Large‐Amplitude Thermal Vibration‐Coupled Valence Tautomeric Transition Observed in a Conductive One‐Dimensional Rhodium–Dioxolene Complex
The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the p...
Saved in:
Published in | Chemistry : a European journal Vol. 27; no. 9; pp. 3074 - 3084 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X‐ray photoelectron spectroscopy (XPS) revealed that the room‐temperature (RT) phase is in a mixed‐valence state, and therefore, the drastic changes originate from the mixed‐valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large‐amplitude vibration of the Rh−Rh bonds. From these results, a possible mechanism for the appearance of the mixed‐valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d‐band to the semiquinonato π* orbital coupled with the large‐amplitude vibration of the Rh−Rh bonds.
Vibronic interaction has the potential to create new fields on dynamic electronic states arising from the mixing of different electronic states by nuclear displacements. A one‐dimensional rhodium‐dioxolene complex undergoes drastic changes in properties with the phase transition, which are ascribable to the appearance of the mixed‐valence state due to the metal–ligand electron transfer coupled with a large‐amplitude vibration of Rh−Rh bonds. |
---|---|
AbstractList | The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one-dimensional (1D) rhodium-dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X-ray photoelectron spectroscopy (XPS) revealed that the room-temperature (RT) phase is in a mixed-valence state, and therefore, the drastic changes originate from the mixed-valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large-amplitude vibration of the Rh-Rh bonds. From these results, a possible mechanism for the appearance of the mixed-valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d-band to the semiquinonato π* orbital coupled with the large-amplitude vibration of the Rh-Rh bonds.The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one-dimensional (1D) rhodium-dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X-ray photoelectron spectroscopy (XPS) revealed that the room-temperature (RT) phase is in a mixed-valence state, and therefore, the drastic changes originate from the mixed-valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large-amplitude vibration of the Rh-Rh bonds. From these results, a possible mechanism for the appearance of the mixed-valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d-band to the semiquinonato π* orbital coupled with the large-amplitude vibration of the Rh-Rh bonds. The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X‐ray photoelectron spectroscopy (XPS) revealed that the room‐temperature (RT) phase is in a mixed‐valence state, and therefore, the drastic changes originate from the mixed‐valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large‐amplitude vibration of the Rh−Rh bonds. From these results, a possible mechanism for the appearance of the mixed‐valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d‐band to the semiquinonato π* orbital coupled with the large‐amplitude vibration of the Rh−Rh bonds. Vibronic interaction has the potential to create new fields on dynamic electronic states arising from the mixing of different electronic states by nuclear displacements. A one‐dimensional rhodium‐dioxolene complex undergoes drastic changes in properties with the phase transition, which are ascribable to the appearance of the mixed‐valence state due to the metal–ligand electron transfer coupled with a large‐amplitude vibration of Rh−Rh bonds. The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X‐ray photoelectron spectroscopy (XPS) revealed that the room‐temperature (RT) phase is in a mixed‐valence state, and therefore, the drastic changes originate from the mixed‐valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large‐amplitude vibration of the Rh−Rh bonds. From these results, a possible mechanism for the appearance of the mixed‐valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d‐band to the semiquinonato π* orbital coupled with the large‐amplitude vibration of the Rh−Rh bonds. The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one-dimensional (1D) rhodium-dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X-ray photoelectron spectroscopy (XPS) revealed that the room-temperature (RT) phase is in a mixed-valence state, and therefore, the drastic changes originate from the mixed-valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large-amplitude vibration of the Rh-Rh bonds. From these results, a possible mechanism for the appearance of the mixed-valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d-band to the semiquinonato π* orbital coupled with the large-amplitude vibration of the Rh-Rh bonds. |
Author | Mitsumi, Minoru Akutsu, Hiroki Toriumi, Koshiro Miyazaki, Yuji Akashi, Haruo Kitagawa, Yasutaka Komatsu, Yuuki Hashimoto, Masahiro |
Author_xml | – sequence: 1 givenname: Minoru orcidid: 0000-0003-0659-2548 surname: Mitsumi fullname: Mitsumi, Minoru email: mitsumi@chem.ous.ac.jp organization: Okayama University of Science – sequence: 2 givenname: Yuuki surname: Komatsu fullname: Komatsu, Yuuki organization: University of Hyogo – sequence: 3 givenname: Masahiro surname: Hashimoto fullname: Hashimoto, Masahiro organization: University of Hyogo – sequence: 4 givenname: Koshiro surname: Toriumi fullname: Toriumi, Koshiro organization: University of Hyogo – sequence: 5 givenname: Yasutaka orcidid: 0000-0002-6583-7026 surname: Kitagawa fullname: Kitagawa, Yasutaka email: kitagawa@cheng.es.osaka-u.ac.jp organization: Osaka University – sequence: 6 givenname: Yuji orcidid: 0000-0001-9093-8868 surname: Miyazaki fullname: Miyazaki, Yuji email: miyazaki@chem.sci.osaka-u.ac.jp organization: Osaka University – sequence: 7 givenname: Hiroki orcidid: 0000-0002-8350-2246 surname: Akutsu fullname: Akutsu, Hiroki organization: Osaka University, 1-1 Machikaneyama – sequence: 8 givenname: Haruo surname: Akashi fullname: Akashi, Haruo organization: Okayama University of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33174634$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFLUsUiQ2bDM-xY0-WVVpopUEjVUO3keO8MK4Se7CT0u76CQj-sF-C0ymtVAmxsmSfe9-7vgdkzzqLhLylMKcA2Ue9wX6eQQbAMypfkBnNM5oyKfI9MoOCy1TkrNgnByFcAkAhGHtF9hmjkgvGZ-TXUvlveHf786jfdmYYG0zWG_S96pILU3s1GGfja-nGbYdNcqE6tDoyahxcj97oZO2VDWbiklUd0F9FzNhEJaWzzagHc4XJyk4jjk2PEXU2mp9vXGPG_u7297Fx1y66YhTEHfD6NXnZqi7gm4fzkHz9dLIuT9Pl6vNZebRMNZdCpjVrOWcxYi6B01ZC09Q1AMvaVvGmFVzqbAE8xm8gb0FwoTHeF7kCKWtB2SH5sPPdevd9xDBUvQkau05ZdGOoMp4XIltIKiP6_hl66UYfc0zUQkoAmueRevdAjXWPTbX1plf-pvr72xGY7wDtXQge20eEQjXVWU11Vo91RgF_JtBmuO9k8Mp0_5YVO9kP0-HNf4ZU5enJlyftH9RLuVA |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2021_131694 crossref_primary_10_1016_j_ica_2021_120604 crossref_primary_10_3390_ijms241310457 crossref_primary_10_1021_acs_inorgchem_4c03245 crossref_primary_10_1007_s11172_021_3167_6 crossref_primary_10_1002_ejoc_202100476 crossref_primary_10_1002_chem_202101032 |
Cites_doi | 10.1038/nchem.2547 10.1016/j.ccr.2017.03.004 10.1021/ja00084a107 10.1002/ange.19971092406 10.1002/9780470132593.ch62 10.1021/jacs.0c01073 10.1021/ja805794a 10.1107/S2053229614024218 10.1039/D0SC00684J 10.1002/ejic.200500323 10.1002/9780470166420.ch5 10.1002/anie.200453944 10.1007/BF02495150 10.1002/ange.201611985 10.1002/ange.200602205 10.1039/c1cs15042a 10.1002/anie.199514811 10.1002/anie.200501189 10.1038/nature08731 10.1021/ja110007u 10.1021/ja507132m 10.1021/acs.jpclett.7b01111 10.1021/ja00535a021 10.1016/j.jmr.2011.01.002 10.1002/ejic.201700849 10.5940/jcrsj.51.218 10.1002/anie.200602205 10.1021/ja5017014 10.1038/ncomms12212 10.1002/anie.201807556 10.1021/ja010900v 10.1021/jacs.6b10544 10.1016/j.crci.2008.09.007 10.1021/ar0200706 10.1021/ja00037a027 10.1016/j.crci.2006.09.011 10.1021/acs.jpclett.7b01794 10.1021/ja043162u 10.1126/science.1071372 10.1002/anie.199727341 10.1002/ange.201606165 10.1107/S0108767307043930 10.1016/S0022-328X(00)85964-1 10.1038/s41467-020-15988-1 10.1021/cm400147p 10.1021/acs.accounts.9b00049 10.1021/ja9055855 10.1016/S0038-1098(01)00366-0 10.1021/ja00005a078 10.1002/chem.201500796 10.1021/ja00071a035 10.1021/jacs.8b03949 10.1103/PhysRevLett.46.253 10.1021/jacs.9b02375 10.1016/S0010-8545(01)00309-5 10.1002/ange.19951071315 10.1021/jacs.6b05089 10.1002/ange.200501189 10.1039/C2CS35278H 10.1007/s11172-008-0111-y 10.1021/jacs.5b00412 10.1021/acs.inorgchem.7b01256 10.1038/nchem.1455 10.1016/j.ccr.2014.01.014 10.1143/JPSJ.52.3475 10.1002/anie.201606165 10.1002/ange.201807556 10.1126/science.1076129 10.1038/ncomms4865 10.1039/C9CC09238B 10.1002/ange.200453944 10.1021/ja402674x 10.1016/0022-3697(92)90249-D 10.1002/anie.201611985 10.1126/science.279.5347.44 10.1016/j.jmmm.2005.10.134 10.1103/PhysRevB.19.730 10.1016/S0009-2614(00)00166-4 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202004217 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 3084 |
ExternalDocumentID | 33174634 10_1002_chem_202004217 CHEM202004217 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4767-b3f44309457041f70ddbb0032ffa4df647c2804653d05f0646ce4df95a077b613 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 02:36:06 EDT 2025 Fri Jul 25 10:30:00 EDT 2025 Thu Apr 03 07:03:53 EDT 2025 Tue Jul 01 01:30:20 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Wed Jan 22 16:31:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | conducting materials large-amplitude vibration valence tautomerism mixed-valent compounds vibronic interactions |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-b3f44309457041f70ddbb0032ffa4df647c2804653d05f0646ce4df95a077b613 |
Notes | In memory of Gleb A. Abakumov, who passed away on August 29, 2019 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6583-7026 0000-0002-8350-2246 0000-0003-0659-2548 0000-0001-9093-8868 |
PMID | 33174634 |
PQID | 2487700155 |
PQPubID | 986340 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2459628717 proquest_journals_2487700155 pubmed_primary_33174634 crossref_primary_10_1002_chem_202004217 crossref_citationtrail_10_1002_chem_202004217 wiley_primary_10_1002_chem_202004217_CHEM202004217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 10, 2021 |
PublicationDateYYYYMMDD | 2021-02-10 |
PublicationDate_xml | – month: 02 year: 2021 text: February 10, 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2013; 25 1991; 113 2000; 49 1993; 328 2015; 71 2019; 52 1981; 46 2010; 463 1982; 266 1983; 52 2020; 56 1998; 279 2020; 11 1992; 53 2014; 136 2001; 216–217 2014; 5 2009; 51 2015; 137 1990 2011; 209 2018 2018; 57 130 2004; 37 1992; 114 2005 2005; 44 117 1997 1997; 36 109 2008; 64 1980; 102 1988 2017; 339 2000; 319 1979; 19 2001; 123 1994; 116 2004 2004; 43 116 2018; 140 2001; 120 2002; 296 2020; 142 2013; 42 2011; 40 2008; 57 2005 2004 2008; 11 2009; 131 2017 2017; 56 129 2007; 10 2019; 141 2003; 299 1994; 41 2011; 133 1988; 3 2016; 7 1981; 214 1995 1995; 34 107 2005; 127 2007 2007; 46 119 2015; 21 2017; 56 2013; 135 2017 2016; 138 2013 2012; 4 1993; 115 2016; 8 2014; 268 2008; 130 2006; 300 e_1_2_7_3_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_15_2 Abakumov G. A. (e_1_2_7_55_2) 1982; 266 e_1_2_7_87_1 e_1_2_7_41_2 e_1_2_7_64_2 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_1 e_1_2_7_71_1 Hauser A. (e_1_2_7_29_2) 2004 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_2 e_1_2_7_52_3 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 e_1_2_7_4_2 Martinengo S. (e_1_2_7_83_1) 1990 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_86_1 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_44_3 e_1_2_7_48_2 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_32_3 e_1_2_7_20_2 e_1_2_7_36_1 e_1_2_7_78_2 e_1_2_7_59_2 Kahn O. (e_1_2_7_10_2) 1988; 3 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_17_2 e_1_2_7_81_1 e_1_2_7_13_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_1 e_1_2_7_85_1 e_1_2_7_66_3 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_2 Perrin D. D. (e_1_2_7_82_1) 1988 e_1_2_7_73_1 e_1_2_7_92_2 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_39_1 e_1_2_7_58_3 e_1_2_7_2_2 e_1_2_7_80_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_84_1 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 Abakumov G. A. (e_1_2_7_54_2) 1993; 328 (e_1_2_7_25_2) 2013 e_1_2_7_46_1 e_1_2_7_65_3 e_1_2_7_88_2 Hendrickson D. N. (e_1_2_7_50_2) 2004 e_1_2_7_69_1 e_1_2_7_27_2 e_1_2_7_72_1 e_1_2_7_91_2 e_1_2_7_76_1 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_38_2 |
References_xml | – volume: 36 109 start-page: 2734 2852 year: 1997 1997 end-page: 2736 2855 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 49 start-page: 1506 year: 2000 end-page: 1511 publication-title: Russ. Chem. Bull. – volume: 8 start-page: 3147 year: 2017 end-page: 3151 publication-title: J. Phys. Chem. Lett. – volume: 52 start-page: 1369 year: 2019 end-page: 1379 publication-title: Acc. Chem. Res. – volume: 138 start-page: 14170 year: 2016 end-page: 14173 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1992 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 644 year: 2016 end-page: 656 publication-title: Nat. Chem. – volume: 43 116 start-page: 3136 3198 year: 2004 2004 end-page: 3138 3200 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 827 year: 2004 end-page: 835 publication-title: Acc. Chem. Res. – volume: 56 129 start-page: 656 672 year: 2017 2017 end-page: 656 672 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 216–217 start-page: 99 year: 2001 end-page: 125 publication-title: Coord. Chem. Rev. – volume: 57 130 start-page: 12043 12219 year: 2018 2018 end-page: 12047 12223 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 9682 year: 2015 end-page: 9696 publication-title: Chem. Eur. J. – volume: 115 start-page: 8221 year: 1993 end-page: 8229 publication-title: J. Am. Chem. Soc. – start-page: 242 year: 1990 end-page: 245 – volume: 266 start-page: 361 year: 1982 end-page: 363 publication-title: Dokl. Akad. Nauk SSSR – volume: 4 start-page: 921 year: 2012 end-page: 926 publication-title: Nat. Chem. – volume: 71 start-page: 3 year: 2015 end-page: 8 publication-title: Acta Crystallogr. Sect. C – volume: 140 start-page: 6550 year: 2018 end-page: 6553 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 6766 year: 2005 end-page: 6779 publication-title: J. Am. Chem. Soc. – start-page: 155 year: 2004 end-page: 198 – volume: 123 start-page: 11179 year: 2001 end-page: 11192 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 687 year: 2008 end-page: 717 publication-title: Russ. Chem. Bull. – volume: 64 start-page: 112 year: 2008 end-page: 122 publication-title: Acta Crystallogr. Sect. A – volume: 19 start-page: 730 year: 1979 end-page: 741 publication-title: Phys. Rev. B – volume: 339 start-page: 17 year: 2017 end-page: 103 publication-title: Coord. Chem. Rev. – volume: 131 start-page: 15049 year: 2009 end-page: 15054 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1137 year: 2008 end-page: 1154 publication-title: C. R. Chimie – volume: 25 start-page: 808 year: 2013 end-page: 814 publication-title: Chem. Mater. – volume: 113 start-page: 1862 year: 1991 end-page: 1864 publication-title: J. Am. Chem. Soc. – volume: 44 117 start-page: 4164 4236 year: 2005 2005 end-page: 4168 4240 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 107 start-page: 1481 1580 year: 1995 1995 end-page: 1483 1582 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 42 start-page: 1525 year: 2013 end-page: 1539 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 3865 year: 2014 publication-title: Nat. Commun. – volume: 328 start-page: 332 year: 1993 end-page: 335 publication-title: Dokl. Akad. Nauk SSSR – volume: 142 start-page: 10692 year: 2020 end-page: 10704 publication-title: J. Am. Chem. Soc. – volume: 319 start-page: 223 year: 2000 end-page: 230 publication-title: Chem. Phys. Lett. – volume: 268 start-page: 23 year: 2014 end-page: 40 publication-title: Coord. Chem. Rev. – volume: 52 start-page: 3475 year: 1983 end-page: 3485 publication-title: J. Phys. Soc. Jpn. – volume: 46 119 start-page: 2152 2200 year: 2007 2007 end-page: 2187 2236 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 717 735 year: 2017 2017 end-page: 721 739 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 120 start-page: 165 year: 2001 end-page: 170 publication-title: Solid State Commun. – volume: 114 start-page: 4220 year: 1992 end-page: 4222 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 5338 year: 2011 end-page: 5345 publication-title: J. Am. Chem. Soc. – volume: 296 start-page: 1443 year: 2002 end-page: 1445 publication-title: Science – volume: 135 start-page: 8655 year: 2013 end-page: 8667 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1297 year: 1992 end-page: 1304 publication-title: J. Phys. Chem. Solids – volume: 300 start-page: e407 year: 2006 end-page: e410 publication-title: J. Magn. Magn. Mater. – volume: 3 start-page: 140 year: 1988 end-page: 151 publication-title: Chemtronics – volume: 46 start-page: 253 year: 1981 end-page: 257 publication-title: Phys. Rev. Lett. – volume: 279 start-page: 44 year: 1998 end-page: 48 publication-title: Science – volume: 102 start-page: 4951 year: 1980 end-page: 4957 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 6822 year: 2019 end-page: 6826 publication-title: J. Am. Chem. Soc. – volume: 299 start-page: 229 year: 2003 end-page: 232 publication-title: Science – volume: 130 start-page: 14102 year: 2008 end-page: 14104 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 12212 year: 2016 publication-title: Nat. Commun. – volume: 40 start-page: 3313 year: 2011 end-page: 3335 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 2071 year: 2020 end-page: 2086 publication-title: Chem. Commun. – volume: 136 start-page: 12184 year: 2014 end-page: 12192 publication-title: J. Am. Chem. Soc. – volume: 214 start-page: 119 year: 1981 end-page: 124 publication-title: J. Organomet. Chem. – volume: 116 start-page: 2229 year: 1994 end-page: 2230 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 8513 year: 2017 end-page: 8526 publication-title: Inorg. Chem. – volume: 209 start-page: 149 year: 2011 end-page: 155 publication-title: J. Magn. Reson. – start-page: 5356 year: 2017 end-page: 5365 publication-title: Eur. J. Inorg. Chem. – year: 1988 – volume: 11 start-page: 3610 year: 2020 end-page: 3618 publication-title: Chem. Sci. – volume: 10 start-page: 21 year: 2007 end-page: 36 publication-title: C. R. Chimie – volume: 138 start-page: 16493 year: 2016 end-page: 16501 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 218 year: 2009 end-page: 224 publication-title: J. Cryst. Soc. Jpn. – volume: 41 start-page: 331 year: 1994 end-page: 442 publication-title: Prog. Inorg. Chem. – start-page: 63 year: 2004 end-page: 95 – volume: 463 start-page: 789 year: 2010 end-page: 792 publication-title: Nature – start-page: 2957 year: 2005 end-page: 2971 publication-title: Eur. J. Inorg. Chem. – volume: 136 start-page: 7026 year: 2014 end-page: 7037 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 4477 year: 2015 end-page: 4486 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 4774 year: 2017 end-page: 4778 publication-title: J. Phys. Chem. Lett. – year: 2013 – ident: e_1_2_7_5_2 doi: 10.1038/nchem.2547 – ident: e_1_2_7_73_1 – ident: e_1_2_7_4_2 doi: 10.1016/j.ccr.2017.03.004 – ident: e_1_2_7_87_1 – ident: e_1_2_7_59_2 doi: 10.1021/ja00084a107 – ident: e_1_2_7_90_1 – ident: e_1_2_7_52_3 doi: 10.1002/ange.19971092406 – start-page: 242 volume-title: Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses, Vol. 28 year: 1990 ident: e_1_2_7_83_1 doi: 10.1002/9780470132593.ch62 – ident: e_1_2_7_61_2 doi: 10.1021/jacs.0c01073 – ident: e_1_2_7_78_2 doi: 10.1021/ja805794a – ident: e_1_2_7_89_2 doi: 10.1107/S2053229614024218 – ident: e_1_2_7_11_1 – ident: e_1_2_7_12_2 doi: 10.1039/D0SC00684J – ident: e_1_2_7_49_2 doi: 10.1002/ejic.200500323 – volume-title: Spin-Crossover Materials: Properties and Applications year: 2013 ident: e_1_2_7_25_2 – ident: e_1_2_7_53_2 doi: 10.1002/9780470166420.ch5 – ident: e_1_2_7_65_2 doi: 10.1002/anie.200453944 – ident: e_1_2_7_60_1 – ident: e_1_2_7_84_1 doi: 10.1007/BF02495150 – ident: e_1_2_7_32_3 doi: 10.1002/ange.201611985 – ident: e_1_2_7_39_1 – ident: e_1_2_7_8_3 doi: 10.1002/ange.200602205 – ident: e_1_2_7_27_2 doi: 10.1039/c1cs15042a – volume: 266 start-page: 361 year: 1982 ident: e_1_2_7_55_2 publication-title: Dokl. Akad. Nauk SSSR – ident: e_1_2_7_66_2 doi: 10.1002/anie.199514811 – ident: e_1_2_7_43_1 – ident: e_1_2_7_58_2 doi: 10.1002/anie.200501189 – ident: e_1_2_7_38_2 doi: 10.1038/nature08731 – ident: e_1_2_7_16_2 doi: 10.1021/ja110007u – ident: e_1_2_7_41_2 doi: 10.1021/ja507132m – ident: e_1_2_7_22_2 doi: 10.1021/acs.jpclett.7b01111 – ident: e_1_2_7_56_2 doi: 10.1021/ja00535a021 – ident: e_1_2_7_57_1 – ident: e_1_2_7_85_1 doi: 10.1016/j.jmr.2011.01.002 – ident: e_1_2_7_71_1 doi: 10.1002/ejic.201700849 – ident: e_1_2_7_91_2 doi: 10.5940/jcrsj.51.218 – ident: e_1_2_7_8_2 doi: 10.1002/anie.200602205 – ident: e_1_2_7_64_2 doi: 10.1021/ja5017014 – ident: e_1_2_7_23_2 doi: 10.1038/ncomms12212 – ident: e_1_2_7_93_1 – ident: e_1_2_7_13_2 doi: 10.1002/anie.201807556 – ident: e_1_2_7_80_1 doi: 10.1021/ja010900v – ident: e_1_2_7_68_1 doi: 10.1021/jacs.6b10544 – ident: e_1_2_7_36_1 – ident: e_1_2_7_92_2 – ident: e_1_2_7_48_2 doi: 10.1016/j.crci.2008.09.007 – ident: e_1_2_7_9_2 doi: 10.1021/ar0200706 – ident: e_1_2_7_74_2 doi: 10.1021/ja00037a027 – ident: e_1_2_7_28_2 doi: 10.1016/j.crci.2006.09.011 – ident: e_1_2_7_77_1 – start-page: 63 volume-title: Topics in Current Chemistry, Vol. 234 year: 2004 ident: e_1_2_7_50_2 – ident: e_1_2_7_70_1 doi: 10.1021/acs.jpclett.7b01794 – ident: e_1_2_7_34_2 doi: 10.1021/ja043162u – ident: e_1_2_7_35_2 doi: 10.1126/science.1071372 – ident: e_1_2_7_52_2 doi: 10.1002/anie.199727341 – ident: e_1_2_7_44_3 doi: 10.1002/ange.201606165 – ident: e_1_2_7_88_2 doi: 10.1107/S0108767307043930 – ident: e_1_2_7_75_2 doi: 10.1016/S0022-328X(00)85964-1 – ident: e_1_2_7_69_1 doi: 10.1038/s41467-020-15988-1 – volume: 328 start-page: 332 year: 1993 ident: e_1_2_7_54_2 publication-title: Dokl. Akad. Nauk SSSR – ident: e_1_2_7_15_2 doi: 10.1021/cm400147p – ident: e_1_2_7_21_1 – ident: e_1_2_7_3_2 doi: 10.1021/acs.accounts.9b00049 – volume-title: Purification of laboratory chemicals year: 1988 ident: e_1_2_7_82_1 – ident: e_1_2_7_17_2 doi: 10.1021/ja9055855 – ident: e_1_2_7_19_2 doi: 10.1016/S0038-1098(01)00366-0 – ident: e_1_2_7_46_1 – ident: e_1_2_7_42_2 doi: 10.1021/ja00005a078 – ident: e_1_2_7_37_2 doi: 10.1002/chem.201500796 – ident: e_1_2_7_67_2 doi: 10.1021/ja00071a035 – ident: e_1_2_7_14_2 doi: 10.1021/jacs.8b03949 – ident: e_1_2_7_20_2 doi: 10.1103/PhysRevLett.46.253 – ident: e_1_2_7_62_2 doi: 10.1021/jacs.9b02375 – ident: e_1_2_7_51_2 doi: 10.1016/S0010-8545(01)00309-5 – ident: e_1_2_7_66_3 doi: 10.1002/ange.19951071315 – ident: e_1_2_7_63_2 doi: 10.1021/jacs.6b05089 – ident: e_1_2_7_58_3 doi: 10.1002/ange.200501189 – ident: e_1_2_7_6_2 doi: 10.1039/C2CS35278H – ident: e_1_2_7_1_1 – ident: e_1_2_7_7_2 doi: 10.1007/s11172-008-0111-y – ident: e_1_2_7_45_2 doi: 10.1021/jacs.5b00412 – ident: e_1_2_7_40_2 doi: 10.1021/acs.inorgchem.7b01256 – start-page: 155 volume-title: Topics in Current Chemistry, Vol. 234 year: 2004 ident: e_1_2_7_29_2 – ident: e_1_2_7_33_2 doi: 10.1038/nchem.1455 – ident: e_1_2_7_47_2 doi: 10.1016/j.ccr.2014.01.014 – ident: e_1_2_7_76_1 doi: 10.1143/JPSJ.52.3475 – ident: e_1_2_7_44_2 doi: 10.1002/anie.201606165 – ident: e_1_2_7_13_3 doi: 10.1002/ange.201807556 – ident: e_1_2_7_18_2 doi: 10.1126/science.1076129 – ident: e_1_2_7_24_2 doi: 10.1038/ncomms4865 – ident: e_1_2_7_2_2 doi: 10.1039/C9CC09238B – ident: e_1_2_7_65_3 doi: 10.1002/ange.200453944 – volume: 3 start-page: 140 year: 1988 ident: e_1_2_7_10_2 publication-title: Chemtronics – ident: e_1_2_7_26_2 doi: 10.1021/ja402674x – ident: e_1_2_7_86_1 doi: 10.1016/0022-3697(92)90249-D – ident: e_1_2_7_32_2 doi: 10.1002/anie.201611985 – ident: e_1_2_7_30_2 doi: 10.1126/science.279.5347.44 – ident: e_1_2_7_72_1 doi: 10.1016/j.jmmm.2005.10.134 – ident: e_1_2_7_79_2 doi: 10.1103/PhysRevB.19.730 – ident: e_1_2_7_81_1 doi: 10.1016/S0009-2614(00)00166-4 – ident: e_1_2_7_31_1 |
SSID | ssj0009633 |
Score | 2.3880363 |
Snippet | The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3074 |
SubjectTerms | Amplitudes Chemistry conducting materials Coupling (molecular) Crystals Electron transfer large-amplitude vibration mixed-valent compounds Phase transitions Photoelectron spectroscopy Photoelectrons Rhodium Valence valence tautomerism Vibration vibronic interactions |
Title | Large‐Amplitude Thermal Vibration‐Coupled Valence Tautomeric Transition Observed in a Conductive One‐Dimensional Rhodium–Dioxolene Complex |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202004217 https://www.ncbi.nlm.nih.gov/pubmed/33174634 https://www.proquest.com/docview/2487700155 https://www.proquest.com/docview/2459628717 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQl3Lh0RZYWCpXQuop4HWcmBzRAkIVDwkB4hb5qa7YJqhsJMRpf0JV_iG_pDPOJnRBqBIck9jxY8bjz_b4G0I2pTNaqyyNXIIhzJSQUaaZj3S8Y61MvfWBbf_4JD28EN-vkqt_bvHX_BDthhuOjGCvcYArfbv9RBoKbcKb5ChlgNVghNFhC1HR2RN_FGhXHUseqoAcrA1rI-Pb09mnZ6UXUHMauYap52CBqKbStcfJ9VY10lvm_hmf43tatUjmJ7iU7taKtERmXPGRfOg34eA-kT9H6DP-OP69iz7oyIhJQcXArA_pJZaIAoav_bK6GTpLL1W4zUTPVTUqw6kQDdNi8BCjpxo3gyHZoKCK9ssCWWfB7tLTAovYw5ADNV0IPftR2kH183H8sDco79CLwFE0YkN395lcHOyf9w-jSUCHyAgJBlnHXogYpJFIJnpeMms1mhXuvRLWp0IavsOQ8c2yxANYSo2D91mimJQagMcymS3Kwq0Sql3PZpnnzDoltHSZE6nOEiMT0-OG-Q6JGoHmZsJ2jkE3hnnN08xz7Om87ekO-damv6l5Pl5N2W30I5-M99ucw7pPBvzZIV_bzyAhPH5RhSsrTIORjmCBCr9YqfWqLSoGGCfSWHQID9rxnzrkyJfRPq29JdM6mePonoOxbViXzI5-VW4D8NVIfwlj6C--ZiIU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_ikLBYwE4pTW63Xi5sCh2qXa0m0rVduqtxDHtlixJBXdiMKpj4DgSXgVHqFPwozzUy0IISH1wDGJY8eeGc_YGX8fwDNlM63TOApsSBRmqVRBrLkLdG_dGBU54zza_s5uNDyQr4_CowX43pyFqfAh2g03sgw_X5OB04b02gVqKHaKjpKTmDGurvMqt-2nj7hqO3m5NUARPxdi89W4PwxqYoEgkwonBt1zUvZwYRMqLrtOcWM0qbdwLpXGRVJlYp0T8pjhoUOnHWUW78dhypXS6ACx3itwlWjECa5_sH-BWIX6XLHXY6cJ9bXBieRibf575_3gb8HtfKzsnd3mDfjRDFOV4_JutZzp1ezzLwiS_9U43oTrdejNNipbuQULNr8NS_2G8e4OfB1RWvz52ZcNSrMn0E-GVoSea8oOqYukw_i0X5THU2vYYeoPbLFxWs4K_-OLec_vk-DYnqb9biw2yVnK-kVOwLroWtheTk0MiFWhQkRh-28LMynfn599G0yKU0qUsIzm6ak9vQsHlzIk92AxL3J7H5i2XRPHTnBjU6mVja2MdBxmKsy6IuOuA0GjQUlWA7oTr8g0qaCoRUKSTVrJduBFW_64gjL5Y8mVRiGTeko7SQQubZUPsTvwtH2MEqI_TGlui5LKEJkTrsGxiuVKkdumehipyqgnOyC8Ov7lGxKCBGmvHvzLS09gaTjeGSWjrd3th3BNUDYSUfnwFVicfSjtIwwnZ_qxN2AGby5b038Csu59kg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qELBYwE4pTW6zhxc-BQbVi1tLSoaqve0ji2xapLsqIbUTj1ERC8CK_CK_RJmMlftSCEhNQDxySO_2bGM07G3wfwTNlM6zQKPRsQhVkqlRdp7jztrxijQmdchbb_Zitc25OvD4KDOfjenoWp8SG6D25kGdV6TQY-MW75HDQUx0QnyUnKGFY3aZUb9tNH3LQdv1yPUcLPhRi-2h2seQ2vgJdJheuC9p2UPu5rAsVl3ylujCbtFs6l0rhQqkyscAIeMzxw6LPDzOL9KEi5Uhr9H9Z7CS7LkEdEFhHvnANWoTrX5PU4ZgJ9bWEiuVie7e-sG_wttp0NlStfN7wBP9pZqlNcjpbKqV7KPv8CIPk_TeNNuN4E3my1tpRbMGfz23B10PLd3YGvm5QUf3b6ZZWS7Anyk6ENod8as30aIWkwPh0U5WRsDdtPq-NabDctp0X124tVfr9KgWPbmr52Y7FRzlI2KHKC1UXHwrZzaiImToUaD4XtvCvMqHx_dvotHhUnlCZhGa3SY3tyF_YuZEruwXxe5HYBmLZ9E0VOcGNTqZWNrAx1FGQqyPoi464HXqtASdbAuROryDipgahFQpJNOsn24EVXflIDmfyx5GKrj0mzoB0nAje2qgqwe_C0e4wSov9LaW6LksoQlRPuwLGK-7Ued035GKfK0Jc9EJU2_qUPCQGCdFcP_uWlJ3DlbTxMNte3Nh7CNUGpSMTjwxdhfvqhtI8wlpzqx5X5Mji8aEX_CagwfEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Amplitude+Thermal+Vibration%E2%80%90Coupled+Valence+Tautomeric+Transition+Observed+in+a+Conductive+One%E2%80%90Dimensional+Rhodium%E2%80%93Dioxolene+Complex&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mitsumi%2C+Minoru&rft.au=Komatsu%2C+Yuuki&rft.au=Hashimoto%2C+Masahiro&rft.au=Toriumi%2C+Koshiro&rft.date=2021-02-10&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=9&rft.spage=3074&rft.epage=3084&rft_id=info:doi/10.1002%2Fchem.202004217&rft.externalDBID=10.1002%252Fchem.202004217&rft.externalDocID=CHEM202004217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |