Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes
Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subse...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 51; pp. 18570 - 18576 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
16.12.2019
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min−1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.
Together alone: Single Rh atoms were encapsulated within MFI zeolites under in situ hydrothermal conditions and a ligand‐protected direct H2 reduction. The catalyst gave a high turnover frequency of 699 molH2
(molRh)−1 min−1 at 298 K for ammonia borane (AB) hydrolysis and exhibited superior catalytic efficiency in shape‐selective tandem hydrogenation of nitroarenes by coupling with the hydrolysis of AB. |
---|---|
AbstractList | Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min−1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H2 reduction. Cs -corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min-1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H2 reduction. Cs -corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min-1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H reduction. C -corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H generation rates from ammonia borane (AB) hydrolysis, up to 699 min at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI ‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H 2 reduction. C s ‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H 2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min −1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min−1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. Together alone: Single Rh atoms were encapsulated within MFI zeolites under in situ hydrothermal conditions and a ligand‐protected direct H2 reduction. The catalyst gave a high turnover frequency of 699 molH2 (molRh)−1 min−1 at 298 K for ammonia borane (AB) hydrolysis and exhibited superior catalytic efficiency in shape‐selective tandem hydrogenation of nitroarenes by coupling with the hydrolysis of AB. Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H-2 reduction. C-s-corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H-2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min(-1) at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. |
Author | Sun, Qiming Zhang, Tianjun Zhang, Peng Yu, Jihong Wang, Ning Bai, Risheng Zhang, Qinghong Mayoral, Alvaro Terasaki, Osamu |
Author_xml | – sequence: 1 givenname: Qiming orcidid: 0000-0002-8895-5703 surname: Sun fullname: Sun, Qiming organization: Jilin University – sequence: 2 givenname: Ning surname: Wang fullname: Wang, Ning organization: Jilin University – sequence: 3 givenname: Tianjun surname: Zhang fullname: Zhang, Tianjun organization: Jilin University – sequence: 4 givenname: Risheng surname: Bai fullname: Bai, Risheng organization: Jilin University – sequence: 5 givenname: Alvaro orcidid: 0000-0002-5229-2717 surname: Mayoral fullname: Mayoral, Alvaro email: amayoral@shanghaitech.edu.cn organization: ShanghaiTech University – sequence: 6 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Dalhousie University – sequence: 7 givenname: Qinghong surname: Zhang fullname: Zhang, Qinghong organization: Xiamen University – sequence: 8 givenname: Osamu surname: Terasaki fullname: Terasaki, Osamu organization: ShanghaiTech University – sequence: 9 givenname: Jihong orcidid: 0000-0003-1615-5034 surname: Yu fullname: Yu, Jihong email: jihong@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31657875$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl-L1DAQwIuceH_01Ucp-HIgXZMmbVLflrLeHhwneOeLLyVNJ7s52mRNUmXf_AjCfcP7JKbuusKB6NMMw-83MwxzmhwZayBJXmI0wwjlb4XRMMsRrnBOSvYkOcFFjjPCGDmKOSUkY7zAx8mp93eR5xyVz5JjgsuCcVacJPefwfY6wMP3HwsjxQq69EabVT8V5sEO6ce17fQ4pLUIot_64N-lS71a99vJUEpLDSaky23n7ApMegEGnAjamlSY2GstNlOrG-hBBv0V0ttYhuEg7FCr0msdnBUu6v558lSJ3sOLfTxLPr1f3NbL7OrDxWU9v8okZSXLuCSlUriVEgrAmHU5zWnZdVxUUMWqqoRCVcUA8RYrREF2suVEFLQtQRWKnCXnu74bZ7-M4EMzaC-h74UBO_omJ6jiuMA5jejrR-idHZ2J20Uqz1lBWTVRr_bU2A7QNRunB-G2ze9zR4DvgG_QWuWn20k4YAghWnGCWBkzhGsdfl2ntqMJUX3z_2qkZztaOuu9A3UgMWqmx2mmx2kOjxMF-kiQ-_HBCd3_Xav2W-ketv8Y0syvLxd_3J_F7txj |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215302 crossref_primary_10_1016_S1872_2067_23_64548_6 crossref_primary_10_1021_acssuschemeng_0c02496 crossref_primary_10_1016_j_jcat_2023_115239 crossref_primary_10_1021_jacs_1c05032 crossref_primary_10_1039_D0CY00844C crossref_primary_10_1039_D2QI00280A crossref_primary_10_1002_ange_202302877 crossref_primary_10_1021_acscatal_0c04614 crossref_primary_10_1088_1361_6528_acc9ca crossref_primary_10_1016_j_jallcom_2024_175629 crossref_primary_10_1007_s40242_023_3269_9 crossref_primary_10_1016_j_cej_2024_154940 crossref_primary_10_1021_acscatal_4c07371 crossref_primary_10_1021_acsami_2c16265 crossref_primary_10_1039_D3NR06566A crossref_primary_10_1021_acs_chemrev_2c00569 crossref_primary_10_1002_anie_202116170 crossref_primary_10_1007_s12274_021_3857_2 crossref_primary_10_1016_j_cej_2023_143870 crossref_primary_10_1007_s11426_024_2257_6 crossref_primary_10_1016_j_pecs_2023_101074 crossref_primary_10_1002_smll_202002071 crossref_primary_10_1039_D1TA01352A crossref_primary_10_1039_D2GC02427F crossref_primary_10_1002_anie_202410017 crossref_primary_10_1002_ange_202417618 crossref_primary_10_1016_j_gee_2024_06_001 crossref_primary_10_1016_j_ccr_2022_214600 crossref_primary_10_1002_ange_202205978 crossref_primary_10_1016_j_jcat_2020_12_007 crossref_primary_10_1039_D1CE01718G crossref_primary_10_1039_D0NJ05305H crossref_primary_10_1039_D2CS00456A crossref_primary_10_1021_acsmaterialslett_3c00165 crossref_primary_10_1016_j_jcat_2022_12_010 crossref_primary_10_1002_smll_202408509 crossref_primary_10_1016_j_apcatb_2023_122392 crossref_primary_10_1021_acsanm_1c00390 crossref_primary_10_1016_j_apcatb_2023_123244 crossref_primary_10_1016_j_ijhydene_2022_06_190 crossref_primary_10_1002_cctc_201902391 crossref_primary_10_1016_j_chphma_2023_03_003 crossref_primary_10_1021_acsami_3c02722 crossref_primary_10_1021_jacs_3c04028 crossref_primary_10_1016_j_jwpe_2024_106319 crossref_primary_10_1039_D4NR02307B crossref_primary_10_1021_jacs_2c12673 crossref_primary_10_1021_jacs_1c08088 crossref_primary_10_1002_smll_202410976 crossref_primary_10_1002_ange_202210991 crossref_primary_10_1016_j_enchem_2025_100148 crossref_primary_10_1002_cey2_499 crossref_primary_10_1016_j_jcis_2021_07_039 crossref_primary_10_1016_j_jallcom_2024_177027 crossref_primary_10_1016_j_micromeso_2022_112239 crossref_primary_10_1039_D4QI03188A crossref_primary_10_1039_D1EE00248A crossref_primary_10_1002_ejic_202300677 crossref_primary_10_1021_acs_chemrev_9b00818 crossref_primary_10_1016_j_jcat_2021_11_026 crossref_primary_10_1016_j_inoche_2024_113453 crossref_primary_10_1016_j_micromeso_2022_112371 crossref_primary_10_1039_D0CS00515K crossref_primary_10_1007_s10934_022_01250_0 crossref_primary_10_1016_j_inoche_2023_111096 crossref_primary_10_1039_D1RA04175D crossref_primary_10_1016_j_fuel_2022_123892 crossref_primary_10_1021_acs_jpclett_0c03547 crossref_primary_10_1002_anie_202109538 crossref_primary_10_1021_acs_jpclett_0c02218 crossref_primary_10_1002_chem_202402764 crossref_primary_10_1016_j_jelechem_2024_118533 crossref_primary_10_1002_anie_202003349 crossref_primary_10_1021_acscentsci_4c00439 crossref_primary_10_1002_adma_202104442 crossref_primary_10_1021_acsami_0c03452 crossref_primary_10_1039_D1EE00247C crossref_primary_10_1016_j_micromeso_2022_112368 crossref_primary_10_1080_17518253_2021_1898682 crossref_primary_10_1021_acs_chemrev_2c00495 crossref_primary_10_1021_jacs_1c08581 crossref_primary_10_1021_acscatal_3c04127 crossref_primary_10_1016_j_jcis_2024_05_241 crossref_primary_10_1002_anie_202005621 crossref_primary_10_1016_j_ijhydene_2022_08_169 crossref_primary_10_1007_s40242_023_3063_8 crossref_primary_10_1002_ange_202003349 crossref_primary_10_1016_j_mcat_2020_110943 crossref_primary_10_1016_S1872_2067_21_63888_3 crossref_primary_10_1021_acs_chemrev_0c00864 crossref_primary_10_1021_acscatal_0c01542 crossref_primary_10_1016_j_poly_2024_116933 crossref_primary_10_1039_D2CY00615D crossref_primary_10_1039_D2EE01037B crossref_primary_10_1016_j_cej_2022_138931 crossref_primary_10_1002_adma_202415265 crossref_primary_10_1007_s12274_023_5388_5 crossref_primary_10_1016_j_jcis_2024_07_251 crossref_primary_10_1039_D3EY00265A crossref_primary_10_1016_j_cej_2021_128856 crossref_primary_10_1016_j_ijhydene_2021_05_062 crossref_primary_10_1126_sciadv_adf1151 crossref_primary_10_1021_acscatal_4c02965 crossref_primary_10_1016_j_fuel_2021_120750 crossref_primary_10_1021_jacs_4c01315 crossref_primary_10_1021_acs_jpcc_4c08577 crossref_primary_10_1016_j_fuel_2022_126466 crossref_primary_10_1021_accountsmr_2c00119 crossref_primary_10_1021_acscatal_4c03380 crossref_primary_10_1038_s41586_024_07342_y crossref_primary_10_1016_j_fuel_2022_124962 crossref_primary_10_1002_adma_202211724 crossref_primary_10_1002_anie_202302877 crossref_primary_10_1002_cctc_202000150 crossref_primary_10_1016_j_mcat_2025_114892 crossref_primary_10_1016_j_micromeso_2022_111970 crossref_primary_10_1002_ange_202116170 crossref_primary_10_1021_acs_iecr_1c00330 crossref_primary_10_3390_nano13243120 crossref_primary_10_3389_fchem_2021_717201 crossref_primary_10_1002_smll_202201291 crossref_primary_10_1016_j_cplett_2021_138365 crossref_primary_10_1039_D2TA03563D crossref_primary_10_1007_s12274_024_6750_y crossref_primary_10_1002_cctc_201902039 crossref_primary_10_1021_jacs_1c09535 crossref_primary_10_1021_acssuschemeng_3c08250 crossref_primary_10_1002_anie_202417618 crossref_primary_10_1021_acscatal_2c05463 crossref_primary_10_1039_D2TA09727C crossref_primary_10_1016_j_apcata_2021_118339 crossref_primary_10_1016_j_chemosphere_2021_132609 crossref_primary_10_1093_nsr_nwac047 crossref_primary_10_1039_D2NJ00732K crossref_primary_10_1002_ange_202005621 crossref_primary_10_1002_adfm_202008318 crossref_primary_10_1002_smll_202003971 crossref_primary_10_1142_S1793604721300073 crossref_primary_10_1002_smtd_202400530 crossref_primary_10_1016_j_nxmate_2024_100192 crossref_primary_10_1021_acs_accounts_1c00074 crossref_primary_10_1021_acs_jpcc_1c00550 crossref_primary_10_1002_advs_202101884 crossref_primary_10_1002_advs_202300726 crossref_primary_10_1016_j_ijhydene_2023_11_076 crossref_primary_10_1016_S1872_2067_20_63734_2 crossref_primary_10_1007_s10562_020_03491_7 crossref_primary_10_1021_acsami_3c02779 crossref_primary_10_1016_j_jcat_2021_10_021 crossref_primary_10_1021_jacsau_4c00784 crossref_primary_10_1021_acs_inorgchem_4c00051 crossref_primary_10_1002_chem_202003793 crossref_primary_10_1016_j_fuel_2023_127398 crossref_primary_10_1016_j_micromeso_2023_112905 crossref_primary_10_1021_acsanm_0c02086 crossref_primary_10_1021_acs_est_4c02540 crossref_primary_10_1039_D1NJ04936D crossref_primary_10_1039_D4CC01533A crossref_primary_10_1088_2631_7990_ad3316 crossref_primary_10_1016_j_joule_2022_12_002 crossref_primary_10_1021_jacs_4c07674 crossref_primary_10_31857_S0044453723070269 crossref_primary_10_1039_D3QM00148B crossref_primary_10_1038_s41467_021_23429_w crossref_primary_10_1007_s11426_024_2287_6 crossref_primary_10_1016_j_poly_2023_116523 crossref_primary_10_1038_s41578_020_00250_3 crossref_primary_10_1021_jacs_1c12642 crossref_primary_10_1039_D0SE00660B crossref_primary_10_1002_ange_202408193 crossref_primary_10_1021_jacs_3c00047 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1016_j_apcata_2024_120080 crossref_primary_10_1002_cctc_202400013 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1021_acs_jpclett_0c00551 crossref_primary_10_1039_D4CS01042F crossref_primary_10_3724_2097_213X_2025_JFCT_0006 crossref_primary_10_1021_acs_organomet_1c00302 crossref_primary_10_1002_ange_202109538 crossref_primary_10_1016_j_isci_2022_104367 crossref_primary_10_1007_s40843_020_1334_6 crossref_primary_10_1039_D3GC02093B crossref_primary_10_1007_s11426_023_1879_8 crossref_primary_10_1016_j_catcom_2022_106569 crossref_primary_10_1016_j_apsusc_2022_155459 crossref_primary_10_1021_acs_chemrev_1c00995 crossref_primary_10_1021_acs_est_3c05190 crossref_primary_10_1002_aic_18710 crossref_primary_10_1021_acs_organomet_0c00459 crossref_primary_10_1016_j_apcatb_2024_124201 crossref_primary_10_1021_acs_chemrev_1c00637 crossref_primary_10_1016_j_jcou_2021_101777 crossref_primary_10_1016_j_mcat_2025_114844 crossref_primary_10_1007_s11426_024_2132_1 crossref_primary_10_1016_j_apcatb_2022_121958 crossref_primary_10_1002_ange_202401568 crossref_primary_10_1016_j_cclet_2021_03_082 crossref_primary_10_1016_j_cclet_2022_107959 crossref_primary_10_1002_adma_202002910 crossref_primary_10_1021_acsorginorgau_3c00017 crossref_primary_10_1039_D3SC05851D crossref_primary_10_1002_anie_202210991 crossref_primary_10_1021_acs_chemrev_0c00797 crossref_primary_10_1039_D4TA01702A crossref_primary_10_1002_smll_202105114 crossref_primary_10_1002_adma_202001818 crossref_primary_10_1021_acsami_1c02734 crossref_primary_10_1002_cjoc_202400069 crossref_primary_10_1002_smll_202107417 crossref_primary_10_1016_j_jes_2021_12_015 crossref_primary_10_1007_s41061_023_00434_9 crossref_primary_10_1016_j_ijhydene_2020_10_234 crossref_primary_10_1038_s41578_021_00347_3 crossref_primary_10_1016_j_jcou_2021_101769 crossref_primary_10_1016_j_ijhydene_2023_03_322 crossref_primary_10_1002_adfm_202210976 crossref_primary_10_1021_acs_chemrev_0c00094 crossref_primary_10_1039_D3EE00037K crossref_primary_10_1049_tje2_12247 crossref_primary_10_3390_catal14060343 crossref_primary_10_1016_j_mcat_2022_112476 crossref_primary_10_1038_s41467_020_19599_8 crossref_primary_10_1021_acscatal_2c05141 crossref_primary_10_3390_catal11121470 crossref_primary_10_1016_j_ijhydene_2022_07_264 crossref_primary_10_1021_acssuschemeng_2c04674 crossref_primary_10_1016_j_enchem_2021_100056 crossref_primary_10_1016_j_jcis_2024_01_204 crossref_primary_10_1002_aenm_202201823 crossref_primary_10_1016_j_apcatb_2021_120140 crossref_primary_10_1002_adma_202306480 crossref_primary_10_1021_jacs_4c06011 crossref_primary_10_1002_cctc_202400716 crossref_primary_10_1016_j_cej_2025_161336 crossref_primary_10_1016_j_jcat_2022_11_022 crossref_primary_10_1016_j_jiec_2021_12_013 crossref_primary_10_1007_s41918_022_00169_z crossref_primary_10_1016_j_trechm_2020_09_009 crossref_primary_10_1016_j_fuel_2024_132567 crossref_primary_10_1021_acscatal_3c01562 crossref_primary_10_1016_j_mcat_2022_112343 crossref_primary_10_1016_j_fuel_2024_132327 crossref_primary_10_1002_cmt2_10 crossref_primary_10_1134_S0965544124080164 crossref_primary_10_1002_cctc_202101752 crossref_primary_10_1021_acs_est_4c02346 crossref_primary_10_1002_aenm_202103097 crossref_primary_10_1021_acsami_4c03083 crossref_primary_10_1016_j_ceja_2021_100128 crossref_primary_10_1002_aenm_202102556 crossref_primary_10_1021_acs_inorgchem_1c00721 crossref_primary_10_1002_ange_202410017 crossref_primary_10_1016_j_inoche_2021_108732 crossref_primary_10_1016_j_cej_2021_129641 crossref_primary_10_1016_j_cjche_2022_03_010 crossref_primary_10_1007_s40843_021_1860_x crossref_primary_10_1016_j_chempr_2021_10_030 crossref_primary_10_1016_j_mtsust_2022_100288 crossref_primary_10_1016_j_matchemphys_2023_128168 crossref_primary_10_1002_cctc_202100158 crossref_primary_10_1016_j_cattod_2022_02_018 crossref_primary_10_1038_s41467_023_42938_4 crossref_primary_10_1039_D2CS00806H crossref_primary_10_1039_D2QI00653G crossref_primary_10_1039_D0QI00766H crossref_primary_10_1002_anie_202401568 crossref_primary_10_1016_j_jcis_2021_11_078 crossref_primary_10_1021_acsami_0c06632 crossref_primary_10_1039_D2GC01917E crossref_primary_10_1016_j_jcat_2022_07_020 crossref_primary_10_1016_j_apcatb_2023_122982 crossref_primary_10_1002_anie_202008962 crossref_primary_10_1021_acs_est_3c04916 crossref_primary_10_1002_anie_202408193 crossref_primary_10_1002_eom2_12186 crossref_primary_10_1021_acscatal_3c00972 crossref_primary_10_1021_acsami_1c11521 crossref_primary_10_1038_s41467_022_33275_z crossref_primary_10_1039_D2CE00440B crossref_primary_10_1016_j_apcatb_2024_124195 crossref_primary_10_1134_S0036024423070269 crossref_primary_10_1016_j_micromeso_2021_111161 crossref_primary_10_1016_j_ccr_2025_216445 crossref_primary_10_1016_j_jece_2025_115936 crossref_primary_10_1039_D4CC05747C crossref_primary_10_1016_j_jmst_2024_01_015 crossref_primary_10_1021_jacs_1c06432 crossref_primary_10_1021_acscatal_1c00950 crossref_primary_10_1039_D2CY01471H crossref_primary_10_1002_adma_202313596 crossref_primary_10_1021_jacs_1c00578 crossref_primary_10_1021_acscatal_3c05175 crossref_primary_10_1016_j_ijhydene_2022_04_286 crossref_primary_10_1002_ejic_202001132 crossref_primary_10_1016_j_micromeso_2021_110980 crossref_primary_10_1039_D2TA09831H crossref_primary_10_1016_j_isci_2024_109064 crossref_primary_10_1016_j_jclepro_2023_136125 crossref_primary_10_1021_acs_jpclett_2c02132 crossref_primary_10_1002_anie_202205978 crossref_primary_10_1007_s11426_022_1427_0 crossref_primary_10_2139_ssrn_4121594 crossref_primary_10_1002_anie_202013985 crossref_primary_10_3390_nano10091850 crossref_primary_10_1002_smll_202308080 crossref_primary_10_1021_acsaem_0c02502 crossref_primary_10_1038_s41929_023_00968_7 crossref_primary_10_1021_acs_iecr_4c04023 crossref_primary_10_1021_jacs_3c00309 crossref_primary_10_1016_j_jcat_2024_115770 crossref_primary_10_1021_acsnano_4c05637 crossref_primary_10_1039_D1GC03809E crossref_primary_10_1016_j_fuel_2022_123568 crossref_primary_10_1021_acs_accounts_3c00693 crossref_primary_10_1021_acsnano_1c10003 crossref_primary_10_1016_j_apcatb_2021_120742 crossref_primary_10_1016_j_ijoes_2023_100108 crossref_primary_10_1016_j_mtener_2023_101406 crossref_primary_10_1038_s41467_022_30536_9 crossref_primary_10_1007_s10853_022_07082_2 crossref_primary_10_1007_s12598_022_02029_7 crossref_primary_10_1007_s40820_021_00668_6 crossref_primary_10_1002_ange_202013985 crossref_primary_10_1016_j_jcat_2023_05_018 crossref_primary_10_3390_s21051886 crossref_primary_10_1039_D2CP00736C crossref_primary_10_1039_D2CC06228C crossref_primary_10_1016_j_apcatb_2022_121100 crossref_primary_10_1021_acscentsci_0c01130 crossref_primary_10_1021_acs_inorgchem_4c02070 crossref_primary_10_1021_jacs_4c15445 crossref_primary_10_1007_s11426_023_1823_9 crossref_primary_10_1021_acsami_0c04905 crossref_primary_10_1016_j_ces_2023_118748 crossref_primary_10_1002_ange_202008962 crossref_primary_10_1016_j_micromeso_2020_110462 crossref_primary_10_1021_acs_chemrev_2c00315 crossref_primary_10_1039_D1CC06682J crossref_primary_10_1002_asia_202100728 crossref_primary_10_1016_j_apcatb_2022_121224 crossref_primary_10_1002_smll_202300114 crossref_primary_10_1016_j_mcat_2023_113381 |
Cites_doi | 10.1038/s41570-018-0010-1 10.1002/cssc.201802157 10.1021/acs.jpcc.8b04286 10.1021/jacs.7b03357 10.1016/j.nantod.2018.04.004 10.1038/natrevmats.2016.59 10.1039/C5CC03102H 10.1002/adma.201505281 10.1016/j.apcatb.2018.04.070 10.1039/C5NJ02608C 10.1002/anie.201602801 10.1038/35104634 10.1002/advs.201802350 10.1002/aenm.201702780 10.1002/anie.201107391 10.1126/science.1083440 10.1002/anie.201403353 10.1016/j.chempr.2016.12.002 10.1021/jacs.6b04951 10.1021/jacs.6b03518 10.1016/j.chempr.2017.07.001 10.1038/s41563-019-0412-6 10.1038/nchem.1095 10.1002/ange.201703864 10.1016/j.cattod.2010.09.019 10.1002/ange.201602801 10.1021/acs.chemrev.7b00776 10.1002/ange.201403353 10.1021/jacs.7b06859 10.1002/ange.201602429 10.1016/j.chempr.2018.01.004 10.1039/C4EE03690E 10.1016/j.apcatb.2018.06.064 10.1002/anie.201703864 10.1021/acs.accounts.7b00132 10.1039/B718842K 10.1021/jacs.9b02936 10.1039/C9CC00003H 10.1021/ar300361m 10.1002/anie.201602429 10.1038/s41929-018-0030-8 10.1021/ja509778y 10.1002/ange.201605577 10.1021/cs500167k 10.1002/cssc.201801204 10.1002/ange.201604021 10.1038/nmat4757 10.1038/nature24640 10.1002/adma.201803966 10.1126/science.aaf8800 10.1038/s41467-017-01259-z 10.1038/ncomms14036 10.1038/s41929-018-0146-x 10.1002/anie.201701089 10.1002/ange.201701089 10.1002/adfm.201502980 10.1039/C7CC06530B 10.1002/ange.201107391 10.1021/jacs.8b06511 10.1002/anie.201604021 10.1038/s41467-018-06967-8 10.1021/acscatal.6b02209 10.1002/anie.201605577 10.1016/j.joule.2018.06.019 10.1021/jacs.5b04029 10.1039/c7cc06530b 10.1038/NMAT4757 10.1038/NCHEM.1095 10.1039/c5nj02608c 10.1039/c4ee03690e 10.1038/natrevmats.2016.31 10.1039/b718842k 10.1039/c5cc03102h 10.1021/ar300227e 10.1039/c9cc00003h |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 17B 1KN AAWJD BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201912367 |
DatabaseName | CrossRef Web of Knowledge Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2019 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 18576 |
ExternalDocumentID | 31657875 000498307600001 10_1002_anie_201912367 ANIE201912367 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: ShanghaiTech University funderid: EM02161943 – fundername: National Natural Science Foundation of China funderid: 21835002; 21621001; 21850410448 – fundername: National Key Research and Development Program of China funderid: 2016YFB0701100 – fundername: 111 Project funderid: B17020 – fundername: U.S. DOE under Contract funderid: DE-AC02-06CH11357 – fundername: NSFC; National Natural Science Foundation of China (NSFC) grantid: NFSC-21850410448 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21835002; 21621001 – fundername: SPST of ShanghaiTech University grantid: EM02161943 – fundername: U.S. DOE; United States Department of Energy (DOE) grantid: DE-AC02-06CH11357 – fundername: 111 Project; Ministry of Education, China - 111 Project grantid: B17020 – fundername: National Key Research and Development Program of China; National Key Research & Development Program of China grantid: 2016YFB0701100 – fundername: Canadian Light Source – fundername: National Natural Science Foundation of China grantid: 21850410448 – fundername: U.S. DOE under Contract grantid: DE-AC02-06CH11357 – fundername: ShanghaiTech University grantid: EM02161943 – fundername: National Key Research and Development Program of China grantid: 2016YFB0701100 – fundername: 111 Project grantid: B17020 – fundername: National Natural Science Foundation of China grantid: 21621001 – fundername: National Natural Science Foundation of China grantid: 21835002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-8c36ff1bcce5e117d24246dd8a9e9bccf9af0997e08b1f04ecdcb83a54b6ef5f3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 382 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000498307600001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 21:56:59 EDT 2025 Fri Jul 25 10:34:24 EDT 2025 Wed Feb 19 02:31:28 EST 2025 Wed Jul 09 18:46:54 EDT 2025 Fri Aug 29 15:59:24 EDT 2025 Tue Jul 01 02:27:01 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Wed Jan 22 16:36:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | single-atom catalysts OXIDATION TRANSFORMATION STORAGE HYDROLYTIC DEHYDROGENATION PLATINUM AMMONIA-BORANE CO NANOPARTICLES zeolites CLUSTERS hydrogen generation SITES tandem reactions rhodium |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4767-8c36ff1bcce5e117d24246dd8a9e9bccf9af0997e08b1f04ecdcb83a54b6ef5f3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1615-5034 0000-0002-8895-5703 0000-0002-5229-2717 0009-0008-1915-9069 0000-0003-3603-0175 0000-0002-4807-4100 0000-0001-5803-0817 |
PMID | 31657875 |
PQID | 2322754794 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_31657875 proquest_journals_2322754794 webofscience_primary_000498307600001CitationCount crossref_citationtrail_10_1002_anie_201912367 wiley_primary_10_1002_anie_201912367_ANIE201912367 proquest_miscellaneous_2309815124 crossref_primary_10_1002_anie_201912367 webofscience_primary_000498307600001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 16, 2019 |
PublicationDateYYYYMMDD | 2019-12-16 |
PublicationDate_xml | – month: 12 year: 2019 text: December 16, 2019 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2018; 122 2017; 8 2017; 2 2017; 3 2019; 55 2019; 12 2019; 18 2017; 551 2014; 136 2018; 9 2018; 8 2018; 2 2014; 4 2018; 4 2015; 137 2018; 1 2012 2012; 51 124 2016; 353 2016; 40 2001; 414 2018; 140 2019; 6 2019; 31 2013; 46 2015; 51 2011; 170 2017 2017; 56 129 2011; 3 2019; 141 2015; 8 2018; 20 2017; 139 2017; 50 2016; 6 2017; 53 2015; 25 2016; 7 2016 2016; 55 128 2016; 1 2018; 237 2017; 16 2018; 118 2018; 235 2016; 138 2016; 28 2018; 11 2003; 300 2009; 38 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_13_3 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_49_3 e_1_2_6_28_1 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_47_1 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_16_3 e_1_2_6_14_2 e_1_2_6_56_2 e_1_2_6_14_3 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_6_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_46_3 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_48_3 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_44_2 e_1_2_6_27_1 e_1_2_6_67_2 e_1_2_6_25_2 e_1_2_6_46_2 Zhan, WW (WOS:000385057900069) 2016; 6 Göksu, H (WOS:000337074700016) 2014; 4 Farrusseng, D (WOS:000375586400002) 2016; 40 Sun, QM (WOS:000468187200001) 2019; 6 Wang, N (WOS:000454786200008) 2019; 31 Wang, L. (000498307600001.50) 2017; 129 Liu, LC (WOS:000433404300004) 2018; 118 Wang, HL (WOS:000396465700009) 2017; 2 Hu, M (WOS:000445178400026) 2018; 11 Khalily, M. A. (000498307600001.18) 2016; 128 Luo, WX (WOS:000459737500023) 2019; 12 Sun, QM (WOS:000416365200015) 2017; 3 Sun, J. K. (000498307600001.38) 2017; 139 Wang, ZZ (WOS:000436381600043) 2018; 122 Rosi, NL (WOS:000182886500039) 2003; 300 Qu, YT (WOS:000447080500013) 2018; 1 Jiang, HL (WOS:000291799100009) 2011; 170 Kistler, JD (WOS:000340526400011) 2014; 53 Li, ZP (WOS:000404085900019) 2017; 50 Yan, H (WOS:000413353500019) 2017; 8 (000498307600001.64) 2017; 129 Wang, CT (WOS:000378984300020) 2016; 138 Zhu, QL (WOS:000349616900006) 2015; 8 (000498307600001.9) 2016; 128 Wang, LB (WOS:000398576000003) 2017; 56 Wang, L (WOS:000436216800010) 2018; 20 Feng, K (WOS:000384713100044) 2016; 55 Yang, XC (WOS:000428623700014) 2018; 1 Dai, CY (WOS:000367219400009) 2015; 25 (000498307600001.60) 2016; 128 Zhu, CZ (WOS:000413896400005) 2017; 56 Yang, JH (WOS:000323472200024) 2013; 46 Sun, GD (WOS:000448414100004) 2018; 9 Cui, TL (WOS:000383371800006) 2016; 55 Zhang, X (WOS:000433706700027) 2018; 8 Zhang, H (WOS:000468615900021) 2019; 55 Wang, CL (WOS:000408519600045) 2017; 139 Qiao, BT (WOS:000292999100017) 2011; 3 Wang, N (WOS:000378584600011) 2016; 138 Shan, JJ (WOS:000416520400038) 2017; 551 Fu, FY (WOS:000441475800032) 2018; 140 Wang, LB (WOS:000390286100001) 2016; 7 Zhang, JK (WOS:000438478900026) 2018; 235 Wu, WZ (WOS:000386257000001) 2016; 1 Liu, LC (WOS:000476651600021) 2019; 18 Sun, JK (WOS:000356322300023) 2015; 137 Chen, YJ (WOS:000439698900009) 2018; 2 Khalily, MA (WOS:000384713700017) 2016; 55 Jones, J (WOS:000379208400034) 2016; 353 Lu, J (WOS:000304814400008) 2012; 51 Wang, AQ (WOS:000434871000005) 2018; 2 Graetz, J (WOS:000261768900007) 2009; 38 Schlapbach, L (WOS:000172150700055) 2001; 414 Liu, LC (WOS:000391343300024) 2017; 16 Yang, QH (WOS:000356298400007) 2015; 51 Zhang, B (WOS:000383253300022) 2016; 55 Liu, YW (WOS:000475540800027) 2019; 141 Li, XG (WOS:000372459600018) 2016; 28 Zhou, YH (WOS:000415061300027) 2017; 53 Özhava, D (WOS:000442973700104) 2018; 237 Chen, WY (WOS:000345883900010) 2014; 136 Fang, Y (WOS:000429434900013) 2018; 4 |
References_xml | – volume: 28 start-page: 2427 year: 2016 end-page: 2431 publication-title: Adv. Mater. – volume: 51 start-page: 10419 year: 2015 end-page: 10422 publication-title: Chem. Commun. – volume: 140 start-page: 10034 year: 2018 end-page: 10042 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 9305 year: 2019 end-page: 9311 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 7479 year: 2015 end-page: 7487 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 781 year: 2018 end-page: 786 publication-title: Nat. Catal. – volume: 18 start-page: 866 year: 2019 end-page: 873 publication-title: Nat. Mater. – volume: 1 start-page: 214 year: 2018 end-page: 220 publication-title: Nat. Catal. – volume: 46 start-page: 1740 year: 2013 end-page: 1748 publication-title: Acc. Chem. Res. – volume: 237 start-page: 1012 year: 2018 end-page: 1020 publication-title: Appl. Catal. B – volume: 53 start-page: 12361 year: 2017 end-page: 12364 publication-title: Chem. Commun. – volume: 4 start-page: 555 year: 2018 end-page: 563 publication-title: Chem – volume: 138 start-page: 7880 year: 2016 end-page: 7883 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 477 year: 2017 end-page: 493 publication-title: Chem – volume: 7 start-page: 14036 year: 2016 publication-title: Nat. Commun. – volume: 55 128 start-page: 12257 12445 year: 2016 2016 end-page: 12261 12449 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 634 year: 2011 end-page: 641 publication-title: Nat. Chem. – volume: 6 start-page: 1802350 year: 2019 publication-title: Adv. Sci. – volume: 55 128 start-page: 8319 8459 year: 2016 2016 end-page: 8323 8463 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 4981 year: 2018 end-page: 5079 publication-title: Chem. Rev. – volume: 55 128 start-page: 11950 12129 year: 2016 2016 end-page: 11954 12133 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 4699 year: 2019 end-page: 4702 publication-title: Chem. Commun. – volume: 55 128 start-page: 9178 9324 year: 2016 2016 end-page: 9182 9328 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 73 year: 2009 end-page: 82 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 65 year: 2018 end-page: 81 publication-title: Nat. Rev. Chem. – volume: 138 start-page: 7484 year: 2016 end-page: 7487 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 4712 4790 year: 2017 2017 end-page: 4718 4796 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 11610 year: 2017 end-page: 11615 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1803966 year: 2019 publication-title: Adv. Mater. – volume: 51 124 start-page: 5842 5944 year: 2012 2012 end-page: 5846 5948 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 353 start-page: 150 year: 2016 end-page: 154 publication-title: Science – volume: 137 start-page: 7063 year: 2015 end-page: 7066 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 16059 year: 2016 publication-title: Nat. Rev. Mater. – volume: 139 start-page: 8971 year: 2017 end-page: 8976 publication-title: J. Am. Chem. Soc. – volume: 170 start-page: 56 year: 2011 end-page: 63 publication-title: Catal. Today – volume: 122 start-page: 12975 year: 2018 end-page: 12983 publication-title: J. Phys. Chem. C – volume: 300 start-page: 1127 year: 2003 end-page: 1129 publication-title: Science – volume: 8 start-page: 1702780 year: 2018 publication-title: Adv. Energy Mater. – volume: 12 start-page: 535 year: 2019 end-page: 541 publication-title: ChemSusChem – volume: 56 129 start-page: 13944 14132 year: 2017 2017 end-page: 13960 14148 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 478 year: 2015 end-page: 512 publication-title: Energy Environ. Sci. – volume: 11 start-page: 3253 year: 2018 end-page: 3258 publication-title: ChemSusChem – volume: 2 start-page: 1242 year: 2018 end-page: 1264 publication-title: Joule – volume: 53 126 start-page: 8904 9050 year: 2014 2014 end-page: 8907 9053 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 235 start-page: 256 year: 2018 end-page: 263 publication-title: Appl. Catal. B – volume: 8 start-page: 1070 year: 2017 publication-title: Nat. Commun. – volume: 50 start-page: 1449 year: 2017 end-page: 1458 publication-title: Acc. Chem. Res. – volume: 136 start-page: 16736 year: 2014 end-page: 16739 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1777 year: 2014 end-page: 1782 publication-title: ACS Catal. – volume: 20 start-page: 74 year: 2018 end-page: 83 publication-title: Nano Today – volume: 414 start-page: 353 year: 2001 end-page: 358 publication-title: Nature – volume: 40 start-page: 3933 year: 2016 end-page: 3949 publication-title: New J. Chem. – volume: 551 start-page: 605 year: 2017 publication-title: Nature – volume: 2 start-page: 52 year: 2017 end-page: 80 publication-title: Chem – volume: 6 start-page: 6892 year: 2016 end-page: 6905 publication-title: ACS Catal. – volume: 9 start-page: 4454 year: 2018 publication-title: Nat. Commun. – volume: 16 start-page: 132 year: 2017 end-page: 138 publication-title: Nat. Mater. – ident: e_1_2_6_11_2 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_6_65_2 doi: 10.1002/cssc.201802157 – ident: e_1_2_6_52_2 doi: 10.1021/acs.jpcc.8b04286 – ident: e_1_2_6_54_2 doi: 10.1021/jacs.7b03357 – ident: e_1_2_6_24_2 doi: 10.1016/j.nantod.2018.04.004 – ident: e_1_2_6_29_2 doi: 10.1038/natrevmats.2016.59 – ident: e_1_2_6_59_2 doi: 10.1039/C5CC03102H – ident: e_1_2_6_5_2 doi: 10.1002/adma.201505281 – ident: e_1_2_6_44_2 doi: 10.1016/j.apcatb.2018.04.070 – ident: e_1_2_6_27_1 doi: 10.1039/C5NJ02608C – ident: e_1_2_6_37_1 – ident: e_1_2_6_53_1 – ident: e_1_2_6_6_2 doi: 10.1002/anie.201602801 – ident: e_1_2_6_35_2 doi: 10.1038/35104634 – ident: e_1_2_6_62_1 doi: 10.1002/advs.201802350 – ident: e_1_2_6_28_1 – ident: e_1_2_6_51_2 doi: 10.1002/aenm.201702780 – ident: e_1_2_6_13_2 doi: 10.1002/anie.201107391 – ident: e_1_2_6_34_2 doi: 10.1126/science.1083440 – ident: e_1_2_6_63_1 – ident: e_1_2_6_14_2 doi: 10.1002/anie.201403353 – ident: e_1_2_6_31_2 doi: 10.1016/j.chempr.2016.12.002 – ident: e_1_2_6_18_2 doi: 10.1021/jacs.6b04951 – ident: e_1_2_6_19_2 doi: 10.1021/jacs.6b03518 – ident: e_1_2_6_21_2 doi: 10.1016/j.chempr.2017.07.001 – ident: e_1_2_6_26_2 doi: 10.1038/s41563-019-0412-6 – ident: e_1_2_6_2_2 doi: 10.1038/nchem.1095 – ident: e_1_2_6_7_3 doi: 10.1002/ange.201703864 – ident: e_1_2_6_47_1 – ident: e_1_2_6_40_2 doi: 10.1016/j.cattod.2010.09.019 – ident: e_1_2_6_6_3 doi: 10.1002/ange.201602801 – ident: e_1_2_6_50_1 – ident: e_1_2_6_25_2 doi: 10.1021/acs.chemrev.7b00776 – ident: e_1_2_6_14_3 doi: 10.1002/ange.201403353 – ident: e_1_2_6_56_2 doi: 10.1021/jacs.7b06859 – ident: e_1_2_6_16_3 doi: 10.1002/ange.201602429 – ident: e_1_2_6_67_2 doi: 10.1016/j.chempr.2018.01.004 – ident: e_1_2_6_12_1 – ident: e_1_2_6_33_2 doi: 10.1039/C4EE03690E – ident: e_1_2_6_66_2 doi: 10.1016/j.apcatb.2018.06.064 – ident: e_1_2_6_1_1 – ident: e_1_2_6_7_2 doi: 10.1002/anie.201703864 – ident: e_1_2_6_30_2 doi: 10.1021/acs.accounts.7b00132 – ident: e_1_2_6_36_2 doi: 10.1039/B718842K – ident: e_1_2_6_22_2 doi: 10.1021/jacs.9b02936 – ident: e_1_2_6_64_2 doi: 10.1039/C9CC00003H – ident: e_1_2_6_3_2 doi: 10.1021/ar300361m – ident: e_1_2_6_16_2 doi: 10.1002/anie.201602429 – ident: e_1_2_6_38_2 doi: 10.1038/s41929-018-0030-8 – ident: e_1_2_6_45_2 doi: 10.1021/ja509778y – ident: e_1_2_6_48_3 doi: 10.1002/ange.201605577 – ident: e_1_2_6_58_2 doi: 10.1021/cs500167k – ident: e_1_2_6_41_2 doi: 10.1002/cssc.201801204 – ident: e_1_2_6_46_3 doi: 10.1002/ange.201604021 – ident: e_1_2_6_17_2 doi: 10.1038/nmat4757 – ident: e_1_2_6_20_2 doi: 10.1038/nature24640 – ident: e_1_2_6_23_2 doi: 10.1002/adma.201803966 – ident: e_1_2_6_4_2 doi: 10.1126/science.aaf8800 – ident: e_1_2_6_68_2 doi: 10.1038/s41467-017-01259-z – ident: e_1_2_6_61_1 doi: 10.1038/ncomms14036 – ident: e_1_2_6_9_2 doi: 10.1038/s41929-018-0146-x – ident: e_1_2_6_49_2 doi: 10.1002/anie.201701089 – ident: e_1_2_6_32_1 – ident: e_1_2_6_49_3 doi: 10.1002/ange.201701089 – ident: e_1_2_6_15_2 doi: 10.1002/adfm.201502980 – ident: e_1_2_6_60_2 doi: 10.1039/C7CC06530B – ident: e_1_2_6_13_3 doi: 10.1002/ange.201107391 – ident: e_1_2_6_43_1 – ident: e_1_2_6_57_1 – ident: e_1_2_6_39_2 doi: 10.1021/jacs.8b06511 – ident: e_1_2_6_46_2 doi: 10.1002/anie.201604021 – ident: e_1_2_6_10_2 doi: 10.1038/s41467-018-06967-8 – ident: e_1_2_6_42_2 doi: 10.1021/acscatal.6b02209 – ident: e_1_2_6_48_2 doi: 10.1002/anie.201605577 – ident: e_1_2_6_8_2 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_6_55_2 doi: 10.1021/jacs.5b04029 – volume: 141 start-page: 9305 year: 2019 ident: WOS:000475540800027 article-title: A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b02936 – volume: 237 start-page: 1012 year: 2018 ident: WOS:000442973700104 article-title: Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane publication-title: APPLIED CATALYSIS B-ENVIRONMENTAL doi: 10.1016/j.apcatb.2018.06.064 – volume: 50 start-page: 1449 year: 2017 ident: WOS:000404085900019 article-title: Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.7b00132 – volume: 56 start-page: 13944 year: 2017 ident: WOS:000413896400005 article-title: Single-Atom Electrocatalysts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201703864 – volume: 9 start-page: ARTN 4454 year: 2018 ident: WOS:000448414100004 article-title: Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-06967-8 – volume: 128 start-page: 8459 year: 2016 ident: 000498307600001.60 publication-title: Angew. Chem. – volume: 8 start-page: ARTN 1070 year: 2017 ident: WOS:000413353500019 article-title: Bottom-up precise synthesis of stable platinum dimers on graphene publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-017-01259-z – volume: 55 start-page: 8319 year: 2016 ident: WOS:000383253300022 article-title: Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201602801 – volume: 118 start-page: 4981 year: 2018 ident: WOS:000433404300004 article-title: Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00776 – volume: 129 start-page: 14132 year: 2017 ident: 000498307600001.64 publication-title: Angew. Chem. – volume: 139 start-page: 8971 year: 2017 ident: 000498307600001.38 article-title: A General Synthetic Route Towards Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s publication-title: J. Am. Chem. Soc – volume: 136 start-page: 16736 year: 2014 ident: WOS:000345883900010 article-title: Mechanistic Insight into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja509778y – volume: 235 start-page: 256 year: 2018 ident: WOS:000438478900026 article-title: Synergistic effects in atomic-layer-deposited PtCox/CNTs catalysts enhancing hydrolytic dehydrogenation of ammonia borane publication-title: APPLIED CATALYSIS B-ENVIRONMENTAL doi: 10.1016/j.apcatb.2018.04.070 – volume: 51 start-page: 5842 year: 2012 ident: WOS:000304814400008 article-title: Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201107391 – volume: 28 start-page: 2427 year: 2016 ident: WOS:000372459600018 article-title: Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201505281 – volume: 53 start-page: 12361 year: 2017 ident: WOS:000415061300027 article-title: Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: integration of ammonia borane dehydrogenation with nitroarene hydrogenation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c7cc06530b – volume: 140 start-page: 10034 year: 2018 ident: WOS:000441475800032 article-title: Highly Selective and Sharp Volcano-type Synergistic Ni2Pt@ZIF-8-Catalyzed Hydrogen Evolution from Ammonia Borane Hydrolysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b06511 – volume: 3 start-page: 477 year: 2017 ident: WOS:000416365200015 article-title: Subnanometric Hybrid Pd-M(OH)2, M=Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation publication-title: CHEM doi: 10.1016/j.chempr.2017.07.001 – volume: 16 start-page: 132 year: 2017 ident: WOS:000391343300024 article-title: Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D publication-title: NATURE MATERIALS doi: 10.1038/NMAT4757 – volume: 4 start-page: 1777 year: 2014 ident: WOS:000337074700016 article-title: Tandem Dehydrogenation of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds Catalyzed by Graphene-Supported NiPd Alloy Nanoparticles publication-title: ACS CATALYSIS doi: 10.1021/cs500167k – volume: 3 start-page: 634 year: 2011 ident: WOS:000292999100017 article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.1095 – volume: 40 start-page: 3933 year: 2016 ident: WOS:000375586400002 article-title: Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis publication-title: NEW JOURNAL OF CHEMISTRY doi: 10.1039/c5nj02608c – volume: 56 start-page: 4712 year: 2017 ident: WOS:000398576000003 article-title: Supported Rhodium Catalysts for Ammonia-Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201701089 – volume: 8 start-page: ARTN 1702780 year: 2018 ident: WOS:000433706700027 article-title: Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3 publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201702780 – volume: 2 start-page: 1242 year: 2018 ident: WOS:000439698900009 article-title: Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications publication-title: JOULE doi: 10.1016/j.joule.2018.06.019 – volume: 139 start-page: 11610 year: 2017 ident: WOS:000408519600045 article-title: Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b06859 – volume: 8 start-page: 478 year: 2015 ident: WOS:000349616900006 article-title: Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c4ee03690e – volume: 1 start-page: 781 year: 2018 ident: WOS:000447080500013 article-title: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms publication-title: NATURE CATALYSIS doi: 10.1038/s41929-018-0146-x – volume: 55 start-page: 11950 year: 2016 ident: WOS:000384713100044 article-title: CuxCo1-xO Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High-Efficiency Hydrolysis of Ammonia-Borane publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201604021 – volume: 18 start-page: 866 year: 2019 ident: WOS:000476651600021 article-title: Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis publication-title: NATURE MATERIALS doi: 10.1038/s41563-019-0412-6 – volume: 129 start-page: 4790 year: 2017 ident: 000498307600001.50 article-title: Supported rhodium catalysts for ammoniaeborane hydrolysis: dependence of the catalytic activity on the highest occupied state of the single rhodium atoms publication-title: Angew. Chem. – volume: 20 start-page: 74 year: 2018 ident: WOS:000436216800010 article-title: Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts publication-title: NANO TODAY doi: 10.1016/j.nantod.2018.04.004 – volume: 6 start-page: 6892 year: 2016 ident: WOS:000385057900069 article-title: Dehydrogenation of Ammonia Borane by Metal Nanoparticle Catalysts publication-title: ACS CATALYSIS doi: 10.1021/acscatal.6b02209 – volume: 55 start-page: 12257 year: 2016 ident: WOS:000384713700017 article-title: Facile Synthesis of Three-Dimensional Pt-TiO2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201605577 – volume: 11 start-page: 3253 year: 2018 ident: WOS:000445178400026 article-title: Towards High-Efficiency Hydrogen Production through insitu Formation of Well-Dispersed Rhodium Nanoclusters publication-title: CHEMSUSCHEM doi: 10.1002/cssc.201801204 – volume: 1 start-page: ARTN 16031 year: 2016 ident: WOS:000386257000001 article-title: Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics publication-title: NATURE REVIEWS MATERIALS doi: 10.1038/natrevmats.2016.31 – volume: 138 start-page: 7484 year: 2016 ident: WOS:000378584600011 article-title: In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b03518 – volume: 353 start-page: 150 year: 2016 ident: WOS:000379208400034 article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping publication-title: SCIENCE doi: 10.1126/science.aaf8800 – volume: 128 start-page: 12445 year: 2016 ident: 000498307600001.18 article-title: Facile synthesis of three-dimensional Pt-Ti02 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane publication-title: Angew. Chem – volume: 2 start-page: 65 year: 2018 ident: WOS:000434871000005 article-title: Heterogeneous single-atom catalysis publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-018-0010-1 – volume: 4 start-page: 555 year: 2018 ident: WOS:000429434900013 article-title: Ultra-Small Face-Centered-Cubic Ru Nanoparticles Confined within a Porous Coordination Cage for Dehydrogenation publication-title: CHEM doi: 10.1016/j.chempr.2018.01.004 – volume: 414 start-page: 353 year: 2001 ident: WOS:000172150700055 article-title: Hydrogen-storage materials for mobile applications publication-title: NATURE – volume: 55 start-page: 9178 year: 2016 ident: WOS:000383371800006 article-title: Encapsulating Palladium Nanoparticles Inside Mesoporous MFI Zeolite Nanocrystals for Shape-Selective Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201602429 – volume: 128 start-page: 12129 year: 2016 ident: 000498307600001.9 publication-title: Angew. Chem. – volume: 25 start-page: 7479 year: 2015 ident: WOS:000367219400009 article-title: Hollow ZSM-5 with Silicon-Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201502980 – volume: 122 start-page: 12975 year: 2018 ident: WOS:000436381600043 article-title: Interfacial Synergy of PtPd Nanoparticles Dispersed on Amine-Modified ZrSBA-15 in Catalytic Dehydrogenation of Ammonia Borane and Reduction of p-Nitrophenol publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.8b04286 – volume: 53 start-page: 8904 year: 2014 ident: WOS:000340526400011 article-title: A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201403353 – volume: 6 start-page: ARTN 1802350 year: 2019 ident: WOS:000468187200001 article-title: Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation publication-title: ADVANCED SCIENCE doi: 10.1002/advs.201802350 – volume: 38 start-page: 73 year: 2009 ident: WOS:000261768900007 article-title: New approaches to hydrogen storage publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b718842k – volume: 1 start-page: 214 year: 2018 ident: WOS:000428623700014 article-title: Encapsulating highly catalytically active metal nanoclusters inside porous organic cages publication-title: NATURE CATALYSIS doi: 10.1038/s41929-018-0030-8 – volume: 300 start-page: 1127 year: 2003 ident: WOS:000182886500039 article-title: Hydrogen storage in microporous metal-organic frameworks publication-title: SCIENCE – volume: 51 start-page: 10419 year: 2015 ident: WOS:000356298400007 article-title: One-pot tandem catalysis over Pd@MIL-101: boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c5cc03102h – volume: 138 start-page: 7880 year: 2016 ident: WOS:000378984300020 article-title: Product Selectivity Controlled by Zeolite Crystals in Biomass Hydrogenation over a Palladium Catalyst publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b04951 – volume: 170 start-page: 56 year: 2011 ident: WOS:000291799100009 article-title: Catalytic hydrolysis of ammonia borane for chemical hydrogen storage publication-title: CATALYSIS TODAY doi: 10.1016/j.cattod.2010.09.019 – volume: 551 start-page: 605 year: 2017 ident: WOS:000416520400038 article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts publication-title: NATURE doi: 10.1038/nature24640 – volume: 31 start-page: ARTN 1803966 year: 2019 ident: WOS:000454786200008 article-title: Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201803966 – volume: 2 start-page: 52 year: 2017 ident: WOS:000396465700009 article-title: Metal-Organic Frameworks for Energy Applications publication-title: CHEM doi: 10.1016/j.chempr.2016.12.002 – volume: 12 start-page: 535 year: 2019 ident: WOS:000459737500023 article-title: Ultrahigh Catalytic Activity of L-Proline-Functionalized Rh Nanoparticles for Methanolysis of Ammonia Borane publication-title: CHEMSUSCHEM doi: 10.1002/cssc.201802157 – volume: 7 start-page: ARTN 14036 year: 2016 ident: WOS:000390286100001 article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms14036 – volume: 46 start-page: 1900 year: 2013 ident: WOS:000323472200024 article-title: Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar300227e – volume: 55 start-page: 4699 year: 2019 ident: WOS:000468615900021 article-title: Sub-3 nm Rh nanoclusters confined within a metal-organic framework for enhanced hydrogen generation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c9cc00003h – volume: 137 start-page: 7063 year: 2015 ident: WOS:000356322300023 article-title: Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b04029 |
SSID | ssj0028806 |
Score | 2.69089 |
SecondaryResourceType | review_article |
Snippet | Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer... Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18570 |
SubjectTerms | Ammonia Catalysis Catalysts Chemical synthesis Chemistry Chemistry, Multidisciplinary hydrogen generation Hydrogen production Hydrogen storage Hydrogenation Hydrolysis Oxygen atoms Physical Sciences Rhodium Scanning transmission electron microscopy Science & Technology Single atom catalysts tandem reactions Transmission electron microscopy Zeolites |
Title | Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201912367 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000498307600001 https://www.ncbi.nlm.nih.gov/pubmed/31657875 https://www.proquest.com/docview/2322754794 https://www.proquest.com/docview/2309815124 |
Volume | 58 |
WOS | 000498307600001 |
WOSCitedRecordID | wos000498307600001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQXuDC-xF2QUZaiVN269h5mFtVdVWQ6GEf0opLZDu2dkWbrJr0UE77E5D4h_wSPHZitosQCG5tMk7l5PPMV2fmG4T2aS4ymksdW_KgYyYzGkvCRZwkRDJdMM1c-djHeTY7Yx_O0_MbVfxeHyJsuMHKcP4aFriQ7eFP0VCowIbULO5EyKwThoQtYEXHQT8qseD05UWUxtCFflBtHCWH28O3o9IvVPNWVNomsi4SHT1AYpiDT0D5fLDu5IH6ckve8X8m-RDd72kqHntcPUJ3dP0Y3Z0M3eGeoG-fNGTO6e_XX6e1sk6pwic2Ci7gwLhrlvj4oqku10s8gf2hTdu17zDklCw2MMLpVthwh2ebatVYDGMvfw0owaK217oQV3CpE9emx3pkfAq73cswwJs2Bs8vu1UDFW26fYrOjqank1ncN3iIFcutgy4UzYwhUimdakLyCmpVsqoqBNfcHjVcGKjs1aNCEjNiWlVKFlSkFlPapIY-Qzt1U-sXCEsmZKUzYZIcSKoUJhWGVxwannEqWYTi4QGXqlc_hyYci9LrNicl3Ooy3OoIvQ32V17347eWewNeyn79t6XlqUmegnp_hN6E0_YRwesYUetmDTYjXgDhsjbPPc7CT1GSgStNI7R_E3jhvPtnV1D3WtUSjQiRvzGb9BMHuYMuQolD3h-mV47n76fh28t_GbSL7sFnSAIi2R7a6VZr_cpSuU6-dsv1B3RWRgc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o-UAkYq4pR2Y-eJxGG13WqXtntot1LFJdiJrVbdTapNVmg58ROQ-CX8FX4CvwSP84AtQiCkHjjGGTuxPa84M98AbLKA-ywQ0tbOg7Rd4TNbOBG3KXWEK0NXuiZ97GDkD47dNyfeyQp8aXJhKnyI9sANJcPoaxRwPJDe_oEaiinYGJsVGRSyOq5yTy7e66-24vVwR2_xC0p3--PewK4LC9iJG2jFECbMV8oRSSI96ThBijkSfpqGPJKRblURV5hRKjuhcFTHlUmaiJBxT89FKk8xPe41uI5lxBGuf-ewRayiWhyqhCbGbKx73-BEduj28vsu28FfnNtLdnDZdTa2b_cWfG1WrQp5Od-al2Ir-XAJUPK_WtbbcLP2xEm3Ep07sCKzu7DWawrg3YPPbyUGB8pvHz_1s0Tr3ZQcaUM_wYZumU_J4Wmens2npIdHYIuiLF4RDJuZLLCHgebQFp0MFuks12JKKoRvFATCMz3WKb_AoY5MJSJtdMgYD_SnbYeKNFdkdFbOckzak8V9OL6SNXkAq1meyUdAhMtFKn2uaIB-uODK4ypKI6zpFjHhWmA3HBUnNcA71hmZxBU0NY1xa-N2ay142dJfVNAmv6XcaBg0rlVcEWtXnAYeFiiw4Hl7W28R_nHimcznSNOJQvQpNc3DirHbRzHHR2vhWbD5M6e3983Ha8jMn2PtS1ng_A1Zr544IjqUFlDD6n-YXtwdDfvt1fq_dHoGa4PxwX68PxztPYYb2I4xT46_AavlbC6faM-1FE-NriDw7qql6Dsq66gJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3tBAASMVcUqbxHkicVjtQ7sUVqgPqeol2ImtVt1NVpus0HLiJyDxR_gr_AV-CR7nAVuEQEg9cIwzdmJ7XnFmvgHYogHzacCFqZwHYbrcpya3I2Y6js1dEbrC1eljb8b-8NB9deQdrcGXJhemwodoD9xQMrS-RgGfpXLnB2goZmBjaFakQcjqsMpdsXyvPtqKl6Oe2uFnjjPoH3SHZl1XwEzcQOmFMKG-lDZPEuEJ2w5STJHw0zRkkYhUq4yYxIRSYYXclpYrkjThIWWemoqQnqRq3Etw2fWtCItF9PZawCpHSUOVz0SpiWXvG5hIy9lZfd9VM_iLb3vODK56ztr0DW7A12bRqoiXs-1FybeTD-fwJP-nVb0J12s_nHQqwbkFayK7DVe7Tfm7O_D5WGBooPj28VM_S5TWTcm-MvMTbOiU-ZTsneTp6WJKungAtizK4gXBoJnJEntoYA5lz8lwmc5zJaSkwvdGMSAsU2OdsBkOta_rECmTQw7wOH_adqhIc0nGp-U8x5Q9UdyFwwtZk3uwnuWZ2ADCXcZT4TPpBOiFcyY9JqM0wopuEeWuAWbDUHFSw7tjlZFJXAFTOzFubdxurQHPW_pZBWzyW8rNhj_jWsEVsXLEncDD8gQGPG1vqy3C_00sE_kCaawoRI9S0dyv-Lp9FLV9tBWeAVs_M3p7X3-6hlT_N1aelAH235B164kjnkNpgKM5_Q_TizvjUb-9evAvnZ7Albe9Qfx6NN59CNewGQOebH8T1sv5QjxSbmvJH2tNQeDdRQvRd5Niprg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeolite-Encaged+Single-Atom+Rhodium+Catalysts%3A+Highly-Efficient+Hydrogen+Generation+and+Shape-Selective+Tandem+Hydrogenation+of+Nitroarenes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Qiming&rft.au=Wang%2C+Ning&rft.au=Zhang%2C+Tianjun&rft.au=Bai%2C+Risheng&rft.date=2019-12-16&rft.eissn=1521-3773&rft.volume=58&rft.issue=51&rft.spage=18570&rft_id=info:doi/10.1002%2Fanie.201912367&rft_id=info%3Apmid%2F31657875&rft.externalDocID=31657875 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |