Zirconium–Porphyrin‐Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Noble‐Metal Single Atoms
Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconi...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 13; pp. 3493 - 3498 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
19.03.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.
Single noble metal atoms can be successfully immobilized on the well‐defined anchoring sites of zirconium–porphyrin MOF hollow nanotubes. Owing to the hollow structure and excellent photoelectrochemical performance, HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. |
---|---|
AbstractList | Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.
Single noble metal atoms can be successfully immobilized on the well‐defined anchoring sites of zirconium–porphyrin MOF hollow nanotubes. Owing to the hollow structure and excellent photoelectrochemical performance, HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs. Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble-metal atoms have now been successfully anchored on the well-defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration-corrected scanning transmission electron microscopy and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM-Ir/Pt exhibits outstanding catalytic activity in the visible-light photocatalytic H evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs. Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble‐metal atoms have now been successfully anchored on the well‐defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration‐corrected scanning transmission electron microscopy and synchrotron‐radiation‐based X‐ray absorption fine‐structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM‐Ir/Pt exhibits outstanding catalytic activity in the visible‐light photocatalytic H 2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs. Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble-metal atoms have now been successfully anchored on the well-defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration-corrected scanning transmission electron microscopy and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM-Ir/Pt exhibits outstanding catalytic activity in the visible-light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs.Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but remain a great challenge. Various single noble-metal atoms have now been successfully anchored on the well-defined anchoring sites of the zirconium porphyrin MOF hollow nanotubes, which are probed by aberration-corrected scanning transmission electron microscopy and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy. Owing to the hollow structure and excellent photoelectrochemical performance, the HNTM-Ir/Pt exhibits outstanding catalytic activity in the visible-light photocatalytic H2 evolution via water splitting. The single atom immobilized on MOFs with hollow structures are expected to pave the way to expand the potential applications of MOFs. |
Author | Gu, Lin Chen, Shuangming Hu, Wenping He, Ting Wang, Xun Song, Li Gong, Yue Ni, Bing Wu, Zhao |
Author_xml | – sequence: 1 givenname: Ting surname: He fullname: He, Ting organization: Qinghai Normal University – sequence: 2 givenname: Shuangming surname: Chen fullname: Chen, Shuangming organization: University of Science and Technology of China – sequence: 3 givenname: Bing surname: Ni fullname: Ni, Bing organization: Tsinghua University – sequence: 4 givenname: Yue surname: Gong fullname: Gong, Yue organization: Chinese Academy of Sciences – sequence: 5 givenname: Zhao surname: Wu fullname: Wu, Zhao organization: University of Science and Technology of China – sequence: 6 givenname: Li surname: Song fullname: Song, Li organization: University of Science and Technology of China – sequence: 7 givenname: Lin surname: Gu fullname: Gu, Lin organization: Chinese Academy of Sciences – sequence: 8 givenname: Wenping surname: Hu fullname: Hu, Wenping organization: Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 9 givenname: Xun orcidid: 0000-0002-8066-4450 surname: Wang fullname: Wang, Xun email: wangxun@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29380509$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URB-wZYkssWEzwY-MH8tQtTRSSZGADZuRZ3JdXDx2as8oCqv-BCT-YX8JTlOKVAmxupbud861zjlEeyEGQOglJRNKCHtrgoMJI1QRoqh8gg5ozWjFpeR75T3lvJKqpvvoMOerwitFxDO0zzRXpCb6AG2-utTF4Mb-9ubXx5hW3zbJhdubn-9MhiX-AIPxZXORLsulDp8m08M6pu_4LHof13hhQhzGFjK2MeF538fWeffDDC4GHC1exNZDsbszwp9cuPSAZ0Ps83P01Bqf4cX9PEJfTk8-H59V5xfv58ez86qbSiErUwveta1hAFIJTjpua2s0a4W2NWNWCg1Wm1oZwzthmZBWkaWatrYWQBnwI_Rm57tK8XqEPDS9yx14bwLEMTdUa06I0FQX9PUj9CqOKZTfNSViToWifEu9uqfGtodls0quN2nT_Am1AJMd0KWYcwL7gFDSbFtrtq01D60VwfSRoHPDXYRDMs7_W6Z3srXzsPnPkWa2mJ_81f4G7IWxMw |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156795 crossref_primary_10_1021_acscatal_2c06413 crossref_primary_10_1007_s10562_023_04496_8 crossref_primary_10_3390_catal13020415 crossref_primary_10_1039_C7CS00879A crossref_primary_10_1039_D4DT01063A crossref_primary_10_1002_adma_201800743 crossref_primary_10_1002_ppsc_202000101 crossref_primary_10_1016_j_cej_2023_145700 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1002_advs_202407631 crossref_primary_10_1002_anie_201905554 crossref_primary_10_1002_adma_201900592 crossref_primary_10_1002_aenm_201900597 crossref_primary_10_1016_j_scib_2019_06_009 crossref_primary_10_1016_j_ccr_2022_214968 crossref_primary_10_1021_acsestengg_0c00136 crossref_primary_10_1016_j_apcatb_2022_121218 crossref_primary_10_1021_acscatal_4c04666 crossref_primary_10_1002_asia_201800444 crossref_primary_10_3390_catal10121407 crossref_primary_10_1016_j_carbon_2020_06_064 crossref_primary_10_1016_j_mcat_2023_113470 crossref_primary_10_1002_aenm_202001561 crossref_primary_10_1016_j_matt_2022_07_014 crossref_primary_10_1002_anie_201902171 crossref_primary_10_1002_slct_202000567 crossref_primary_10_1039_D2TA00835A crossref_primary_10_1002_smll_202402779 crossref_primary_10_1002_smll_202004809 crossref_primary_10_1002_advs_201800949 crossref_primary_10_1016_j_jwpe_2021_102362 crossref_primary_10_1002_ange_201901010 crossref_primary_10_1007_s12274_023_5750_7 crossref_primary_10_1016_j_ccr_2022_214600 crossref_primary_10_1016_j_nanoen_2018_11_033 crossref_primary_10_1021_acsanm_3c01899 crossref_primary_10_1021_acscatal_0c01459 crossref_primary_10_1016_j_cej_2021_133279 crossref_primary_10_1038_s41467_024_54325_8 crossref_primary_10_1016_j_pmatsci_2022_100964 crossref_primary_10_1016_j_apcatb_2021_120656 crossref_primary_10_1016_j_ces_2022_117654 crossref_primary_10_1002_ange_202114071 crossref_primary_10_1016_j_seppur_2023_124996 crossref_primary_10_1016_j_desal_2022_116169 crossref_primary_10_1007_s12274_023_5929_y crossref_primary_10_1016_j_bios_2023_115690 crossref_primary_10_1021_acsami_0c07260 crossref_primary_10_1016_j_aca_2022_339552 crossref_primary_10_1038_s41467_019_11619_6 crossref_primary_10_1002_anie_201806936 crossref_primary_10_1002_anie_202303086 crossref_primary_10_1016_j_ceramint_2024_12_319 crossref_primary_10_1039_D2QI00845A crossref_primary_10_1039_D1DT01895G crossref_primary_10_1016_j_mtcomm_2020_101322 crossref_primary_10_1016_j_aca_2024_342763 crossref_primary_10_1039_C8TA04064H crossref_primary_10_3390_molecules28145530 crossref_primary_10_1039_D3TA02520A crossref_primary_10_1021_acsaem_1c02874 crossref_primary_10_1002_adfm_202418427 crossref_primary_10_1016_j_colsurfa_2020_125888 crossref_primary_10_1039_D2MH01067D crossref_primary_10_1016_j_apcatb_2019_03_008 crossref_primary_10_1016_j_cej_2022_139446 crossref_primary_10_1016_j_inoche_2019_107536 crossref_primary_10_1002_chem_202100171 crossref_primary_10_1039_D4TA03518F crossref_primary_10_1002_adma_201806626 crossref_primary_10_1002_smll_202306820 crossref_primary_10_1002_cctc_202001255 crossref_primary_10_1016_j_apcatb_2024_123893 crossref_primary_10_1039_D1EE00248A crossref_primary_10_1021_acs_chemrev_9b00818 crossref_primary_10_1016_j_mseb_2024_117934 crossref_primary_10_1039_D2CS00183G crossref_primary_10_1016_j_apcatb_2020_118746 crossref_primary_10_1021_jacs_9b02417 crossref_primary_10_1002_ange_202303086 crossref_primary_10_1002_adma_201904249 crossref_primary_10_1016_j_cej_2023_141676 crossref_primary_10_1016_j_lwt_2024_115996 crossref_primary_10_1002_smll_202403767 crossref_primary_10_1039_D0MD00416B crossref_primary_10_1002_ange_202312697 crossref_primary_10_1016_j_cej_2022_136186 crossref_primary_10_1002_solr_202000283 crossref_primary_10_1002_adfm_202008008 crossref_primary_10_1002_anie_202109538 crossref_primary_10_1016_j_matpr_2022_12_179 crossref_primary_10_1039_D0TA08115A crossref_primary_10_1002_anie_202002375 crossref_primary_10_1002_cctc_201900191 crossref_primary_10_1039_C9NH00510B crossref_primary_10_1002_adma_202409269 crossref_primary_10_1002_anie_202312734 crossref_primary_10_1002_adma_201800702 crossref_primary_10_1007_s12274_024_6580_y crossref_primary_10_1002_ange_201904058 crossref_primary_10_1039_D4TA09139F crossref_primary_10_1002_inf2_12257 crossref_primary_10_1002_anie_202319255 crossref_primary_10_1021_acsnano_4c05815 crossref_primary_10_1002_adfm_202418602 crossref_primary_10_1016_j_apcatb_2023_123559 crossref_primary_10_1016_j_ijhydene_2021_12_031 crossref_primary_10_1039_D2EE01037B crossref_primary_10_1002_anie_202114071 crossref_primary_10_1016_j_cis_2020_102108 crossref_primary_10_1002_ange_202002375 crossref_primary_10_1039_D0CS01482F crossref_primary_10_1021_acs_inorgchem_9b02084 crossref_primary_10_1021_acs_chemmater_0c02535 crossref_primary_10_1070_RCR5038 crossref_primary_10_1016_j_checat_2021_08_009 crossref_primary_10_1016_j_molstruc_2024_139120 crossref_primary_10_1016_S1872_2067_23_64530_9 crossref_primary_10_1002_anie_201914977 crossref_primary_10_1002_adtp_202300120 crossref_primary_10_1039_D0DT02961K crossref_primary_10_1007_s12274_023_6037_8 crossref_primary_10_1016_j_chempr_2019_10_007 crossref_primary_10_1016_j_aca_2024_342892 crossref_primary_10_1016_j_ijhydene_2025_02_157 crossref_primary_10_1557_mrs_2019_294 crossref_primary_10_1016_j_chempr_2018_12_011 crossref_primary_10_1016_j_jcat_2019_06_024 crossref_primary_10_1016_j_mattod_2021_11_022 crossref_primary_10_1016_j_cclet_2023_108669 crossref_primary_10_1088_1361_6528_ac162e crossref_primary_10_1246_bcsj_20210324 crossref_primary_10_1021_acs_inorgchem_4c03337 crossref_primary_10_1134_S0036023623602143 crossref_primary_10_1016_j_apsusc_2018_09_061 crossref_primary_10_1016_j_ccr_2021_214032 crossref_primary_10_1021_acsnano_1c03424 crossref_primary_10_1002_cplu_202400158 crossref_primary_10_2139_ssrn_3993048 crossref_primary_10_1016_j_matre_2022_100141 crossref_primary_10_1039_D4TA03502J crossref_primary_10_1039_C8CC08116F crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_1002_cphc_202300726 crossref_primary_10_1016_j_jcat_2022_01_017 crossref_primary_10_3389_fchem_2022_845274 crossref_primary_10_1039_D0EE01347A crossref_primary_10_1007_s11467_020_0980_6 crossref_primary_10_1007_s41918_019_00050_6 crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1021_acssuschemeng_8b06273 crossref_primary_10_1002_cctc_202301753 crossref_primary_10_1016_j_electacta_2021_139630 crossref_primary_10_1002_solr_201900547 crossref_primary_10_1002_anie_202007474 crossref_primary_10_1002_adma_202211398 crossref_primary_10_1021_acsabm_1c00852 crossref_primary_10_1002_aenm_202002138 crossref_primary_10_1016_j_aca_2022_339586 crossref_primary_10_1038_s41467_019_11817_2 crossref_primary_10_1021_acs_analchem_9b05841 crossref_primary_10_1007_s12274_023_5655_5 crossref_primary_10_31857_S0044457X23600330 crossref_primary_10_1002_smll_202401389 crossref_primary_10_1016_j_ccr_2020_213214 crossref_primary_10_1039_D3TA00580A crossref_primary_10_1016_j_physe_2021_114697 crossref_primary_10_1002_anie_202217565 crossref_primary_10_1021_acsomega_1c02492 crossref_primary_10_1039_D3CC00451A crossref_primary_10_1002_ange_202007474 crossref_primary_10_1002_smll_202205743 crossref_primary_10_1016_j_cej_2023_147601 crossref_primary_10_1039_C9EE04040D crossref_primary_10_1002_ange_201914977 crossref_primary_10_1021_acs_cgd_1c00524 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1007_s11356_024_32208_1 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1016_j_enchem_2024_100121 crossref_primary_10_1002_cey2_194 crossref_primary_10_1002_ange_202000795 crossref_primary_10_1002_smll_202410678 crossref_primary_10_1002_ange_202109538 crossref_primary_10_1021_acs_nanolett_3c02934 crossref_primary_10_1039_D0TA09538A crossref_primary_10_1002_ange_202217565 crossref_primary_10_1002_smll_202301319 crossref_primary_10_1021_acs_inorgchem_4c03123 crossref_primary_10_1002_cnma_202400462 crossref_primary_10_1039_C9TC02778E crossref_primary_10_1002_ange_202006899 crossref_primary_10_1021_acs_energyfuels_1c02623 crossref_primary_10_3389_fchem_2021_806800 crossref_primary_10_1002_ange_202413413 crossref_primary_10_1002_smll_202300460 crossref_primary_10_1021_acsami_1c02045 crossref_primary_10_1002_ange_201806936 crossref_primary_10_1002_inf2_12296 crossref_primary_10_3390_catal11101168 crossref_primary_10_1002_adfm_202010052 crossref_primary_10_1002_smtd_202201213 crossref_primary_10_1039_D1TA06915B crossref_primary_10_1142_S1088424621500760 crossref_primary_10_1002_adma_202412071 crossref_primary_10_1039_D0PY00170H crossref_primary_10_1016_j_cej_2020_126730 crossref_primary_10_1016_j_pecs_2024_101175 crossref_primary_10_1016_j_poly_2018_08_004 crossref_primary_10_20517_cs_2024_42 crossref_primary_10_1039_D3NJ03177B crossref_primary_10_1016_j_mtsust_2023_100371 crossref_primary_10_1002_cplu_201900349 crossref_primary_10_1016_j_ica_2020_119926 crossref_primary_10_1021_acsami_0c14046 crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1002_adma_201803966 crossref_primary_10_1016_j_cej_2021_128414 crossref_primary_10_1016_j_nanoen_2021_106819 crossref_primary_10_2174_1876402914666220509105355 crossref_primary_10_1016_j_cej_2021_130055 crossref_primary_10_1002_adma_202002910 crossref_primary_10_1016_j_cclet_2021_05_035 crossref_primary_10_1021_acs_iecr_9b03815 crossref_primary_10_34133_2020_9140841 crossref_primary_10_1039_D3TA02145A crossref_primary_10_1002_smtd_201800501 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_3390_molecules29020467 crossref_primary_10_1016_j_nantod_2019_05_007 crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1021_acsami_0c01539 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1002_solr_201900438 crossref_primary_10_1016_j_nanoen_2021_105850 crossref_primary_10_1002_aenm_202003575 crossref_primary_10_1039_C9CY01028A crossref_primary_10_1039_D1NJ01010G crossref_primary_10_1039_D1SC05983A crossref_primary_10_3390_catal12101239 crossref_primary_10_1002_ange_201902171 crossref_primary_10_1002_anie_202012699 crossref_primary_10_1021_acsami_4c21171 crossref_primary_10_1039_C9TA06184C crossref_primary_10_1002_smtd_201800068 crossref_primary_10_1016_j_ccr_2020_213266 crossref_primary_10_1007_s11426_021_1095_y crossref_primary_10_1039_D1TA02547C crossref_primary_10_1002_adfm_201906477 crossref_primary_10_1002_smm2_1095 crossref_primary_10_1016_j_snb_2019_01_105 crossref_primary_10_1016_j_ccr_2022_214428 crossref_primary_10_1021_acs_jpcc_9b10834 crossref_primary_10_1039_D2SM00749E crossref_primary_10_1016_j_micromeso_2023_112559 crossref_primary_10_1016_j_seppur_2023_125456 crossref_primary_10_1039_D3EE02090H crossref_primary_10_1149_2_1101810jes crossref_primary_10_1002_ange_202312734 crossref_primary_10_1002_adma_201901139 crossref_primary_10_1002_ange_202012699 crossref_primary_10_1021_acsaem_0c01969 crossref_primary_10_1002_zaac_201900083 crossref_primary_10_1007_s41061_018_0229_9 crossref_primary_10_1016_j_ccr_2023_215493 crossref_primary_10_1002_cctc_202401355 crossref_primary_10_1016_j_ccr_2022_214664 crossref_primary_10_1002_ange_201905554 crossref_primary_10_1016_j_ccr_2022_214542 crossref_primary_10_1002_anie_201904058 crossref_primary_10_1016_j_apsusc_2018_08_007 crossref_primary_10_1039_D1SE01331A crossref_primary_10_1002_ange_202319255 crossref_primary_10_1016_j_fuel_2022_126766 crossref_primary_10_1016_j_jechem_2021_03_011 crossref_primary_10_1039_D3QI01996A crossref_primary_10_1002_aenm_202102556 crossref_primary_10_1016_j_seppur_2024_131362 crossref_primary_10_1021_acscentsci_1c01563 crossref_primary_10_1039_D3TC04673G crossref_primary_10_1016_j_chempr_2021_08_020 crossref_primary_10_1039_D4EE03065F crossref_primary_10_1016_j_chempr_2019_11_013 crossref_primary_10_1016_j_snb_2023_134865 crossref_primary_10_1016_S1872_2067_22_64104_4 crossref_primary_10_1021_acs_inorgchem_1c00041 crossref_primary_10_1039_C9TA14005K crossref_primary_10_1016_j_nanoen_2020_105530 crossref_primary_10_1002_admi_202000396 crossref_primary_10_1002_anie_202312697 crossref_primary_10_1016_j_ijhydene_2019_05_059 crossref_primary_10_1016_j_nanoen_2019_06_045 crossref_primary_10_1021_jacs_2c10233 crossref_primary_10_1039_D1CS00992C crossref_primary_10_1039_C9QI00024K crossref_primary_10_1016_j_apsusc_2020_148054 crossref_primary_10_1021_acsenergylett_9b02625 crossref_primary_10_1016_j_joule_2021_12_011 crossref_primary_10_1080_00958972_2022_2103687 crossref_primary_10_1002_ange_201804319 crossref_primary_10_1002_smtd_202402096 crossref_primary_10_1039_D2NJ01994A crossref_primary_10_1016_j_nanoen_2020_105085 crossref_primary_10_1039_D3TA07710A crossref_primary_10_1021_acs_macromol_1c00489 crossref_primary_10_1002_adma_202101886 crossref_primary_10_1016_j_ijhydene_2023_12_035 crossref_primary_10_1016_j_jelechem_2022_116701 crossref_primary_10_1002_aenm_201802977 crossref_primary_10_1021_acs_chemrev_9b00840 crossref_primary_10_1039_D1CC06462B crossref_primary_10_1016_j_seppur_2022_122598 crossref_primary_10_1021_jacs_2c10801 crossref_primary_10_1016_j_apcatb_2020_118925 crossref_primary_10_1002_ange_201804792 crossref_primary_10_1016_S1872_2067_23_64475_4 crossref_primary_10_1021_acsami_4c17745 crossref_primary_10_1039_D0NR05626J crossref_primary_10_1039_D3SC01816D crossref_primary_10_1016_j_actbio_2023_03_008 crossref_primary_10_1016_j_jechem_2020_02_020 crossref_primary_10_1021_acscatal_2c05992 crossref_primary_10_1360_SSC_2022_0091 crossref_primary_10_1016_j_joule_2018_06_019 crossref_primary_10_1039_D0CY00809E crossref_primary_10_1007_s00604_023_05949_y crossref_primary_10_1039_D0CY01735C crossref_primary_10_1016_j_mtener_2021_100761 crossref_primary_10_1016_j_ijhydene_2020_12_148 crossref_primary_10_1039_C9TC05859A crossref_primary_10_1016_j_desal_2025_118762 crossref_primary_10_1002_anie_201804319 crossref_primary_10_1002_anie_202413413 crossref_primary_10_1002_anie_202006899 crossref_primary_10_2166_wst_2022_062 crossref_primary_10_1002_smll_202300916 crossref_primary_10_1016_j_apcatb_2023_122958 crossref_primary_10_1021_accountsmr_4c00143 crossref_primary_10_1002_anie_201901010 crossref_primary_10_1039_C8CC04147D crossref_primary_10_1002_adfm_202300294 crossref_primary_10_1002_adma_201902031 crossref_primary_10_1021_acsnano_2c10203 crossref_primary_10_1016_j_cej_2019_123196 crossref_primary_10_1021_jacs_1c03036 crossref_primary_10_1016_j_ccr_2020_213615 crossref_primary_10_1021_acs_est_8b03696 crossref_primary_10_1039_D4TA01307G crossref_primary_10_1016_j_bios_2021_113422 crossref_primary_10_1016_j_mtchem_2022_101037 crossref_primary_10_1021_acscatal_9b04925 crossref_primary_10_1002_smll_202004665 crossref_primary_10_1002_cctc_202001179 crossref_primary_10_1016_j_jechem_2021_09_033 crossref_primary_10_1021_acscatal_1c03441 crossref_primary_10_1021_acs_nanolett_4c03031 crossref_primary_10_1016_j_ccr_2019_03_012 crossref_primary_10_1016_j_checat_2023_100795 crossref_primary_10_1038_s41467_023_39779_6 crossref_primary_10_1039_D1GC02439F crossref_primary_10_1016_j_jcat_2021_06_013 crossref_primary_10_1016_j_cclet_2021_10_091 crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1016_j_cej_2021_132045 crossref_primary_10_1002_anie_202000795 crossref_primary_10_1002_adfm_202009819 crossref_primary_10_1002_sus2_15 crossref_primary_10_1002_anie_201804792 crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1039_C9TA12838G crossref_primary_10_1016_j_fuel_2024_134021 crossref_primary_10_1016_j_susmat_2020_e00209 crossref_primary_10_1016_j_jece_2021_106723 |
Cites_doi | 10.1002/anie.201505442 10.1002/anie.201701089 10.1002/ange.201204475 10.1021/jacs.5b06485 10.1039/b807085g 10.1126/science.aaf8800 10.1038/ncomms13638 10.1021/jacs.6b04552 10.1002/anie.201701604 10.1002/ange.201608597 10.1002/aenm.201502555 10.1021/ar300361m 10.1002/ange.201702473 10.1007/s40843-015-0064-z 10.1021/jacs.5b00075 10.1002/cssc.201501544 10.1002/anie.201602801 10.1002/adma.201500789 10.1007/s12274-017-1539-x 10.1007/s40843-015-0053-2 10.1021/acsami.7b06497 10.1021/acscatal.5b01372 10.1039/C7CS00033B 10.1002/chem.201003211 10.1002/anie.201603990 10.1039/C7NR06274E 10.1002/ange.201701604 10.1007/s12274-015-0970-0 10.1002/anie.201204475 10.1007/s12274-017-1497-3 10.1002/ange.201505442 10.1002/anie.201608597 10.1007/s40843-017-9041-0 10.1016/0378-7753(91)80033-T 10.1038/nchem.1721 10.1002/anie.201702473 10.1002/ange.201701089 10.1021/ja404181c 10.1002/ange.201602801 10.1016/S0926-860X(02)00116-3 10.1038/238037a0 10.1039/DT9940003177 10.1126/science.aaf5251 10.1039/C0CS00042F 10.1038/ncomms9668 10.1002/ange.201603990 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201800817 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3498 |
ExternalDocumentID | 29380509 10_1002_anie_201800817 ANIE201800817 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21431003, 21521091 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-a563cbba2ee78630c3f5fa92b69f522f769ef9a58aa3c6f267f80d84bf56e12e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 10:49:27 EDT 2025 Fri Jul 25 10:40:08 EDT 2025 Wed Feb 19 02:32:45 EST 2025 Tue Jul 01 02:26:19 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Wed Jan 22 16:53:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | hollow nanotubes hydrogen evolution photocatalysis zirconium metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-a563cbba2ee78630c3f5fa92b69f522f769ef9a58aa3c6f267f80d84bf56e12e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8066-4450 |
PMID | 29380509 |
PQID | 2013168139 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1993006919 proquest_journals_2013168139 pubmed_primary_29380509 crossref_primary_10_1002_anie_201800817 crossref_citationtrail_10_1002_anie_201800817 wiley_primary_10_1002_anie_201800817_ANIE201800817 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 19, 2018 |
PublicationDateYYYYMMDD | 2018-03-19 |
PublicationDate_xml | – month: 03 year: 2018 text: March 19, 2018 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 58 2015; 6 2015; 5 2017; 60 1991; 35 2013; 46 2017; 46 2011; 40 2002; 232 1994 2017 2017; 56 129 2011; 17 2013; 5 2017; 9 1972; 238 1999 2016; 6 2016; 7 2016 2016; 55 128 2015; 27 2015; 137 2012 2012; 51 124 2017; 10 2016; 353 2015 2015; 54 127 2016; 352 2013; 135 2016; 138 2009; 38 2016; 9 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_6_2 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_29_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_27_1 e_1_2_2_26_1 Cotton F. A. (e_1_2_2_9_1) 1999 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_37_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_11_1 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_15_1 e_1_2_2_36_1 |
References_xml | – volume: 27 start-page: 5365 year: 2015 end-page: 5371 publication-title: Adv. Mater. – volume: 7 start-page: 13638 year: 2016 end-page: 13646 publication-title: Nat. Commun. – volume: 55 128 start-page: 9389 9535 year: 2016 2016 end-page: 9393 9539 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 775 year: 2013 end-page: 781 publication-title: Nat. Chem. – volume: 353 start-page: 150 year: 2016 end-page: 154 publication-title: Science – volume: 9 start-page: 22732 year: 2017 end-page: 22738 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 10484 year: 2015 end-page: 10487 publication-title: J. Am. Chem. Soc. – start-page: 3177 year: 1994 publication-title: J. Chem. Soc. Dalton Trans. – volume: 9 start-page: 47 year: 2016 end-page: 58 publication-title: Nano Res. – volume: 9 start-page: 624 year: 2016 end-page: 630 publication-title: ChemSusChem – volume: 46 start-page: 3134 year: 2017 end-page: 3184 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1218 year: 2009 end-page: 1227 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 1740 year: 2013 end-page: 1748 publication-title: Acc. Chem. Res. – volume: 40 start-page: 291 year: 2011 end-page: 305 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1377 year: 2017 end-page: 1392 publication-title: Nano Res. – volume: 352 start-page: 797 year: 2016 end-page: 801 publication-title: Science – volume: 54 127 start-page: 11495 11657 year: 2015 2015 end-page: 11500 11662 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 14310 14522 year: 2016 2016 end-page: 14314 14526 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 start-page: 534 year: 2015 end-page: 542 publication-title: Sci. China Mater. – volume: 135 start-page: 10250 year: 2013 end-page: 10253 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 5512 5604 year: 2017 2017 end-page: 5516 5608 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 10307 10453 year: 2012 2012 end-page: 10310 10456 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 start-page: 370 year: 2015 end-page: 377 publication-title: Sci. China Mater. – volume: 35 start-page: 163 year: 1991 end-page: 173 publication-title: J. Power Sources – volume: 238 start-page: 37 year: 1972 end-page: 38 publication-title: Nature – volume: 55 128 start-page: 8319 8459 year: 2016 2016 end-page: 8323 8463 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 232 start-page: 219 year: 2002 end-page: 235 publication-title: Appl. Catal. A – volume: 5 start-page: 5673 year: 2015 end-page: 5678 publication-title: ACS Catal. – volume: 137 start-page: 3197 year: 2015 end-page: 3200 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 6937 7041 year: 2017 2017 end-page: 6941 7045 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 3621 year: 2017 end-page: 3628 publication-title: Nano Res. – volume: 138 start-page: 8698 year: 2016 end-page: 8701 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8668 year: 2015 end-page: 8675 publication-title: Nat. Commun. – volume: 9 start-page: 19209 year: 2017 end-page: 19215 publication-title: Nanoscale – volume: 6 start-page: 1502555 year: 2016 publication-title: Adv. Energy Mater. – volume: 56 129 start-page: 4712 4790 year: 2017 2017 end-page: 4718 4796 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 start-page: 654 year: 2017 end-page: 663 publication-title: Sci. China Mater. – volume: 17 start-page: 6643 year: 2011 end-page: 6651 publication-title: Chem. Eur. J. – year: 1999 – ident: e_1_2_2_37_1 doi: 10.1002/anie.201505442 – ident: e_1_2_2_6_1 doi: 10.1002/anie.201701089 – ident: e_1_2_2_23_2 doi: 10.1002/ange.201204475 – ident: e_1_2_2_4_1 doi: 10.1021/jacs.5b06485 – ident: e_1_2_2_18_1 doi: 10.1039/b807085g – ident: e_1_2_2_3_1 doi: 10.1126/science.aaf8800 – ident: e_1_2_2_5_1 doi: 10.1038/ncomms13638 – ident: e_1_2_2_16_1 doi: 10.1021/jacs.6b04552 – ident: e_1_2_2_21_1 doi: 10.1002/anie.201701604 – ident: e_1_2_2_11_2 doi: 10.1002/ange.201608597 – ident: e_1_2_2_31_1 doi: 10.1002/aenm.201502555 – ident: e_1_2_2_1_1 doi: 10.1021/ar300361m – ident: e_1_2_2_12_2 doi: 10.1002/ange.201702473 – ident: e_1_2_2_32_1 doi: 10.1007/s40843-015-0064-z – ident: e_1_2_2_35_1 doi: 10.1021/jacs.5b00075 – ident: e_1_2_2_36_1 doi: 10.1002/cssc.201501544 – ident: e_1_2_2_10_1 doi: 10.1002/anie.201602801 – ident: e_1_2_2_20_1 doi: 10.1002/adma.201500789 – ident: e_1_2_2_19_1 doi: 10.1007/s12274-017-1539-x – ident: e_1_2_2_22_1 doi: 10.1007/s40843-015-0053-2 – ident: e_1_2_2_25_1 doi: 10.1021/acsami.7b06497 – ident: e_1_2_2_7_1 doi: 10.1021/acscatal.5b01372 – ident: e_1_2_2_15_1 doi: 10.1039/C7CS00033B – ident: e_1_2_2_24_1 doi: 10.1002/chem.201003211 – ident: e_1_2_2_39_1 doi: 10.1002/anie.201603990 – ident: e_1_2_2_26_1 doi: 10.1039/C7NR06274E – ident: e_1_2_2_21_2 doi: 10.1002/ange.201701604 – ident: e_1_2_2_13_1 doi: 10.1007/s12274-015-0970-0 – ident: e_1_2_2_23_1 doi: 10.1002/anie.201204475 – ident: e_1_2_2_33_1 doi: 10.1007/s12274-017-1497-3 – ident: e_1_2_2_37_2 doi: 10.1002/ange.201505442 – ident: e_1_2_2_11_1 doi: 10.1002/anie.201608597 – ident: e_1_2_2_14_1 doi: 10.1007/s40843-017-9041-0 – ident: e_1_2_2_27_1 doi: 10.1016/0378-7753(91)80033-T – ident: e_1_2_2_8_1 doi: 10.1038/nchem.1721 – ident: e_1_2_2_12_1 doi: 10.1002/anie.201702473 – ident: e_1_2_2_6_2 doi: 10.1002/ange.201701089 – volume-title: Advanced Inorganic Chemistry year: 1999 ident: e_1_2_2_9_1 – ident: e_1_2_2_38_1 doi: 10.1021/ja404181c – ident: e_1_2_2_10_2 doi: 10.1002/ange.201602801 – ident: e_1_2_2_30_1 doi: 10.1016/S0926-860X(02)00116-3 – ident: e_1_2_2_34_1 doi: 10.1038/238037a0 – ident: e_1_2_2_28_1 doi: 10.1039/DT9940003177 – ident: e_1_2_2_2_1 doi: 10.1126/science.aaf5251 – ident: e_1_2_2_17_1 doi: 10.1039/C0CS00042F – ident: e_1_2_2_29_1 doi: 10.1038/ncomms9668 – ident: e_1_2_2_39_2 doi: 10.1002/ange.201603990 |
SSID | ssj0028806 |
Score | 2.6648276 |
Snippet | Single atoms immobilized on metal–organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but... Single atoms immobilized on metal-organic frameworks (MOFs) with unique nanostructures have drawn tremendous attention in the application of catalysis but... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3493 |
SubjectTerms | Anchoring Catalysis Catalytic activity hollow nanotubes hydrogen evolution Immobilization Metal-organic frameworks Metals Nanotechnology Nanotubes photocatalysis Platinum Scanning transmission electron microscopy Spectroscopy Transmission electron microscopy Water splitting X-rays Zirconium |
Title | Zirconium–Porphyrin‐Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Noble‐Metal Single Atoms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201800817 https://www.ncbi.nlm.nih.gov/pubmed/29380509 https://www.proquest.com/docview/2013168139 https://www.proquest.com/docview/1993006919 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQF7j0B2i7dIuMVIlTIOs4TnLcIlYLEitUioS4RLZjSysgQZtEVXviESr1DfdJmIk3aZcKIZVbIjuOY894Pscz3xDymQEI5omWXiaU7_FMRp6yA-Ylic54xBVAEDzRPZ2I8QU_uQwv_4rid_wQ3Q831IxmvUYFl6o8-EMaihHY6JoVo1XDcHJ02EJU9LXjj2IgnC68KAg8zELfsjb67GD58WWr9A_UXEaujekZvSay7bTzOLneryu1r38-4nN8yVe9Ia8WuJQOnSC9JSsm3yBrh206uE3y42o6g73ztL6d3_8-K3B6ZtN8fv_rC9jBjJ4aQPFQ4mI7NR21Tl90DJJWfKewjBdVrUxJASbTYxB_dMt1QaC0sHSCiW2guaYheg4W9cbQYVXcllvkYnT07XDsLfI2eJpHsO7KUARaKcmMiWIR-DqwoZUJUyKxAPdsJBJjExnGUgZaWCYiG_tZzJUNhRkwE7wjq3mRmw-EqlBkcSQzBnsAbqWvAJ0qFhps1nKb9YjXzluqF6TmmFvjJnV0zCzFAU27Ae2Rva7-naPzeLJmvxWDdKHWJZZioi9AzT2y2xXDROApi8xNUZcpekQi__MA6rx34tO9CrBVjIQ7PcIaIXimD-lwcnzU3W3_z0MfyTpeo9fcIOmT1WpWm08Aoyq106jKA-1dGM8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n-2FDASiFParJM4yYHD0na1S7srBK1UcUltx5Yq2qTaJKrKqY-AxJPwKjxCn4SZZBO0IISE1APHxI7jxDOeb5KZbwBecATBfqylkwrlOn4qQ0fZPnfiWKd-6CuEIPRHdzIVo33_7UFwsATf2lyYhh-i--BGmlHv16Tg9EF64ydrKKVgU2xWRGYtnMdV7pjzM_TaitfjLVzil5wPt_c2R868sICj_RA3BhkITysluTFhJDxXezawMuZKxBbxiA1FbGwsg0hKTwvLRWgjN418ZQNh-tx4OO41uE5lxImuf-t9x1jFUR2ahCbPc6jufcsT6fKNxfku2sHfwO0iVq6N3fAWfG9fUxPj8mm9KtW6_vwLg-R_9R5vw8059GaDRlfuwJLJ7sLKZlvx7h6cfzyaadzjqpPLi6_vcpLA2VF2efHlDZr6lE0MOirY0qSvajZs49rYCJUpP2NoqfKyUqZg6AmwMWo4RR43ea4st2xKtXtwuHog9gFBw7FhgzI_Ke7D_pU8-QNYzvLMPAKmApFGoUw5ujm-la5CAK54YGhY69u0B04rKIme87ZT-ZDjpGGc5gktYNItYA9edf1PG8aSP_Zca-Uume9cBbVSLTN0DHrwvGvGhaAfSTIzeVUkFPRJFNd97POwkdfuVggfI-IU6gGvpe4vc0gG0_F2d7T6Lxc9g5XR3mQ32R1Pdx7DDTpPQYL9eA2Wy1llniBqLNXTWk8ZHF61QP8Ab094HA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qELBYwE4pQ26zhOcuCwdLvapXRVAZWqXoKd2FLVNqk2iapy6iMg8SK8Cq_QJ2Em2QQtCCEh9cAxseM48Yznm2TmG4AXHEGwiBLlpFK7jkhV4Gjb504UJakIhEYIQn90t6dyvCve7vl7S_CtzYVp-CG6D26kGfV-TQp-ktr1n6ShlIFNoVkhWbVgHla5Zc5O0WkrXk-GuMIvOR9tftwYO_O6Ak4iAtwXlC-9RGvFjQlC6bmJZ32rIq5lZBGO2EBGxkbKD5XyEmm5DGzopqHQ1pemz42H416Bq0K6ERWLGL7vCKs4akOTz-R5DpW9b2kiXb6-ON9FM_gbtl2EyrWtG92C7-1bakJcDteqUq8ln38hkPyfXuNtuDkH3mzQaModWDLZXbi-0da7uwdn-wezBHe46vji_OtOTvI3O8guzr-8QUOfsm2Dbgq2NMmrCRu1UW1sjKqUnzK0U3lZaVMw9APYBPWb4o6bLFeWWzalyj04XD0Q-4CQ4ciwQZkfF_dh91Ke_AEsZ3lmVoBpX6ZhoFKOTo6wytUIvzX3DQ1rhU174LRyEidz1nYqHnIUN3zTPKYFjLsF7MGrrv9Jw1fyx56rrdjF832roFaqZIZuQQ-ed824EPQbSWUmr4qYQj6J4LqPfR424trdCsFjSIxCPeC10P1lDvFgOtnsjh79y0XP4NrOcBS_m0y3HsMNOk0Rgv1oFZbLWWWeIGQs9dNaSxl8umx5_gGDgnbL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zirconium%E2%80%93Porphyrin%E2%80%90Based+Metal%E2%80%93Organic+Framework+Hollow+Nanotubes+for+Immobilization+of+Noble%E2%80%90Metal+Single+Atoms&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=He%2C+Ting&rft.au=Chen%2C+Shuangming&rft.au=Ni%2C+Bing&rft.au=Gong%2C+Yue&rft.date=2018-03-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=13&rft.spage=3493&rft.epage=3498&rft_id=info:doi/10.1002%2Fanie.201800817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201800817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |