Large‐Amplitude Thermal Vibration‐Coupled Valence Tautomeric Transition Observed in a Conductive One‐Dimensional Rhodium–Dioxolene Complex

The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the p...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 27; no. 9; pp. 3074 - 3084
Main Authors Mitsumi, Minoru, Komatsu, Yuuki, Hashimoto, Masahiro, Toriumi, Koshiro, Kitagawa, Yasutaka, Miyazaki, Yuji, Akutsu, Hiroki, Akashi, Haruo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X‐ray photoelectron spectroscopy (XPS) revealed that the room‐temperature (RT) phase is in a mixed‐valence state, and therefore, the drastic changes originate from the mixed‐valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large‐amplitude vibration of the Rh−Rh bonds. From these results, a possible mechanism for the appearance of the mixed‐valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d‐band to the semiquinonato π* orbital coupled with the large‐amplitude vibration of the Rh−Rh bonds. Vibronic interaction has the potential to create new fields on dynamic electronic states arising from the mixing of different electronic states by nuclear displacements. A one‐dimensional rhodium‐dioxolene complex undergoes drastic changes in properties with the phase transition, which are ascribable to the appearance of the mixed‐valence state due to the metal–ligand electron transfer coupled with a large‐amplitude vibration of Rh−Rh bonds.
AbstractList The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one-dimensional (1D) rhodium-dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X-ray photoelectron spectroscopy (XPS) revealed that the room-temperature (RT) phase is in a mixed-valence state, and therefore, the drastic changes originate from the mixed-valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large-amplitude vibration of the Rh-Rh bonds. From these results, a possible mechanism for the appearance of the mixed-valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d-band to the semiquinonato π* orbital coupled with the large-amplitude vibration of the Rh-Rh bonds.The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one-dimensional (1D) rhodium-dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X-ray photoelectron spectroscopy (XPS) revealed that the room-temperature (RT) phase is in a mixed-valence state, and therefore, the drastic changes originate from the mixed-valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large-amplitude vibration of the Rh-Rh bonds. From these results, a possible mechanism for the appearance of the mixed-valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d-band to the semiquinonato π* orbital coupled with the large-amplitude vibration of the Rh-Rh bonds.
The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X‐ray photoelectron spectroscopy (XPS) revealed that the room‐temperature (RT) phase is in a mixed‐valence state, and therefore, the drastic changes originate from the mixed‐valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large‐amplitude vibration of the Rh−Rh bonds. From these results, a possible mechanism for the appearance of the mixed‐valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d‐band to the semiquinonato π* orbital coupled with the large‐amplitude vibration of the Rh−Rh bonds. Vibronic interaction has the potential to create new fields on dynamic electronic states arising from the mixing of different electronic states by nuclear displacements. A one‐dimensional rhodium‐dioxolene complex undergoes drastic changes in properties with the phase transition, which are ascribable to the appearance of the mixed‐valence state due to the metal–ligand electron transfer coupled with a large‐amplitude vibration of Rh−Rh bonds.
The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one‐dimensional (1D) rhodium‐dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X‐ray photoelectron spectroscopy (XPS) revealed that the room‐temperature (RT) phase is in a mixed‐valence state, and therefore, the drastic changes originate from the mixed‐valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large‐amplitude vibration of the Rh−Rh bonds. From these results, a possible mechanism for the appearance of the mixed‐valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d‐band to the semiquinonato π* orbital coupled with the large‐amplitude vibration of the Rh−Rh bonds.
The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to molecular devices. Herein, a one-dimensional (1D) rhodium-dioxolene complex is reported that exhibits drastic changes in properties with the phase transition. X-ray photoelectron spectroscopy (XPS) revealed that the room-temperature (RT) phase is in a mixed-valence state, and therefore, the drastic changes originate from the mixed-valence state appearing in the RT phase. Another notable feature is that the mean square displacements of the rhodium atoms along the 1D chain dramatically increased in the RT phase, indicating a large-amplitude vibration of the Rh-Rh bonds. From these results, a possible mechanism for the appearance of the mixed-valence state in the RT phase was proposed based on the thermal electron transfer from the 1D d-band to the semiquinonato π* orbital coupled with the large-amplitude vibration of the Rh-Rh bonds.
Author Mitsumi, Minoru
Akutsu, Hiroki
Toriumi, Koshiro
Miyazaki, Yuji
Akashi, Haruo
Kitagawa, Yasutaka
Komatsu, Yuuki
Hashimoto, Masahiro
Author_xml – sequence: 1
  givenname: Minoru
  orcidid: 0000-0003-0659-2548
  surname: Mitsumi
  fullname: Mitsumi, Minoru
  email: mitsumi@chem.ous.ac.jp
  organization: Okayama University of Science
– sequence: 2
  givenname: Yuuki
  surname: Komatsu
  fullname: Komatsu, Yuuki
  organization: University of Hyogo
– sequence: 3
  givenname: Masahiro
  surname: Hashimoto
  fullname: Hashimoto, Masahiro
  organization: University of Hyogo
– sequence: 4
  givenname: Koshiro
  surname: Toriumi
  fullname: Toriumi, Koshiro
  organization: University of Hyogo
– sequence: 5
  givenname: Yasutaka
  orcidid: 0000-0002-6583-7026
  surname: Kitagawa
  fullname: Kitagawa, Yasutaka
  email: kitagawa@cheng.es.osaka-u.ac.jp
  organization: Osaka University
– sequence: 6
  givenname: Yuji
  orcidid: 0000-0001-9093-8868
  surname: Miyazaki
  fullname: Miyazaki, Yuji
  email: miyazaki@chem.sci.osaka-u.ac.jp
  organization: Osaka University
– sequence: 7
  givenname: Hiroki
  orcidid: 0000-0002-8350-2246
  surname: Akutsu
  fullname: Akutsu, Hiroki
  organization: Osaka University, 1-1 Machikaneyama
– sequence: 8
  givenname: Haruo
  surname: Akashi
  fullname: Akashi, Haruo
  organization: Okayama University of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33174634$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFLUsUiQ2bDM-xY0-WVVpopUEjVUO3keO8MK4Se7CT0u76CQj-sF-C0ymtVAmxsmSfe9-7vgdkzzqLhLylMKcA2Ue9wX6eQQbAMypfkBnNM5oyKfI9MoOCy1TkrNgnByFcAkAhGHtF9hmjkgvGZ-TXUvlveHf786jfdmYYG0zWG_S96pILU3s1GGfja-nGbYdNcqE6tDoyahxcj97oZO2VDWbiklUd0F9FzNhEJaWzzagHc4XJyk4jjk2PEXU2mp9vXGPG_u7297Fx1y66YhTEHfD6NXnZqi7gm4fzkHz9dLIuT9Pl6vNZebRMNZdCpjVrOWcxYi6B01ZC09Q1AMvaVvGmFVzqbAE8xm8gb0FwoTHeF7kCKWtB2SH5sPPdevd9xDBUvQkau05ZdGOoMp4XIltIKiP6_hl66UYfc0zUQkoAmueRevdAjXWPTbX1plf-pvr72xGY7wDtXQge20eEQjXVWU11Vo91RgF_JtBmuO9k8Mp0_5YVO9kP0-HNf4ZU5enJlyftH9RLuVA
CitedBy_id crossref_primary_10_1016_j_molstruc_2021_131694
crossref_primary_10_1016_j_ica_2021_120604
crossref_primary_10_3390_ijms241310457
crossref_primary_10_1021_acs_inorgchem_4c03245
crossref_primary_10_1007_s11172_021_3167_6
crossref_primary_10_1002_ejoc_202100476
crossref_primary_10_1002_chem_202101032
Cites_doi 10.1038/nchem.2547
10.1016/j.ccr.2017.03.004
10.1021/ja00084a107
10.1002/ange.19971092406
10.1002/9780470132593.ch62
10.1021/jacs.0c01073
10.1021/ja805794a
10.1107/S2053229614024218
10.1039/D0SC00684J
10.1002/ejic.200500323
10.1002/9780470166420.ch5
10.1002/anie.200453944
10.1007/BF02495150
10.1002/ange.201611985
10.1002/ange.200602205
10.1039/c1cs15042a
10.1002/anie.199514811
10.1002/anie.200501189
10.1038/nature08731
10.1021/ja110007u
10.1021/ja507132m
10.1021/acs.jpclett.7b01111
10.1021/ja00535a021
10.1016/j.jmr.2011.01.002
10.1002/ejic.201700849
10.5940/jcrsj.51.218
10.1002/anie.200602205
10.1021/ja5017014
10.1038/ncomms12212
10.1002/anie.201807556
10.1021/ja010900v
10.1021/jacs.6b10544
10.1016/j.crci.2008.09.007
10.1021/ar0200706
10.1021/ja00037a027
10.1016/j.crci.2006.09.011
10.1021/acs.jpclett.7b01794
10.1021/ja043162u
10.1126/science.1071372
10.1002/anie.199727341
10.1002/ange.201606165
10.1107/S0108767307043930
10.1016/S0022-328X(00)85964-1
10.1038/s41467-020-15988-1
10.1021/cm400147p
10.1021/acs.accounts.9b00049
10.1021/ja9055855
10.1016/S0038-1098(01)00366-0
10.1021/ja00005a078
10.1002/chem.201500796
10.1021/ja00071a035
10.1021/jacs.8b03949
10.1103/PhysRevLett.46.253
10.1021/jacs.9b02375
10.1016/S0010-8545(01)00309-5
10.1002/ange.19951071315
10.1021/jacs.6b05089
10.1002/ange.200501189
10.1039/C2CS35278H
10.1007/s11172-008-0111-y
10.1021/jacs.5b00412
10.1021/acs.inorgchem.7b01256
10.1038/nchem.1455
10.1016/j.ccr.2014.01.014
10.1143/JPSJ.52.3475
10.1002/anie.201606165
10.1002/ange.201807556
10.1126/science.1076129
10.1038/ncomms4865
10.1039/C9CC09238B
10.1002/ange.200453944
10.1021/ja402674x
10.1016/0022-3697(92)90249-D
10.1002/anie.201611985
10.1126/science.279.5347.44
10.1016/j.jmmm.2005.10.134
10.1103/PhysRevB.19.730
10.1016/S0009-2614(00)00166-4
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202004217
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 3084
ExternalDocumentID 33174634
10_1002_chem_202004217
CHEM202004217
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4767-b3f44309457041f70ddbb0032ffa4df647c2804653d05f0646ce4df95a077b613
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 02:36:06 EDT 2025
Fri Jul 25 10:30:00 EDT 2025
Thu Apr 03 07:03:53 EDT 2025
Tue Jul 01 01:30:20 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Wed Jan 22 16:31:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords conducting materials
large-amplitude vibration
valence tautomerism
mixed-valent compounds
vibronic interactions
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-b3f44309457041f70ddbb0032ffa4df647c2804653d05f0646ce4df95a077b613
Notes In memory of Gleb A. Abakumov, who passed away on August 29, 2019
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6583-7026
0000-0002-8350-2246
0000-0003-0659-2548
0000-0001-9093-8868
PMID 33174634
PQID 2487700155
PQPubID 986340
PageCount 11
ParticipantIDs proquest_miscellaneous_2459628717
proquest_journals_2487700155
pubmed_primary_33174634
crossref_primary_10_1002_chem_202004217
crossref_citationtrail_10_1002_chem_202004217
wiley_primary_10_1002_chem_202004217_CHEM202004217
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 10, 2021
PublicationDateYYYYMMDD 2021-02-10
PublicationDate_xml – month: 02
  year: 2021
  text: February 10, 2021
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2013; 25
1991; 113
2000; 49
1993; 328
2015; 71
2019; 52
1981; 46
2010; 463
1982; 266
1983; 52
2020; 56
1998; 279
2020; 11
1992; 53
2014; 136
2001; 216–217
2014; 5
2009; 51
2015; 137
1990
2011; 209
2018 2018; 57 130
2004; 37
1992; 114
2005 2005; 44 117
1997 1997; 36 109
2008; 64
1980; 102
1988
2017; 339
2000; 319
1979; 19
2001; 123
1994; 116
2004 2004; 43 116
2018; 140
2001; 120
2002; 296
2020; 142
2013; 42
2011; 40
2008; 57
2005
2004
2008; 11
2009; 131
2017 2017; 56 129
2007; 10
2019; 141
2003; 299
1994; 41
2011; 133
1988; 3
2016; 7
1981; 214
1995 1995; 34 107
2005; 127
2007 2007; 46 119
2015; 21
2017; 56
2013; 135
2017
2016; 138
2013
2012; 4
1993; 115
2016; 8
2014; 268
2008; 130
2006; 300
e_1_2_7_3_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_15_2
Abakumov G. A. (e_1_2_7_55_2) 1982; 266
e_1_2_7_87_1
e_1_2_7_41_2
e_1_2_7_64_2
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_90_1
e_1_2_7_71_1
Hauser A. (e_1_2_7_29_2) 2004
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_2
e_1_2_7_52_3
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_37_2
e_1_2_7_4_2
Martinengo S. (e_1_2_7_83_1) 1990
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_86_1
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_44_3
e_1_2_7_48_2
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_32_3
e_1_2_7_20_2
e_1_2_7_36_1
e_1_2_7_78_2
e_1_2_7_59_2
Kahn O. (e_1_2_7_10_2) 1988; 3
e_1_2_7_5_2
e_1_2_7_9_2
e_1_2_7_17_2
e_1_2_7_81_1
e_1_2_7_13_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_1
e_1_2_7_85_1
e_1_2_7_66_3
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_2
Perrin D. D. (e_1_2_7_82_1) 1988
e_1_2_7_73_1
e_1_2_7_92_2
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_39_1
e_1_2_7_58_3
e_1_2_7_2_2
e_1_2_7_80_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_84_1
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
Abakumov G. A. (e_1_2_7_54_2) 1993; 328
(e_1_2_7_25_2) 2013
e_1_2_7_46_1
e_1_2_7_65_3
e_1_2_7_88_2
Hendrickson D. N. (e_1_2_7_50_2) 2004
e_1_2_7_69_1
e_1_2_7_27_2
e_1_2_7_72_1
e_1_2_7_91_2
e_1_2_7_76_1
e_1_2_7_30_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_38_2
References_xml – volume: 36 109
  start-page: 2734 2852
  year: 1997 1997
  end-page: 2736 2855
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 49
  start-page: 1506
  year: 2000
  end-page: 1511
  publication-title: Russ. Chem. Bull.
– volume: 8
  start-page: 3147
  year: 2017
  end-page: 3151
  publication-title: J. Phys. Chem. Lett.
– volume: 52
  start-page: 1369
  year: 2019
  end-page: 1379
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 14170
  year: 2016
  end-page: 14173
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1992
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 644
  year: 2016
  end-page: 656
  publication-title: Nat. Chem.
– volume: 43 116
  start-page: 3136 3198
  year: 2004 2004
  end-page: 3138 3200
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 827
  year: 2004
  end-page: 835
  publication-title: Acc. Chem. Res.
– volume: 56 129
  start-page: 656 672
  year: 2017 2017
  end-page: 656 672
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 216–217
  start-page: 99
  year: 2001
  end-page: 125
  publication-title: Coord. Chem. Rev.
– volume: 57 130
  start-page: 12043 12219
  year: 2018 2018
  end-page: 12047 12223
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 9682
  year: 2015
  end-page: 9696
  publication-title: Chem. Eur. J.
– volume: 115
  start-page: 8221
  year: 1993
  end-page: 8229
  publication-title: J. Am. Chem. Soc.
– start-page: 242
  year: 1990
  end-page: 245
– volume: 266
  start-page: 361
  year: 1982
  end-page: 363
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 4
  start-page: 921
  year: 2012
  end-page: 926
  publication-title: Nat. Chem.
– volume: 71
  start-page: 3
  year: 2015
  end-page: 8
  publication-title: Acta Crystallogr. Sect. C
– volume: 140
  start-page: 6550
  year: 2018
  end-page: 6553
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 6766
  year: 2005
  end-page: 6779
  publication-title: J. Am. Chem. Soc.
– start-page: 155
  year: 2004
  end-page: 198
– volume: 123
  start-page: 11179
  year: 2001
  end-page: 11192
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 687
  year: 2008
  end-page: 717
  publication-title: Russ. Chem. Bull.
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  publication-title: Acta Crystallogr. Sect. A
– volume: 19
  start-page: 730
  year: 1979
  end-page: 741
  publication-title: Phys. Rev. B
– volume: 339
  start-page: 17
  year: 2017
  end-page: 103
  publication-title: Coord. Chem. Rev.
– volume: 131
  start-page: 15049
  year: 2009
  end-page: 15054
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1137
  year: 2008
  end-page: 1154
  publication-title: C. R. Chimie
– volume: 25
  start-page: 808
  year: 2013
  end-page: 814
  publication-title: Chem. Mater.
– volume: 113
  start-page: 1862
  year: 1991
  end-page: 1864
  publication-title: J. Am. Chem. Soc.
– volume: 44 117
  start-page: 4164 4236
  year: 2005 2005
  end-page: 4168 4240
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34 107
  start-page: 1481 1580
  year: 1995 1995
  end-page: 1483 1582
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 42
  start-page: 1525
  year: 2013
  end-page: 1539
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 3865
  year: 2014
  publication-title: Nat. Commun.
– volume: 328
  start-page: 332
  year: 1993
  end-page: 335
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 142
  start-page: 10692
  year: 2020
  end-page: 10704
  publication-title: J. Am. Chem. Soc.
– volume: 319
  start-page: 223
  year: 2000
  end-page: 230
  publication-title: Chem. Phys. Lett.
– volume: 268
  start-page: 23
  year: 2014
  end-page: 40
  publication-title: Coord. Chem. Rev.
– volume: 52
  start-page: 3475
  year: 1983
  end-page: 3485
  publication-title: J. Phys. Soc. Jpn.
– volume: 46 119
  start-page: 2152 2200
  year: 2007 2007
  end-page: 2187 2236
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 717 735
  year: 2017 2017
  end-page: 721 739
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 165
  year: 2001
  end-page: 170
  publication-title: Solid State Commun.
– volume: 114
  start-page: 4220
  year: 1992
  end-page: 4222
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 5338
  year: 2011
  end-page: 5345
  publication-title: J. Am. Chem. Soc.
– volume: 296
  start-page: 1443
  year: 2002
  end-page: 1445
  publication-title: Science
– volume: 135
  start-page: 8655
  year: 2013
  end-page: 8667
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 1297
  year: 1992
  end-page: 1304
  publication-title: J. Phys. Chem. Solids
– volume: 300
  start-page: e407
  year: 2006
  end-page: e410
  publication-title: J. Magn. Magn. Mater.
– volume: 3
  start-page: 140
  year: 1988
  end-page: 151
  publication-title: Chemtronics
– volume: 46
  start-page: 253
  year: 1981
  end-page: 257
  publication-title: Phys. Rev. Lett.
– volume: 279
  start-page: 44
  year: 1998
  end-page: 48
  publication-title: Science
– volume: 102
  start-page: 4951
  year: 1980
  end-page: 4957
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 6822
  year: 2019
  end-page: 6826
  publication-title: J. Am. Chem. Soc.
– volume: 299
  start-page: 229
  year: 2003
  end-page: 232
  publication-title: Science
– volume: 130
  start-page: 14102
  year: 2008
  end-page: 14104
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12212
  year: 2016
  publication-title: Nat. Commun.
– volume: 40
  start-page: 3313
  year: 2011
  end-page: 3335
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 2071
  year: 2020
  end-page: 2086
  publication-title: Chem. Commun.
– volume: 136
  start-page: 12184
  year: 2014
  end-page: 12192
  publication-title: J. Am. Chem. Soc.
– volume: 214
  start-page: 119
  year: 1981
  end-page: 124
  publication-title: J. Organomet. Chem.
– volume: 116
  start-page: 2229
  year: 1994
  end-page: 2230
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 8513
  year: 2017
  end-page: 8526
  publication-title: Inorg. Chem.
– volume: 209
  start-page: 149
  year: 2011
  end-page: 155
  publication-title: J. Magn. Reson.
– start-page: 5356
  year: 2017
  end-page: 5365
  publication-title: Eur. J. Inorg. Chem.
– year: 1988
– volume: 11
  start-page: 3610
  year: 2020
  end-page: 3618
  publication-title: Chem. Sci.
– volume: 10
  start-page: 21
  year: 2007
  end-page: 36
  publication-title: C. R. Chimie
– volume: 138
  start-page: 16493
  year: 2016
  end-page: 16501
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 218
  year: 2009
  end-page: 224
  publication-title: J. Cryst. Soc. Jpn.
– volume: 41
  start-page: 331
  year: 1994
  end-page: 442
  publication-title: Prog. Inorg. Chem.
– start-page: 63
  year: 2004
  end-page: 95
– volume: 463
  start-page: 789
  year: 2010
  end-page: 792
  publication-title: Nature
– start-page: 2957
  year: 2005
  end-page: 2971
  publication-title: Eur. J. Inorg. Chem.
– volume: 136
  start-page: 7026
  year: 2014
  end-page: 7037
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 4477
  year: 2015
  end-page: 4486
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4774
  year: 2017
  end-page: 4778
  publication-title: J. Phys. Chem. Lett.
– year: 2013
– ident: e_1_2_7_5_2
  doi: 10.1038/nchem.2547
– ident: e_1_2_7_73_1
– ident: e_1_2_7_4_2
  doi: 10.1016/j.ccr.2017.03.004
– ident: e_1_2_7_87_1
– ident: e_1_2_7_59_2
  doi: 10.1021/ja00084a107
– ident: e_1_2_7_90_1
– ident: e_1_2_7_52_3
  doi: 10.1002/ange.19971092406
– start-page: 242
  volume-title: Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses, Vol. 28
  year: 1990
  ident: e_1_2_7_83_1
  doi: 10.1002/9780470132593.ch62
– ident: e_1_2_7_61_2
  doi: 10.1021/jacs.0c01073
– ident: e_1_2_7_78_2
  doi: 10.1021/ja805794a
– ident: e_1_2_7_89_2
  doi: 10.1107/S2053229614024218
– ident: e_1_2_7_11_1
– ident: e_1_2_7_12_2
  doi: 10.1039/D0SC00684J
– ident: e_1_2_7_49_2
  doi: 10.1002/ejic.200500323
– volume-title: Spin-Crossover Materials: Properties and Applications
  year: 2013
  ident: e_1_2_7_25_2
– ident: e_1_2_7_53_2
  doi: 10.1002/9780470166420.ch5
– ident: e_1_2_7_65_2
  doi: 10.1002/anie.200453944
– ident: e_1_2_7_60_1
– ident: e_1_2_7_84_1
  doi: 10.1007/BF02495150
– ident: e_1_2_7_32_3
  doi: 10.1002/ange.201611985
– ident: e_1_2_7_39_1
– ident: e_1_2_7_8_3
  doi: 10.1002/ange.200602205
– ident: e_1_2_7_27_2
  doi: 10.1039/c1cs15042a
– volume: 266
  start-page: 361
  year: 1982
  ident: e_1_2_7_55_2
  publication-title: Dokl. Akad. Nauk SSSR
– ident: e_1_2_7_66_2
  doi: 10.1002/anie.199514811
– ident: e_1_2_7_43_1
– ident: e_1_2_7_58_2
  doi: 10.1002/anie.200501189
– ident: e_1_2_7_38_2
  doi: 10.1038/nature08731
– ident: e_1_2_7_16_2
  doi: 10.1021/ja110007u
– ident: e_1_2_7_41_2
  doi: 10.1021/ja507132m
– ident: e_1_2_7_22_2
  doi: 10.1021/acs.jpclett.7b01111
– ident: e_1_2_7_56_2
  doi: 10.1021/ja00535a021
– ident: e_1_2_7_57_1
– ident: e_1_2_7_85_1
  doi: 10.1016/j.jmr.2011.01.002
– ident: e_1_2_7_71_1
  doi: 10.1002/ejic.201700849
– ident: e_1_2_7_91_2
  doi: 10.5940/jcrsj.51.218
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.200602205
– ident: e_1_2_7_64_2
  doi: 10.1021/ja5017014
– ident: e_1_2_7_23_2
  doi: 10.1038/ncomms12212
– ident: e_1_2_7_93_1
– ident: e_1_2_7_13_2
  doi: 10.1002/anie.201807556
– ident: e_1_2_7_80_1
  doi: 10.1021/ja010900v
– ident: e_1_2_7_68_1
  doi: 10.1021/jacs.6b10544
– ident: e_1_2_7_36_1
– ident: e_1_2_7_92_2
– ident: e_1_2_7_48_2
  doi: 10.1016/j.crci.2008.09.007
– ident: e_1_2_7_9_2
  doi: 10.1021/ar0200706
– ident: e_1_2_7_74_2
  doi: 10.1021/ja00037a027
– ident: e_1_2_7_28_2
  doi: 10.1016/j.crci.2006.09.011
– ident: e_1_2_7_77_1
– start-page: 63
  volume-title: Topics in Current Chemistry, Vol. 234
  year: 2004
  ident: e_1_2_7_50_2
– ident: e_1_2_7_70_1
  doi: 10.1021/acs.jpclett.7b01794
– ident: e_1_2_7_34_2
  doi: 10.1021/ja043162u
– ident: e_1_2_7_35_2
  doi: 10.1126/science.1071372
– ident: e_1_2_7_52_2
  doi: 10.1002/anie.199727341
– ident: e_1_2_7_44_3
  doi: 10.1002/ange.201606165
– ident: e_1_2_7_88_2
  doi: 10.1107/S0108767307043930
– ident: e_1_2_7_75_2
  doi: 10.1016/S0022-328X(00)85964-1
– ident: e_1_2_7_69_1
  doi: 10.1038/s41467-020-15988-1
– volume: 328
  start-page: 332
  year: 1993
  ident: e_1_2_7_54_2
  publication-title: Dokl. Akad. Nauk SSSR
– ident: e_1_2_7_15_2
  doi: 10.1021/cm400147p
– ident: e_1_2_7_21_1
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.accounts.9b00049
– volume-title: Purification of laboratory chemicals
  year: 1988
  ident: e_1_2_7_82_1
– ident: e_1_2_7_17_2
  doi: 10.1021/ja9055855
– ident: e_1_2_7_19_2
  doi: 10.1016/S0038-1098(01)00366-0
– ident: e_1_2_7_46_1
– ident: e_1_2_7_42_2
  doi: 10.1021/ja00005a078
– ident: e_1_2_7_37_2
  doi: 10.1002/chem.201500796
– ident: e_1_2_7_67_2
  doi: 10.1021/ja00071a035
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.8b03949
– ident: e_1_2_7_20_2
  doi: 10.1103/PhysRevLett.46.253
– ident: e_1_2_7_62_2
  doi: 10.1021/jacs.9b02375
– ident: e_1_2_7_51_2
  doi: 10.1016/S0010-8545(01)00309-5
– ident: e_1_2_7_66_3
  doi: 10.1002/ange.19951071315
– ident: e_1_2_7_63_2
  doi: 10.1021/jacs.6b05089
– ident: e_1_2_7_58_3
  doi: 10.1002/ange.200501189
– ident: e_1_2_7_6_2
  doi: 10.1039/C2CS35278H
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_2
  doi: 10.1007/s11172-008-0111-y
– ident: e_1_2_7_45_2
  doi: 10.1021/jacs.5b00412
– ident: e_1_2_7_40_2
  doi: 10.1021/acs.inorgchem.7b01256
– start-page: 155
  volume-title: Topics in Current Chemistry, Vol. 234
  year: 2004
  ident: e_1_2_7_29_2
– ident: e_1_2_7_33_2
  doi: 10.1038/nchem.1455
– ident: e_1_2_7_47_2
  doi: 10.1016/j.ccr.2014.01.014
– ident: e_1_2_7_76_1
  doi: 10.1143/JPSJ.52.3475
– ident: e_1_2_7_44_2
  doi: 10.1002/anie.201606165
– ident: e_1_2_7_13_3
  doi: 10.1002/ange.201807556
– ident: e_1_2_7_18_2
  doi: 10.1126/science.1076129
– ident: e_1_2_7_24_2
  doi: 10.1038/ncomms4865
– ident: e_1_2_7_2_2
  doi: 10.1039/C9CC09238B
– ident: e_1_2_7_65_3
  doi: 10.1002/ange.200453944
– volume: 3
  start-page: 140
  year: 1988
  ident: e_1_2_7_10_2
  publication-title: Chemtronics
– ident: e_1_2_7_26_2
  doi: 10.1021/ja402674x
– ident: e_1_2_7_86_1
  doi: 10.1016/0022-3697(92)90249-D
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.201611985
– ident: e_1_2_7_30_2
  doi: 10.1126/science.279.5347.44
– ident: e_1_2_7_72_1
  doi: 10.1016/j.jmmm.2005.10.134
– ident: e_1_2_7_79_2
  doi: 10.1103/PhysRevB.19.730
– ident: e_1_2_7_81_1
  doi: 10.1016/S0009-2614(00)00166-4
– ident: e_1_2_7_31_1
SSID ssj0009633
Score 2.3880363
Snippet The exploration of dynamic molecular crystals is a fascinating theme for materials scientists owing to their fundamental science and potential application to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3074
SubjectTerms Amplitudes
Chemistry
conducting materials
Coupling (molecular)
Crystals
Electron transfer
large-amplitude vibration
mixed-valent compounds
Phase transitions
Photoelectron spectroscopy
Photoelectrons
Rhodium
Valence
valence tautomerism
Vibration
vibronic interactions
Title Large‐Amplitude Thermal Vibration‐Coupled Valence Tautomeric Transition Observed in a Conductive One‐Dimensional Rhodium–Dioxolene Complex
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202004217
https://www.ncbi.nlm.nih.gov/pubmed/33174634
https://www.proquest.com/docview/2487700155
https://www.proquest.com/docview/2459628717
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQl3Lh0RZYWCpXQuop4HWcmBzRAkIVDwkB4hb5qa7YJqhsJMRpf0JV_iG_pDPOJnRBqBIck9jxY8bjz_b4G0I2pTNaqyyNXIIhzJSQUaaZj3S8Y61MvfWBbf_4JD28EN-vkqt_bvHX_BDthhuOjGCvcYArfbv9RBoKbcKb5ChlgNVghNFhC1HR2RN_FGhXHUseqoAcrA1rI-Pb09mnZ6UXUHMauYap52CBqKbStcfJ9VY10lvm_hmf43tatUjmJ7iU7taKtERmXPGRfOg34eA-kT9H6DP-OP69iz7oyIhJQcXArA_pJZaIAoav_bK6GTpLL1W4zUTPVTUqw6kQDdNi8BCjpxo3gyHZoKCK9ssCWWfB7tLTAovYw5ADNV0IPftR2kH183H8sDco79CLwFE0YkN395lcHOyf9w-jSUCHyAgJBlnHXogYpJFIJnpeMms1mhXuvRLWp0IavsOQ8c2yxANYSo2D91mimJQagMcymS3Kwq0Sql3PZpnnzDoltHSZE6nOEiMT0-OG-Q6JGoHmZsJ2jkE3hnnN08xz7Om87ekO-damv6l5Pl5N2W30I5-M99ucw7pPBvzZIV_bzyAhPH5RhSsrTIORjmCBCr9YqfWqLSoGGCfSWHQID9rxnzrkyJfRPq29JdM6mePonoOxbViXzI5-VW4D8NVIfwlj6C--ZiIU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_ikLBYwE4pTW63Xi5sCh2qXa0m0rVduqtxDHtlixJBXdiMKpj4DgSXgVHqFPwozzUy0IISH1wDGJY8eeGc_YGX8fwDNlM63TOApsSBRmqVRBrLkLdG_dGBU54zza_s5uNDyQr4_CowX43pyFqfAh2g03sgw_X5OB04b02gVqKHaKjpKTmDGurvMqt-2nj7hqO3m5NUARPxdi89W4PwxqYoEgkwonBt1zUvZwYRMqLrtOcWM0qbdwLpXGRVJlYp0T8pjhoUOnHWUW78dhypXS6ACx3itwlWjECa5_sH-BWIX6XLHXY6cJ9bXBieRibf575_3gb8HtfKzsnd3mDfjRDFOV4_JutZzp1ezzLwiS_9U43oTrdejNNipbuQULNr8NS_2G8e4OfB1RWvz52ZcNSrMn0E-GVoSea8oOqYukw_i0X5THU2vYYeoPbLFxWs4K_-OLec_vk-DYnqb9biw2yVnK-kVOwLroWtheTk0MiFWhQkRh-28LMynfn599G0yKU0qUsIzm6ak9vQsHlzIk92AxL3J7H5i2XRPHTnBjU6mVja2MdBxmKsy6IuOuA0GjQUlWA7oTr8g0qaCoRUKSTVrJduBFW_64gjL5Y8mVRiGTeko7SQQubZUPsTvwtH2MEqI_TGlui5LKEJkTrsGxiuVKkdumehipyqgnOyC8Ov7lGxKCBGmvHvzLS09gaTjeGSWjrd3th3BNUDYSUfnwFVicfSjtIwwnZ_qxN2AGby5b038Csu59kg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qELBYwE4pTW6zhxc-BQbVi1tLSoaqve0ji2xapLsqIbUTj1ERC8CK_CK_RJmMlftSCEhNQDxySO_2bGM07G3wfwTNlM6zQKPRsQhVkqlRdp7jztrxijQmdchbb_Zitc25OvD4KDOfjenoWp8SG6D25kGdV6TQY-MW75HDQUx0QnyUnKGFY3aZUb9tNH3LQdv1yPUcLPhRi-2h2seQ2vgJdJheuC9p2UPu5rAsVl3ylujCbtFs6l0rhQqkyscAIeMzxw6LPDzOL9KEi5Uhr9H9Z7CS7LkEdEFhHvnANWoTrX5PU4ZgJ9bWEiuVie7e-sG_wttp0NlStfN7wBP9pZqlNcjpbKqV7KPv8CIPk_TeNNuN4E3my1tpRbMGfz23B10PLd3YGvm5QUf3b6ZZWS7Anyk6ENod8as30aIWkwPh0U5WRsDdtPq-NabDctp0X124tVfr9KgWPbmr52Y7FRzlI2KHKC1UXHwrZzaiImToUaD4XtvCvMqHx_dvotHhUnlCZhGa3SY3tyF_YuZEruwXxe5HYBmLZ9E0VOcGNTqZWNrAx1FGQqyPoi464HXqtASdbAuROryDipgahFQpJNOsn24EVXflIDmfyx5GKrj0mzoB0nAje2qgqwe_C0e4wSov9LaW6LksoQlRPuwLGK-7Ued035GKfK0Jc9EJU2_qUPCQGCdFcP_uWlJ3DlbTxMNte3Nh7CNUGpSMTjwxdhfvqhtI8wlpzqx5X5Mji8aEX_CagwfEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Amplitude+Thermal+Vibration%E2%80%90Coupled+Valence+Tautomeric+Transition+Observed+in+a+Conductive+One%E2%80%90Dimensional+Rhodium%E2%80%93Dioxolene+Complex&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mitsumi%2C+Minoru&rft.au=Komatsu%2C+Yuuki&rft.au=Hashimoto%2C+Masahiro&rft.au=Toriumi%2C+Koshiro&rft.date=2021-02-10&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=9&rft.spage=3074&rft.epage=3084&rft_id=info:doi/10.1002%2Fchem.202004217&rft.externalDBID=10.1002%252Fchem.202004217&rft.externalDocID=CHEM202004217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon