Zirconium–Porphyrin‐Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Noble‐Metal Single Atoms

Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconi...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 13; pp. 3493 - 3498
Main Authors He, Ting, Chen, Shuangming, Ni, Bing, Gong, Yue, Wu, Zhao, Song, Li, Gu, Lin, Hu, Wenping, Wang, Xun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.03.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs. Single noble metal atoms can be successfully immobilized on the well‐defined anchoring sites of zirconium–porphyrin MOF hollow nanotubes. Owing to the hollow structure and excellent photoelectrochemical performance, HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting.
AbstractList Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs. Single noble metal atoms can be successfully immobilized on the well‐defined anchoring sites of zirconium–porphyrin MOF hollow nanotubes. Owing to the hollow structure and excellent photoelectrochemical performance, HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting.
Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.
Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble-metal atoms have now been successfully anchored on the well-defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration-corrected scanning transmission electron microscopy and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM-Ir/Pt exhibits outstanding catalytic activity in the visible-light photocatalytic H evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.
Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H 2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.
Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble-metal atoms have now been successfully anchored on the well-defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration-corrected scanning transmission electron microscopy and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM-Ir/Pt exhibits outstanding catalytic activity in the visible-light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble-metal atoms have now been successfully anchored on the well-defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration-corrected scanning transmission electron microscopy and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM-Ir/Pt exhibits outstanding catalytic activity in the visible-light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.
Author Gu, Lin
Chen, Shuangming
Hu, Wenping
He, Ting
Wang, Xun
Song, Li
Gong, Yue
Ni, Bing
Wu, Zhao
Author_xml – sequence: 1
  givenname: Ting
  surname: He
  fullname: He, Ting
  organization: Qinghai Normal University
– sequence: 2
  givenname: Shuangming
  surname: Chen
  fullname: Chen, Shuangming
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Bing
  surname: Ni
  fullname: Ni, Bing
  organization: Tsinghua University
– sequence: 4
  givenname: Yue
  surname: Gong
  fullname: Gong, Yue
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Zhao
  surname: Wu
  fullname: Wu, Zhao
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Li
  surname: Song
  fullname: Song, Li
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Wenping
  surname: Hu
  fullname: Hu, Wenping
  organization: Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 9
  givenname: Xun
  orcidid: 0000-0002-8066-4450
  surname: Wang
  fullname: Wang, Xun
  email: wangxun@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29380509$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URB-wZYkssWEzwY-MH8tQtTRSSZGADZuRZ3JdXDx2as8oCqv-BCT-YX8JTlOKVAmxupbud861zjlEeyEGQOglJRNKCHtrgoMJI1QRoqh8gg5ozWjFpeR75T3lvJKqpvvoMOerwitFxDO0zzRXpCb6AG2-utTF4Mb-9ubXx5hW3zbJhdubn-9MhiX-AIPxZXORLsulDp8m08M6pu_4LHof13hhQhzGFjK2MeF538fWeffDDC4GHC1exNZDsbszwp9cuPSAZ0Ps83P01Bqf4cX9PEJfTk8-H59V5xfv58ez86qbSiErUwveta1hAFIJTjpua2s0a4W2NWNWCg1Wm1oZwzthmZBWkaWatrYWQBnwI_Rm57tK8XqEPDS9yx14bwLEMTdUa06I0FQX9PUj9CqOKZTfNSViToWifEu9uqfGtodls0quN2nT_Am1AJMd0KWYcwL7gFDSbFtrtq01D60VwfSRoHPDXYRDMs7_W6Z3srXzsPnPkWa2mJ_81f4G7IWxMw
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156795
crossref_primary_10_1021_acscatal_2c06413
crossref_primary_10_1007_s10562_023_04496_8
crossref_primary_10_3390_catal13020415
crossref_primary_10_1039_C7CS00879A
crossref_primary_10_1039_D4DT01063A
crossref_primary_10_1002_adma_201800743
crossref_primary_10_1002_ppsc_202000101
crossref_primary_10_1016_j_cej_2023_145700
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1002_advs_202407631
crossref_primary_10_1002_anie_201905554
crossref_primary_10_1002_adma_201900592
crossref_primary_10_1002_aenm_201900597
crossref_primary_10_1016_j_scib_2019_06_009
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1021_acsestengg_0c00136
crossref_primary_10_1016_j_apcatb_2022_121218
crossref_primary_10_1021_acscatal_4c04666
crossref_primary_10_1002_asia_201800444
crossref_primary_10_3390_catal10121407
crossref_primary_10_1016_j_carbon_2020_06_064
crossref_primary_10_1016_j_mcat_2023_113470
crossref_primary_10_1002_aenm_202001561
crossref_primary_10_1016_j_matt_2022_07_014
crossref_primary_10_1002_anie_201902171
crossref_primary_10_1002_slct_202000567
crossref_primary_10_1039_D2TA00835A
crossref_primary_10_1002_smll_202402779
crossref_primary_10_1002_smll_202004809
crossref_primary_10_1002_advs_201800949
crossref_primary_10_1016_j_jwpe_2021_102362
crossref_primary_10_1002_ange_201901010
crossref_primary_10_1007_s12274_023_5750_7
crossref_primary_10_1016_j_ccr_2022_214600
crossref_primary_10_1016_j_nanoen_2018_11_033
crossref_primary_10_1021_acsanm_3c01899
crossref_primary_10_1021_acscatal_0c01459
crossref_primary_10_1016_j_cej_2021_133279
crossref_primary_10_1038_s41467_024_54325_8
crossref_primary_10_1016_j_pmatsci_2022_100964
crossref_primary_10_1016_j_apcatb_2021_120656
crossref_primary_10_1016_j_ces_2022_117654
crossref_primary_10_1002_ange_202114071
crossref_primary_10_1016_j_seppur_2023_124996
crossref_primary_10_1016_j_desal_2022_116169
crossref_primary_10_1007_s12274_023_5929_y
crossref_primary_10_1016_j_bios_2023_115690
crossref_primary_10_1021_acsami_0c07260
crossref_primary_10_1016_j_aca_2022_339552
crossref_primary_10_1038_s41467_019_11619_6
crossref_primary_10_1002_anie_201806936
crossref_primary_10_1002_anie_202303086
crossref_primary_10_1016_j_ceramint_2024_12_319
crossref_primary_10_1039_D2QI00845A
crossref_primary_10_1039_D1DT01895G
crossref_primary_10_1016_j_mtcomm_2020_101322
crossref_primary_10_1016_j_aca_2024_342763
crossref_primary_10_1039_C8TA04064H
crossref_primary_10_3390_molecules28145530
crossref_primary_10_1039_D3TA02520A
crossref_primary_10_1021_acsaem_1c02874
crossref_primary_10_1002_adfm_202418427
crossref_primary_10_1016_j_colsurfa_2020_125888
crossref_primary_10_1039_D2MH01067D
crossref_primary_10_1016_j_apcatb_2019_03_008
crossref_primary_10_1016_j_cej_2022_139446
crossref_primary_10_1016_j_inoche_2019_107536
crossref_primary_10_1002_chem_202100171
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_1002_adma_201806626
crossref_primary_10_1002_smll_202306820
crossref_primary_10_1002_cctc_202001255
crossref_primary_10_1016_j_apcatb_2024_123893
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1021_acs_chemrev_9b00818
crossref_primary_10_1016_j_mseb_2024_117934
crossref_primary_10_1039_D2CS00183G
crossref_primary_10_1016_j_apcatb_2020_118746
crossref_primary_10_1021_jacs_9b02417
crossref_primary_10_1002_ange_202303086
crossref_primary_10_1002_adma_201904249
crossref_primary_10_1016_j_cej_2023_141676
crossref_primary_10_1016_j_lwt_2024_115996
crossref_primary_10_1002_smll_202403767
crossref_primary_10_1039_D0MD00416B
crossref_primary_10_1002_ange_202312697
crossref_primary_10_1016_j_cej_2022_136186
crossref_primary_10_1002_solr_202000283
crossref_primary_10_1002_adfm_202008008
crossref_primary_10_1002_anie_202109538
crossref_primary_10_1016_j_matpr_2022_12_179
crossref_primary_10_1039_D0TA08115A
crossref_primary_10_1002_anie_202002375
crossref_primary_10_1002_cctc_201900191
crossref_primary_10_1039_C9NH00510B
crossref_primary_10_1002_adma_202409269
crossref_primary_10_1002_anie_202312734
crossref_primary_10_1002_adma_201800702
crossref_primary_10_1007_s12274_024_6580_y
crossref_primary_10_1002_ange_201904058
crossref_primary_10_1039_D4TA09139F
crossref_primary_10_1002_inf2_12257
crossref_primary_10_1002_anie_202319255
crossref_primary_10_1021_acsnano_4c05815
crossref_primary_10_1002_adfm_202418602
crossref_primary_10_1016_j_apcatb_2023_123559
crossref_primary_10_1016_j_ijhydene_2021_12_031
crossref_primary_10_1039_D2EE01037B
crossref_primary_10_1002_anie_202114071
crossref_primary_10_1016_j_cis_2020_102108
crossref_primary_10_1002_ange_202002375
crossref_primary_10_1039_D0CS01482F
crossref_primary_10_1021_acs_inorgchem_9b02084
crossref_primary_10_1021_acs_chemmater_0c02535
crossref_primary_10_1070_RCR5038
crossref_primary_10_1016_j_checat_2021_08_009
crossref_primary_10_1016_j_molstruc_2024_139120
crossref_primary_10_1016_S1872_2067_23_64530_9
crossref_primary_10_1002_anie_201914977
crossref_primary_10_1002_adtp_202300120
crossref_primary_10_1039_D0DT02961K
crossref_primary_10_1007_s12274_023_6037_8
crossref_primary_10_1016_j_chempr_2019_10_007
crossref_primary_10_1016_j_aca_2024_342892
crossref_primary_10_1016_j_ijhydene_2025_02_157
crossref_primary_10_1557_mrs_2019_294
crossref_primary_10_1016_j_chempr_2018_12_011
crossref_primary_10_1016_j_jcat_2019_06_024
crossref_primary_10_1016_j_mattod_2021_11_022
crossref_primary_10_1016_j_cclet_2023_108669
crossref_primary_10_1088_1361_6528_ac162e
crossref_primary_10_1246_bcsj_20210324
crossref_primary_10_1021_acs_inorgchem_4c03337
crossref_primary_10_1134_S0036023623602143
crossref_primary_10_1016_j_apsusc_2018_09_061
crossref_primary_10_1016_j_ccr_2021_214032
crossref_primary_10_1021_acsnano_1c03424
crossref_primary_10_1002_cplu_202400158
crossref_primary_10_2139_ssrn_3993048
crossref_primary_10_1016_j_matre_2022_100141
crossref_primary_10_1039_D4TA03502J
crossref_primary_10_1039_C8CC08116F
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_1002_cphc_202300726
crossref_primary_10_1016_j_jcat_2022_01_017
crossref_primary_10_3389_fchem_2022_845274
crossref_primary_10_1039_D0EE01347A
crossref_primary_10_1007_s11467_020_0980_6
crossref_primary_10_1007_s41918_019_00050_6
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1021_acssuschemeng_8b06273
crossref_primary_10_1002_cctc_202301753
crossref_primary_10_1016_j_electacta_2021_139630
crossref_primary_10_1002_solr_201900547
crossref_primary_10_1002_anie_202007474
crossref_primary_10_1002_adma_202211398
crossref_primary_10_1021_acsabm_1c00852
crossref_primary_10_1002_aenm_202002138
crossref_primary_10_1016_j_aca_2022_339586
crossref_primary_10_1038_s41467_019_11817_2
crossref_primary_10_1021_acs_analchem_9b05841
crossref_primary_10_1007_s12274_023_5655_5
crossref_primary_10_31857_S0044457X23600330
crossref_primary_10_1002_smll_202401389
crossref_primary_10_1016_j_ccr_2020_213214
crossref_primary_10_1039_D3TA00580A
crossref_primary_10_1016_j_physe_2021_114697
crossref_primary_10_1002_anie_202217565
crossref_primary_10_1021_acsomega_1c02492
crossref_primary_10_1039_D3CC00451A
crossref_primary_10_1002_ange_202007474
crossref_primary_10_1002_smll_202205743
crossref_primary_10_1016_j_cej_2023_147601
crossref_primary_10_1039_C9EE04040D
crossref_primary_10_1002_ange_201914977
crossref_primary_10_1021_acs_cgd_1c00524
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1007_s11356_024_32208_1
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1016_j_enchem_2024_100121
crossref_primary_10_1002_cey2_194
crossref_primary_10_1002_ange_202000795
crossref_primary_10_1002_smll_202410678
crossref_primary_10_1002_ange_202109538
crossref_primary_10_1021_acs_nanolett_3c02934
crossref_primary_10_1039_D0TA09538A
crossref_primary_10_1002_ange_202217565
crossref_primary_10_1002_smll_202301319
crossref_primary_10_1021_acs_inorgchem_4c03123
crossref_primary_10_1002_cnma_202400462
crossref_primary_10_1039_C9TC02778E
crossref_primary_10_1002_ange_202006899
crossref_primary_10_1021_acs_energyfuels_1c02623
crossref_primary_10_3389_fchem_2021_806800
crossref_primary_10_1002_ange_202413413
crossref_primary_10_1002_smll_202300460
crossref_primary_10_1021_acsami_1c02045
crossref_primary_10_1002_ange_201806936
crossref_primary_10_1002_inf2_12296
crossref_primary_10_3390_catal11101168
crossref_primary_10_1002_adfm_202010052
crossref_primary_10_1002_smtd_202201213
crossref_primary_10_1039_D1TA06915B
crossref_primary_10_1142_S1088424621500760
crossref_primary_10_1002_adma_202412071
crossref_primary_10_1039_D0PY00170H
crossref_primary_10_1016_j_cej_2020_126730
crossref_primary_10_1016_j_pecs_2024_101175
crossref_primary_10_1016_j_poly_2018_08_004
crossref_primary_10_20517_cs_2024_42
crossref_primary_10_1039_D3NJ03177B
crossref_primary_10_1016_j_mtsust_2023_100371
crossref_primary_10_1002_cplu_201900349
crossref_primary_10_1016_j_ica_2020_119926
crossref_primary_10_1021_acsami_0c14046
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1002_adma_201803966
crossref_primary_10_1016_j_cej_2021_128414
crossref_primary_10_1016_j_nanoen_2021_106819
crossref_primary_10_2174_1876402914666220509105355
crossref_primary_10_1016_j_cej_2021_130055
crossref_primary_10_1002_adma_202002910
crossref_primary_10_1016_j_cclet_2021_05_035
crossref_primary_10_1021_acs_iecr_9b03815
crossref_primary_10_34133_2020_9140841
crossref_primary_10_1039_D3TA02145A
crossref_primary_10_1002_smtd_201800501
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_3390_molecules29020467
crossref_primary_10_1016_j_nantod_2019_05_007
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1021_acsami_0c01539
crossref_primary_10_1021_acs_chemrev_9b00757
crossref_primary_10_1002_solr_201900438
crossref_primary_10_1016_j_nanoen_2021_105850
crossref_primary_10_1002_aenm_202003575
crossref_primary_10_1039_C9CY01028A
crossref_primary_10_1039_D1NJ01010G
crossref_primary_10_1039_D1SC05983A
crossref_primary_10_3390_catal12101239
crossref_primary_10_1002_ange_201902171
crossref_primary_10_1002_anie_202012699
crossref_primary_10_1021_acsami_4c21171
crossref_primary_10_1039_C9TA06184C
crossref_primary_10_1002_smtd_201800068
crossref_primary_10_1016_j_ccr_2020_213266
crossref_primary_10_1007_s11426_021_1095_y
crossref_primary_10_1039_D1TA02547C
crossref_primary_10_1002_adfm_201906477
crossref_primary_10_1002_smm2_1095
crossref_primary_10_1016_j_snb_2019_01_105
crossref_primary_10_1016_j_ccr_2022_214428
crossref_primary_10_1021_acs_jpcc_9b10834
crossref_primary_10_1039_D2SM00749E
crossref_primary_10_1016_j_micromeso_2023_112559
crossref_primary_10_1016_j_seppur_2023_125456
crossref_primary_10_1039_D3EE02090H
crossref_primary_10_1149_2_1101810jes
crossref_primary_10_1002_ange_202312734
crossref_primary_10_1002_adma_201901139
crossref_primary_10_1002_ange_202012699
crossref_primary_10_1021_acsaem_0c01969
crossref_primary_10_1002_zaac_201900083
crossref_primary_10_1007_s41061_018_0229_9
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1002_cctc_202401355
crossref_primary_10_1016_j_ccr_2022_214664
crossref_primary_10_1002_ange_201905554
crossref_primary_10_1016_j_ccr_2022_214542
crossref_primary_10_1002_anie_201904058
crossref_primary_10_1016_j_apsusc_2018_08_007
crossref_primary_10_1039_D1SE01331A
crossref_primary_10_1002_ange_202319255
crossref_primary_10_1016_j_fuel_2022_126766
crossref_primary_10_1016_j_jechem_2021_03_011
crossref_primary_10_1039_D3QI01996A
crossref_primary_10_1002_aenm_202102556
crossref_primary_10_1016_j_seppur_2024_131362
crossref_primary_10_1021_acscentsci_1c01563
crossref_primary_10_1039_D3TC04673G
crossref_primary_10_1016_j_chempr_2021_08_020
crossref_primary_10_1039_D4EE03065F
crossref_primary_10_1016_j_chempr_2019_11_013
crossref_primary_10_1016_j_snb_2023_134865
crossref_primary_10_1016_S1872_2067_22_64104_4
crossref_primary_10_1021_acs_inorgchem_1c00041
crossref_primary_10_1039_C9TA14005K
crossref_primary_10_1016_j_nanoen_2020_105530
crossref_primary_10_1002_admi_202000396
crossref_primary_10_1002_anie_202312697
crossref_primary_10_1016_j_ijhydene_2019_05_059
crossref_primary_10_1016_j_nanoen_2019_06_045
crossref_primary_10_1021_jacs_2c10233
crossref_primary_10_1039_D1CS00992C
crossref_primary_10_1039_C9QI00024K
crossref_primary_10_1016_j_apsusc_2020_148054
crossref_primary_10_1021_acsenergylett_9b02625
crossref_primary_10_1016_j_joule_2021_12_011
crossref_primary_10_1080_00958972_2022_2103687
crossref_primary_10_1002_ange_201804319
crossref_primary_10_1002_smtd_202402096
crossref_primary_10_1039_D2NJ01994A
crossref_primary_10_1016_j_nanoen_2020_105085
crossref_primary_10_1039_D3TA07710A
crossref_primary_10_1021_acs_macromol_1c00489
crossref_primary_10_1002_adma_202101886
crossref_primary_10_1016_j_ijhydene_2023_12_035
crossref_primary_10_1016_j_jelechem_2022_116701
crossref_primary_10_1002_aenm_201802977
crossref_primary_10_1021_acs_chemrev_9b00840
crossref_primary_10_1039_D1CC06462B
crossref_primary_10_1016_j_seppur_2022_122598
crossref_primary_10_1021_jacs_2c10801
crossref_primary_10_1016_j_apcatb_2020_118925
crossref_primary_10_1002_ange_201804792
crossref_primary_10_1016_S1872_2067_23_64475_4
crossref_primary_10_1021_acsami_4c17745
crossref_primary_10_1039_D0NR05626J
crossref_primary_10_1039_D3SC01816D
crossref_primary_10_1016_j_actbio_2023_03_008
crossref_primary_10_1016_j_jechem_2020_02_020
crossref_primary_10_1021_acscatal_2c05992
crossref_primary_10_1360_SSC_2022_0091
crossref_primary_10_1016_j_joule_2018_06_019
crossref_primary_10_1039_D0CY00809E
crossref_primary_10_1007_s00604_023_05949_y
crossref_primary_10_1039_D0CY01735C
crossref_primary_10_1016_j_mtener_2021_100761
crossref_primary_10_1016_j_ijhydene_2020_12_148
crossref_primary_10_1039_C9TC05859A
crossref_primary_10_1016_j_desal_2025_118762
crossref_primary_10_1002_anie_201804319
crossref_primary_10_1002_anie_202413413
crossref_primary_10_1002_anie_202006899
crossref_primary_10_2166_wst_2022_062
crossref_primary_10_1002_smll_202300916
crossref_primary_10_1016_j_apcatb_2023_122958
crossref_primary_10_1021_accountsmr_4c00143
crossref_primary_10_1002_anie_201901010
crossref_primary_10_1039_C8CC04147D
crossref_primary_10_1002_adfm_202300294
crossref_primary_10_1002_adma_201902031
crossref_primary_10_1021_acsnano_2c10203
crossref_primary_10_1016_j_cej_2019_123196
crossref_primary_10_1021_jacs_1c03036
crossref_primary_10_1016_j_ccr_2020_213615
crossref_primary_10_1021_acs_est_8b03696
crossref_primary_10_1039_D4TA01307G
crossref_primary_10_1016_j_bios_2021_113422
crossref_primary_10_1016_j_mtchem_2022_101037
crossref_primary_10_1021_acscatal_9b04925
crossref_primary_10_1002_smll_202004665
crossref_primary_10_1002_cctc_202001179
crossref_primary_10_1016_j_jechem_2021_09_033
crossref_primary_10_1021_acscatal_1c03441
crossref_primary_10_1021_acs_nanolett_4c03031
crossref_primary_10_1016_j_ccr_2019_03_012
crossref_primary_10_1016_j_checat_2023_100795
crossref_primary_10_1038_s41467_023_39779_6
crossref_primary_10_1039_D1GC02439F
crossref_primary_10_1016_j_jcat_2021_06_013
crossref_primary_10_1016_j_cclet_2021_10_091
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1016_j_cej_2021_132045
crossref_primary_10_1002_anie_202000795
crossref_primary_10_1002_adfm_202009819
crossref_primary_10_1002_sus2_15
crossref_primary_10_1002_anie_201804792
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1039_C9TA12838G
crossref_primary_10_1016_j_fuel_2024_134021
crossref_primary_10_1016_j_susmat_2020_e00209
crossref_primary_10_1016_j_jece_2021_106723
Cites_doi 10.1002/anie.201505442
10.1002/anie.201701089
10.1002/ange.201204475
10.1021/jacs.5b06485
10.1039/b807085g
10.1126/science.aaf8800
10.1038/ncomms13638
10.1021/jacs.6b04552
10.1002/anie.201701604
10.1002/ange.201608597
10.1002/aenm.201502555
10.1021/ar300361m
10.1002/ange.201702473
10.1007/s40843-015-0064-z
10.1021/jacs.5b00075
10.1002/cssc.201501544
10.1002/anie.201602801
10.1002/adma.201500789
10.1007/s12274-017-1539-x
10.1007/s40843-015-0053-2
10.1021/acsami.7b06497
10.1021/acscatal.5b01372
10.1039/C7CS00033B
10.1002/chem.201003211
10.1002/anie.201603990
10.1039/C7NR06274E
10.1002/ange.201701604
10.1007/s12274-015-0970-0
10.1002/anie.201204475
10.1007/s12274-017-1497-3
10.1002/ange.201505442
10.1002/anie.201608597
10.1007/s40843-017-9041-0
10.1016/0378-7753(91)80033-T
10.1038/nchem.1721
10.1002/anie.201702473
10.1002/ange.201701089
10.1021/ja404181c
10.1002/ange.201602801
10.1016/S0926-860X(02)00116-3
10.1038/238037a0
10.1039/DT9940003177
10.1126/science.aaf5251
10.1039/C0CS00042F
10.1038/ncomms9668
10.1002/ange.201603990
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201800817
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3498
ExternalDocumentID 29380509
10_1002_anie_201800817
ANIE201800817
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21431003, 21521091
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-a563cbba2ee78630c3f5fa92b69f522f769ef9a58aa3c6f267f80d84bf56e12e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 10:49:27 EDT 2025
Fri Jul 25 10:40:08 EDT 2025
Wed Feb 19 02:32:45 EST 2025
Tue Jul 01 02:26:19 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Wed Jan 22 16:53:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords hollow nanotubes
hydrogen evolution
photocatalysis
zirconium
metal-organic frameworks
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-a563cbba2ee78630c3f5fa92b69f522f769ef9a58aa3c6f267f80d84bf56e12e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8066-4450
PMID 29380509
PQID 2013168139
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_1993006919
proquest_journals_2013168139
pubmed_primary_29380509
crossref_primary_10_1002_anie_201800817
crossref_citationtrail_10_1002_anie_201800817
wiley_primary_10_1002_anie_201800817_ANIE201800817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 19, 2018
PublicationDateYYYYMMDD 2018-03-19
PublicationDate_xml – month: 03
  year: 2018
  text: March 19, 2018
  day: 19
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 58
2015; 6
2015; 5
2017; 60
1991; 35
2013; 46
2017; 46
2011; 40
2002; 232
1994
2017 2017; 56 129
2011; 17
2013; 5
2017; 9
1972; 238
1999
2016; 6
2016; 7
2016 2016; 55 128
2015; 27
2015; 137
2012 2012; 51 124
2017; 10
2016; 353
2015 2015; 54 127
2016; 352
2013; 135
2016; 138
2009; 38
2016; 9
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_6_2
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_29_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_27_1
e_1_2_2_26_1
Cotton F. A. (e_1_2_2_9_1) 1999
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_37_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_11_1
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_15_1
e_1_2_2_36_1
References_xml – volume: 27
  start-page: 5365
  year: 2015
  end-page: 5371
  publication-title: Adv. Mater.
– volume: 7
  start-page: 13638
  year: 2016
  end-page: 13646
  publication-title: Nat. Commun.
– volume: 55 128
  start-page: 9389 9535
  year: 2016 2016
  end-page: 9393 9539
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 775
  year: 2013
  end-page: 781
  publication-title: Nat. Chem.
– volume: 353
  start-page: 150
  year: 2016
  end-page: 154
  publication-title: Science
– volume: 9
  start-page: 22732
  year: 2017
  end-page: 22738
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 10484
  year: 2015
  end-page: 10487
  publication-title: J. Am. Chem. Soc.
– start-page: 3177
  year: 1994
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 9
  start-page: 47
  year: 2016
  end-page: 58
  publication-title: Nano Res.
– volume: 9
  start-page: 624
  year: 2016
  end-page: 630
  publication-title: ChemSusChem
– volume: 46
  start-page: 3134
  year: 2017
  end-page: 3184
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1218
  year: 2009
  end-page: 1227
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  publication-title: Acc. Chem. Res.
– volume: 40
  start-page: 291
  year: 2011
  end-page: 305
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1377
  year: 2017
  end-page: 1392
  publication-title: Nano Res.
– volume: 352
  start-page: 797
  year: 2016
  end-page: 801
  publication-title: Science
– volume: 54 127
  start-page: 11495 11657
  year: 2015 2015
  end-page: 11500 11662
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 14310 14522
  year: 2016 2016
  end-page: 14314 14526
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58
  start-page: 534
  year: 2015
  end-page: 542
  publication-title: Sci. China Mater.
– volume: 135
  start-page: 10250
  year: 2013
  end-page: 10253
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 5512 5604
  year: 2017 2017
  end-page: 5516 5608
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 10307 10453
  year: 2012 2012
  end-page: 10310 10456
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58
  start-page: 370
  year: 2015
  end-page: 377
  publication-title: Sci. China Mater.
– volume: 35
  start-page: 163
  year: 1991
  end-page: 173
  publication-title: J. Power Sources
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  publication-title: Nature
– volume: 55 128
  start-page: 8319 8459
  year: 2016 2016
  end-page: 8323 8463
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 232
  start-page: 219
  year: 2002
  end-page: 235
  publication-title: Appl. Catal. A
– volume: 5
  start-page: 5673
  year: 2015
  end-page: 5678
  publication-title: ACS Catal.
– volume: 137
  start-page: 3197
  year: 2015
  end-page: 3200
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 6937 7041
  year: 2017 2017
  end-page: 6941 7045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 3621
  year: 2017
  end-page: 3628
  publication-title: Nano Res.
– volume: 138
  start-page: 8698
  year: 2016
  end-page: 8701
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8668
  year: 2015
  end-page: 8675
  publication-title: Nat. Commun.
– volume: 9
  start-page: 19209
  year: 2017
  end-page: 19215
  publication-title: Nanoscale
– volume: 6
  start-page: 1502555
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 56 129
  start-page: 4712 4790
  year: 2017 2017
  end-page: 4718 4796
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60
  start-page: 654
  year: 2017
  end-page: 663
  publication-title: Sci. China Mater.
– volume: 17
  start-page: 6643
  year: 2011
  end-page: 6651
  publication-title: Chem. Eur. J.
– year: 1999
– ident: e_1_2_2_37_1
  doi: 10.1002/anie.201505442
– ident: e_1_2_2_6_1
  doi: 10.1002/anie.201701089
– ident: e_1_2_2_23_2
  doi: 10.1002/ange.201204475
– ident: e_1_2_2_4_1
  doi: 10.1021/jacs.5b06485
– ident: e_1_2_2_18_1
  doi: 10.1039/b807085g
– ident: e_1_2_2_3_1
  doi: 10.1126/science.aaf8800
– ident: e_1_2_2_5_1
  doi: 10.1038/ncomms13638
– ident: e_1_2_2_16_1
  doi: 10.1021/jacs.6b04552
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.201701604
– ident: e_1_2_2_11_2
  doi: 10.1002/ange.201608597
– ident: e_1_2_2_31_1
  doi: 10.1002/aenm.201502555
– ident: e_1_2_2_1_1
  doi: 10.1021/ar300361m
– ident: e_1_2_2_12_2
  doi: 10.1002/ange.201702473
– ident: e_1_2_2_32_1
  doi: 10.1007/s40843-015-0064-z
– ident: e_1_2_2_35_1
  doi: 10.1021/jacs.5b00075
– ident: e_1_2_2_36_1
  doi: 10.1002/cssc.201501544
– ident: e_1_2_2_10_1
  doi: 10.1002/anie.201602801
– ident: e_1_2_2_20_1
  doi: 10.1002/adma.201500789
– ident: e_1_2_2_19_1
  doi: 10.1007/s12274-017-1539-x
– ident: e_1_2_2_22_1
  doi: 10.1007/s40843-015-0053-2
– ident: e_1_2_2_25_1
  doi: 10.1021/acsami.7b06497
– ident: e_1_2_2_7_1
  doi: 10.1021/acscatal.5b01372
– ident: e_1_2_2_15_1
  doi: 10.1039/C7CS00033B
– ident: e_1_2_2_24_1
  doi: 10.1002/chem.201003211
– ident: e_1_2_2_39_1
  doi: 10.1002/anie.201603990
– ident: e_1_2_2_26_1
  doi: 10.1039/C7NR06274E
– ident: e_1_2_2_21_2
  doi: 10.1002/ange.201701604
– ident: e_1_2_2_13_1
  doi: 10.1007/s12274-015-0970-0
– ident: e_1_2_2_23_1
  doi: 10.1002/anie.201204475
– ident: e_1_2_2_33_1
  doi: 10.1007/s12274-017-1497-3
– ident: e_1_2_2_37_2
  doi: 10.1002/ange.201505442
– ident: e_1_2_2_11_1
  doi: 10.1002/anie.201608597
– ident: e_1_2_2_14_1
  doi: 10.1007/s40843-017-9041-0
– ident: e_1_2_2_27_1
  doi: 10.1016/0378-7753(91)80033-T
– ident: e_1_2_2_8_1
  doi: 10.1038/nchem.1721
– ident: e_1_2_2_12_1
  doi: 10.1002/anie.201702473
– ident: e_1_2_2_6_2
  doi: 10.1002/ange.201701089
– volume-title: Advanced Inorganic Chemistry
  year: 1999
  ident: e_1_2_2_9_1
– ident: e_1_2_2_38_1
  doi: 10.1021/ja404181c
– ident: e_1_2_2_10_2
  doi: 10.1002/ange.201602801
– ident: e_1_2_2_30_1
  doi: 10.1016/S0926-860X(02)00116-3
– ident: e_1_2_2_34_1
  doi: 10.1038/238037a0
– ident: e_1_2_2_28_1
  doi: 10.1039/DT9940003177
– ident: e_1_2_2_2_1
  doi: 10.1126/science.aaf5251
– ident: e_1_2_2_17_1
  doi: 10.1039/C0CS00042F
– ident: e_1_2_2_29_1
  doi: 10.1038/ncomms9668
– ident: e_1_2_2_39_2
  doi: 10.1002/ange.201603990
SSID ssj0028806
Score 2.6648276
Snippet Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but...
Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3493
SubjectTerms Anchoring
Catalysis
Catalytic activity
hollow nanotubes
hydrogen evolution
Immobilization
Metal-organic frameworks
Metals
Nanotechnology
Nanotubes
photocatalysis
Platinum
Scanning transmission electron microscopy
Spectroscopy
Transmission electron microscopy
Water splitting
X-rays
Zirconium
Title Zirconium–Porphyrin‐Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Noble‐Metal Single Atoms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201800817
https://www.ncbi.nlm.nih.gov/pubmed/29380509
https://www.proquest.com/docview/2013168139
https://www.proquest.com/docview/1993006919
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQF7j0B2i7dIuMVIlTIOs4TnLcIlYLEitUioS4RLZjSysgQZtEVXviESr1DfdJmIk3aZcKIZVbIjuOY894Pscz3xDymQEI5omWXiaU7_FMRp6yA-Ylic54xBVAEDzRPZ2I8QU_uQwv_4rid_wQ3Q831IxmvUYFl6o8-EMaihHY6JoVo1XDcHJ02EJU9LXjj2IgnC68KAg8zELfsjb67GD58WWr9A_UXEaujekZvSay7bTzOLneryu1r38-4nN8yVe9Ia8WuJQOnSC9JSsm3yBrh206uE3y42o6g73ztL6d3_8-K3B6ZtN8fv_rC9jBjJ4aQPFQ4mI7NR21Tl90DJJWfKewjBdVrUxJASbTYxB_dMt1QaC0sHSCiW2guaYheg4W9cbQYVXcllvkYnT07XDsLfI2eJpHsO7KUARaKcmMiWIR-DqwoZUJUyKxAPdsJBJjExnGUgZaWCYiG_tZzJUNhRkwE7wjq3mRmw-EqlBkcSQzBnsAbqWvAJ0qFhps1nKb9YjXzluqF6TmmFvjJnV0zCzFAU27Ae2Rva7-naPzeLJmvxWDdKHWJZZioi9AzT2y2xXDROApi8xNUZcpekQi__MA6rx34tO9CrBVjIQ7PcIaIXimD-lwcnzU3W3_z0MfyTpeo9fcIOmT1WpWm08Aoyq106jKA-1dGM8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n-2FDASiFParJM4yYHD0na1S7srBK1UcUltx5Yq2qTaJKrKqY-AxJPwKjxCn4SZZBO0IISE1APHxI7jxDOeb5KZbwBecATBfqylkwrlOn4qQ0fZPnfiWKd-6CuEIPRHdzIVo33_7UFwsATf2lyYhh-i--BGmlHv16Tg9EF64ydrKKVgU2xWRGYtnMdV7pjzM_TaitfjLVzil5wPt_c2R868sICj_RA3BhkITysluTFhJDxXezawMuZKxBbxiA1FbGwsg0hKTwvLRWgjN418ZQNh-tx4OO41uE5lxImuf-t9x1jFUR2ahCbPc6jufcsT6fKNxfku2sHfwO0iVq6N3fAWfG9fUxPj8mm9KtW6_vwLg-R_9R5vw8059GaDRlfuwJLJ7sLKZlvx7h6cfzyaadzjqpPLi6_vcpLA2VF2efHlDZr6lE0MOirY0qSvajZs49rYCJUpP2NoqfKyUqZg6AmwMWo4RR43ea4st2xKtXtwuHog9gFBw7FhgzI_Ke7D_pU8-QNYzvLMPAKmApFGoUw5ujm-la5CAK54YGhY69u0B04rKIme87ZT-ZDjpGGc5gktYNItYA9edf1PG8aSP_Zca-Uume9cBbVSLTN0DHrwvGvGhaAfSTIzeVUkFPRJFNd97POwkdfuVggfI-IU6gGvpe4vc0gG0_F2d7T6Lxc9g5XR3mQ32R1Pdx7DDTpPQYL9eA2Wy1llniBqLNXTWk8ZHF61QP8Ab094HA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qELBYwE4pQ26zhOcuCwdLvapXRVAZWqXoKd2FLVNqk2iapy6iMg8SK8Cq_QJ2Em2QQtCCEh9cAxseM48Yznm2TmG4AXHEGwiBLlpFK7jkhV4Gjb504UJakIhEYIQn90t6dyvCve7vl7S_CtzYVp-CG6D26kGfV-TQp-ktr1n6ShlIFNoVkhWbVgHla5Zc5O0WkrXk-GuMIvOR9tftwYO_O6Ak4iAtwXlC-9RGvFjQlC6bmJZ32rIq5lZBGO2EBGxkbKD5XyEmm5DGzopqHQ1pemz42H416Bq0K6ERWLGL7vCKs4akOTz-R5DpW9b2kiXb6-ON9FM_gbtl2EyrWtG92C7-1bakJcDteqUq8ln38hkPyfXuNtuDkH3mzQaModWDLZXbi-0da7uwdn-wezBHe46vji_OtOTvI3O8guzr-8QUOfsm2Dbgq2NMmrCRu1UW1sjKqUnzK0U3lZaVMw9APYBPWb4o6bLFeWWzalyj04XD0Q-4CQ4ciwQZkfF_dh91Ke_AEsZ3lmVoBpX6ZhoFKOTo6wytUIvzX3DQ1rhU174LRyEidz1nYqHnIUN3zTPKYFjLsF7MGrrv9Jw1fyx56rrdjF832roFaqZIZuQQ-ed824EPQbSWUmr4qYQj6J4LqPfR424trdCsFjSIxCPeC10P1lDvFgOtnsjh79y0XP4NrOcBS_m0y3HsMNOk0Rgv1oFZbLWWWeIGQs9dNaSxl8umx5_gGDgnbL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zirconium%E2%80%93Porphyrin%E2%80%90Based+Metal%E2%80%93Organic+Framework+Hollow+Nanotubes+for+Immobilization+of+Noble%E2%80%90Metal+Single+Atoms&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=He%2C+Ting&rft.au=Chen%2C+Shuangming&rft.au=Ni%2C+Bing&rft.au=Gong%2C+Yue&rft.date=2018-03-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=13&rft.spage=3493&rft.epage=3498&rft_id=info:doi/10.1002%2Fanie.201800817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201800817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon