Making and Breaking Peptide Bonds: Protein Engineering Using Sortase

Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site‐specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a r...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 50; no. 22; pp. 5024 - 5032
Main Authors Popp, Maximilian Wei-Lin, Ploegh, Hidde L.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 23.05.2011
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site‐specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a range of applications, from chemistry‐based to cell biology and technology. In this Minireview we provide a brief overview of the biology of sortase enzymes and current applications in protein engineering. We identify areas that lend themselves to further innovation and that suggest new applications. It takes all sortases: Enzymatic formation of a peptide bond using the sortase A transpeptidase (SrtA) provides a convenient and mild means for engineering proteins to contain nongenetically templated modifications. Myriad applications are possible, from producing homogeneous post‐translational modification mimics, assembling protein domains, to anchoring proteins to solid surfaces.
AbstractList Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site-specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a range of applications, from chemistry-based to cell biology and technology. In this Minireview we provide a brief overview of the biology of sortase enzymes and current applications in protein engineering. We identify areas that lend themselves to further innovation and that suggest new applications.
Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site‐specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a range of applications, from chemistry‐based to cell biology and technology. In this Minireview we provide a brief overview of the biology of sortase enzymes and current applications in protein engineering. We identify areas that lend themselves to further innovation and that suggest new applications. It takes all sortases: Enzymatic formation of a peptide bond using the sortase A transpeptidase (SrtA) provides a convenient and mild means for engineering proteins to contain nongenetically templated modifications. Myriad applications are possible, from producing homogeneous post‐translational modification mimics, assembling protein domains, to anchoring proteins to solid surfaces.
Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site-specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a range of applications, from chemistry-based to cell biology and technology. In this Minireview we provide a brief overview of the biology of sortase enzymes and current applications in protein engineering. We identify areas that lend themselves to further innovation and that suggest new applications. [PUBLICATION ABSTRACT]
Abstract Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site‐specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a range of applications, from chemistry‐based to cell biology and technology. In this Minireview we provide a brief overview of the biology of sortase enzymes and current applications in protein engineering. We identify areas that lend themselves to further innovation and that suggest new applications.
Author Ploegh, Hidde L.
Popp, Maximilian Wei-Lin
Author_xml – sequence: 1
  givenname: Maximilian Wei-Lin
  surname: Popp
  fullname: Popp, Maximilian Wei-Lin
  organization: Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142 (USA)
– sequence: 2
  givenname: Hidde L.
  surname: Ploegh
  fullname: Ploegh, Hidde L.
  email: ploegh@wi.mit.edu
  organization: Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142 (USA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21538739$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtP4zAURi3EiPeWJYrEglU6ftS-KTtaOgWJl3iIpeXGN8jQOsVOBfz7cRSoEBs29rV8vmPr2ybrvvZIyD6jPUYp_2u8wx6naS64gjWyxSRnuQAQ62nuC5FDIdkm2Y7xOfFFQdUG2eRMigLEYIucXpoX558y4202DNgdbnDROIvZsPY2Hmc3oW7Q-Wzsn5xHDC3yENv1rg6NibhL_lRmFnHvc98hD__G96Oz_OJ6cj46ucjLPijIBxxKmt4tFEAFUvUFV5WywAtFgWEhpyUCh8G0lCgsWqo4oKqktFPbV4aKHXLUeRehfl1ibPTcxRJnM-OxXkadxIJTCTyRhz_I53oZfPqcZpIpxTmF1tfrqDLUMQas9CK4uQkfmlHd1qvbevWq3hQ4-NQup3O0K_yrzwQMOuDNzfDjF50-uToff5fnXdbFBt9XWRNedLoFqR-vJhpOlWST26G-FP8BeBOUxA
CODEN ACIEAY
CitedBy_id crossref_primary_10_1002_anie_201606223
crossref_primary_10_1073_pnas_1408605111
crossref_primary_10_3390_pharmaceutics13101669
crossref_primary_10_1007_s10989_021_10320_x
crossref_primary_10_3389_fimmu_2022_897873
crossref_primary_10_1039_C6OB00882H
crossref_primary_10_1002_ange_201708327
crossref_primary_10_1002_cbic_201300079
crossref_primary_10_1016_j_bbrc_2024_149470
crossref_primary_10_1002_pi_6208
crossref_primary_10_1016_j_sbi_2020_01_006
crossref_primary_10_1039_D1SC01122G
crossref_primary_10_1080_07328303_2011_635251
crossref_primary_10_1002_cpps_38
crossref_primary_10_1016_j_bmc_2016_09_035
crossref_primary_10_1038_s41467_018_03191_2
crossref_primary_10_3390_ijms22073459
crossref_primary_10_1002_cbic_202000416
crossref_primary_10_1038_ncomms11140
crossref_primary_10_1021_cb400828a
crossref_primary_10_1021_acs_jmedchem_3c01615
crossref_primary_10_1021_acs_biomac_5b00144
crossref_primary_10_1016_j_actbio_2021_06_028
crossref_primary_10_1016_j_molimm_2019_08_008
crossref_primary_10_1002_chin_201135265
crossref_primary_10_1038_s42003_023_04757_7
crossref_primary_10_1021_bc300130z
crossref_primary_10_1016_j_celrep_2021_108901
crossref_primary_10_1002_cbic_201402550
crossref_primary_10_1016_j_bmcl_2022_128888
crossref_primary_10_1021_acs_bioconjchem_8b00197
crossref_primary_10_1039_c3cc44753g
crossref_primary_10_1021_acs_bioconjchem_6b00137
crossref_primary_10_3389_fphar_2019_01450
crossref_primary_10_1002_ange_201506810
crossref_primary_10_1016_j_drudis_2021_03_019
crossref_primary_10_1021_acs_joc_8b02032
crossref_primary_10_3390_ijms23010458
crossref_primary_10_1038_nprot_2014_177
crossref_primary_10_3390_molecules26102874
crossref_primary_10_1073_pnas_1508449112
crossref_primary_10_1002_ange_202109032
crossref_primary_10_1016_j_jmb_2013_10_021
crossref_primary_10_1002_cmmi_1696
crossref_primary_10_1002_adhm_201801374
crossref_primary_10_1139_cjc_2014_0405
crossref_primary_10_1021_ja208090p
crossref_primary_10_1515_hsz_2014_0260
crossref_primary_10_1016_j_bbrep_2017_02_005
crossref_primary_10_1002_ange_201310010
crossref_primary_10_1002_cbic_202200474
crossref_primary_10_1002_anbr_202100142
crossref_primary_10_1002_anie_201506810
crossref_primary_10_1039_C8TB02382D
crossref_primary_10_5936_csbj_201402001
crossref_primary_10_1002_anie_202205597
crossref_primary_10_1002_adhm_201300110
crossref_primary_10_1002_anie_202109032
crossref_primary_10_1002_anie_201310900
crossref_primary_10_1016_j_bbagen_2021_130079
crossref_primary_10_1016_j_bmc_2015_03_057
crossref_primary_10_1002_cbic_202000745
crossref_primary_10_1002_cptc_202200170
crossref_primary_10_1021_acs_bioconjchem_7b00087
crossref_primary_10_1016_j_bmc_2017_06_033
crossref_primary_10_1039_C6PY00856A
crossref_primary_10_1021_bi4016023
crossref_primary_10_1039_C4CY00347K
crossref_primary_10_1073_pnas_1519214113
crossref_primary_10_1038_srep31899
crossref_primary_10_1016_j_ddtec_2018_10_002
crossref_primary_10_1038_s41556_020_0473_4
crossref_primary_10_3390_pharmaceutics16070882
crossref_primary_10_1371_journal_pone_0109883
crossref_primary_10_1515_hsz_2017_0207
crossref_primary_10_1002_anie_201402613
crossref_primary_10_1038_nsmb_2340
crossref_primary_10_1039_D3NA00014A
crossref_primary_10_1021_acs_bioconjchem_5b00292
crossref_primary_10_1002_anie_201708327
crossref_primary_10_1371_journal_pone_0205057
crossref_primary_10_1039_C7BM00691H
crossref_primary_10_1021_acschembio_5b00315
crossref_primary_10_1002_cbic_201700517
crossref_primary_10_1002_ange_201402613
crossref_primary_10_1016_j_bmc_2013_03_039
crossref_primary_10_3390_molecules26123521
crossref_primary_10_1038_nprot_2014_003
crossref_primary_10_1021_bc200694t
crossref_primary_10_1002_ange_201602353
crossref_primary_10_1016_j_bmcl_2017_03_035
crossref_primary_10_1074_jbc_M113_539262
crossref_primary_10_1016_j_biotechadv_2023_108108
crossref_primary_10_1038_srep19338
crossref_primary_10_1002_cbic_201500547
crossref_primary_10_1039_D4SC01992J
crossref_primary_10_1021_ja302354v
crossref_primary_10_1039_C8RA06705H
crossref_primary_10_3389_fmolb_2022_835302
crossref_primary_10_1002_ange_202205597
crossref_primary_10_1002_biot_201200022
crossref_primary_10_1002_cbic_202300470
crossref_primary_10_1002_ange_202310910
crossref_primary_10_1021_acschembio_6b00998
crossref_primary_10_1002_anie_201602353
crossref_primary_10_1016_j_febslet_2014_10_020
crossref_primary_10_1039_D0CC07706B
crossref_primary_10_1021_acs_chemrev_9b00450
crossref_primary_10_1074_jbc_REV120_012960
crossref_primary_10_1038_nprot_2013_102
crossref_primary_10_1016_j_tibs_2023_12_005
crossref_primary_10_1038_nprot_2013_103
crossref_primary_10_1038_nprot_2013_101
crossref_primary_10_1371_journal_pone_0189068
crossref_primary_10_1021_bc500230r
crossref_primary_10_1038_nature12637
crossref_primary_10_1002_anie_202310910
crossref_primary_10_2217_nnm_2017_0043
crossref_primary_10_1002_ange_201404616
crossref_primary_10_1039_D1SC01422F
crossref_primary_10_1002_cbic_201402013
crossref_primary_10_1002_anie_201204538
crossref_primary_10_1002_psc_2600
crossref_primary_10_1016_j_cclet_2018_05_006
crossref_primary_10_1039_D2CS00756H
crossref_primary_10_1016_j_molcel_2018_12_007
crossref_primary_10_1016_j_bios_2016_10_015
crossref_primary_10_1016_j_procbio_2023_10_003
crossref_primary_10_1007_s00726_023_03271_8
crossref_primary_10_1038_s41589_019_0227_4
crossref_primary_10_1002_anie_201310010
crossref_primary_10_1016_j_cbpa_2018_01_008
crossref_primary_10_1016_j_cclet_2021_10_038
crossref_primary_10_1073_pnas_1205427109
crossref_primary_10_1002_ange_201310900
crossref_primary_10_1016_j_biomaterials_2017_03_030
crossref_primary_10_1002_cbic_201800090
crossref_primary_10_1016_j_pep_2022_106068
crossref_primary_10_1007_s11084_012_9321_2
crossref_primary_10_3390_molecules24142620
crossref_primary_10_3390_molecules21070895
crossref_primary_10_1021_jo4024914
crossref_primary_10_1083_jcb_201108103
crossref_primary_10_1016_j_jbiosc_2013_03_006
crossref_primary_10_1039_D1CC01348C
crossref_primary_10_1002_biot_201500013
crossref_primary_10_1111_j_1600_0854_2012_01345_x
crossref_primary_10_1016_j_cbpa_2014_04_007
crossref_primary_10_1038_nature25442
crossref_primary_10_1016_j_aca_2023_341994
crossref_primary_10_1016_j_cbpa_2014_09_020
crossref_primary_10_1016_j_neuropharm_2015_03_033
crossref_primary_10_1073_pnas_1901794116
crossref_primary_10_1038_s42004_024_01173_8
crossref_primary_10_1002_psc_2943
crossref_primary_10_1016_j_chembiol_2024_02_006
crossref_primary_10_1021_ja205630g
crossref_primary_10_1021_cb4001487
crossref_primary_10_1128_JB_00864_15
crossref_primary_10_1002_bit_24933
crossref_primary_10_1021_cr5003529
crossref_primary_10_1088_1361_6463_aae0e2
crossref_primary_10_1002_open_201500086
crossref_primary_10_1016_j_jconrel_2018_01_018
crossref_primary_10_1002_anie_201411507
crossref_primary_10_1016_j_ymeth_2022_03_004
crossref_primary_10_1038_nature21384
crossref_primary_10_1146_annurev_cellbio_100617_062527
crossref_primary_10_1002_bit_25993
crossref_primary_10_1038_s41598_017_06856_y
crossref_primary_10_1002_bit_27935
crossref_primary_10_1021_bc300606b
crossref_primary_10_1039_c2ra20389h
crossref_primary_10_1016_j_cell_2016_10_005
crossref_primary_10_1039_C4CC00994K
crossref_primary_10_1074_jbc_M113_509273
crossref_primary_10_1002_ange_201411507
crossref_primary_10_1038_nchembio_2533
crossref_primary_10_1016_j_addr_2022_114460
crossref_primary_10_1038_nchembio_2416
crossref_primary_10_1021_acs_bioconjchem_0c00163
crossref_primary_10_1073_pnas_1409861111
crossref_primary_10_3390_cancers12071868
crossref_primary_10_1002_ange_201606223
crossref_primary_10_1002_ange_201204538
crossref_primary_10_3389_fchem_2021_663241
crossref_primary_10_1016_j_sbi_2018_03_014
crossref_primary_10_1017_S0033583517000051
crossref_primary_10_1071_CH16589
crossref_primary_10_1158_2326_6066_CIR_17_0661
crossref_primary_10_3390_pharmaceutics16030299
crossref_primary_10_1002_cbic_201200775
crossref_primary_10_1016_j_pep_2019_04_004
crossref_primary_10_1039_C3OB42325E
crossref_primary_10_1021_acs_bioconjchem_5b00485
crossref_primary_10_1021_jacs_6b12637
crossref_primary_10_1038_s41598_018_34752_6
crossref_primary_10_1002_psc_2980
crossref_primary_10_1016_j_ymeth_2017_12_007
crossref_primary_10_3389_fimmu_2021_799910
crossref_primary_10_1002_cbic_202200412
crossref_primary_10_1042_BCJ20190812
crossref_primary_10_1039_C5CC04657B
crossref_primary_10_1007_s00253_012_4569_z
crossref_primary_10_1074_jbc_M117_782037
crossref_primary_10_1016_j_biotechadv_2020_107651
crossref_primary_10_3390_molecules26123492
crossref_primary_10_1021_jacs_6b05413
crossref_primary_10_1186_s12934_023_02134_x
crossref_primary_10_1016_j_cbpa_2015_07_005
crossref_primary_10_1177_0263617420918729
crossref_primary_10_1002_anie_201404616
crossref_primary_10_1039_C8CS00537K
crossref_primary_10_1002_adfm_201200095
crossref_primary_10_1371_journal_ppat_1002604
crossref_primary_10_1021_acs_bioconjchem_9b00548
crossref_primary_10_1002_adma_202209904
crossref_primary_10_1002_cbic_201200559
crossref_primary_10_1021_ja309126m
crossref_primary_10_1039_C8CS00121A
crossref_primary_10_26508_lsa_202402608
Cites_doi 10.1021/bc060339w
10.1046/j.1365-2958.2001.02411.x
10.1002/ange.200705718
10.1073/pnas.96.22.12424
10.1023/A:1011299500628
10.1016/j.tim.2007.10.010
10.1074/jbc.M109945200
10.1016/j.jbiotec.2005.09.012
10.1073/pnas.0806350105
10.1126/science.285.5428.760
10.1021/bi100094g
10.1128/iai.60.5.1902-1907.1992
10.1074/jbc.M806796200
10.1039/c0cc00828a
10.1002/psc.1264
10.1007/s10529-008-9718-1
10.1039/b818792d
10.1073/pnas.101064198
10.1111/j.1365-2958.2006.05279.x
10.1128/IAI.73.8.5222-5228.2005
10.1124/pr.107.07110
10.1002/anie.200705718
10.1007/s10529-010-0349-y
10.1021/ja903231v
10.1016/S0968-0004(02)02057-1
10.1128/JB.186.17.5865-5875.2004
10.1016/j.str.2008.10.007
10.1016/S0076-6879(10)78023-X
10.1007/s00018-008-8477-4
10.1126/science.1125248
10.1021/bi901261y
10.1074/jbc.M109.066282
10.1021/bi901557a
10.1074/jbc.M109194200
10.1021/bc100206z
10.1074/jbc.M405282200
10.1073/pnas.0504613102
10.1128/IAI.72.5.2710-2722.2004
10.1128/JB.01011-06
10.1016/j.ab.2003.10.023
10.1074/jbc.M805406200
10.1074/jbc.M506123200
10.1021/ja039915e
10.1016/j.pep.2004.06.013
10.1074/jbc.M610519200
10.1016/j.micinf.2005.06.009
10.1074/jbc.M901752200
10.1074/jbc.M800974200
10.1021/ja906611x
10.1128/IAI.69.6.4019-4026.2001
10.1016/j.ab.2006.10.021
10.1371/journal.pone.0001164
10.1074/jbc.M500071200
10.1074/jbc.275.13.9876
10.1021/bi034391g
10.1073/pnas.0803565105
10.1007/s10858-010-9464-2
10.1016/j.cell.2010.09.031
10.1002/cbic.200700614
10.1016/j.jmb.2009.08.058
10.1038/nchembio.2007.31
10.1021/bi035920j
10.1016/0092-8674(92)90101-H
10.1021/bi700448e
10.1111/j.1365-2958.2004.04117.x
10.1021/cb100195d
10.1073/pnas.032523999
10.1016/j.febslet.2004.06.070
10.1021/ja077358g
10.1074/jbc.M110.135434
10.1016/j.tim.2004.03.004
10.1016/j.pep.2009.10.012
10.1021/ja902681k
10.1021/ja806779e
10.1186/1472-6750-10-42
10.1073/pnas.080520697
10.1074/jbc.M305245200
10.1021/bi050141j
10.1016/j.tim.2003.12.007
10.1002/anie.201000620
10.1128/JB.187.13.4646-4655.2005
10.1074/jbc.M401374200
10.1074/jbc.M109.022624
10.1016/S0966-842X(01)01956-4
10.1128/JB.187.14.4928-4934.2005
10.1002/pmic.200402075
10.1021/jo062331l
10.1002/ange.201000620
10.1128/MMBR.70.1.192-221.2006
10.1016/j.resmic.2004.10.011
10.1046/j.1365-2958.2003.03782.x
10.1074/jbc.274.34.24316
10.1074/jbc.M807172200
10.1007/s10858-008-9296-5
10.2174/138955707782110097
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.201008267
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5032
ExternalDocumentID 3276945441
10_1002_anie_201008267
21538739
ANIE201008267
ark_67375_WNG_7D651GRB_M
Genre article
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABLJU
ABPPZ
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZCG
ZZTAW
~IA
~KM
~WT
AITYG
HGLYW
M53
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-927c03878677f7564326f6d7286071e85bce7279bc5e3ded0627e6f55dbd46a03
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Aug 16 08:45:41 EDT 2024
Tue Sep 24 23:47:25 EDT 2024
Thu Sep 26 19:33:07 EDT 2024
Sat Sep 28 08:00:44 EDT 2024
Sat Aug 24 00:58:41 EDT 2024
Wed Jan 17 04:59:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-927c03878677f7564326f6d7286071e85bce7279bc5e3ded0627e6f55dbd46a03
Notes istex:1B50CB54251DFEC0933A71B3818AA2EB9BDD1675
ArticleID:ANIE201008267
ark:/67375/WNG-7D651GRB-M
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 21538739
PQID 1516622070
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_867320572
proquest_journals_1516622070
crossref_primary_10_1002_anie_201008267
pubmed_primary_21538739
wiley_primary_10_1002_anie_201008267_ANIE201008267
istex_primary_ark_67375_WNG_7D651GRB_M
PublicationCentury 2000
PublicationDate May 23, 2011
PublicationDateYYYYMMDD 2011-05-23
PublicationDate_xml – month: 05
  year: 2011
  text: May 23, 2011
  day: 23
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References J. Caswell, P. Snoddy, D. McMeel, R. J. Buick, C. J. Scott, Protein Expression Purif. 2010, 70, 143.
S. Pritz, Y. Wolf, O. Kraetke, J. Klose, M. Bienert, M. Beyermann, J. Org. Chem. 2007, 72, 3909.
G. K. Paterson, T. J. Mitchell, Trends Microbiol. 2004, 12, 89.
A. S. Andersen, E. Palmqvist, S. Bang, A. C. Shaw, F. Hubalek, U. Ribel, T. Hoeg-Jensen, J. Pept. Sci. 2010, 16, 473.
A. Aulabaugh, W. Ding, B. Kapoor, K. Tabei, L. Alksne, R. Dushin, T. Zatz, G. Ellestad, X. Huang, Anal. Biochem. 2007, 360, 14.
P. R. Race, M. L. Bentley, J. A. Melvin, A. Crow, R. K. Hughes, W. D. Smith, R. B. Sessions, M. A. Kehoe, D. G. McCafferty, M. J. Banfield, J. Biol. Chem. 2009, 284, 6924.
Y. Kobashigawa, H. Kumeta, K. Ogura, F. Inagaki, J. Biomol. NMR 2009, 43, 145.
B. A. Frankel, Y. Tong, M. L. Bentley, M. C. Fitzgerald, D. G. McCafferty, Biochemistry 2007, 46, 7269.
N. Hirota, D. Yasuda, T. Hashidate, T. Yamamoto, S. Yamaguchi, T. Nagamune, T. Nagase, T. Shimizu, M. Nakamura, J. Biol. Chem. 2010, 285, 5931.
H. Mao, Protein Expression Purif. 2004, 37, 253.
T. C. Barnett, A. R. Patel, J. R. Scott, J. Bacteriol. 2004, 186, 5865.
S. D. Zink, D. L. Burns, Infect. Immun. 2005, 73, 5222.
J. M. Antos, G. M. Miller, G. M. Grotenbreg, H. L. Ploegh, J. Am. Chem. Soc. 2008, 130, 16338.
M. J. Pallen, A. C. Lam, M. Antonio, K. Dunbar, Trends Microbiol. 2001, 9, 97.
B. A. Frankel, R. G. Kruger, D. E. Robinson, N. L. Kelleher, D. G. McCafferty, Biochemistry 2005, 44, 11188.
C. Manzano, T. Izore, V. Job, A. M. Di Guilmi, A. Dessen, Biochemistry 2009, 48, 10549.
R. G. Kruger, B. Otvos, B. A. Frankel, M. Bentley, P. Dostal, D. G. McCafferty, Biochemistry 2004, 43, 1541.
L. A. Marraffini, A. C. Dedent, O. Schneewind, Microbiol. Mol. Biol. Rev. 2006, 70, 192.
G. Pozzi, M. Contorni, M. R. Oggioni, R. Manganelli, M. Tommasino, F. Cavalieri, V. A. Fischetti, Infect. Immun. 1992, 60, 1902.
S. Pritz, O. Kraetke, A. Klose, J. Klose, S. Rothemund, K. Fechner, M. Bienert, M. Beyermann, Angew. Chem. 2008, 120, 3698
T. Ito, R. Sadamoto, K. Naruchi, H. Togame, H. Takemoto, H. Kondo, S. Nishimura, Biochemistry 2010, 49, 2604.
G. K. Paterson, T. J. Mitchell, Microbes Infect. 2006, 8, 145.
M. Trabi, D. J. Craik, Trends Biochem. Sci. 2002, 27, 132.
M. A. Refaei, A. Combs, D. J. Kojetin, J. Cavanagh, C. Caperelli, M. Rance, J. Sapitro, P. Tsang, J. Biomol. NMR 2011, 49, 3.
L. A. Marraffini, O. Schneewind, J. Biol. Chem. 2005, 280, 16263.
S. K. Mazmanian, G. Liu, E. R. Jensen, E. Lenoy, O. Schneewind, Proc. Natl. Acad. Sci. USA 2000, 97, 5510.
T. Matsushita, S. Nishimura, Methods Enzymol. 2010, 478, 485.
E. M. Weiner, S. Robson, M. Marohn, R. T. Clubb, J. Biol. Chem. 2010, 285, 23433.
M. W. Popp, J. M. Antos, G. M. Grotenbreg, E. Spooner, H. L. Ploegh, Nat. Chem. Biol. 2007, 3, 707.
Angew. Chem. Int. Ed. 2008, 47, 3642.
N. Suree, M. E. Jung, R. T. Clubb, Mini-Rev. Med. Chem. 2007, 7, 991.
M. T. Naik, N. Suree, U. Ilangovan, C. K. Liew, W. Thieu, D. O. Campbell, J. J. Clemens, M. E. Jung, R. T. Clubb, J. Biol. Chem. 2006, 281, 1817.
M. G. Pucciarelli, E. Calvo, C. Sabet, H. Bierne, P. Cossart, F. Garcia-del Portillo, Proteomics 2005, 5, 4808.
T. Sakamoto, S. Sawamoto, T. Tanaka, H. Fukuda, A. Kondo, Bioconjugate Chem. 2010, 21, 2227.
D. J. Craik, Science 2006, 311, 1563.
F. Clow, J. D. Fraser, T. Proft, Biotechnol. Lett. 2008, 30, 1603.
U. Ilangovan, H. Ton-That, J. Iwahara, O. Schneewind, R. T. Clubb, Proc. Natl. Acad. Sci. USA 2001, 98, 6056.
R. J. Clark, H. Fischer, L. Dempster, N. L. Daly, K. J. Rosengren, S. T. Nevin, F. A. Meunier, D. J. Adams, D. J. Craik, Proc. Natl. Acad. Sci. USA 2005, 102, 13767.
R. J. Clark, J. Jensen, S. T. Nevin, B. P. Callaghan, D. J. Adams, D. J. Craik, Angew. Chem. 2010, 122, 6695
A. Mandlik, A. Das, H. Ton-That, Proc. Natl. Acad. Sci. USA 2008, 105, 14147.
M. W. Popp, K. Artavanis-Tsakonas, H. L. Ploegh, J. Biol. Chem. 2009, 284, 3593.
J. M. Antos, M. W. Popp, R. Ernst, G. L. Chew, E. Spooner, H. L. Ploegh, J. Biol. Chem. 2009, 284, 16028.
J. M. Budzik, S. Y. Oh, O. Schneewind, J. Biol. Chem. 2008, 283, 36676.
F. Neiers, C. Madhurantakam, S. Falker, C. Manzano, A. Dessen, S. Normark, B. Henriques-Normark, A. Achour, J. Mol. Biol. 2009, 393, 704.
H. Mao, S. A. Hart, A. Schink, B. A. Pollok, J. Am. Chem. Soc. 2004, 126, 2670.
A. H. Gaspar, L. A. Marraffini, E. M. Glass, K. L. Debord, H. Ton-That, O. Schneewind, J. Bacteriol. 2005, 187, 4646.
X. Huang, A. Aulabaugh, W. Ding, B. Kapoor, L. Alksne, K. Tabei, G. Ellestad, Biochemistry 2003, 42, 11307.
S. K. Mazmanian, H. Ton-That, K. Su, O. Schneewind, Proc. Natl. Acad. Sci. USA 2002, 99, 2293.
H. Ton-That, O. Schneewind, Mol. Microbiol. 2003, 50, 1429.
H. D. Nguyen, W. Schumann, J. Biotechnol. 2006, 122, 473.
T. Tanaka, T. Yamamoto, S. Tsukiji, T. Nagamune, ChemBioChem 2008, 9, 802.
Z. Wu, X. Guo, Q. Wang, B. M. Swarts, Z. Guo, J. Am. Chem. Soc. 2010, 132, 1567.
U. Ilangovan, J. Iwahara, H. Ton-That, O. Schneewind, R. T. Clubb, J. Biomol. NMR 2001, 19, 379.
M. Vila-Perelló, T. W. Muir, Cell 2010, 143, 191.
H. Ton-That, G. Liu, S. K. Mazmanian, K. F. Faull, O. Schneewind, Proc. Natl. Acad. Sci. USA 1999, 96, 12424.
Z. Wu, X. Guo, Z. Guo, Chem. Commun. 2010, 46, 5773.
A. W. Maresso, O. Schneewind, Pharmacol. Rev. 2008, 60, 128.
L. Chan, H. F. Cross, J. K. She, G. Cavalli, H. F. Martins, C. Neylon, PLoS One 2007, 2, e1164.
H. Ton-That, S. K. Mazmanian, L. Alksne, O. Schneewind, J. Biol. Chem. 2002, 277, 7447.
H. Ton-That, O. Schneewind, J. Biol. Chem. 1999, 274, 24316.
D. Comfort, R. T. Clubb, Infect. Immun. 2004, 72, 2710.
C. Manzano, C. Contreras-Martel, L. El Mortaji, T. Izore, D. Fenel, T. Vernet, G. Schoehn, A. M. Di Guilmi, A. Dessen, Structure 2008, 16, 1838.
A. Mandlik, A. Swierczynski, A. Das, H. Ton-That, Trends Microbiol. 2008, 16, 33.
H. Ton-That, O. Schneewind, Trends Microbiol. 2004, 12, 228.
J. M. Budzik, L. A. Marraffini, P. Souda, J. P. Whitelegge, K. F. Faull, O. Schneewind, Proc. Natl. Acad. Sci. USA 2008, 105, 10215.
M. L. Bentley, H. Gaweska, J. M. Kielec, D. G. McCafferty, J. Biol. Chem. 2007, 282, 6571.
J. W. Nelson, A. G. Chamessian, P. J. McEnaney, R. P. Murelli, B. I. Kazmiercak, D. A. Spiegel, ACS Chem. Biol. 2010, 5, 1147.
J. M. Antos, G. L. Chew, C. P. Guimaraes, N. C. Yoder, G. M. Grotenbreg, M. W. Popp, H. L. Ploegh, J. Am. Chem. Soc. 2009, 131, 10800.
J. Boekhorst, M. W. de Been, M. Kleerebezem, R. J. Siezen, J. Bacteriol. 2005, 187, 4928.
R. Janulczyk, M. Rasmussen, Infect. Immun. 2001, 69, 4019.
L. A. Marraffini, H. Ton-That, Y. Zong, S. V. Narayana, O. Schneewind, J. Biol. Chem. 2004, 279, 37763.
S. Samantaray, U. Marathe, S. Dasgupta, V. K. Nandicoori, R. P. Roy, J. Am. Chem. Soc. 2008, 130, 2132.
N. Suree, C. K. Liew, V. A. Villareal, W. Thieu, E. A. Fadeev, J. J. Clemens, M. E. Jung, R. T. Clubb, J. Biol. Chem. 2009, 284, 24465.
A. W. Maresso, T. J. Chapa, O. Schneewind, J. Bacteriol. 2006, 188, 8145.
S. Wu, T. Proft, Biotechnol. Lett. 2010, 32, 1713.
S. K. Mazmanian, H. Ton-That, O. Schneewind, Mol. Microbiol. 2001, 40, 1049.
H. Ton-That, S. K. Mazmanian, K. F. Faull, O. Schneewind, J. Biol. Chem. 2000, 275, 9876.
O. Schneewind, P. Model, V. A. Fischetti, Cell 1992, 70, 267.
M. L. Bentley, E. C. Lamb, D. G. McCafferty, J. Biol. Chem. 2008, 283, 14762.
Y. Zong, T. W. Bice, H. Ton-That, O. Schneewind, S. V. Narayana, J. Biol. Chem. 2004, 279, 31383.
T. Matsushita, R. Sadamoto, N. Ohyabu, H. Nakata, M. Fumoto, N. Fujitani, Y. Takegawa, T. Sakamoto, M. Kurogochi, H. Hinou, H. Shimizu, T. Ito, K. Naruchi, H. Togame, H. Takemoto, H. Kondo, S. Nishimura, Biochemistry 2009, 48, 11117.
T. Proft, E. N. Baker, Cell. Mol. Life Sci. 2009, 66, 613.
S. Dramsi, P. Trieu-Cuot, H. Bierne, Res. Microbiol. 2005, 156, 289.
Angew. Chem. Int. Ed. 2010, 49, 6545.
R. Parthasarathy, S. Subramanian, E. T. Boder, Bioconjugate Chem. 2007, 18, 469.
J. R. Scott, D. Zahner, Mol. Microbiol. 2006, 62, 320.
X. Guo, Q. Wang, B. M. Swarts, Z. Guo, J. Am. Chem. Soc. 2009, 131, 9878.
K. M. Connolly, B. T. Smith, R. Pilpa, U. Ilangovan, M. E. Jung, R. T. Clubb, J. Biol. Chem. 2003, 278, 34061.
H. Ton-That, L. A. Marraffini, O. Schneewind, Mol. Microbiol. 2004, 53, 251.
C. K. Liew, B. T. Smith, R. Pilpa, N. Suree, U. Ilangovan, K. M. Connolly, M. E. Jung, R. T. Clubb, FEBS Lett. 2004, 571, 221.
S. K. Mazmanian, G. Liu, H. Ton-That, O. Schneewind, Science 1999, 285, 760.
R. G. Kruger, P. Dostal, D. G. McCafferty, Anal. Biochem. 2004, 326, 42.
A. M. Perry, H. Ton-That, S. K. Mazmanian, O. Schneewind, J. Biol. Chem. 2002, 277, 16241.
T. Yamamoto, T. Nagamune, Chem. Commun. 2009, 1022.
S. Matsunaga, K. Matsuoka, K. Shimizu, Y. Endo, T. Sawasaki, BMC Biotechnol. 2010, 10, 42.
2006; 70
2010; 10
2010; 16
2004; 126
2009; 43
2002; 277
2010 2010; 122 49
2002; 99
1999; 285
2008; 9
2010; 143
2008; 105
2009; 393
2007; 72
2008; 30
2003; 50
2003; 278
2004; 326
2001; 40
2009; 48
2010; 21
2004; 571
2004; 72
2006; 62
2005; 187
2005; 102
2010; 478
2004; 37
2000; 97
2005; 73
2001; 19
2007; 7
1999; 96
2009; 284
2007; 2
2007; 3
2006; 281
2010; 70
2010; 5
2008; 60
2003; 42
2006; 122
2001; 98
2004; 43
2009; 66
2007; 18
2010; 32
2004; 186
2007; 282
2007; 360
2005; 156
2008; 16
2009
2006; 8
2010; 285
2000; 275
2009; 131
2001; 69
2005; 44
2008; 283
2006; 311
2002; 27
2005; 280
2004; 53
1992; 70
2010; 49
2004; 279
2010; 46
2001; 9
2004; 12
1999; 274
2005; 5
2010; 132
2011; 49
2008 2008; 120 47
2007; 46
1992; 60
2008; 130
2006; 188
e_1_2_11_93_2
e_1_2_11_70_2
e_1_2_11_55_2
e_1_2_11_78_2
e_1_2_11_13_2
e_1_2_11_51_2
e_1_2_11_97_2
e_1_2_11_32_2
e_1_2_11_74_2
e_1_2_11_4_2
e_1_2_11_25_2
e_1_2_11_48_2
e_1_2_11_29_2
e_1_2_11_81_2
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_66_2
e_1_2_11_89_2
e_1_2_11_24_2
e_1_2_11_62_2
e_1_2_11_85_2
e_1_2_11_8_2
e_1_2_11_17_2
e_1_2_11_36_2
e_1_2_11_59_2
e_1_2_11_92_2
e_1_2_11_31_2
e_1_2_11_54_2
e_1_2_11_77_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_73_2
e_1_2_11_96_2
e_1_2_11_12_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_47_2
e_1_2_11_1_2
e_1_2_11_80_2
e_1_2_11_65_2
e_1_2_11_46_2
e_1_2_11_88_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_61_2
e_1_2_11_42_2
e_1_2_11_84_2
e_1_2_11_16_2
e_1_2_11_58_2
e_1_2_11_39_2
e_1_2_11_91_2
e_1_2_11_30_2
e_1_2_11_76_2
e_1_2_11_57_2
e_1_2_11_72_3
e_1_2_11_34_2
e_1_2_11_72_2
e_1_2_11_11_2
e_1_2_11_53_2
e_1_2_11_95_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_2_2
e_1_2_11_69_2
e_1_2_11_60_2
e_1_2_11_45_2
e_1_2_11_68_2
e_1_2_11_87_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_64_2
e_1_2_11_83_2
e_1_2_11_15_2
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_71_2
e_1_2_11_90_2
e_1_2_11_75_3
e_1_2_11_56_2
e_1_2_11_79_2
e_1_2_11_33_2
e_1_2_11_52_2
e_1_2_11_75_2
e_1_2_11_94_2
e_1_2_11_10_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_49_2
e_1_2_11_82_2
e_1_2_11_44_2
e_1_2_11_67_2
e_1_2_11_40_2
e_1_2_11_86_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_63_2
e_1_2_11_14_2
e_1_2_11_37_2
e_1_2_11_18_2
References_xml – volume: 43
  start-page: 1541
  year: 2004
  publication-title: Biochemistry
– volume: 9
  start-page: 97
  year: 2001
  publication-title: Trends Microbiol.
– volume: 46
  start-page: 7269
  year: 2007
  publication-title: Biochemistry
– volume: 9
  start-page: 802
  year: 2008
  publication-title: ChemBioChem
– volume: 282
  start-page: 6571
  year: 2007
  publication-title: J. Biol. Chem.
– volume: 188
  start-page: 8145
  year: 2006
  publication-title: J. Bacteriol.
– volume: 8
  start-page: 145
  year: 2006
  publication-title: Microbes Infect.
– volume: 37
  start-page: 253
  year: 2004
  publication-title: Protein Expression Purif.
– volume: 16
  start-page: 33
  year: 2008
  publication-title: Trends Microbiol.
– volume: 131
  start-page: 10800
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 70
  start-page: 143
  year: 2010
  publication-title: Protein Expression Purif.
– volume: 277
  start-page: 7447
  year: 2002
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 9876
  year: 2000
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 991
  year: 2007
  publication-title: Mini‐Rev. Med. Chem.
– volume: 279
  start-page: 31383
  year: 2004
  publication-title: J. Biol. Chem.
– volume: 105
  start-page: 10215
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 122
  start-page: 473
  year: 2006
  publication-title: J. Biotechnol.
– volume: 96
  start-page: 12424
  year: 1999
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 284
  start-page: 3593
  year: 2009
  publication-title: J. Biol. Chem.
– volume: 186
  start-page: 5865
  year: 2004
  publication-title: J. Bacteriol.
– volume: 131
  start-page: 9878
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 311
  start-page: 1563
  year: 2006
  publication-title: Science
– volume: 285
  start-page: 23433
  year: 2010
  publication-title: J. Biol. Chem.
– volume: 72
  start-page: 3909
  year: 2007
  publication-title: J. Org. Chem.
– start-page: 1022
  year: 2009
  publication-title: Chem. Commun.
– volume: 360
  start-page: 14
  year: 2007
  publication-title: Anal. Biochem.
– volume: 53
  start-page: 251
  year: 2004
  publication-title: Mol. Microbiol.
– volume: 284
  start-page: 6924
  year: 2009
  publication-title: J. Biol. Chem.
– volume: 120 47
  start-page: 3698 3642
  year: 2008 2008
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 46
  start-page: 5773
  year: 2010
  publication-title: Chem. Commun.
– volume: 132
  start-page: 1567
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 280
  start-page: 16263
  year: 2005
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 24316
  year: 1999
  publication-title: J. Biol. Chem.
– volume: 279
  start-page: 37763
  year: 2004
  publication-title: J. Biol. Chem.
– volume: 73
  start-page: 5222
  year: 2005
  publication-title: Infect. Immun.
– volume: 278
  start-page: 34061
  year: 2003
  publication-title: J. Biol. Chem.
– volume: 72
  start-page: 2710
  year: 2004
  publication-title: Infect. Immun.
– volume: 49
  start-page: 3
  year: 2011
  publication-title: J. Biomol. NMR
– volume: 97
  start-page: 5510
  year: 2000
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 469
  year: 2007
  publication-title: Bioconjugate Chem.
– volume: 478
  start-page: 485
  year: 2010
  publication-title: Methods Enzymol.
– volume: 284
  start-page: 16028
  year: 2009
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 2227
  year: 2010
  publication-title: Bioconjugate Chem.
– volume: 571
  start-page: 221
  year: 2004
  publication-title: FEBS Lett.
– volume: 42
  start-page: 11307
  year: 2003
  publication-title: Biochemistry
– volume: 283
  start-page: 14762
  year: 2008
  publication-title: J. Biol. Chem.
– volume: 187
  start-page: 4646
  year: 2005
  publication-title: J. Bacteriol.
– volume: 69
  start-page: 4019
  year: 2001
  publication-title: Infect. Immun.
– volume: 60
  start-page: 1902
  year: 1992
  publication-title: Infect. Immun.
– volume: 130
  start-page: 16338
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 1713
  year: 2010
  publication-title: Biotechnol. Lett.
– volume: 285
  start-page: 760
  year: 1999
  publication-title: Science
– volume: 60
  start-page: 128
  year: 2008
  publication-title: Pharmacol. Rev.
– volume: 44
  start-page: 11188
  year: 2005
  publication-title: Biochemistry
– volume: 102
  start-page: 13767
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 283
  start-page: 36676
  year: 2008
  publication-title: J. Biol. Chem.
– volume: 66
  start-page: 613
  year: 2009
  publication-title: Cell. Mol. Life Sci.
– volume: 3
  start-page: 707
  year: 2007
  publication-title: Nat. Chem. Biol.
– volume: 187
  start-page: 4928
  year: 2005
  publication-title: J. Bacteriol.
– volume: 43
  start-page: 145
  year: 2009
  publication-title: J. Biomol. NMR
– volume: 16
  start-page: 473
  year: 2010
  publication-title: J. Pept. Sci.
– volume: 62
  start-page: 320
  year: 2006
  publication-title: Mol. Microbiol.
– volume: 277
  start-page: 16241
  year: 2002
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 1603
  year: 2008
  publication-title: Biotechnol. Lett.
– volume: 326
  start-page: 42
  year: 2004
  publication-title: Anal. Biochem.
– volume: 98
  start-page: 6056
  year: 2001
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 285
  start-page: 5931
  year: 2010
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 89
  year: 2004
  publication-title: Trends Microbiol.
– volume: 126
  start-page: 2670
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4808
  year: 2005
  publication-title: Proteomics
– volume: 40
  start-page: 1049
  year: 2001
  publication-title: Mol. Microbiol.
– volume: 156
  start-page: 289
  year: 2005
  publication-title: Res. Microbiol.
– volume: 143
  start-page: 191
  year: 2010
  publication-title: Cell
– volume: 130
  start-page: 2132
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 1429
  year: 2003
  publication-title: Mol. Microbiol.
– volume: 281
  start-page: 1817
  year: 2006
  publication-title: J. Biol. Chem.
– volume: 284
  start-page: 24465
  year: 2009
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 2293
  year: 2002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 48
  start-page: 10549
  year: 2009
  publication-title: Biochemistry
– volume: 122 49
  start-page: 6695 6545
  year: 2010 2010
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 12
  start-page: 228
  year: 2004
  publication-title: Trends Microbiol.
– volume: 5
  start-page: 1147
  year: 2010
  publication-title: ACS Chem. Biol.
– volume: 27
  start-page: 132
  year: 2002
  publication-title: Trends Biochem. Sci.
– volume: 19
  start-page: 379
  year: 2001
  publication-title: J. Biomol. NMR
– volume: 48
  start-page: 11117
  year: 2009
  publication-title: Biochemistry
– volume: 49
  start-page: 2604
  year: 2010
  publication-title: Biochemistry
– volume: 393
  start-page: 704
  year: 2009
  publication-title: J. Mol. Biol.
– volume: 70
  start-page: 192
  year: 2006
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 10
  start-page: 42
  year: 2010
  publication-title: BMC Biotechnol.
– volume: 105
  start-page: 14147
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 70
  start-page: 267
  year: 1992
  publication-title: Cell
– volume: 2
  start-page: 1164
  year: 2007
  publication-title: PLoS One
– volume: 16
  start-page: 1838
  year: 2008
  publication-title: Structure
– ident: e_1_2_11_56_2
  doi: 10.1021/bc060339w
– ident: e_1_2_11_3_2
  doi: 10.1046/j.1365-2958.2001.02411.x
– ident: e_1_2_11_72_2
  doi: 10.1002/ange.200705718
– ident: e_1_2_11_6_2
  doi: 10.1073/pnas.96.22.12424
– ident: e_1_2_11_37_2
  doi: 10.1023/A:1011299500628
– ident: e_1_2_11_20_2
  doi: 10.1016/j.tim.2007.10.010
– ident: e_1_2_11_45_2
  doi: 10.1074/jbc.M109945200
– ident: e_1_2_11_51_2
  doi: 10.1016/j.jbiotec.2005.09.012
– ident: e_1_2_11_28_2
  doi: 10.1073/pnas.0806350105
– ident: e_1_2_11_2_2
  doi: 10.1126/science.285.5428.760
– ident: e_1_2_11_82_2
  doi: 10.1021/bi100094g
– ident: e_1_2_11_50_2
  doi: 10.1128/iai.60.5.1902-1907.1992
– ident: e_1_2_11_91_2
  doi: 10.1074/jbc.M806796200
– ident: e_1_2_11_65_2
  doi: 10.1039/c0cc00828a
– ident: e_1_2_11_78_2
  doi: 10.1002/psc.1264
– ident: e_1_2_11_81_2
  doi: 10.1007/s10529-008-9718-1
– ident: e_1_2_11_59_2
  doi: 10.1039/b818792d
– ident: e_1_2_11_38_2
  doi: 10.1073/pnas.101064198
– ident: e_1_2_11_19_2
  doi: 10.1111/j.1365-2958.2006.05279.x
– ident: e_1_2_11_4_2
  doi: 10.1128/IAI.73.8.5222-5228.2005
– ident: e_1_2_11_31_2
  doi: 10.1124/pr.107.07110
– ident: e_1_2_11_72_3
  doi: 10.1002/anie.200705718
– ident: e_1_2_11_79_2
  doi: 10.1007/s10529-010-0349-y
– ident: e_1_2_11_63_2
  doi: 10.1021/ja903231v
– ident: e_1_2_11_76_2
  doi: 10.1016/S0968-0004(02)02057-1
– ident: e_1_2_11_86_2
  doi: 10.1128/JB.186.17.5865-5875.2004
– ident: e_1_2_11_24_2
  doi: 10.1016/j.str.2008.10.007
– ident: e_1_2_11_70_2
  doi: 10.1016/S0076-6879(10)78023-X
– ident: e_1_2_11_21_2
  doi: 10.1007/s00018-008-8477-4
– ident: e_1_2_11_77_2
  doi: 10.1126/science.1125248
– ident: e_1_2_11_26_2
  doi: 10.1021/bi901261y
– ident: e_1_2_11_60_2
  doi: 10.1074/jbc.M109.066282
– ident: e_1_2_11_71_2
  doi: 10.1021/bi901557a
– ident: e_1_2_11_17_2
  doi: 10.1074/jbc.M109194200
– ident: e_1_2_11_69_2
  doi: 10.1021/bc100206z
– ident: e_1_2_11_42_2
  doi: 10.1074/jbc.M405282200
– ident: e_1_2_11_74_2
  doi: 10.1073/pnas.0504613102
– ident: e_1_2_11_10_2
  doi: 10.1128/IAI.72.5.2710-2722.2004
– ident: e_1_2_11_89_2
  doi: 10.1128/JB.01011-06
– ident: e_1_2_11_41_2
  doi: 10.1016/j.ab.2003.10.023
– ident: e_1_2_11_61_2
  doi: 10.1074/jbc.M805406200
– ident: e_1_2_11_44_2
  doi: 10.1074/jbc.M506123200
– ident: e_1_2_11_55_2
  doi: 10.1021/ja039915e
– ident: e_1_2_11_83_2
  doi: 10.1016/j.pep.2004.06.013
– ident: e_1_2_11_95_2
  doi: 10.1074/jbc.M610519200
– ident: e_1_2_11_33_2
  doi: 10.1016/j.micinf.2005.06.009
– ident: e_1_2_11_73_2
  doi: 10.1074/jbc.M901752200
– ident: e_1_2_11_96_2
  doi: 10.1074/jbc.M800974200
– ident: e_1_2_11_12_2
– ident: e_1_2_11_64_2
  doi: 10.1021/ja906611x
– ident: e_1_2_11_93_2
  doi: 10.1128/IAI.69.6.4019-4026.2001
– ident: e_1_2_11_16_2
  doi: 10.1016/j.ab.2006.10.021
– ident: e_1_2_11_80_2
  doi: 10.1371/journal.pone.0001164
– ident: e_1_2_11_87_2
  doi: 10.1074/jbc.M500071200
– ident: e_1_2_11_15_2
  doi: 10.1074/jbc.275.13.9876
– ident: e_1_2_11_48_2
  doi: 10.1021/bi034391g
– ident: e_1_2_11_27_2
  doi: 10.1073/pnas.0803565105
– ident: e_1_2_11_68_2
  doi: 10.1007/s10858-010-9464-2
– ident: e_1_2_11_53_2
  doi: 10.1016/j.cell.2010.09.031
– ident: e_1_2_11_36_2
– ident: e_1_2_11_97_2
– ident: e_1_2_11_35_2
  doi: 10.1002/cbic.200700614
– ident: e_1_2_11_25_2
  doi: 10.1016/j.jmb.2009.08.058
– ident: e_1_2_11_34_2
  doi: 10.1038/nchembio.2007.31
– ident: e_1_2_11_7_2
  doi: 10.1021/bi035920j
– ident: e_1_2_11_49_2
  doi: 10.1016/0092-8674(92)90101-H
– ident: e_1_2_11_43_2
  doi: 10.1021/bi700448e
– ident: e_1_2_11_23_2
  doi: 10.1111/j.1365-2958.2004.04117.x
– ident: e_1_2_11_52_2
  doi: 10.1021/cb100195d
– ident: e_1_2_11_88_2
  doi: 10.1073/pnas.032523999
– ident: e_1_2_11_94_2
  doi: 10.1016/j.febslet.2004.06.070
– ident: e_1_2_11_62_2
  doi: 10.1021/ja077358g
– ident: e_1_2_11_92_2
  doi: 10.1074/jbc.M110.135434
– ident: e_1_2_11_18_2
  doi: 10.1016/j.tim.2004.03.004
– ident: e_1_2_11_85_2
  doi: 10.1016/j.pep.2009.10.012
– ident: e_1_2_11_58_2
  doi: 10.1021/ja902681k
– ident: e_1_2_11_66_2
  doi: 10.1021/ja806779e
– ident: e_1_2_11_84_2
  doi: 10.1186/1472-6750-10-42
– ident: e_1_2_11_11_2
– ident: e_1_2_11_29_2
  doi: 10.1073/pnas.080520697
– ident: e_1_2_11_46_2
  doi: 10.1074/jbc.M305245200
– ident: e_1_2_11_47_2
  doi: 10.1021/bi050141j
– ident: e_1_2_11_30_2
  doi: 10.1016/j.tim.2003.12.007
– ident: e_1_2_11_75_3
  doi: 10.1002/anie.201000620
– ident: e_1_2_11_90_2
  doi: 10.1128/JB.187.13.4646-4655.2005
– ident: e_1_2_11_39_2
  doi: 10.1074/jbc.M401374200
– ident: e_1_2_11_40_2
  doi: 10.1074/jbc.M109.022624
– ident: e_1_2_11_14_2
  doi: 10.1016/S0966-842X(01)01956-4
– ident: e_1_2_11_13_2
  doi: 10.1128/JB.187.14.4928-4934.2005
– ident: e_1_2_11_9_2
  doi: 10.1002/pmic.200402075
– ident: e_1_2_11_54_2
  doi: 10.1021/jo062331l
– ident: e_1_2_11_75_2
  doi: 10.1002/ange.201000620
– ident: e_1_2_11_1_2
  doi: 10.1128/MMBR.70.1.192-221.2006
– ident: e_1_2_11_8_2
  doi: 10.1016/j.resmic.2004.10.011
– ident: e_1_2_11_22_2
  doi: 10.1046/j.1365-2958.2003.03782.x
– ident: e_1_2_11_5_2
  doi: 10.1074/jbc.274.34.24316
– ident: e_1_2_11_57_2
  doi: 10.1074/jbc.M807172200
– ident: e_1_2_11_67_2
  doi: 10.1007/s10858-008-9296-5
– ident: e_1_2_11_32_2
  doi: 10.2174/138955707782110097
SSID ssj0028806
Score 2.5086913
SecondaryResourceType review_article
Snippet Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site‐specifically break a peptide bond and then reform a...
Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site-specifically break a peptide bond and then reform a...
Abstract Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site‐specifically break a peptide bond and then...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 5024
SubjectTerms Amino Acid Motifs
Aminoacyltransferases - chemistry
Aminoacyltransferases - genetics
Aminoacyltransferases - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cysteine Endopeptidases - chemistry
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - metabolism
Enzymes
Protein Engineering
Protein folding
protein modifications
Protein Structure, Tertiary
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
site specificity
sortase
Staphylococcus aureus - enzymology
transpeptidation
Title Making and Breaking Peptide Bonds: Protein Engineering Using Sortase
URI https://api.istex.fr/ark:/67375/WNG-7D651GRB-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201008267
https://www.ncbi.nlm.nih.gov/pubmed/21538739
https://www.proquest.com/docview/1516622070/abstract/
https://search.proquest.com/docview/867320572
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcKCXUugrFJAPVXsKZO3YTrjxppV2hWhRuVnxI1KFFBDZlVB_fWecTWBRJaT2aMVW7Jnx-JM98w3Ap0x7r6xG71e6LM29FakNmUNnaL1yfBSKEeUOjyfq7DL_diWvHmXxd_wQw4Ub7Yzor2mDV7bdfSANpQzsGJqFh5iidHJi0yNUdDHwR3E0zi69SIiUqtD3rI0Z310cvnAqLZOA7_8GORcRbDyCTlah6iffRZ5c78ymdsf9fsLr-D-rew2v5viU7XcGtQYvQrMOK4d9Wbg3cDSO9atY1Xh2gIgzNs4pNsYHRkWK2z12TuQPvxr2iOyQxdgE9p3QfhvewuXJ8Y_Ds3ReiiF1uUZXWnLt6KGb2O9qLRHGcFUrr3lB_HShkNYFREKldTIIHzyRHwdVS-mtz1WViXew1Nw04QMwhJhKWyEym9e5qPOC14WwZWFrh_2LMoEvvSrMbce4YTpuZW5IKmaQSgKfo6aGbtXdNcWpaWl-Tk6NPlJydHpxYMYJbPaqNPMt2hqEOkpxji4vATZ8RmHSi0nVhJtZa3C5giOi5Qm87yxg-Beno0ILnC6PenxmrmZ_8vV4aG38y6CP8LK70JYpF5uwNL2bhS1ERFO7Ha3-DwOd_qs
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cKCXlr4ghVIfED0FsnZsJ9x4Ly27QhTU3qz1IxJCChW7K1X99cw4m7SLkJDaYxRbsWc8M1_s8TcAm5n2XlmN3q90WZp7K1IbMofO0HrleC8UPbo7PBiq_lX-5YdsswnpLkzDD9FtuJFlRH9NBk4b0jt_WEPpCnbMzcIopvRzWESbl_Gv6qJjkOK4PJsLRkKkVIe-5W3M-M58_7m4tEgi_vUY6JzHsDEIHb8C2w6_yT252Z5O7Lb7_YDZ8b_mtwwvZxCV7TVr6jU8C_UbWDpoK8O9hcNBLGHFRrVn-wg648M5pcf4wKhO8XiXnRP_w3XN_uI7ZDE9gX0jwD8O7-Dq-OjyoJ_OqjGkLtfoTUuuHZ11EwFepSUiGa4q5TUviKIuFNK6gGCotE4G4YMn_uOgKim99bkaZeI9LNS3dVgFhihTaStEZvMqF1Ve8KoQtixs5bB9USbwudWF-dmQbpiGXpkbkorppJLAVlRV12x0d0Opalqa78MTow-V7J1c7JtBAuutLs3MSscG0Y5SnKPXS4B1r1GYdGgyqsPtdGxwuoIjqOUJrDRLoPsWp2ihBQ6XR0U-MVazNzw96p4-_EunT7DUvxycmbPT4dc1eNHsb8uUi3VYmNxNw0cESBO7EU3gHhOnAtw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3i2BUnxAcEqbtWM74dZ2u22BXa0KFb1Z8SMSqpRW3V0J8euZcTahi5CQ6NGKrdiehz_ZM98AvM2098pq9H6ly9LcW5HakDl0htYrxwehGFDu8Hiijs_yj-fy_EYWf8sP0V-4kWVEf00GfuXr3d-koZSBHUOz8BBT-i6s50pw0uvhaU8gxVE72_wiIVIqQ9_RNmZ8d3X8yrG0Tjv842-YcxXCxjNo9AiqbvZt6MnFzmJud9zPP4gdb7O8x_BwCVDZXqtRT-BOaJ7C_YOuLtwzGI5jAStWNZ7tI-SMjSkFx_jAqErx7AObEvvD94bdYDtkMTiBfSG4PwvP4Wx0-PXgOF3WYkhdrtGXllw7eukm-rtaS8QxXNXKa14QQV0opHUBoVBpnQzCB0_sx0HVUnrrc1VlYgPWmssmvACGGFNpK0Rm8zoXdV7wuhC2LGztsH9RJvC-E4W5aik3TEuuzA3tiul3JYF3UVJ9t-r6ggLVtDTfJkdGD5UcHJ3um3ECW50ozdJGZwaxjlKco89LgPWfcTPpyaRqwuViZnC5giOk5QlsthrQ_4vTWaEFTpdHOf5jrmZvcnLYt17-z6A3cG86HJnPJ5NPr-BBe7ktUy62YG1-vQivER3N7XY0gF_6YAGL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+and+Breaking+Peptide+Bonds%3A+Protein+Engineering+Using+Sortase&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Popp%2C+Maximilian+Wei%E2%80%90Lin&rft.au=Ploegh%2C+Hidde+L.&rft.date=2011-05-23&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=50&rft.issue=22&rft.spage=5024&rft.epage=5032&rft_id=info:doi/10.1002%2Fanie.201008267&rft.externalDBID=10.1002%252Fanie.201008267&rft.externalDocID=ANIE201008267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon