Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes

Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subse...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 51; pp. 18570 - 18576
Main Authors Sun, Qiming, Wang, Ning, Zhang, Tianjun, Bai, Risheng, Mayoral, Alvaro, Zhang, Peng, Zhang, Qinghong, Terasaki, Osamu, Yu, Jihong
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 16.12.2019
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min−1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. Together alone: Single Rh atoms were encapsulated within MFI zeolites under in situ hydrothermal conditions and a ligand‐protected direct H2 reduction. The catalyst gave a high turnover frequency of 699 molH2  (molRh)−1 min−1 at 298 K for ammonia borane (AB) hydrolysis and exhibited superior catalytic efficiency in shape‐selective tandem hydrogenation of nitroarenes by coupling with the hydrolysis of AB.
AbstractList Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min−1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.
Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H2 reduction. Cs -corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min-1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H2 reduction. Cs -corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min-1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.
Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H reduction. C -corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H generation rates from ammonia borane (AB) hydrolysis, up to 699 min at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.
Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI ‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H 2 reduction. C s ‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H 2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min −1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.
Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single‐atom Rh catalysts embedded in MFI‐type zeolites under hydrothermal conditions and subsequent ligand‐protected direct H2 reduction. Cs‐corrected scanning transmission electron microscopy and extended X‐ray absorption analyses revealed that single Rh atoms were encapsulated within 5‐membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min−1 at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape‐selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products. Together alone: Single Rh atoms were encapsulated within MFI zeolites under in situ hydrothermal conditions and a ligand‐protected direct H2 reduction. The catalyst gave a high turnover frequency of 699 molH2  (molRh)−1 min−1 at 298 K for ammonia borane (AB) hydrolysis and exhibited superior catalytic efficiency in shape‐selective tandem hydrogenation of nitroarenes by coupling with the hydrolysis of AB.
Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer from inferior stability. Herein, we synthesized single-atom Rh catalysts embedded in MFI-type zeolites under hydrothermal conditions and subsequent ligand-protected direct H-2 reduction. C-s-corrected scanning transmission electron microscopy and extended X-ray absorption analyses revealed that single Rh atoms were encapsulated within 5-membered rings and stabilized by zeolite framework oxygen atoms. The resultant catalysts exhibited excellent H-2 generation rates from ammonia borane (AB) hydrolysis, up to 699 min(-1) at 298 K, representing the top level among heterogeneous catalysts for AB hydrolysis. The catalysts also showed superior catalytic performance in shape-selective tandem hydrogenation of various nitroarenes by coupling with AB hydrolysis, giving >99 % yield of corresponding amine products.
Author Sun, Qiming
Zhang, Tianjun
Zhang, Peng
Yu, Jihong
Wang, Ning
Bai, Risheng
Zhang, Qinghong
Mayoral, Alvaro
Terasaki, Osamu
Author_xml – sequence: 1
  givenname: Qiming
  orcidid: 0000-0002-8895-5703
  surname: Sun
  fullname: Sun, Qiming
  organization: Jilin University
– sequence: 2
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  organization: Jilin University
– sequence: 3
  givenname: Tianjun
  surname: Zhang
  fullname: Zhang, Tianjun
  organization: Jilin University
– sequence: 4
  givenname: Risheng
  surname: Bai
  fullname: Bai, Risheng
  organization: Jilin University
– sequence: 5
  givenname: Alvaro
  orcidid: 0000-0002-5229-2717
  surname: Mayoral
  fullname: Mayoral, Alvaro
  email: amayoral@shanghaitech.edu.cn
  organization: ShanghaiTech University
– sequence: 6
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Dalhousie University
– sequence: 7
  givenname: Qinghong
  surname: Zhang
  fullname: Zhang, Qinghong
  organization: Xiamen University
– sequence: 8
  givenname: Osamu
  surname: Terasaki
  fullname: Terasaki, Osamu
  organization: ShanghaiTech University
– sequence: 9
  givenname: Jihong
  orcidid: 0000-0003-1615-5034
  surname: Yu
  fullname: Yu, Jihong
  email: jihong@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31657875$$D View this record in MEDLINE/PubMed
BookMark eNqNkl-L1DAQwIuceH_01Ucp-HIgXZMmbVLflrLeHhwneOeLLyVNJ7s52mRNUmXf_AjCfcP7JKbuusKB6NMMw-83MwxzmhwZayBJXmI0wwjlb4XRMMsRrnBOSvYkOcFFjjPCGDmKOSUkY7zAx8mp93eR5xyVz5JjgsuCcVacJPefwfY6wMP3HwsjxQq69EabVT8V5sEO6ce17fQ4pLUIot_64N-lS71a99vJUEpLDSaky23n7ApMegEGnAjamlSY2GstNlOrG-hBBv0V0ttYhuEg7FCr0msdnBUu6v558lSJ3sOLfTxLPr1f3NbL7OrDxWU9v8okZSXLuCSlUriVEgrAmHU5zWnZdVxUUMWqqoRCVcUA8RYrREF2suVEFLQtQRWKnCXnu74bZ7-M4EMzaC-h74UBO_omJ6jiuMA5jejrR-idHZ2J20Uqz1lBWTVRr_bU2A7QNRunB-G2ze9zR4DvgG_QWuWn20k4YAghWnGCWBkzhGsdfl2ntqMJUX3z_2qkZztaOuu9A3UgMWqmx2mmx2kOjxMF-kiQ-_HBCd3_Xav2W-ketv8Y0syvLxd_3J_F7txj
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215302
crossref_primary_10_1016_S1872_2067_23_64548_6
crossref_primary_10_1021_acssuschemeng_0c02496
crossref_primary_10_1016_j_jcat_2023_115239
crossref_primary_10_1021_jacs_1c05032
crossref_primary_10_1039_D0CY00844C
crossref_primary_10_1039_D2QI00280A
crossref_primary_10_1002_ange_202302877
crossref_primary_10_1021_acscatal_0c04614
crossref_primary_10_1088_1361_6528_acc9ca
crossref_primary_10_1016_j_jallcom_2024_175629
crossref_primary_10_1007_s40242_023_3269_9
crossref_primary_10_1016_j_cej_2024_154940
crossref_primary_10_1021_acscatal_4c07371
crossref_primary_10_1021_acsami_2c16265
crossref_primary_10_1039_D3NR06566A
crossref_primary_10_1021_acs_chemrev_2c00569
crossref_primary_10_1002_anie_202116170
crossref_primary_10_1007_s12274_021_3857_2
crossref_primary_10_1016_j_cej_2023_143870
crossref_primary_10_1007_s11426_024_2257_6
crossref_primary_10_1016_j_pecs_2023_101074
crossref_primary_10_1002_smll_202002071
crossref_primary_10_1039_D1TA01352A
crossref_primary_10_1039_D2GC02427F
crossref_primary_10_1002_anie_202410017
crossref_primary_10_1002_ange_202417618
crossref_primary_10_1016_j_gee_2024_06_001
crossref_primary_10_1016_j_ccr_2022_214600
crossref_primary_10_1002_ange_202205978
crossref_primary_10_1016_j_jcat_2020_12_007
crossref_primary_10_1039_D1CE01718G
crossref_primary_10_1039_D0NJ05305H
crossref_primary_10_1039_D2CS00456A
crossref_primary_10_1021_acsmaterialslett_3c00165
crossref_primary_10_1016_j_jcat_2022_12_010
crossref_primary_10_1002_smll_202408509
crossref_primary_10_1016_j_apcatb_2023_122392
crossref_primary_10_1021_acsanm_1c00390
crossref_primary_10_1016_j_apcatb_2023_123244
crossref_primary_10_1016_j_ijhydene_2022_06_190
crossref_primary_10_1002_cctc_201902391
crossref_primary_10_1016_j_chphma_2023_03_003
crossref_primary_10_1021_acsami_3c02722
crossref_primary_10_1021_jacs_3c04028
crossref_primary_10_1016_j_jwpe_2024_106319
crossref_primary_10_1039_D4NR02307B
crossref_primary_10_1021_jacs_2c12673
crossref_primary_10_1021_jacs_1c08088
crossref_primary_10_1002_smll_202410976
crossref_primary_10_1002_ange_202210991
crossref_primary_10_1016_j_enchem_2025_100148
crossref_primary_10_1002_cey2_499
crossref_primary_10_1016_j_jcis_2021_07_039
crossref_primary_10_1016_j_jallcom_2024_177027
crossref_primary_10_1016_j_micromeso_2022_112239
crossref_primary_10_1039_D4QI03188A
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1002_ejic_202300677
crossref_primary_10_1021_acs_chemrev_9b00818
crossref_primary_10_1016_j_jcat_2021_11_026
crossref_primary_10_1016_j_inoche_2024_113453
crossref_primary_10_1016_j_micromeso_2022_112371
crossref_primary_10_1039_D0CS00515K
crossref_primary_10_1007_s10934_022_01250_0
crossref_primary_10_1016_j_inoche_2023_111096
crossref_primary_10_1039_D1RA04175D
crossref_primary_10_1016_j_fuel_2022_123892
crossref_primary_10_1021_acs_jpclett_0c03547
crossref_primary_10_1002_anie_202109538
crossref_primary_10_1021_acs_jpclett_0c02218
crossref_primary_10_1002_chem_202402764
crossref_primary_10_1016_j_jelechem_2024_118533
crossref_primary_10_1002_anie_202003349
crossref_primary_10_1021_acscentsci_4c00439
crossref_primary_10_1002_adma_202104442
crossref_primary_10_1021_acsami_0c03452
crossref_primary_10_1039_D1EE00247C
crossref_primary_10_1016_j_micromeso_2022_112368
crossref_primary_10_1080_17518253_2021_1898682
crossref_primary_10_1021_acs_chemrev_2c00495
crossref_primary_10_1021_jacs_1c08581
crossref_primary_10_1021_acscatal_3c04127
crossref_primary_10_1016_j_jcis_2024_05_241
crossref_primary_10_1002_anie_202005621
crossref_primary_10_1016_j_ijhydene_2022_08_169
crossref_primary_10_1007_s40242_023_3063_8
crossref_primary_10_1002_ange_202003349
crossref_primary_10_1016_j_mcat_2020_110943
crossref_primary_10_1016_S1872_2067_21_63888_3
crossref_primary_10_1021_acs_chemrev_0c00864
crossref_primary_10_1021_acscatal_0c01542
crossref_primary_10_1016_j_poly_2024_116933
crossref_primary_10_1039_D2CY00615D
crossref_primary_10_1039_D2EE01037B
crossref_primary_10_1016_j_cej_2022_138931
crossref_primary_10_1002_adma_202415265
crossref_primary_10_1007_s12274_023_5388_5
crossref_primary_10_1016_j_jcis_2024_07_251
crossref_primary_10_1039_D3EY00265A
crossref_primary_10_1016_j_cej_2021_128856
crossref_primary_10_1016_j_ijhydene_2021_05_062
crossref_primary_10_1126_sciadv_adf1151
crossref_primary_10_1021_acscatal_4c02965
crossref_primary_10_1016_j_fuel_2021_120750
crossref_primary_10_1021_jacs_4c01315
crossref_primary_10_1021_acs_jpcc_4c08577
crossref_primary_10_1016_j_fuel_2022_126466
crossref_primary_10_1021_accountsmr_2c00119
crossref_primary_10_1021_acscatal_4c03380
crossref_primary_10_1038_s41586_024_07342_y
crossref_primary_10_1016_j_fuel_2022_124962
crossref_primary_10_1002_adma_202211724
crossref_primary_10_1002_anie_202302877
crossref_primary_10_1002_cctc_202000150
crossref_primary_10_1016_j_mcat_2025_114892
crossref_primary_10_1016_j_micromeso_2022_111970
crossref_primary_10_1002_ange_202116170
crossref_primary_10_1021_acs_iecr_1c00330
crossref_primary_10_3390_nano13243120
crossref_primary_10_3389_fchem_2021_717201
crossref_primary_10_1002_smll_202201291
crossref_primary_10_1016_j_cplett_2021_138365
crossref_primary_10_1039_D2TA03563D
crossref_primary_10_1007_s12274_024_6750_y
crossref_primary_10_1002_cctc_201902039
crossref_primary_10_1021_jacs_1c09535
crossref_primary_10_1021_acssuschemeng_3c08250
crossref_primary_10_1002_anie_202417618
crossref_primary_10_1021_acscatal_2c05463
crossref_primary_10_1039_D2TA09727C
crossref_primary_10_1016_j_apcata_2021_118339
crossref_primary_10_1016_j_chemosphere_2021_132609
crossref_primary_10_1093_nsr_nwac047
crossref_primary_10_1039_D2NJ00732K
crossref_primary_10_1002_ange_202005621
crossref_primary_10_1002_adfm_202008318
crossref_primary_10_1002_smll_202003971
crossref_primary_10_1142_S1793604721300073
crossref_primary_10_1002_smtd_202400530
crossref_primary_10_1016_j_nxmate_2024_100192
crossref_primary_10_1021_acs_accounts_1c00074
crossref_primary_10_1021_acs_jpcc_1c00550
crossref_primary_10_1002_advs_202101884
crossref_primary_10_1002_advs_202300726
crossref_primary_10_1016_j_ijhydene_2023_11_076
crossref_primary_10_1016_S1872_2067_20_63734_2
crossref_primary_10_1007_s10562_020_03491_7
crossref_primary_10_1021_acsami_3c02779
crossref_primary_10_1016_j_jcat_2021_10_021
crossref_primary_10_1021_jacsau_4c00784
crossref_primary_10_1021_acs_inorgchem_4c00051
crossref_primary_10_1002_chem_202003793
crossref_primary_10_1016_j_fuel_2023_127398
crossref_primary_10_1016_j_micromeso_2023_112905
crossref_primary_10_1021_acsanm_0c02086
crossref_primary_10_1021_acs_est_4c02540
crossref_primary_10_1039_D1NJ04936D
crossref_primary_10_1039_D4CC01533A
crossref_primary_10_1088_2631_7990_ad3316
crossref_primary_10_1016_j_joule_2022_12_002
crossref_primary_10_1021_jacs_4c07674
crossref_primary_10_31857_S0044453723070269
crossref_primary_10_1039_D3QM00148B
crossref_primary_10_1038_s41467_021_23429_w
crossref_primary_10_1007_s11426_024_2287_6
crossref_primary_10_1016_j_poly_2023_116523
crossref_primary_10_1038_s41578_020_00250_3
crossref_primary_10_1021_jacs_1c12642
crossref_primary_10_1039_D0SE00660B
crossref_primary_10_1002_ange_202408193
crossref_primary_10_1021_jacs_3c00047
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1016_j_apcata_2024_120080
crossref_primary_10_1002_cctc_202400013
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1021_acs_jpclett_0c00551
crossref_primary_10_1039_D4CS01042F
crossref_primary_10_3724_2097_213X_2025_JFCT_0006
crossref_primary_10_1021_acs_organomet_1c00302
crossref_primary_10_1002_ange_202109538
crossref_primary_10_1016_j_isci_2022_104367
crossref_primary_10_1007_s40843_020_1334_6
crossref_primary_10_1039_D3GC02093B
crossref_primary_10_1007_s11426_023_1879_8
crossref_primary_10_1016_j_catcom_2022_106569
crossref_primary_10_1016_j_apsusc_2022_155459
crossref_primary_10_1021_acs_chemrev_1c00995
crossref_primary_10_1021_acs_est_3c05190
crossref_primary_10_1002_aic_18710
crossref_primary_10_1021_acs_organomet_0c00459
crossref_primary_10_1016_j_apcatb_2024_124201
crossref_primary_10_1021_acs_chemrev_1c00637
crossref_primary_10_1016_j_jcou_2021_101777
crossref_primary_10_1016_j_mcat_2025_114844
crossref_primary_10_1007_s11426_024_2132_1
crossref_primary_10_1016_j_apcatb_2022_121958
crossref_primary_10_1002_ange_202401568
crossref_primary_10_1016_j_cclet_2021_03_082
crossref_primary_10_1016_j_cclet_2022_107959
crossref_primary_10_1002_adma_202002910
crossref_primary_10_1021_acsorginorgau_3c00017
crossref_primary_10_1039_D3SC05851D
crossref_primary_10_1002_anie_202210991
crossref_primary_10_1021_acs_chemrev_0c00797
crossref_primary_10_1039_D4TA01702A
crossref_primary_10_1002_smll_202105114
crossref_primary_10_1002_adma_202001818
crossref_primary_10_1021_acsami_1c02734
crossref_primary_10_1002_cjoc_202400069
crossref_primary_10_1002_smll_202107417
crossref_primary_10_1016_j_jes_2021_12_015
crossref_primary_10_1007_s41061_023_00434_9
crossref_primary_10_1016_j_ijhydene_2020_10_234
crossref_primary_10_1038_s41578_021_00347_3
crossref_primary_10_1016_j_jcou_2021_101769
crossref_primary_10_1016_j_ijhydene_2023_03_322
crossref_primary_10_1002_adfm_202210976
crossref_primary_10_1021_acs_chemrev_0c00094
crossref_primary_10_1039_D3EE00037K
crossref_primary_10_1049_tje2_12247
crossref_primary_10_3390_catal14060343
crossref_primary_10_1016_j_mcat_2022_112476
crossref_primary_10_1038_s41467_020_19599_8
crossref_primary_10_1021_acscatal_2c05141
crossref_primary_10_3390_catal11121470
crossref_primary_10_1016_j_ijhydene_2022_07_264
crossref_primary_10_1021_acssuschemeng_2c04674
crossref_primary_10_1016_j_enchem_2021_100056
crossref_primary_10_1016_j_jcis_2024_01_204
crossref_primary_10_1002_aenm_202201823
crossref_primary_10_1016_j_apcatb_2021_120140
crossref_primary_10_1002_adma_202306480
crossref_primary_10_1021_jacs_4c06011
crossref_primary_10_1002_cctc_202400716
crossref_primary_10_1016_j_cej_2025_161336
crossref_primary_10_1016_j_jcat_2022_11_022
crossref_primary_10_1016_j_jiec_2021_12_013
crossref_primary_10_1007_s41918_022_00169_z
crossref_primary_10_1016_j_trechm_2020_09_009
crossref_primary_10_1016_j_fuel_2024_132567
crossref_primary_10_1021_acscatal_3c01562
crossref_primary_10_1016_j_mcat_2022_112343
crossref_primary_10_1016_j_fuel_2024_132327
crossref_primary_10_1002_cmt2_10
crossref_primary_10_1134_S0965544124080164
crossref_primary_10_1002_cctc_202101752
crossref_primary_10_1021_acs_est_4c02346
crossref_primary_10_1002_aenm_202103097
crossref_primary_10_1021_acsami_4c03083
crossref_primary_10_1016_j_ceja_2021_100128
crossref_primary_10_1002_aenm_202102556
crossref_primary_10_1021_acs_inorgchem_1c00721
crossref_primary_10_1002_ange_202410017
crossref_primary_10_1016_j_inoche_2021_108732
crossref_primary_10_1016_j_cej_2021_129641
crossref_primary_10_1016_j_cjche_2022_03_010
crossref_primary_10_1007_s40843_021_1860_x
crossref_primary_10_1016_j_chempr_2021_10_030
crossref_primary_10_1016_j_mtsust_2022_100288
crossref_primary_10_1016_j_matchemphys_2023_128168
crossref_primary_10_1002_cctc_202100158
crossref_primary_10_1016_j_cattod_2022_02_018
crossref_primary_10_1038_s41467_023_42938_4
crossref_primary_10_1039_D2CS00806H
crossref_primary_10_1039_D2QI00653G
crossref_primary_10_1039_D0QI00766H
crossref_primary_10_1002_anie_202401568
crossref_primary_10_1016_j_jcis_2021_11_078
crossref_primary_10_1021_acsami_0c06632
crossref_primary_10_1039_D2GC01917E
crossref_primary_10_1016_j_jcat_2022_07_020
crossref_primary_10_1016_j_apcatb_2023_122982
crossref_primary_10_1002_anie_202008962
crossref_primary_10_1021_acs_est_3c04916
crossref_primary_10_1002_anie_202408193
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1021_acscatal_3c00972
crossref_primary_10_1021_acsami_1c11521
crossref_primary_10_1038_s41467_022_33275_z
crossref_primary_10_1039_D2CE00440B
crossref_primary_10_1016_j_apcatb_2024_124195
crossref_primary_10_1134_S0036024423070269
crossref_primary_10_1016_j_micromeso_2021_111161
crossref_primary_10_1016_j_ccr_2025_216445
crossref_primary_10_1016_j_jece_2025_115936
crossref_primary_10_1039_D4CC05747C
crossref_primary_10_1016_j_jmst_2024_01_015
crossref_primary_10_1021_jacs_1c06432
crossref_primary_10_1021_acscatal_1c00950
crossref_primary_10_1039_D2CY01471H
crossref_primary_10_1002_adma_202313596
crossref_primary_10_1021_jacs_1c00578
crossref_primary_10_1021_acscatal_3c05175
crossref_primary_10_1016_j_ijhydene_2022_04_286
crossref_primary_10_1002_ejic_202001132
crossref_primary_10_1016_j_micromeso_2021_110980
crossref_primary_10_1039_D2TA09831H
crossref_primary_10_1016_j_isci_2024_109064
crossref_primary_10_1016_j_jclepro_2023_136125
crossref_primary_10_1021_acs_jpclett_2c02132
crossref_primary_10_1002_anie_202205978
crossref_primary_10_1007_s11426_022_1427_0
crossref_primary_10_2139_ssrn_4121594
crossref_primary_10_1002_anie_202013985
crossref_primary_10_3390_nano10091850
crossref_primary_10_1002_smll_202308080
crossref_primary_10_1021_acsaem_0c02502
crossref_primary_10_1038_s41929_023_00968_7
crossref_primary_10_1021_acs_iecr_4c04023
crossref_primary_10_1021_jacs_3c00309
crossref_primary_10_1016_j_jcat_2024_115770
crossref_primary_10_1021_acsnano_4c05637
crossref_primary_10_1039_D1GC03809E
crossref_primary_10_1016_j_fuel_2022_123568
crossref_primary_10_1021_acs_accounts_3c00693
crossref_primary_10_1021_acsnano_1c10003
crossref_primary_10_1016_j_apcatb_2021_120742
crossref_primary_10_1016_j_ijoes_2023_100108
crossref_primary_10_1016_j_mtener_2023_101406
crossref_primary_10_1038_s41467_022_30536_9
crossref_primary_10_1007_s10853_022_07082_2
crossref_primary_10_1007_s12598_022_02029_7
crossref_primary_10_1007_s40820_021_00668_6
crossref_primary_10_1002_ange_202013985
crossref_primary_10_1016_j_jcat_2023_05_018
crossref_primary_10_3390_s21051886
crossref_primary_10_1039_D2CP00736C
crossref_primary_10_1039_D2CC06228C
crossref_primary_10_1016_j_apcatb_2022_121100
crossref_primary_10_1021_acscentsci_0c01130
crossref_primary_10_1021_acs_inorgchem_4c02070
crossref_primary_10_1021_jacs_4c15445
crossref_primary_10_1007_s11426_023_1823_9
crossref_primary_10_1021_acsami_0c04905
crossref_primary_10_1016_j_ces_2023_118748
crossref_primary_10_1002_ange_202008962
crossref_primary_10_1016_j_micromeso_2020_110462
crossref_primary_10_1021_acs_chemrev_2c00315
crossref_primary_10_1039_D1CC06682J
crossref_primary_10_1002_asia_202100728
crossref_primary_10_1016_j_apcatb_2022_121224
crossref_primary_10_1002_smll_202300114
crossref_primary_10_1016_j_mcat_2023_113381
Cites_doi 10.1038/s41570-018-0010-1
10.1002/cssc.201802157
10.1021/acs.jpcc.8b04286
10.1021/jacs.7b03357
10.1016/j.nantod.2018.04.004
10.1038/natrevmats.2016.59
10.1039/C5CC03102H
10.1002/adma.201505281
10.1016/j.apcatb.2018.04.070
10.1039/C5NJ02608C
10.1002/anie.201602801
10.1038/35104634
10.1002/advs.201802350
10.1002/aenm.201702780
10.1002/anie.201107391
10.1126/science.1083440
10.1002/anie.201403353
10.1016/j.chempr.2016.12.002
10.1021/jacs.6b04951
10.1021/jacs.6b03518
10.1016/j.chempr.2017.07.001
10.1038/s41563-019-0412-6
10.1038/nchem.1095
10.1002/ange.201703864
10.1016/j.cattod.2010.09.019
10.1002/ange.201602801
10.1021/acs.chemrev.7b00776
10.1002/ange.201403353
10.1021/jacs.7b06859
10.1002/ange.201602429
10.1016/j.chempr.2018.01.004
10.1039/C4EE03690E
10.1016/j.apcatb.2018.06.064
10.1002/anie.201703864
10.1021/acs.accounts.7b00132
10.1039/B718842K
10.1021/jacs.9b02936
10.1039/C9CC00003H
10.1021/ar300361m
10.1002/anie.201602429
10.1038/s41929-018-0030-8
10.1021/ja509778y
10.1002/ange.201605577
10.1021/cs500167k
10.1002/cssc.201801204
10.1002/ange.201604021
10.1038/nmat4757
10.1038/nature24640
10.1002/adma.201803966
10.1126/science.aaf8800
10.1038/s41467-017-01259-z
10.1038/ncomms14036
10.1038/s41929-018-0146-x
10.1002/anie.201701089
10.1002/ange.201701089
10.1002/adfm.201502980
10.1039/C7CC06530B
10.1002/ange.201107391
10.1021/jacs.8b06511
10.1002/anie.201604021
10.1038/s41467-018-06967-8
10.1021/acscatal.6b02209
10.1002/anie.201605577
10.1016/j.joule.2018.06.019
10.1021/jacs.5b04029
10.1039/c7cc06530b
10.1038/NMAT4757
10.1038/NCHEM.1095
10.1039/c5nj02608c
10.1039/c4ee03690e
10.1038/natrevmats.2016.31
10.1039/b718842k
10.1039/c5cc03102h
10.1021/ar300227e
10.1039/c9cc00003h
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
17B
1KN
AAWJD
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201912367
DatabaseName CrossRef
Web of Knowledge
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2019
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
CrossRef

Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 18576
ExternalDocumentID 31657875
000498307600001
10_1002_anie_201912367
ANIE201912367
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: ShanghaiTech University
  funderid: EM02161943
– fundername: National Natural Science Foundation of China
  funderid: 21835002; 21621001; 21850410448
– fundername: National Key Research and Development Program of China
  funderid: 2016YFB0701100
– fundername: 111 Project
  funderid: B17020
– fundername: U.S. DOE under Contract
  funderid: DE-AC02-06CH11357
– fundername: NSFC; National Natural Science Foundation of China (NSFC)
  grantid: NFSC-21850410448
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21835002; 21621001
– fundername: SPST of ShanghaiTech University
  grantid: EM02161943
– fundername: U.S. DOE; United States Department of Energy (DOE)
  grantid: DE-AC02-06CH11357
– fundername: 111 Project; Ministry of Education, China - 111 Project
  grantid: B17020
– fundername: National Key Research and Development Program of China; National Key Research & Development Program of China
  grantid: 2016YFB0701100
– fundername: Canadian Light Source
– fundername: National Natural Science Foundation of China
  grantid: 21850410448
– fundername: U.S. DOE under Contract
  grantid: DE-AC02-06CH11357
– fundername: ShanghaiTech University
  grantid: EM02161943
– fundername: National Key Research and Development Program of China
  grantid: 2016YFB0701100
– fundername: 111 Project
  grantid: B17020
– fundername: National Natural Science Foundation of China
  grantid: 21621001
– fundername: National Natural Science Foundation of China
  grantid: 21835002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-8c36ff1bcce5e117d24246dd8a9e9bccf9af0997e08b1f04ecdcb83a54b6ef5f3
IEDL.DBID DR2
ISICitedReferencesCount 382
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000498307600001
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 21:56:59 EDT 2025
Fri Jul 25 10:34:24 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Wed Jul 09 18:46:54 EDT 2025
Fri Aug 29 15:59:24 EDT 2025
Tue Jul 01 02:27:01 EDT 2025
Thu Apr 24 23:07:45 EDT 2025
Wed Jan 22 16:36:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords single-atom catalysts
OXIDATION
TRANSFORMATION
STORAGE
HYDROLYTIC DEHYDROGENATION
PLATINUM
AMMONIA-BORANE
CO
NANOPARTICLES
zeolites
CLUSTERS
hydrogen generation
SITES
tandem reactions
rhodium
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4767-8c36ff1bcce5e117d24246dd8a9e9bccf9af0997e08b1f04ecdcb83a54b6ef5f3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1615-5034
0000-0002-8895-5703
0000-0002-5229-2717
0009-0008-1915-9069
0000-0003-3603-0175
0000-0002-4807-4100
0000-0001-5803-0817
PMID 31657875
PQID 2322754794
PQPubID 946352
PageCount 7
ParticipantIDs pubmed_primary_31657875
proquest_journals_2322754794
webofscience_primary_000498307600001CitationCount
crossref_citationtrail_10_1002_anie_201912367
wiley_primary_10_1002_anie_201912367_ANIE201912367
proquest_miscellaneous_2309815124
crossref_primary_10_1002_anie_201912367
webofscience_primary_000498307600001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 16, 2019
PublicationDateYYYYMMDD 2019-12-16
PublicationDate_xml – month: 12
  year: 2019
  text: December 16, 2019
  day: 16
PublicationDecade 2010
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2018; 122
2017; 8
2017; 2
2017; 3
2019; 55
2019; 12
2019; 18
2017; 551
2014; 136
2018; 9
2018; 8
2018; 2
2014; 4
2018; 4
2015; 137
2018; 1
2012 2012; 51 124
2016; 353
2016; 40
2001; 414
2018; 140
2019; 6
2019; 31
2013; 46
2015; 51
2011; 170
2017 2017; 56 129
2011; 3
2019; 141
2015; 8
2018; 20
2017; 139
2017; 50
2016; 6
2017; 53
2015; 25
2016; 7
2016 2016; 55 128
2016; 1
2018; 237
2017; 16
2018; 118
2018; 235
2016; 138
2016; 28
2018; 11
2003; 300
2009; 38
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_13_3
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_49_3
e_1_2_6_28_1
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_47_1
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_16_3
e_1_2_6_14_2
e_1_2_6_56_2
e_1_2_6_14_3
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_61_1
e_1_2_6_8_2
e_1_2_6_6_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_46_3
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_48_3
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_44_2
e_1_2_6_27_1
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_46_2
Zhan, WW (WOS:000385057900069) 2016; 6
Göksu, H (WOS:000337074700016) 2014; 4
Farrusseng, D (WOS:000375586400002) 2016; 40
Sun, QM (WOS:000468187200001) 2019; 6
Wang, N (WOS:000454786200008) 2019; 31
Wang, L. (000498307600001.50) 2017; 129
Liu, LC (WOS:000433404300004) 2018; 118
Wang, HL (WOS:000396465700009) 2017; 2
Hu, M (WOS:000445178400026) 2018; 11
Khalily, M. A. (000498307600001.18) 2016; 128
Luo, WX (WOS:000459737500023) 2019; 12
Sun, QM (WOS:000416365200015) 2017; 3
Sun, J. K. (000498307600001.38) 2017; 139
Wang, ZZ (WOS:000436381600043) 2018; 122
Rosi, NL (WOS:000182886500039) 2003; 300
Qu, YT (WOS:000447080500013) 2018; 1
Jiang, HL (WOS:000291799100009) 2011; 170
Kistler, JD (WOS:000340526400011) 2014; 53
Li, ZP (WOS:000404085900019) 2017; 50
Yan, H (WOS:000413353500019) 2017; 8
(000498307600001.64) 2017; 129
Wang, CT (WOS:000378984300020) 2016; 138
Zhu, QL (WOS:000349616900006) 2015; 8
(000498307600001.9) 2016; 128
Wang, LB (WOS:000398576000003) 2017; 56
Wang, L (WOS:000436216800010) 2018; 20
Feng, K (WOS:000384713100044) 2016; 55
Yang, XC (WOS:000428623700014) 2018; 1
Dai, CY (WOS:000367219400009) 2015; 25
(000498307600001.60) 2016; 128
Zhu, CZ (WOS:000413896400005) 2017; 56
Yang, JH (WOS:000323472200024) 2013; 46
Sun, GD (WOS:000448414100004) 2018; 9
Cui, TL (WOS:000383371800006) 2016; 55
Zhang, X (WOS:000433706700027) 2018; 8
Zhang, H (WOS:000468615900021) 2019; 55
Wang, CL (WOS:000408519600045) 2017; 139
Qiao, BT (WOS:000292999100017) 2011; 3
Wang, N (WOS:000378584600011) 2016; 138
Shan, JJ (WOS:000416520400038) 2017; 551
Fu, FY (WOS:000441475800032) 2018; 140
Wang, LB (WOS:000390286100001) 2016; 7
Zhang, JK (WOS:000438478900026) 2018; 235
Wu, WZ (WOS:000386257000001) 2016; 1
Liu, LC (WOS:000476651600021) 2019; 18
Sun, JK (WOS:000356322300023) 2015; 137
Chen, YJ (WOS:000439698900009) 2018; 2
Khalily, MA (WOS:000384713700017) 2016; 55
Jones, J (WOS:000379208400034) 2016; 353
Lu, J (WOS:000304814400008) 2012; 51
Wang, AQ (WOS:000434871000005) 2018; 2
Graetz, J (WOS:000261768900007) 2009; 38
Schlapbach, L (WOS:000172150700055) 2001; 414
Liu, LC (WOS:000391343300024) 2017; 16
Yang, QH (WOS:000356298400007) 2015; 51
Zhang, B (WOS:000383253300022) 2016; 55
Liu, YW (WOS:000475540800027) 2019; 141
Li, XG (WOS:000372459600018) 2016; 28
Zhou, YH (WOS:000415061300027) 2017; 53
Özhava, D (WOS:000442973700104) 2018; 237
Chen, WY (WOS:000345883900010) 2014; 136
Fang, Y (WOS:000429434900013) 2018; 4
References_xml – volume: 28
  start-page: 2427
  year: 2016
  end-page: 2431
  publication-title: Adv. Mater.
– volume: 51
  start-page: 10419
  year: 2015
  end-page: 10422
  publication-title: Chem. Commun.
– volume: 140
  start-page: 10034
  year: 2018
  end-page: 10042
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 9305
  year: 2019
  end-page: 9311
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 7479
  year: 2015
  end-page: 7487
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 781
  year: 2018
  end-page: 786
  publication-title: Nat. Catal.
– volume: 18
  start-page: 866
  year: 2019
  end-page: 873
  publication-title: Nat. Mater.
– volume: 1
  start-page: 214
  year: 2018
  end-page: 220
  publication-title: Nat. Catal.
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  publication-title: Acc. Chem. Res.
– volume: 237
  start-page: 1012
  year: 2018
  end-page: 1020
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 12361
  year: 2017
  end-page: 12364
  publication-title: Chem. Commun.
– volume: 4
  start-page: 555
  year: 2018
  end-page: 563
  publication-title: Chem
– volume: 138
  start-page: 7880
  year: 2016
  end-page: 7883
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 477
  year: 2017
  end-page: 493
  publication-title: Chem
– volume: 7
  start-page: 14036
  year: 2016
  publication-title: Nat. Commun.
– volume: 55 128
  start-page: 12257 12445
  year: 2016 2016
  end-page: 12261 12449
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  publication-title: Nat. Chem.
– volume: 6
  start-page: 1802350
  year: 2019
  publication-title: Adv. Sci.
– volume: 55 128
  start-page: 8319 8459
  year: 2016 2016
  end-page: 8323 8463
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 4981
  year: 2018
  end-page: 5079
  publication-title: Chem. Rev.
– volume: 55 128
  start-page: 11950 12129
  year: 2016 2016
  end-page: 11954 12133
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 4699
  year: 2019
  end-page: 4702
  publication-title: Chem. Commun.
– volume: 55 128
  start-page: 9178 9324
  year: 2016 2016
  end-page: 9182 9328
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 73
  year: 2009
  end-page: 82
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  publication-title: Nat. Rev. Chem.
– volume: 138
  start-page: 7484
  year: 2016
  end-page: 7487
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 4712 4790
  year: 2017 2017
  end-page: 4718 4796
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 11610
  year: 2017
  end-page: 11615
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1803966
  year: 2019
  publication-title: Adv. Mater.
– volume: 51 124
  start-page: 5842 5944
  year: 2012 2012
  end-page: 5846 5948
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 353
  start-page: 150
  year: 2016
  end-page: 154
  publication-title: Science
– volume: 137
  start-page: 7063
  year: 2015
  end-page: 7066
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 16059
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 139
  start-page: 8971
  year: 2017
  end-page: 8976
  publication-title: J. Am. Chem. Soc.
– volume: 170
  start-page: 56
  year: 2011
  end-page: 63
  publication-title: Catal. Today
– volume: 122
  start-page: 12975
  year: 2018
  end-page: 12983
  publication-title: J. Phys. Chem. C
– volume: 300
  start-page: 1127
  year: 2003
  end-page: 1129
  publication-title: Science
– volume: 8
  start-page: 1702780
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 535
  year: 2019
  end-page: 541
  publication-title: ChemSusChem
– volume: 56 129
  start-page: 13944 14132
  year: 2017 2017
  end-page: 13960 14148
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 478
  year: 2015
  end-page: 512
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 3253
  year: 2018
  end-page: 3258
  publication-title: ChemSusChem
– volume: 2
  start-page: 1242
  year: 2018
  end-page: 1264
  publication-title: Joule
– volume: 53 126
  start-page: 8904 9050
  year: 2014 2014
  end-page: 8907 9053
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 235
  start-page: 256
  year: 2018
  end-page: 263
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 1070
  year: 2017
  publication-title: Nat. Commun.
– volume: 50
  start-page: 1449
  year: 2017
  end-page: 1458
  publication-title: Acc. Chem. Res.
– volume: 136
  start-page: 16736
  year: 2014
  end-page: 16739
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1777
  year: 2014
  end-page: 1782
  publication-title: ACS Catal.
– volume: 20
  start-page: 74
  year: 2018
  end-page: 83
  publication-title: Nano Today
– volume: 414
  start-page: 353
  year: 2001
  end-page: 358
  publication-title: Nature
– volume: 40
  start-page: 3933
  year: 2016
  end-page: 3949
  publication-title: New J. Chem.
– volume: 551
  start-page: 605
  year: 2017
  publication-title: Nature
– volume: 2
  start-page: 52
  year: 2017
  end-page: 80
  publication-title: Chem
– volume: 6
  start-page: 6892
  year: 2016
  end-page: 6905
  publication-title: ACS Catal.
– volume: 9
  start-page: 4454
  year: 2018
  publication-title: Nat. Commun.
– volume: 16
  start-page: 132
  year: 2017
  end-page: 138
  publication-title: Nat. Mater.
– ident: e_1_2_6_11_2
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_6_65_2
  doi: 10.1002/cssc.201802157
– ident: e_1_2_6_52_2
  doi: 10.1021/acs.jpcc.8b04286
– ident: e_1_2_6_54_2
  doi: 10.1021/jacs.7b03357
– ident: e_1_2_6_24_2
  doi: 10.1016/j.nantod.2018.04.004
– ident: e_1_2_6_29_2
  doi: 10.1038/natrevmats.2016.59
– ident: e_1_2_6_59_2
  doi: 10.1039/C5CC03102H
– ident: e_1_2_6_5_2
  doi: 10.1002/adma.201505281
– ident: e_1_2_6_44_2
  doi: 10.1016/j.apcatb.2018.04.070
– ident: e_1_2_6_27_1
  doi: 10.1039/C5NJ02608C
– ident: e_1_2_6_37_1
– ident: e_1_2_6_53_1
– ident: e_1_2_6_6_2
  doi: 10.1002/anie.201602801
– ident: e_1_2_6_35_2
  doi: 10.1038/35104634
– ident: e_1_2_6_62_1
  doi: 10.1002/advs.201802350
– ident: e_1_2_6_28_1
– ident: e_1_2_6_51_2
  doi: 10.1002/aenm.201702780
– ident: e_1_2_6_13_2
  doi: 10.1002/anie.201107391
– ident: e_1_2_6_34_2
  doi: 10.1126/science.1083440
– ident: e_1_2_6_63_1
– ident: e_1_2_6_14_2
  doi: 10.1002/anie.201403353
– ident: e_1_2_6_31_2
  doi: 10.1016/j.chempr.2016.12.002
– ident: e_1_2_6_18_2
  doi: 10.1021/jacs.6b04951
– ident: e_1_2_6_19_2
  doi: 10.1021/jacs.6b03518
– ident: e_1_2_6_21_2
  doi: 10.1016/j.chempr.2017.07.001
– ident: e_1_2_6_26_2
  doi: 10.1038/s41563-019-0412-6
– ident: e_1_2_6_2_2
  doi: 10.1038/nchem.1095
– ident: e_1_2_6_7_3
  doi: 10.1002/ange.201703864
– ident: e_1_2_6_47_1
– ident: e_1_2_6_40_2
  doi: 10.1016/j.cattod.2010.09.019
– ident: e_1_2_6_6_3
  doi: 10.1002/ange.201602801
– ident: e_1_2_6_50_1
– ident: e_1_2_6_25_2
  doi: 10.1021/acs.chemrev.7b00776
– ident: e_1_2_6_14_3
  doi: 10.1002/ange.201403353
– ident: e_1_2_6_56_2
  doi: 10.1021/jacs.7b06859
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201602429
– ident: e_1_2_6_67_2
  doi: 10.1016/j.chempr.2018.01.004
– ident: e_1_2_6_12_1
– ident: e_1_2_6_33_2
  doi: 10.1039/C4EE03690E
– ident: e_1_2_6_66_2
  doi: 10.1016/j.apcatb.2018.06.064
– ident: e_1_2_6_1_1
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.201703864
– ident: e_1_2_6_30_2
  doi: 10.1021/acs.accounts.7b00132
– ident: e_1_2_6_36_2
  doi: 10.1039/B718842K
– ident: e_1_2_6_22_2
  doi: 10.1021/jacs.9b02936
– ident: e_1_2_6_64_2
  doi: 10.1039/C9CC00003H
– ident: e_1_2_6_3_2
  doi: 10.1021/ar300361m
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201602429
– ident: e_1_2_6_38_2
  doi: 10.1038/s41929-018-0030-8
– ident: e_1_2_6_45_2
  doi: 10.1021/ja509778y
– ident: e_1_2_6_48_3
  doi: 10.1002/ange.201605577
– ident: e_1_2_6_58_2
  doi: 10.1021/cs500167k
– ident: e_1_2_6_41_2
  doi: 10.1002/cssc.201801204
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.201604021
– ident: e_1_2_6_17_2
  doi: 10.1038/nmat4757
– ident: e_1_2_6_20_2
  doi: 10.1038/nature24640
– ident: e_1_2_6_23_2
  doi: 10.1002/adma.201803966
– ident: e_1_2_6_4_2
  doi: 10.1126/science.aaf8800
– ident: e_1_2_6_68_2
  doi: 10.1038/s41467-017-01259-z
– ident: e_1_2_6_61_1
  doi: 10.1038/ncomms14036
– ident: e_1_2_6_9_2
  doi: 10.1038/s41929-018-0146-x
– ident: e_1_2_6_49_2
  doi: 10.1002/anie.201701089
– ident: e_1_2_6_32_1
– ident: e_1_2_6_49_3
  doi: 10.1002/ange.201701089
– ident: e_1_2_6_15_2
  doi: 10.1002/adfm.201502980
– ident: e_1_2_6_60_2
  doi: 10.1039/C7CC06530B
– ident: e_1_2_6_13_3
  doi: 10.1002/ange.201107391
– ident: e_1_2_6_43_1
– ident: e_1_2_6_57_1
– ident: e_1_2_6_39_2
  doi: 10.1021/jacs.8b06511
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.201604021
– ident: e_1_2_6_10_2
  doi: 10.1038/s41467-018-06967-8
– ident: e_1_2_6_42_2
  doi: 10.1021/acscatal.6b02209
– ident: e_1_2_6_48_2
  doi: 10.1002/anie.201605577
– ident: e_1_2_6_8_2
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_6_55_2
  doi: 10.1021/jacs.5b04029
– volume: 141
  start-page: 9305
  year: 2019
  ident: WOS:000475540800027
  article-title: A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b02936
– volume: 237
  start-page: 1012
  year: 2018
  ident: WOS:000442973700104
  article-title: Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane
  publication-title: APPLIED CATALYSIS B-ENVIRONMENTAL
  doi: 10.1016/j.apcatb.2018.06.064
– volume: 50
  start-page: 1449
  year: 2017
  ident: WOS:000404085900019
  article-title: Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.7b00132
– volume: 56
  start-page: 13944
  year: 2017
  ident: WOS:000413896400005
  article-title: Single-Atom Electrocatalysts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201703864
– volume: 9
  start-page: ARTN 4454
  year: 2018
  ident: WOS:000448414100004
  article-title: Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-018-06967-8
– volume: 128
  start-page: 8459
  year: 2016
  ident: 000498307600001.60
  publication-title: Angew. Chem.
– volume: 8
  start-page: ARTN 1070
  year: 2017
  ident: WOS:000413353500019
  article-title: Bottom-up precise synthesis of stable platinum dimers on graphene
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-017-01259-z
– volume: 55
  start-page: 8319
  year: 2016
  ident: WOS:000383253300022
  article-title: Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201602801
– volume: 118
  start-page: 4981
  year: 2018
  ident: WOS:000433404300004
  article-title: Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00776
– volume: 129
  start-page: 14132
  year: 2017
  ident: 000498307600001.64
  publication-title: Angew. Chem.
– volume: 139
  start-page: 8971
  year: 2017
  ident: 000498307600001.38
  article-title: A General Synthetic Route Towards Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s
  publication-title: J. Am. Chem. Soc
– volume: 136
  start-page: 16736
  year: 2014
  ident: WOS:000345883900010
  article-title: Mechanistic Insight into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja509778y
– volume: 235
  start-page: 256
  year: 2018
  ident: WOS:000438478900026
  article-title: Synergistic effects in atomic-layer-deposited PtCox/CNTs catalysts enhancing hydrolytic dehydrogenation of ammonia borane
  publication-title: APPLIED CATALYSIS B-ENVIRONMENTAL
  doi: 10.1016/j.apcatb.2018.04.070
– volume: 51
  start-page: 5842
  year: 2012
  ident: WOS:000304814400008
  article-title: Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201107391
– volume: 28
  start-page: 2427
  year: 2016
  ident: WOS:000372459600018
  article-title: Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201505281
– volume: 53
  start-page: 12361
  year: 2017
  ident: WOS:000415061300027
  article-title: Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: integration of ammonia borane dehydrogenation with nitroarene hydrogenation
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c7cc06530b
– volume: 140
  start-page: 10034
  year: 2018
  ident: WOS:000441475800032
  article-title: Highly Selective and Sharp Volcano-type Synergistic Ni2Pt@ZIF-8-Catalyzed Hydrogen Evolution from Ammonia Borane Hydrolysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b06511
– volume: 3
  start-page: 477
  year: 2017
  ident: WOS:000416365200015
  article-title: Subnanometric Hybrid Pd-M(OH)2, M=Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation
  publication-title: CHEM
  doi: 10.1016/j.chempr.2017.07.001
– volume: 16
  start-page: 132
  year: 2017
  ident: WOS:000391343300024
  article-title: Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT4757
– volume: 4
  start-page: 1777
  year: 2014
  ident: WOS:000337074700016
  article-title: Tandem Dehydrogenation of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds Catalyzed by Graphene-Supported NiPd Alloy Nanoparticles
  publication-title: ACS CATALYSIS
  doi: 10.1021/cs500167k
– volume: 3
  start-page: 634
  year: 2011
  ident: WOS:000292999100017
  article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.1095
– volume: 40
  start-page: 3933
  year: 2016
  ident: WOS:000375586400002
  article-title: Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis
  publication-title: NEW JOURNAL OF CHEMISTRY
  doi: 10.1039/c5nj02608c
– volume: 56
  start-page: 4712
  year: 2017
  ident: WOS:000398576000003
  article-title: Supported Rhodium Catalysts for Ammonia-Borane Hydrolysis: Dependence of the Catalytic Activity on the Highest Occupied State of the Single Rhodium Atoms
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201701089
– volume: 8
  start-page: ARTN 1702780
  year: 2018
  ident: WOS:000433706700027
  article-title: Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201702780
– volume: 2
  start-page: 1242
  year: 2018
  ident: WOS:000439698900009
  article-title: Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications
  publication-title: JOULE
  doi: 10.1016/j.joule.2018.06.019
– volume: 139
  start-page: 11610
  year: 2017
  ident: WOS:000408519600045
  article-title: Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b06859
– volume: 8
  start-page: 478
  year: 2015
  ident: WOS:000349616900006
  article-title: Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c4ee03690e
– volume: 1
  start-page: 781
  year: 2018
  ident: WOS:000447080500013
  article-title: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-018-0146-x
– volume: 55
  start-page: 11950
  year: 2016
  ident: WOS:000384713100044
  article-title: CuxCo1-xO Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High-Efficiency Hydrolysis of Ammonia-Borane
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201604021
– volume: 18
  start-page: 866
  year: 2019
  ident: WOS:000476651600021
  article-title: Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis
  publication-title: NATURE MATERIALS
  doi: 10.1038/s41563-019-0412-6
– volume: 129
  start-page: 4790
  year: 2017
  ident: 000498307600001.50
  article-title: Supported rhodium catalysts for ammoniaeborane hydrolysis: dependence of the catalytic activity on the highest occupied state of the single rhodium atoms
  publication-title: Angew. Chem.
– volume: 20
  start-page: 74
  year: 2018
  ident: WOS:000436216800010
  article-title: Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts
  publication-title: NANO TODAY
  doi: 10.1016/j.nantod.2018.04.004
– volume: 6
  start-page: 6892
  year: 2016
  ident: WOS:000385057900069
  article-title: Dehydrogenation of Ammonia Borane by Metal Nanoparticle Catalysts
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.6b02209
– volume: 55
  start-page: 12257
  year: 2016
  ident: WOS:000384713700017
  article-title: Facile Synthesis of Three-Dimensional Pt-TiO2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201605577
– volume: 11
  start-page: 3253
  year: 2018
  ident: WOS:000445178400026
  article-title: Towards High-Efficiency Hydrogen Production through insitu Formation of Well-Dispersed Rhodium Nanoclusters
  publication-title: CHEMSUSCHEM
  doi: 10.1002/cssc.201801204
– volume: 1
  start-page: ARTN 16031
  year: 2016
  ident: WOS:000386257000001
  article-title: Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics
  publication-title: NATURE REVIEWS MATERIALS
  doi: 10.1038/natrevmats.2016.31
– volume: 138
  start-page: 7484
  year: 2016
  ident: WOS:000378584600011
  article-title: In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b03518
– volume: 353
  start-page: 150
  year: 2016
  ident: WOS:000379208400034
  article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
  publication-title: SCIENCE
  doi: 10.1126/science.aaf8800
– volume: 128
  start-page: 12445
  year: 2016
  ident: 000498307600001.18
  article-title: Facile synthesis of three-dimensional Pt-Ti02 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane
  publication-title: Angew. Chem
– volume: 2
  start-page: 65
  year: 2018
  ident: WOS:000434871000005
  article-title: Heterogeneous single-atom catalysis
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-018-0010-1
– volume: 4
  start-page: 555
  year: 2018
  ident: WOS:000429434900013
  article-title: Ultra-Small Face-Centered-Cubic Ru Nanoparticles Confined within a Porous Coordination Cage for Dehydrogenation
  publication-title: CHEM
  doi: 10.1016/j.chempr.2018.01.004
– volume: 414
  start-page: 353
  year: 2001
  ident: WOS:000172150700055
  article-title: Hydrogen-storage materials for mobile applications
  publication-title: NATURE
– volume: 55
  start-page: 9178
  year: 2016
  ident: WOS:000383371800006
  article-title: Encapsulating Palladium Nanoparticles Inside Mesoporous MFI Zeolite Nanocrystals for Shape-Selective Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201602429
– volume: 128
  start-page: 12129
  year: 2016
  ident: 000498307600001.9
  publication-title: Angew. Chem.
– volume: 25
  start-page: 7479
  year: 2015
  ident: WOS:000367219400009
  article-title: Hollow ZSM-5 with Silicon-Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201502980
– volume: 122
  start-page: 12975
  year: 2018
  ident: WOS:000436381600043
  article-title: Interfacial Synergy of PtPd Nanoparticles Dispersed on Amine-Modified ZrSBA-15 in Catalytic Dehydrogenation of Ammonia Borane and Reduction of p-Nitrophenol
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY C
  doi: 10.1021/acs.jpcc.8b04286
– volume: 53
  start-page: 8904
  year: 2014
  ident: WOS:000340526400011
  article-title: A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201403353
– volume: 6
  start-page: ARTN 1802350
  year: 2019
  ident: WOS:000468187200001
  article-title: Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.201802350
– volume: 38
  start-page: 73
  year: 2009
  ident: WOS:000261768900007
  article-title: New approaches to hydrogen storage
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b718842k
– volume: 1
  start-page: 214
  year: 2018
  ident: WOS:000428623700014
  article-title: Encapsulating highly catalytically active metal nanoclusters inside porous organic cages
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-018-0030-8
– volume: 300
  start-page: 1127
  year: 2003
  ident: WOS:000182886500039
  article-title: Hydrogen storage in microporous metal-organic frameworks
  publication-title: SCIENCE
– volume: 51
  start-page: 10419
  year: 2015
  ident: WOS:000356298400007
  article-title: One-pot tandem catalysis over Pd@MIL-101: boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c5cc03102h
– volume: 138
  start-page: 7880
  year: 2016
  ident: WOS:000378984300020
  article-title: Product Selectivity Controlled by Zeolite Crystals in Biomass Hydrogenation over a Palladium Catalyst
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b04951
– volume: 170
  start-page: 56
  year: 2011
  ident: WOS:000291799100009
  article-title: Catalytic hydrolysis of ammonia borane for chemical hydrogen storage
  publication-title: CATALYSIS TODAY
  doi: 10.1016/j.cattod.2010.09.019
– volume: 551
  start-page: 605
  year: 2017
  ident: WOS:000416520400038
  article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts
  publication-title: NATURE
  doi: 10.1038/nature24640
– volume: 31
  start-page: ARTN 1803966
  year: 2019
  ident: WOS:000454786200008
  article-title: Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201803966
– volume: 2
  start-page: 52
  year: 2017
  ident: WOS:000396465700009
  article-title: Metal-Organic Frameworks for Energy Applications
  publication-title: CHEM
  doi: 10.1016/j.chempr.2016.12.002
– volume: 12
  start-page: 535
  year: 2019
  ident: WOS:000459737500023
  article-title: Ultrahigh Catalytic Activity of L-Proline-Functionalized Rh Nanoparticles for Methanolysis of Ammonia Borane
  publication-title: CHEMSUSCHEM
  doi: 10.1002/cssc.201802157
– volume: 7
  start-page: ARTN 14036
  year: 2016
  ident: WOS:000390286100001
  article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms14036
– volume: 46
  start-page: 1900
  year: 2013
  ident: WOS:000323472200024
  article-title: Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar300227e
– volume: 55
  start-page: 4699
  year: 2019
  ident: WOS:000468615900021
  article-title: Sub-3 nm Rh nanoclusters confined within a metal-organic framework for enhanced hydrogen generation
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c9cc00003h
– volume: 137
  start-page: 7063
  year: 2015
  ident: WOS:000356322300023
  article-title: Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b04029
SSID ssj0028806
Score 2.69089
SecondaryResourceType review_article
Snippet Single‐atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer...
Single-atom catalysts are emerging as a new frontier in heterogeneous catalysis because of their maximum atom utilization efficiency, but they usually suffer...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18570
SubjectTerms Ammonia
Catalysis
Catalysts
Chemical synthesis
Chemistry
Chemistry, Multidisciplinary
hydrogen generation
Hydrogen production
Hydrogen storage
Hydrogenation
Hydrolysis
Oxygen atoms
Physical Sciences
Rhodium
Scanning transmission electron microscopy
Science & Technology
Single atom catalysts
tandem reactions
Transmission electron microscopy
Zeolites
Title Zeolite‐Encaged Single‐Atom Rhodium Catalysts: Highly‐Efficient Hydrogen Generation and Shape‐Selective Tandem Hydrogenation of Nitroarenes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201912367
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000498307600001
https://www.ncbi.nlm.nih.gov/pubmed/31657875
https://www.proquest.com/docview/2322754794
https://www.proquest.com/docview/2309815124
Volume 58
WOS 000498307600001
WOSCitedRecordID wos000498307600001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQXuDC-xF2QUZaiVN269h5mFtVdVWQ6GEf0opLZDu2dkWbrJr0UE77E5D4h_wSPHZitosQCG5tMk7l5PPMV2fmG4T2aS4ymksdW_KgYyYzGkvCRZwkRDJdMM1c-djHeTY7Yx_O0_MbVfxeHyJsuMHKcP4aFriQ7eFP0VCowIbULO5EyKwThoQtYEXHQT8qseD05UWUxtCFflBtHCWH28O3o9IvVPNWVNomsi4SHT1AYpiDT0D5fLDu5IH6ckve8X8m-RDd72kqHntcPUJ3dP0Y3Z0M3eGeoG-fNGTO6e_XX6e1sk6pwic2Ci7gwLhrlvj4oqku10s8gf2hTdu17zDklCw2MMLpVthwh2ebatVYDGMvfw0owaK217oQV3CpE9emx3pkfAq73cswwJs2Bs8vu1UDFW26fYrOjqank1ncN3iIFcutgy4UzYwhUimdakLyCmpVsqoqBNfcHjVcGKjs1aNCEjNiWlVKFlSkFlPapIY-Qzt1U-sXCEsmZKUzYZIcSKoUJhWGVxwannEqWYTi4QGXqlc_hyYci9LrNicl3Ooy3OoIvQ32V17347eWewNeyn79t6XlqUmegnp_hN6E0_YRwesYUetmDTYjXgDhsjbPPc7CT1GSgStNI7R_E3jhvPtnV1D3WtUSjQiRvzGb9BMHuYMuQolD3h-mV47n76fh28t_GbSL7sFnSAIi2R7a6VZr_cpSuU6-dsv1B3RWRgc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o-UAkYq4pR2Y-eJxGG13WqXtntot1LFJdiJrVbdTapNVmg58ROQ-CX8FX4CvwSP84AtQiCkHjjGGTuxPa84M98AbLKA-ywQ0tbOg7Rd4TNbOBG3KXWEK0NXuiZ97GDkD47dNyfeyQp8aXJhKnyI9sANJcPoaxRwPJDe_oEaiinYGJsVGRSyOq5yTy7e66-24vVwR2_xC0p3--PewK4LC9iJG2jFECbMV8oRSSI96ThBijkSfpqGPJKRblURV5hRKjuhcFTHlUmaiJBxT89FKk8xPe41uI5lxBGuf-ewRayiWhyqhCbGbKx73-BEduj28vsu28FfnNtLdnDZdTa2b_cWfG1WrQp5Od-al2Ir-XAJUPK_WtbbcLP2xEm3Ep07sCKzu7DWawrg3YPPbyUGB8pvHz_1s0Tr3ZQcaUM_wYZumU_J4Wmens2npIdHYIuiLF4RDJuZLLCHgebQFp0MFuks12JKKoRvFATCMz3WKb_AoY5MJSJtdMgYD_SnbYeKNFdkdFbOckzak8V9OL6SNXkAq1meyUdAhMtFKn2uaIB-uODK4ypKI6zpFjHhWmA3HBUnNcA71hmZxBU0NY1xa-N2ay142dJfVNAmv6XcaBg0rlVcEWtXnAYeFiiw4Hl7W28R_nHimcznSNOJQvQpNc3DirHbRzHHR2vhWbD5M6e3983Ha8jMn2PtS1ng_A1Zr544IjqUFlDD6n-YXtwdDfvt1fq_dHoGa4PxwX68PxztPYYb2I4xT46_AavlbC6faM-1FE-NriDw7qql6Dsq66gJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3tBAASMVcUqbxHkicVjtQ7sUVqgPqeol2ImtVt1NVpus0HLiJyDxR_gr_AV-CR7nAVuEQEg9cIwzdmJ7XnFmvgHYogHzacCFqZwHYbrcpya3I2Y6js1dEbrC1eljb8b-8NB9deQdrcGXJhemwodoD9xQMrS-RgGfpXLnB2goZmBjaFakQcjqsMpdsXyvPtqKl6Oe2uFnjjPoH3SHZl1XwEzcQOmFMKG-lDZPEuEJ2w5STJHw0zRkkYhUq4yYxIRSYYXclpYrkjThIWWemoqQnqRq3Etw2fWtCItF9PZawCpHSUOVz0SpiWXvG5hIy9lZfd9VM_iLb3vODK56ztr0DW7A12bRqoiXs-1FybeTD-fwJP-nVb0J12s_nHQqwbkFayK7DVe7Tfm7O_D5WGBooPj28VM_S5TWTcm-MvMTbOiU-ZTsneTp6WJKungAtizK4gXBoJnJEntoYA5lz8lwmc5zJaSkwvdGMSAsU2OdsBkOta_rECmTQw7wOH_adqhIc0nGp-U8x5Q9UdyFwwtZk3uwnuWZ2ADCXcZT4TPpBOiFcyY9JqM0wopuEeWuAWbDUHFSw7tjlZFJXAFTOzFubdxurQHPW_pZBWzyW8rNhj_jWsEVsXLEncDD8gQGPG1vqy3C_00sE_kCaawoRI9S0dyv-Lp9FLV9tBWeAVs_M3p7X3-6hlT_N1aelAH235B164kjnkNpgKM5_Q_TizvjUb-9evAvnZ7Albe9Qfx6NN59CNewGQOebH8T1sv5QjxSbmvJH2tNQeDdRQvRd5Niprg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeolite-Encaged+Single-Atom+Rhodium+Catalysts%3A+Highly-Efficient+Hydrogen+Generation+and+Shape-Selective+Tandem+Hydrogenation+of+Nitroarenes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Qiming&rft.au=Wang%2C+Ning&rft.au=Zhang%2C+Tianjun&rft.au=Bai%2C+Risheng&rft.date=2019-12-16&rft.eissn=1521-3773&rft.volume=58&rft.issue=51&rft.spage=18570&rft_id=info:doi/10.1002%2Fanie.201912367&rft_id=info%3Apmid%2F31657875&rft.externalDocID=31657875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon