | – volume: 142 start-page: 11613 year: 2020 end-page: 11628 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 60 year: 2021 end-page: 92 publication-title: ACS Appl. Polym. Mater. – volume: 4 start-page: 688 year: 2020 end-page: 700 publication-title: Joule – volume: 6 start-page: 24267 year: 2018 end-page: 24276 publication-title: J. Mater. Chem. A – volume: 11 start-page: 1355 year: 2018 end-page: 1361 publication-title: Energy Environ. Sci. – volume: 59 132 start-page: 21627 21811 year: 2020 2020 end-page: 21633 21817 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 2147 year: 2020 end-page: 2161 publication-title: Chem – volume: 138 start-page: 2973 year: 2016 end-page: 2976 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4737 year: 2019 end-page: 4743 publication-title: J. Phys. Chem. Lett. – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 12 start-page: 4638 year: 2020 end-page: 4648 publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 3356 year: 2017 end-page: 3359 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 27632 year: 2019 end-page: 27639 publication-title: J. Mater. Chem. A – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 12 start-page: 39515 year: 2020 end-page: 39523 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 3038 year: 2019 publication-title: Nat. Commun. – volume: 118 start-page: 3447 year: 2018 end-page: 3507 publication-title: Chem. Rev. – volume: 11 start-page: 3226 year: 2020 end-page: 3233 publication-title: J. Phys. Chem. Lett. – volume: 59 132 start-page: 9004 9089 year: 2020 2020 end-page: 9010 9095 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 14152 year: 2005 end-page: 14153 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 720 year: 2018 end-page: 731 publication-title: Nat. Energy – volume: 64 start-page: 228 year: 2020 end-page: 231 publication-title: Sci. China Chem. – volume: 35 start-page: 394 year: 2019 end-page: 400 publication-title: Acta Phys.-Chim. Sin. – volume: 49 start-page: 2828 year: 2020 end-page: 2842 publication-title: Chem. Soc. Rev. – volume: 30 start-page: 5429 year: 2018 end-page: 5434 publication-title: Chem. Mater. – volume: 117 start-page: 10291 year: 2017 end-page: 10318 publication-title: Chem. Rev. – volume: 12 start-page: 16700 year: 2020 end-page: 16706 publication-title: ACS Appl. Mater. Interfaces – volume: 76 year: 2020 publication-title: Nano Energy – volume: 6 start-page: 12132 year: 2018 end-page: 12141 publication-title: J. Mater. Chem. A – volume: 17 start-page: 703 year: 2018 end-page: 709 publication-title: Nat. Mater. – volume: 12 start-page: 46220 year: 2020 end-page: 46230 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 131 year: 2018 end-page: 142 publication-title: Nat. Photonics – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 10 start-page: 2152 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 1140 year: 2019 end-page: 1151 publication-title: Joule – volume: 8 start-page: 18154 year: 2020 end-page: 18161 publication-title: J. Mater. Chem. A – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 27 start-page: 1170 year: 2015 end-page: 1174 publication-title: Adv. Mater. – volume: 32 start-page: 2593 year: 2020 end-page: 2604 publication-title: Chem. Mater. – volume: 5 start-page: 1554 year: 2020 end-page: 1567 publication-title: ACS Energy Lett. – volume: 3 start-page: 18003 year: 2018 publication-title: Nat. Rev. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 53 start-page: 822 year: 2020 end-page: 832 publication-title: Acc. Chem. Res. – volume: 59 132 start-page: 22714 22903 year: 2020 2020 end-page: 22720 22909 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 start-page: 904 year: 2019 end-page: 911 publication-title: Chem. Mater. – volume: 141 start-page: 6922 year: 2019 end-page: 6929 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3314 year: 2021 end-page: 3321 publication-title: J. Mater. Chem. A – volume: 17 start-page: 119 year: 2018 end-page: 128 publication-title: Nat. Mater. – ident: e_1_2_6_18_2 doi: 10.1039/D0TA06907H – ident: e_1_2_6_11_2 doi: 10.1002/adma.201404317 – ident: e_1_2_6_23_2 doi: 10.1021/acs.chemrev.7b00535 – ident: e_1_2_6_29_1 – ident: e_1_2_6_16_2 doi: 10.1038/s41560-018-0181-5 – volume: 64 start-page: 228 year: 2020 ident: e_1_2_6_30_2 publication-title: Sci. China Chem. – ident: e_1_2_6_17_2 doi: 10.1002/adma.202001160 – ident: e_1_2_6_19_2 doi: 10.1039/C9TA11285E – ident: e_1_2_6_39_2 doi: 10.1021/acs.chemmater.0c00097 – ident: e_1_2_6_53_1 doi: 10.1021/ja054661d – ident: e_1_2_6_54_1 doi: 10.1021/jacs.8b12982 – ident: e_1_2_6_20_2 doi: 10.1021/acs.chemmater.8b02276 – ident: e_1_2_6_28_2 doi: 10.1021/acs.chemrev.7b00084 – ident: e_1_2_6_2_2 doi: 10.1038/nmat5063 – ident: e_1_2_6_50_2 doi: 10.1021/acs.accounts.0c00009 – ident: e_1_2_6_41_2 doi: 10.1039/C8TA09370A – ident: e_1_2_6_52_2 doi: 10.1021/acs.jpclett.9b01931 – ident: e_1_2_6_3_2 doi: 10.1016/j.chempr.2020.08.003 – ident: e_1_2_6_46_3 doi: 10.1002/ange.202010856 – ident: e_1_2_6_34_2 doi: 10.1039/C8TA03753A – ident: e_1_2_6_9_1 doi: 10.1039/C8EE00151K – ident: e_1_2_6_12_2 doi: 10.1002/adma.201707170 – ident: e_1_2_6_15_1 – ident: e_1_2_6_36_2 doi: 10.1021/acsami.9b18076 – ident: e_1_2_6_37_2 doi: 10.1021/acsami.0c00837 – ident: e_1_2_6_55_1 doi: 10.1002/aenm.201801352 – ident: e_1_2_6_45_2 doi: 10.1038/s41467-019-10098-z – ident: e_1_2_6_24_2 doi: 10.1002/anie.202007907 – ident: e_1_2_6_26_1 – ident: e_1_2_6_14_2 doi: 10.1021/acsapm.0c00791 – ident: e_1_2_6_1_1 – ident: e_1_2_6_8_2 doi: 10.1021/acsenergylett.0c00537 – ident: e_1_2_6_38_2 doi: 10.1039/D0TA12288B – ident: e_1_2_6_42_2 doi: 10.1021/acs.chemmater.8b04087 – ident: e_1_2_6_48_1 doi: 10.1016/j.nanoen.2020.105087 – ident: e_1_2_6_33_2 doi: 10.1021/acsami.0c12100 – ident: e_1_2_6_46_2 doi: 10.1002/anie.202010856 – ident: e_1_2_6_32_2 doi: 10.1002/adma.201705208 – ident: e_1_2_6_58_1 doi: 10.1002/anie.201915030 – ident: e_1_2_6_5_2 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_6_6_2 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_6_4_2 doi: 10.1039/D0CS00084A – ident: e_1_2_6_44_2 doi: 10.3866/PKU.WHXB201805091 – ident: e_1_2_6_24_3 doi: 10.1002/ange.202007907 – ident: e_1_2_6_10_1 – ident: e_1_2_6_27_2 doi: 10.1021/jacs.7b00566 – ident: e_1_2_6_51_2 doi: 10.1016/j.joule.2020.02.004 – ident: e_1_2_6_22_2 doi: 10.1021/jacs.6b00853 – ident: e_1_2_6_21_1 – ident: e_1_2_6_56_1 doi: 10.1038/s41563-018-0128-z – ident: e_1_2_6_35_2 doi: 10.1021/acsami.0c13993 – ident: e_1_2_6_47_2 doi: 10.1002/aenm.201803677 – ident: e_1_2_6_58_2 doi: 10.1002/ange.201915030 – ident: e_1_2_6_31_2 doi: 10.1038/s41467-019-11001-6 – ident: e_1_2_6_59_1 doi: 10.1021/acs.jpclett.0c00919 – ident: e_1_2_6_43_1 – ident: e_1_2_6_13_2 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_6_25_1 doi: 10.1002/aenm.201700465 – ident: e_1_2_6_40_2 doi: 10.1002/solr.202000421 – ident: e_1_2_6_7_2 doi: 10.1021/jacs.0c04084 – ident: e_1_2_6_49_1 – ident: e_1_2_6_57_1 doi: 10.1103/PhysRevApplied.11.024060 – volume: 30 start-page: 5429 year: 2018 ident: WOS:000442186500063 article-title: Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.8b02276 – volume: 118 start-page: 3447 year: 2018 ident: WOS:000430156100006 article-title: Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00535 – volume: 12 start-page: 39515 year: 2020 ident: WOS:000569268800068 article-title: Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c12100 – volume: 4 start-page: ARTN 2000421 year: 2020 ident: WOS:000563286900001 article-title: Modulating Energy Level on an A-D-A′-D-A-Type Unfused Acceptor by a Benzothiadiazole Core Enables Organic Solar Cells with Simple Procedure and High Performance publication-title: SOLAR RRL doi: 10.1002/solr.202000421 – volume: 59 start-page: 21627 year: 2020 ident: WOS:000569154800001 article-title: Ladder-Type Heteroheptacenes with Different Heterocycles for Nonfullerene Acceptors publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007907 – volume: 17 start-page: 119 year: 2018 ident: WOS:000423153800009 article-title: Organic solar cells based on non-fullerene acceptors publication-title: NATURE MATERIALS doi: 10.1038/NMAT5063 – volume: 127 start-page: 14152 year: 2005 ident: WOS:000232605600016 article-title: Cross dipole stacking in the crystal of distyrylbenzene derivative: The approach toward high solid-state luminescence efficiency publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja054661d – volume: 3 start-page: 1140 year: 2019 ident: WOS:000465149000023 article-title: Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core publication-title: JOULE doi: 10.1016/j.joule.2019.01.004 – volume: 27 start-page: 1170 year: 2015 ident: WOS:000350057400002 article-title: An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201404317 – volume: 9 start-page: ARTN 1804021 year: 2019 ident: WOS:000467988900009 article-title: Simple Bithiophene-Rhodanine-Based Small Molecule Acceptor for Use in Additive-Free Nonfullerene OPVs with Low Energy Loss of 0.51 eV publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201804021 – volume: 7 start-page: ARTN 1700465 year: 2017 ident: WOS:000411182500023 article-title: Evaluation of Electron Donor Materials for Solution-Processed Organic Solar Cells via a Novel Figure of Merit publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201700465 – volume: 12 start-page: 4638 year: 2020 ident: WOS:000510532000048 article-title: Regulating the Packing of Non-Fullerene Acceptors via Multiple Noncovalent Interactions for Enhancing the Performance of Organic Solar Cells publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.9b18076 – volume: 117 start-page: 10291 year: 2017 ident: WOS:000407540500008 article-title: Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00084 – volume: 3 start-page: ARTN 18003 year: 2018 ident: WOS:000427559200007 article-title: Non-fullerene acceptors for organic solar cells publication-title: NATURE REVIEWS MATERIALS doi: 10.1038/natrevmats.2018.3 – volume: 59 start-page: 9004 year: 2020 ident: WOS:000535062900042 article-title: Tuning the Hybridization of Local Exciton and Charge-Transfer States in Highly Efficient Organic Photovoltaic Cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201915030 – volume: 32 start-page: 2593 year: 2020 ident: WOS:000526391300039 article-title: Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.0c00097 – volume: 35 start-page: 394 year: 2019 ident: WOS:000447761900011 article-title: A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells publication-title: ACTA PHYSICO-CHIMICA SINICA doi: 10.3866/PKU.WHXB201805091 – volume: 11 start-page: 3226 year: 2020 ident: WOS:000535177500009 article-title: Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.0c00919 – volume: 141 start-page: 6922 year: 2019 ident: WOS:000466987900023 article-title: High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b12982 – volume: 3 start-page: 60 year: 2021 ident: WOS:000609249200008 article-title: Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions publication-title: ACS APPLIED POLYMER MATERIALS doi: 10.1021/acsapm.0c00791 – volume: 138 start-page: 2973 year: 2016 ident: WOS:000371945800026 article-title: A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b00853 – volume: 132 start-page: 21811 year: 2020 ident: 000647879100001.20 publication-title: Angew. Chem – volume: 49 start-page: 2828 year: 2020 ident: WOS:000533976700007 article-title: Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00084a – volume: 10 start-page: ARTN 3038 year: 2019 ident: WOS:000474732500011 article-title: Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-11001-6 – volume: 76 start-page: ARTN 105087 year: 2020 ident: WOS:000571080400002 article-title: Enhanced hindrance from phenyl outer side chains on nonfullerene acceptor enables unprecedented simultaneous enhancement in organic solar cell performances with 16.7% efficiency publication-title: NANO ENERGY doi: 10.1016/j.nanoen.2020.105087 – volume: 4 start-page: 688 year: 2020 ident: WOS:000520874200016 article-title: Trifluoromethylation Enables a 3D Interpenetrated Low-Band-Gap Acceptor for Efficient Organic Solar Cells publication-title: JOULE doi: 10.1016/j.joule.2020.02.004 – volume: 30 start-page: ARTN 1707170 year: 2018 ident: WOS:000430460100022 article-title: A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201707170 – volume: 6 start-page: 24267 year: 2018 ident: WOS:000452482900033 article-title: Simple-structured small molecule acceptors constructed by a weakly electron-deficient thiazolothiazole core for high-efficiency non-fullerene organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c8ta09370a – volume: 7 start-page: 27632 year: 2019 ident: WOS:000502302300043 article-title: Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c9ta11285e – volume: 12 start-page: 46220 year: 2020 ident: WOS:000582345700050 article-title: Noncovalently Fused-Ring Electron Acceptors with C2v Symmetry for Regulating the Morphology of Organic Solar Cells publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c13993 – volume: 11 start-page: ARTN 024060 year: 2019 ident: WOS:000459923300001 article-title: Energy Loss in Organic Photovoltaics: Nonfullerene Versus Fullerene Acceptors publication-title: PHYSICAL REVIEW APPLIED doi: 10.1103/PhysRevApplied.11.024060 – volume: 5 start-page: 1554 year: 2020 ident: WOS:000535176100025 article-title: New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.0c00537 – volume: 53 start-page: 822 year: 2020 ident: WOS:000527732000011 article-title: Recent Progress in Chlorinated Organic Photovoltaic Materials publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00009 – volume: 9 start-page: 3314 year: 2021 ident: WOS:000618794400010 article-title: A ligand-free direct heteroarylation approach for benzodithiophenedione-based simple small molecular acceptors toward high efficiency polymer solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d0ta12288b – volume: 59 start-page: 22714 year: 2020 ident: WOS:000575557600001 article-title: A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202010856 – volume: 64 start-page: 228 year: 2021 ident: WOS:000590994200001 article-title: An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-020-9868-8 – volume: 139 start-page: 3356 year: 2017 ident: WOS:000396185700013 article-title: Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b00566 – volume: 31 start-page: 904 year: 2019 ident: WOS:000458937800031 article-title: Small Molecule Acceptors with a Nonfused Architecture for High-Performance Organic Photovoltaics publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.8b04087 – volume: 11 start-page: 1355 year: 2018 ident: WOS:000435351000001 article-title: Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c8ee00151k – volume: 17 start-page: 703 year: 2018 ident: WOS:000439573400015 article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells publication-title: NATURE MATERIALS doi: 10.1038/s41563-018-0128-z – volume: 32 start-page: ARTN 2001160 year: 2020 ident: WOS:000531322900001 article-title: Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202001160 – volume: 8 start-page: ARTN 1801352 year: 2018 ident: WOS:000446421200012 article-title: Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201801352 – volume: 30 start-page: ARTN 1705208 year: 2018 ident: WOS:000424485100025 article-title: An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201705208 – volume: 8 start-page: 18154 year: 2020 ident: WOS:000569873400023 article-title: Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d0ta06907h – volume: 6 start-page: 2147 year: 2020 ident: WOS:000575403300005 article-title: Reducing Voltage Losses in the A-DA'D-A Acceptor-Based Organic Solar Cells publication-title: CHEM doi: 10.1016/j.chempr.2020.08.003 – volume: 12 start-page: 131 year: 2018 ident: WOS:000426153800012 article-title: Next-generation organic photovoltaics based on non-fullerene acceptors publication-title: NATURE PHOTONICS doi: 10.1038/s41566-018-0104-9 – volume: 132 start-page: 22903 year: 2020 ident: 000647879100001.40 publication-title: Angew. Chem – volume: 12 start-page: 16700 year: 2020 ident: WOS:000526583500076 article-title: Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c00837 – volume: 10 start-page: ARTN 2152 year: 2019 ident: WOS:000467836900006 article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-10098-z – volume: 142 start-page: 11613 year: 2020 ident: WOS:000550639000001 article-title: n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c04084 – volume: 6 start-page: 12132 year: 2018 ident: WOS:000436516700057 article-title: Revealing the effects of molecular packing on the performances of polymer solar cells based on A-D-C-D-A type non-fullerene acceptors publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c8ta03753a – volume: 10 start-page: 4737 year: 2019 ident: WOS:000481568500036 article-title: 3D Interpenetrating Network for High-Performance Nonfullerene Acceptors via Asymmetric Chlorine Substitution publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.9b01931 |
SSID | ssj0028806 |
Score | 2.6764889 |
Snippet | Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency,... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12964 |
SubjectTerms | Charge transfer Chemistry Chemistry, Multidisciplinary Electrons Energy conversion Energy conversion efficiency Excitons Heterojunctions non-fused-ring acceptors organic photovoltaics Photovoltaic cells Photovoltaics Physical Sciences Polymer blends Polymers Science & Technology solar cells |
Title | Simple Non‐Fused Electron Acceptors Leading to Efficient Organic Photovoltaics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202101867 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000647879100001 https://www.ncbi.nlm.nih.gov/pubmed/33797187 https://www.proquest.com/docview/2532084698 https://www.proquest.com/docview/2508575535 |
Volume | 60 |
WOS | 000647879100001 |
WOSCitedRecordID | wos000647879100001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXODSQukjPCojIXEKJHacx3G12tWCYIVKkbhFflUgUIJI9sKJn8Bv5JfgiZOwS1WB2lui2InGHntm4pnvA9gNQpHIJIt9zW2sGmkd-UIjbGUsRSA1C2mMtcMn03hyHh1d8Iu5Kn6HD9H_cMOV0ezXuMCFrA5eQEOxAtvGdxQhp2IsJ8eELfSKfvb4UdQqpysvYsxHFvoOtTGgB4vdF63SH67mK6u06Mg2lmj8CUQng0tAud6f1XJf3b-Cd_wfIVfhY-umkoHTqzX4YIrPsDzs2OHW4fTsCnGFybQsnh4ex7PKaDJqKXXIQGGyTHlXkWOXo0_qkowasApr44ir_1Tk9LKsS7s91uJKVV_gfDz6NZz4LTuDr6LE7q7yt6GhQnoY9DoNN2mmrTOjqBE04kFgAoXAPlKlMU90KqyqaBklCOgXpzaIYV9hqSgL8x0IkzpTwnqiitlo0aCWGG7jMsaFDJmOPfC72clVC12ODBo3uQNdpjmOU96Pkwd7fftbB9rx15Zb3WTn7eKtcopkGSlSa3qw0z-244tnKaIw5QzbNNymnHEPvjkl6T_FWJJZk29fvjuvNf3zwFX4Jpk7W_EgfE-zYSs4YhXUHtBGbd4QLx9MD0f93ca_dNqEFbx22XFbsFTfzcy29cNq-aNZa8-gyydl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOMCFFtpCWkpdCYlTILHjPI6rZVdLWVaogNRb5BcCtUoqNnvpqT-hv5FfgidOAktVFcExsZ3I9tgzY898H8BuEIpEJlnsa2591UjryBcaYStjKQKpWUhjzB0-mcSji-jLN95GE2IujMOH6A7ccGXU-zUucDyQPrhHDcUUbOvgUcScipNFWEZab4TPP_zaIUhRK54uwYgxH3noW9zGgB7Mt5_XS38Zm4_00rwpW-ui4SuQbS9cCMr3_Vkl99WvRwCPL-rma1hrLFXSc6K1Dgum2ICVfksQ9wZOz64RWphMyuL295_hbGo0GTSsOqSnMF6mvJmSsQvTJ1VJBjVehVVzxKWAKnJ6VVal3SErca2mb-FiODjvj_yGoMFXUWI3WHlpaKiQIQYNT8NNmmlrzyhqBI14EJhAIbaPVGnME50KKy1aRgli-sWp9WPYO1gqysJsAWFSZ0pYY1Qx6zAaFBTDrWvGuJAh07EHfjs9uWrQy5FE40fucJdpjuOUd-PkwV5X_6fD7fhnze12tvNm_U5zinwZKbJrevC5K7bji9cpojDlDOvU9KaccQ82nZR0v2IsyazWtx_ffSg2XXngknyTzF2veBA-pVq_6TjCFVQe0Fpu_tO9vDc5GnRP75_T6BOsjM5Pxvn4aHL8AVbxvQuW24al6mZmPlqzrJI79cK7AxISK4E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkFoulP5BKLSuhNRTILFjJzmull1BS1ertkjcIv-holYJYrMXTjxCn7FPgidOAguqWrXHJONEtseemXjm-wB2o1imKs1FaLiLVRNjklAahK0USkbKsJgKrB3-NBGHJ8mHU356p4rf40P0P9xwZTT7NS7wC3O2fwsaihXYLr6jCDkl0kewkogoR_KGg889gBR12unrixgLkYa-g22M6P5i-0Wz9MDXvGeWFj3ZxhSNn4LsOuEzUL7vzWu1p6_u4Tv-Ty_XYa31U8nAK9YzWLLlc3gy7OjhXsD0yzkCC5NJVf66_jmez6who5ZThww0ZstUlzNy7JP0SV2RUYNW4Ywc8QWgmky_VXXl9sdanuvZSzgZj74OD8OWniHUSeq2V3VmaayRHwbdTsttlhvnzWhqJU14FNlII7KP0pngqcmk0xWjkhQR_UTmohj2CpbLqrSbQJgyuZbOFdXMhYsW1cRyF5gxLlXMjAgg7Gan0C12OVJo_Cg86jItcJyKfpwCeN_LX3jUjt9KbneTXbSrd1ZQZMvIkFszgHf9Yze-eJgiS1vNUaYhN-WMB7DhlaT_FGNp7my-e_nuXa3pn0e-xDfN_eFKAPHfiA3bjiNYQR0AbdTmD90rBpOjUX-19S-N3sLj6cG4OD6afHwNq3jbZ8ptw3J9Obc7zier1Ztm2d0AYJsqMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+Non%E2%80%90Fused+Electron+Acceptors+Leading+to+Efficient+Organic+Photovoltaics&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wen%2C+Tian%E2%80%90Jiao&rft.au=Liu%2C+Zhi%E2%80%90Xi&rft.au=Chen%2C+Zeng&rft.au=Zhou%2C+Jiadong&rft.date=2021-06-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=23&rft.spage=12964&rft.epage=12970&rft_id=info:doi/10.1002%2Fanie.202101867&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202101867 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |