Transition Metal‐Catalyzed Enantioselective C−H Functionalization via Chiral Transient Directing Group Strategies

Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled s...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 45; pp. 19773 - 19786
Main Authors Liao, Gang, Zhang, Tao, Lin, Zhi‐Keng, Shi, Bing‐Feng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.11.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors. Chiral transient directing group (cTDG) strategies give rise to fundamentally new concepts in asymmetric C−H activation and enable the synthesis of chiral molecules without the need of pre‐installation and removal of directing groups. This Minireview provides an overview of recent advances in cTDG for the construction of chiral compounds with different types of chirality.
AbstractList Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors.
Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group-enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C-H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors.Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group-enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C-H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors.
Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors. Chiral transient directing group (cTDG) strategies give rise to fundamentally new concepts in asymmetric C−H activation and enable the synthesis of chiral molecules without the need of pre‐installation and removal of directing groups. This Minireview provides an overview of recent advances in cTDG for the construction of chiral compounds with different types of chirality.
Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group-enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C-H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors.
Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups ( c TDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of c TDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors.
Author Shi, Bing‐Feng
Liao, Gang
Lin, Zhi‐Keng
Zhang, Tao
Author_xml – sequence: 1
  givenname: Gang
  surname: Liao
  fullname: Liao, Gang
  organization: Zhejiang University
– sequence: 2
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: National University of Singapore
– sequence: 3
  givenname: Zhi‐Keng
  surname: Lin
  fullname: Lin, Zhi‐Keng
  organization: National University of Singapore
– sequence: 4
  givenname: Bing‐Feng
  orcidid: 0000-0003-0375-955X
  surname: Shi
  fullname: Shi, Bing‐Feng
  email: bfshi@zju.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32687690$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURi1URB-wZYkisWGTwa_EzrIK04dUYEFZWzfxTXGVcQY7KZquWHZZ8RP7S3A6LUiVEKtryed80r3fPtnxg0dCXjO6YJTy9-AdLjjllGop1DOyxwrOcqGU2ElvKUSudMF2yX6Ml4nXmpYvyK7gpVZlRffIdB7ARze6wWcfcYT-7udtDWlurtFmSw8-fUXssR3dFWb13c2vk-xo8u1sQO-u4V69cpDV31yAPtsGoh-zDy7Mmr_IjsMwrbMvY4ARLxzGl-R5B33EVw_zgHw9Wp7XJ_nZ5-PT-vAsb6UqVa5502BpNSrVMGjAaugsCCh41ZaNkGgpVBWUWpe6s0oUXdswbDlaqyXtqDgg77a56zB8nzCOZuVii30PHocpGi55oStVqCKhb5-gl8MU0oozVUhaSaVZot48UFOzQmvWwa0gbMzjQRMgt0AbhhgDdqZ14_2N0vKuN4yauTcz92b-9Ja0xRPtMfmfQrUVfrgeN_-hzeGn0-Vf9zcrTq8f
CitedBy_id crossref_primary_10_1021_jacs_2c08752
crossref_primary_10_1002_anie_202218871
crossref_primary_10_1038_s41467_023_43278_z
crossref_primary_10_1021_acs_orglett_2c03760
crossref_primary_10_6023_cjoc202403012
crossref_primary_10_1002_ange_202303966
crossref_primary_10_1039_D1OB01683K
crossref_primary_10_1002_anie_202402612
crossref_primary_10_1002_ange_202309709
crossref_primary_10_1021_acs_orglett_4c03142
crossref_primary_10_1038_s43586_021_00042_1
crossref_primary_10_1039_D1CC01690C
crossref_primary_10_1039_D3CC03592A
crossref_primary_10_1055_a_1672_6284
crossref_primary_10_1002_anie_202318803
crossref_primary_10_1039_D1QO00895A
crossref_primary_10_1002_ange_202209895
crossref_primary_10_1021_acs_orglett_1c02692
crossref_primary_10_1016_j_checat_2024_101009
crossref_primary_10_3390_molecules28165956
crossref_primary_10_1021_acs_orglett_4c01656
crossref_primary_10_1002_anie_202401756
crossref_primary_10_1039_D4QO01905A
crossref_primary_10_1016_j_molstruc_2022_134286
crossref_primary_10_1002_ange_202117340
crossref_primary_10_1021_acscentsci_4c02049
crossref_primary_10_1021_acs_chemrev_3c00327
crossref_primary_10_1055_a_2021_9514
crossref_primary_10_1002_ange_202401498
crossref_primary_10_1021_acs_joc_2c02938
crossref_primary_10_1039_D1OB00656H
crossref_primary_10_1002_asia_202201259
crossref_primary_10_1002_adsc_202300208
crossref_primary_10_1021_acscatal_3c01709
crossref_primary_10_1002_ange_202421412
crossref_primary_10_1021_acs_orglett_1c00296
crossref_primary_10_1039_D3QO00316G
crossref_primary_10_1039_D1SC02119B
crossref_primary_10_1039_D3CC05052A
crossref_primary_10_1055_a_2230_0759
crossref_primary_10_1002_anie_202407640
crossref_primary_10_1021_acs_orglett_1c00615
crossref_primary_10_1021_acs_orglett_2c00285
crossref_primary_10_1039_D1CC04877E
crossref_primary_10_1002_ange_202108853
crossref_primary_10_1021_acscatal_3c04661
crossref_primary_10_1021_acs_orglett_1c02918
crossref_primary_10_1039_D0QO00988A
crossref_primary_10_1016_j_chempr_2021_07_013
crossref_primary_10_1002_ange_202401756
crossref_primary_10_1021_jacs_3c00003
crossref_primary_10_1039_D1CC03971G
crossref_primary_10_1039_D2SC03009H
crossref_primary_10_1002_cssc_202002397
crossref_primary_10_1039_D5SC00014A
crossref_primary_10_1021_acscatal_2c03187
crossref_primary_10_1016_j_tet_2025_134470
crossref_primary_10_1021_acs_oprd_4c00064
crossref_primary_10_1021_acs_orglett_4c01322
crossref_primary_10_1002_anie_202108853
crossref_primary_10_1021_acs_orglett_3c01590
crossref_primary_10_1021_acs_joc_2c01626
crossref_primary_10_1002_anie_202117340
crossref_primary_10_1002_anie_202210825
crossref_primary_10_1039_D3SC02714G
crossref_primary_10_1002_ange_202103638
crossref_primary_10_2174_1385272827666230915101920
crossref_primary_10_34133_research_0293
crossref_primary_10_1021_acscatal_3c02199
crossref_primary_10_1021_acscatal_1c04473
crossref_primary_10_1002_ange_202402612
crossref_primary_10_1002_anie_202202892
crossref_primary_10_1039_D1SC01130H
crossref_primary_10_1039_D5SC00158G
crossref_primary_10_1039_D2QO00946C
crossref_primary_10_1021_acs_orglett_4c01214
crossref_primary_10_1039_D1QO00183C
crossref_primary_10_1002_anie_202303966
crossref_primary_10_1002_cjoc_202100466
crossref_primary_10_1021_acs_accounts_1c00168
crossref_primary_10_1002_cctc_202301764
crossref_primary_10_1039_D4QO02144D
crossref_primary_10_1002_ange_202202892
crossref_primary_10_1002_anie_202012932
crossref_primary_10_1021_acs_chemrev_2c00032
crossref_primary_10_1080_17518253_2022_2134740
crossref_primary_10_1002_anie_202117233
crossref_primary_10_1021_acscatal_4c00513
crossref_primary_10_1039_D1OB00232E
crossref_primary_10_1021_acscatal_2c02193
crossref_primary_10_1002_ajoc_202000566
crossref_primary_10_1055_a_1711_5889
crossref_primary_10_1002_ange_202310004
crossref_primary_10_1021_jacs_1c08562
crossref_primary_10_1002_anie_202211211
crossref_primary_10_1055_a_1677_5870
crossref_primary_10_1016_j_gresc_2021_12_005
crossref_primary_10_1021_acs_joc_4c00505
crossref_primary_10_1021_jacs_2c01223
crossref_primary_10_1021_acs_orglett_3c02307
crossref_primary_10_1002_adsc_202200396
crossref_primary_10_1021_acs_orglett_4c01540
crossref_primary_10_1038_s43586_021_00041_2
crossref_primary_10_1002_ange_202310112
crossref_primary_10_1002_ange_202210825
crossref_primary_10_1002_ange_202117233
crossref_primary_10_1039_D3QO01790G
crossref_primary_10_1002_ange_202012932
crossref_primary_10_1021_acs_joc_2c01080
crossref_primary_10_1021_acs_orglett_0c03775
crossref_primary_10_1021_acs_orglett_2c02303
crossref_primary_10_1021_acs_orglett_4c04827
crossref_primary_10_1021_jacs_3c12234
crossref_primary_10_1039_D2QO00677D
crossref_primary_10_1002_adsc_202300370
crossref_primary_10_1038_s41467_023_39968_3
crossref_primary_10_1039_D0SC06661C
crossref_primary_10_1021_acs_accounts_1c00629
crossref_primary_10_1039_D1CC02765D
crossref_primary_10_1002_chem_202100700
crossref_primary_10_1002_chem_202101598
crossref_primary_10_1002_anie_202103638
crossref_primary_10_1055_a_2310_0880
crossref_primary_10_6023_A23070336
crossref_primary_10_1021_acs_accounts_2c00175
crossref_primary_10_6023_cjoc202100052
crossref_primary_10_1039_D4SC06806H
crossref_primary_10_1055_a_1954_4920
crossref_primary_10_1021_acs_chemrev_3c00149
crossref_primary_10_1055_a_2167_8298
crossref_primary_10_1039_D4SC02178A
crossref_primary_10_6023_cjoc202204058
crossref_primary_10_1002_adsc_202200659
crossref_primary_10_1021_acs_orglett_2c01981
crossref_primary_10_1002_anie_202421412
crossref_primary_10_1007_s11426_023_1637_8
crossref_primary_10_1039_D3CC01328F
crossref_primary_10_1021_acs_orglett_1c00204
crossref_primary_10_1002_anie_202310112
crossref_primary_10_1021_acscatal_2c02691
crossref_primary_10_1021_acs_chemrev_1c00519
crossref_primary_10_1039_D1CC05042G
crossref_primary_10_1039_D4SC01837K
crossref_primary_10_1016_j_cclet_2024_110310
crossref_primary_10_1021_acs_orglett_4c02692
crossref_primary_10_1002_anie_202115221
crossref_primary_10_1021_acscatal_2c03531
crossref_primary_10_1039_D4OB02090A
crossref_primary_10_1021_acs_orglett_0c03757
crossref_primary_10_1002_anie_202310004
crossref_primary_10_1021_acs_orglett_4c03315
crossref_primary_10_1002_anie_202209895
crossref_primary_10_6023_cjoc202100071
crossref_primary_10_1002_ange_202211211
crossref_primary_10_1021_acscatal_4c02092
crossref_primary_10_1007_s11426_021_1068_2
crossref_primary_10_1039_D4SC00649F
crossref_primary_10_1021_acscatal_4c06579
crossref_primary_10_1055_a_1588_0072
crossref_primary_10_1021_acscatal_1c05080
crossref_primary_10_1021_acs_orglett_3c03568
crossref_primary_10_1021_acs_orglett_0c02872
crossref_primary_10_1021_acscatal_4c03944
crossref_primary_10_1002_anie_202309709
crossref_primary_10_1021_acscatal_2c04292
crossref_primary_10_1002_adsc_202300167
crossref_primary_10_1021_acs_orglett_1c00107
crossref_primary_10_1021_jacs_1c03111
crossref_primary_10_1021_acscatal_2c06355
crossref_primary_10_1002_ange_202407640
crossref_primary_10_1002_ange_202218871
crossref_primary_10_3390_catal14110813
crossref_primary_10_1039_D1QO01344K
crossref_primary_10_1002_ejoc_202300582
crossref_primary_10_1021_acs_joc_0c01906
crossref_primary_10_1021_acscatal_4c06788
crossref_primary_10_1039_D3QO00598D
crossref_primary_10_1021_acs_joc_2c00234
crossref_primary_10_1021_acs_orglett_1c02513
crossref_primary_10_1021_acs_orglett_1c03967
crossref_primary_10_1021_acs_orglett_2c00686
crossref_primary_10_1039_D4CY01098A
crossref_primary_10_1021_acs_chemrev_3c00059
crossref_primary_10_1021_acs_orglett_0c03734
crossref_primary_10_1002_chem_202302788
crossref_primary_10_1002_adsc_202101242
crossref_primary_10_1002_anie_202401498
crossref_primary_10_1039_D3CS00762F
crossref_primary_10_1039_D1QO00133G
crossref_primary_10_1039_D2QO00765G
crossref_primary_10_1021_acscatal_4c00572
crossref_primary_10_1039_D1SC04687J
crossref_primary_10_1039_D1QO01884A
crossref_primary_10_3389_fchem_2021_687817
crossref_primary_10_1016_j_chempr_2023_04_003
crossref_primary_10_1039_D2SC06131G
crossref_primary_10_1016_j_xcrp_2023_101423
crossref_primary_10_1002_ange_202115221
crossref_primary_10_1039_D3CC06011J
crossref_primary_10_1021_acs_orglett_3c02969
crossref_primary_10_1002_ange_202312923
crossref_primary_10_1021_acscatal_1c01351
crossref_primary_10_1021_jacs_3c08129
crossref_primary_10_1002_adsc_202100325
crossref_primary_10_1021_acs_orglett_2c01141
crossref_primary_10_1021_acs_orglett_4c02819
crossref_primary_10_1021_acs_orglett_4c02138
crossref_primary_10_1039_D4QO02236J
crossref_primary_10_6023_cjoc202104004
crossref_primary_10_1021_acsomega_1c05830
crossref_primary_10_1002_ange_202105776
crossref_primary_10_1021_acs_joc_4c00329
crossref_primary_10_1039_D0QO01227K
crossref_primary_10_1002_anie_202214584
crossref_primary_10_1021_acs_orglett_3c02721
crossref_primary_10_1039_D2CY00164K
crossref_primary_10_1021_jacs_0c13057
crossref_primary_10_1021_acscatal_1c02450
crossref_primary_10_1021_jacs_2c08285
crossref_primary_10_1021_jacs_4c18255
crossref_primary_10_1021_acs_orglett_2c03699
crossref_primary_10_1002_ange_202105093
crossref_primary_10_1002_ajoc_202300579
crossref_primary_10_1039_D2QO01390H
crossref_primary_10_1021_jacsau_3c00623
crossref_primary_10_1021_acscatal_0c03317
crossref_primary_10_6023_cjoc202110027
crossref_primary_10_6023_cjoc202300067
crossref_primary_10_1021_acs_orglett_3c01865
crossref_primary_10_1021_jacs_3c01162
crossref_primary_10_1021_acscatal_0c05081
crossref_primary_10_1021_acs_orglett_1c02722
crossref_primary_10_1021_acscatal_4c04837
crossref_primary_10_1002_ange_202318803
crossref_primary_10_1038_s41570_021_00311_3
crossref_primary_10_1021_acs_chemrev_1c00220
crossref_primary_10_1039_D2RA00241H
crossref_primary_10_1016_j_chempr_2021_11_015
crossref_primary_10_1002_anie_202105093
crossref_primary_10_59761_RCR5104
crossref_primary_10_1039_D2OB00558A
crossref_primary_10_1021_acs_orglett_1c01632
crossref_primary_10_1055_a_1770_1078
crossref_primary_10_1002_adsc_202001475
crossref_primary_10_1021_acscatal_5c00132
crossref_primary_10_1002_chem_202100093
crossref_primary_10_1021_acs_orglett_1c01083
crossref_primary_10_1021_acscatal_4c01212
crossref_primary_10_1021_jacs_2c01985
crossref_primary_10_1039_D2SC00748G
crossref_primary_10_1002_anie_202312923
crossref_primary_10_1021_acscatal_2c00962
crossref_primary_10_1016_j_checat_2025_101329
crossref_primary_10_1039_D1QO00056J
crossref_primary_10_1016_j_jmgm_2023_108551
crossref_primary_10_1002_aoc_7626
crossref_primary_10_1021_acs_orglett_1c04215
crossref_primary_10_1002_anie_202105776
crossref_primary_10_1002_advs_202309706
crossref_primary_10_1002_ange_202214584
crossref_primary_10_1021_acs_orglett_1c02041
crossref_primary_10_1038_s41467_024_47589_7
crossref_primary_10_1039_D0OB01587C
crossref_primary_10_1002_cjoc_202300398
crossref_primary_10_1021_acscatal_3c05955
Cites_doi 10.1002/anie.200462884
10.1021/acs.chemrev.6b00622
10.1016/j.trechm.2019.03.013
10.1002/anie.201913733
10.1039/C5CS00012B
10.1038/nchem.2710
10.1002/ange.201904214
10.1021/ar9000058
10.1002/anie.200462661
10.1002/anie.201801130
10.1016/j.chempr.2017.11.002
10.1002/anie.201407865
10.1039/C8OB00926K
10.1002/cssc.201900151
10.1126/science.1254465
10.1007/3418_2015_130
10.1021/ar5004626
10.1016/j.chempr.2018.08.011
10.1002/ange.202000532
10.1002/anie.201808700
10.1021/acs.orglett.5b00844
10.1039/c1cs15082k
10.1021/acscatal.7b04343
10.1039/c1cc10683j
10.1021/acs.organomet.9b00490
10.1002/cjoc.201900090
10.1002/anie.201902126
10.1002/anie.201713106
10.1002/adsc.201300446
10.1021/acs.accounts.7b00602
10.1002/ange.201701467
10.1021/acs.accounts.6b00573
10.1002/anie.201201666
10.1021/acs.orglett.7b02906
10.1002/ejoc.200500394
10.1039/C9CC03967H
10.1021/acs.orglett.7b00608
10.1002/ange.200602482
10.1002/anie.200806273
10.1021/cr100412j
10.1002/cjoc.201800478
10.1126/science.aat4210
10.6023/cjoc201903050
10.1039/C4QO00068D
10.1002/anie.200901719
10.1021/acs.chemrev.6b00692
10.1039/C7CC06863H
10.1021/acs.accounts.9b00549
10.1002/anie.200390037
10.1039/c2sc20277h
10.1002/ange.201902126
10.1021/acs.orglett.9b01099
10.1016/S0040-4039(97)01562-1
10.1002/anie.201408805
10.1002/ange.201906700
10.1002/ange.201309207
10.1002/anie.201701467
10.1021/cr050531b
10.1021/ol402145m
10.1021/acs.accounts.6b00613
10.1021/jacs.9b12299
10.1002/cjoc.201900468
10.1021/acs.chemrev.6b00657
10.1002/ange.200503627
10.1021/jacs.6b09634
10.1021/acscatal.7b04337
10.1021/jacs.6b04966
10.1002/anie.201812116
10.1021/acs.chemrev.6b00554
10.1002/ange.201915949
10.1021/ar020153m
10.1039/C6SC04157D
10.6023/cjoc201904030
10.1039/C8RA03230K
10.6023/A19060222
10.1021/cr900184e
10.1126/science.aad7893
10.6023/A20020027
10.1021/ja0394986
10.1039/C8CS00201K
10.1002/ange.201811256
10.1002/chem.201905417
10.1002/ange.200390005
10.1002/chem.201302576
10.1021/acscatal.7b01855
10.1021/acscatal.5b00050
10.1002/anie.202000532
10.1002/ange.201808700
10.1016/j.chempr.2019.12.011
10.1021/jo961887d
10.1039/C6CS00371K
10.1002/anie.201906700
10.1021/jacs.8b06676
10.1039/c0cs00182a
10.1016/j.tet.2016.03.060
10.1002/ange.201701849
10.1021/acscatal.8b04870
10.1039/c1cs15013h
10.1039/c3ra46996d
10.1002/ange.201713106
10.1002/anie.200602482
10.1039/C5DT01373A
10.1002/cjoc.202000131
10.1002/ange.200806273
10.1021/acs.chemrev.5b00136
10.1021/om050700i
10.1002/anie.201904214
10.1038/s41557-018-0048-1
10.1021/acs.chemrev.9b00495
10.1002/9783527635207
10.1021/acscentsci.6b00032
10.1002/anie.201309207
10.1002/ange.201801130
10.1002/ange.200462661
10.1021/acs.orglett.9b02243
10.1021/acs.chemrev.8b00507
10.6023/cjoc202000030
10.1039/C6QO00156D
10.1039/C8CS00716K
10.1039/C7CS00496F
10.1021/ar990077w
10.1002/anie.201915949
10.1021/cr100155e
10.1002/ange.201812116
10.1038/ncomms15238
10.1016/j.tetlet.2003.09.151
10.1016/j.tetlet.2018.01.098
10.1126/science.aao4798
10.1039/C7CC09273C
10.1002/ange.201201666
10.1002/anie.201811256
10.1021/ja306123m
10.1021/cr900005n
10.1002/chem.201603507
10.1002/ange.200462884
10.1002/ange.201913733
10.1002/ange.200901719
10.1021/jo300779q
10.1002/chem.201900762
10.1021/jacs.9b07251
10.1002/ange.201407865
10.1002/ange.201408805
10.1002/anie.201701849
10.1002/9783527810857.ch4
10.1002/anie.200503627
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202008437
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 19786
ExternalDocumentID 32687690
10_1002_anie_202008437
ANIE202008437
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Out-standing Young Talents of Zhejiang Province High-level Personnel of Special Support
  funderid: ZJWR0108
– fundername: the Fundamental Research Funds for the Central Universities
  funderid: 2018XZZX001-02
– fundername: National Natural Science Foundation of China
  funderid: 21901228; 21925109; 21772170
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4767-82bbe6d8e77b1abad8afda3a529c6b34ed0a99a68868fd735fcb1ec2edd840f03
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 13:57:19 EDT 2025
Fri Jul 25 10:43:43 EDT 2025
Wed Feb 19 02:29:50 EST 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 01:17:44 EDT 2025
Wed Jan 22 16:31:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords enantioselectivity
C−H activation
asymmetric catalysis
total synthesis
chiral transient directing group
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-82bbe6d8e77b1abad8afda3a529c6b34ed0a99a68868fd735fcb1ec2edd840f03
Notes Dedicated to the 70th anniversary of Shanghai Institute of Organic Chemistry, CAS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0375-955X
PMID 32687690
PQID 2454094781
PQPubID 946352
PageCount 14
ParticipantIDs proquest_miscellaneous_2425897575
proquest_journals_2454094781
pubmed_primary_32687690
crossref_citationtrail_10_1002_anie_202008437
crossref_primary_10_1002_anie_202008437
wiley_primary_10_1002_anie_202008437_ANIE202008437
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2, 2020
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: November 2, 2020
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 7
2017; 8
2004; 126
2018; 360
2009; 42
2009 2009; 48 121
2020; 120
2019; 55
2019; 12
2017; 46
2020 2020; 59 132
2016; 72
2017; 9
2011; 111
2017; 117
2018; 47
2005; 24
2014; 1
2013; 19
2015; 48
2020; 6
2018; 8
2013; 15
2014; 4
2012; 134
2018; 4
2020; 53
2019; 21
2018 2018; 57 130
2012 2012; 51 124
2005; 105
2015; 44
2019; 25
2010; 110
2005 2005; 44 117
2013; 355
2019; 119
2016; 351
2003; 44
2016; 45
2019; 9
2015; 17
1997; 62
2015; 5
2018; 140
2011
2019; 77
2020; 142
2020; 40
2019; 1
2011; 40
2015; 55
2019; 37
2019; 39
2020; 38
2019; 38
2003; 36
2005
2020; 78
2003 2003; 42 115
2017 2017; 56 129
2019; 141
2012; 77
2019 2019; 58 131
2017; 139
2017; 50
2006 2006; 45 118
2017; 53
2012; 3
2016; 2
2016; 3
2018; 359
2015; 115
2020
2000; 33
2020 2020
2019
2020; 26
1997; 38
2017; 19
2016; 138
2018; 51
2011; 47
2018; 10
2018; 54
2018; 16
2014; 345
2018; 59
2016; 22
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_98_2
e_1_2_9_71_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_10_1
e_1_2_9_94_2
e_1_2_9_75_2
e_1_2_9_90_2
e_1_2_9_90_3
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_2
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_141_1
e_1_2_9_18_2
e_1_2_9_79_2
Yan S.-Y. (e_1_2_9_42_2) 2019
e_1_2_9_41_1
e_1_2_9_87_2
e_1_2_9_68_1
e_1_2_9_45_2
e_1_2_9_83_2
e_1_2_9_64_3
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_6_2
e_1_2_9_119_2
e_1_2_9_60_1
e_1_2_9_2_2
e_1_2_9_111_2
e_1_2_9_138_2
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_2
e_1_2_9_130_1
e_1_2_9_68_2
e_1_2_9_30_2
e_1_2_9_99_1
e_1_2_9_99_2
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_76_3
e_1_2_9_95_1
e_1_2_9_76_2
e_1_2_9_95_2
e_1_2_9_11_2
e_1_2_9_53_2
e_1_2_9_91_2
e_1_2_9_129_2
e_1_2_9_129_3
e_1_2_9_102_2
e_1_2_9_125_2
e_1_2_9_121_2
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_140_1
e_1_2_9_38_2
e_1_2_9_15_2
e_1_2_9_57_2
e_1_2_9_19_2
e_1_2_9_88_2
e_1_2_9_61_1
e_1_2_9_23_2
e_1_2_9_65_2
e_1_2_9_84_2
e_1_2_9_5_2
e_1_2_9_80_2
e_1_2_9_118_3
e_1_2_9_80_3
e_1_2_9_118_2
e_1_2_9_1_1
e_1_2_9_114_1
(e_1_2_9_115_2) 2019; 131
e_1_2_9_137_2
e_1_2_9_110_3
e_1_2_9_137_3
e_1_2_9_110_2
e_1_2_9_133_1
e_1_2_9_9_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_69_1
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_92_3
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_96_1
e_1_2_9_109_1
e_1_2_9_92_2
e_1_2_9_101_2
Wu Y.-J. (e_1_2_9_40_2) 2020
e_1_2_9_128_2
e_1_2_9_143_2
e_1_2_9_105_2
e_1_2_9_124_2
e_1_2_9_58_3
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_120_2
e_1_2_9_16_3
e_1_2_9_39_2
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_2
e_1_2_9_43_3
e_1_2_9_66_1
e_1_2_9_43_2
e_1_2_9_85_2
e_1_2_9_4_2
e_1_2_9_81_2
e_1_2_9_136_2
e_1_2_9_113_1
e_1_2_9_132_2
e_1_2_9_117_1
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_47_1
e_1_2_9_89_3
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
e_1_2_9_51_1
e_1_2_9_70_3
e_1_2_9_32_3
e_1_2_9_93_2
e_1_2_9_78_1
e_1_2_9_93_3
e_1_2_9_55_1
e_1_2_9_32_2
e_1_2_9_108_1
e_1_2_9_70_2
e_1_2_9_127_2
e_1_2_9_100_1
e_1_2_9_104_2
e_1_2_9_123_2
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_2
e_1_2_9_142_2
e_1_2_9_17_2
e_1_2_9_86_2
e_1_2_9_63_1
e_1_2_9_44_2
e_1_2_9_82_2
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_7_2
e_1_2_9_3_3
e_1_2_9_3_2
Dhawa U. (e_1_2_9_97_1) 2020
e_1_2_9_112_2
e_1_2_9_139_2
e_1_2_9_116_1
e_1_2_9_135_2
e_1_2_9_25_2
e_1_2_9_48_1
e_1_2_9_131_2
e_1_2_9_29_2
References_xml – year: 2011
– volume: 355
  start-page: 2139
  year: 2013
  publication-title: Adv. Synth. Catal.
– volume: 42
  start-page: 1074
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 19
  start-page: 6280
  year: 2017
  publication-title: Org. Lett.
– volume: 17
  start-page: 2034
  year: 2015
  publication-title: Org. Lett.
– volume: 72
  start-page: 5238
  year: 2016
  publication-title: Tetrahedron
– volume: 50
  start-page: 609
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 15
  start-page: 5166
  year: 2013
  publication-title: Org. Lett.
– volume: 55
  start-page: 217
  year: 2015
  publication-title: Top. Organomet. Chem.
– volume: 140
  start-page: 9774
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 647
  year: 2019
  publication-title: Chin. J. Chem.
– volume: 12
  start-page: 2955
  year: 2019
  publication-title: ChemSusChem
– volume: 38
  start-page: 543
  year: 2020
  publication-title: Chin. J. Chem.
– volume: 1
  start-page: 471
  year: 2019
  publication-title: Trends Chem.
– volume: 8
  start-page: 2805
  year: 2018
  publication-title: ACS Catal.
– volume: 134
  start-page: 13954
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1863
  year: 2015
  publication-title: ACS Catal.
– volume: 48 121
  start-page: 6398 6516
  year: 2009 2009
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45 118
  start-page: 2766 2832
  year: 2006 2006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 8960 9092
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  start-page: 412
  year: 2000
  publication-title: Acc. Chem. Res.
– volume: 22
  start-page: 17397
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 48
  start-page: 1053
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 19
  start-page: 14010
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 53 126
  start-page: 507 517
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 6603
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 6361
  year: 2019
  publication-title: Org. Lett.
– volume: 45
  start-page: 6462
  year: 2016
  publication-title: Chem. Soc. Rev.
– year: 2020
  publication-title: Chin. J. Org. Chem.
– volume: 40
  start-page: 5068
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 77
  start-page: 5884
  year: 2012
  publication-title: J. Org. Chem.
– volume: 44 117
  start-page: 5384 5518
  year: 2005 2005
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 425
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 47
  start-page: 8925
  year: 2018
  publication-title: Chem. Soc. Rev.
– year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 1976
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 1269
  year: 2018
  publication-title: Tetrahedron Lett.
– volume: 40
  start-page: 1787
  year: 2020
  publication-title: Chin. J. Org. Chem.
– volume: 117
  start-page: 9433
  year: 2017
  publication-title: Chem. Rev.
– volume: 142
  start-page: 2161
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 11239
  year: 2015
  publication-title: Chem. Rev.
– volume: 19
  start-page: 1842
  year: 2017
  publication-title: Org. Lett.
– volume: 119
  start-page: 2192
  year: 2019
  publication-title: Chem. Rev.
– volume: 55
  start-page: 8514
  year: 2019
  publication-title: Chem. Commun.
– volume: 4
  start-page: 6173
  year: 2014
  publication-title: RSC Adv.
– volume: 7
  start-page: 5316
  year: 2017
  publication-title: ACS Catal.
– volume: 58 131
  start-page: 10820 10934
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 111
  start-page: 1315
  year: 2011
  publication-title: Chem. Rev.
– volume: 25
  start-page: 4688
  year: 2019
  publication-title: Chem. Eur. J.
– volume: 62
  start-page: 1200
  year: 1997
  publication-title: J. Org. Chem.
– volume: 16
  start-page: 4582
  year: 2018
  publication-title: Org. Biomol. Chem.
– volume: 38
  start-page: 6673
  year: 1997
  publication-title: Tetrahedron Lett.
– volume: 40
  start-page: 1885
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 59 132
  start-page: 3475 3503
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 351
  start-page: 252
  year: 2016
  publication-title: Science
– volume: 57 130
  start-page: 4668 4758
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 36
  start-page: 659
  year: 2003
  publication-title: Acc. Chem. Res.
– volume: 110
  start-page: 624
  year: 2010
  publication-title: Chem. Rev.
– volume: 9
  start-page: 558
  year: 2017
  publication-title: Nat. Chem.
– volume: 24
  start-page: 5737
  year: 2005
  publication-title: Organometallics
– volume: 2
  start-page: 281
  year: 2016
  publication-title: ACS Cent. Sci.
– volume: 46
  start-page: 7145
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 77
  start-page: 690
  year: 2019
  publication-title: Acta Chim. Sinica
– volume: 360
  start-page: 1438
  year: 2018
  publication-title: Science
– volume: 117
  start-page: 8754
  year: 2017
  publication-title: Chem. Rev.
– volume: 50
  start-page: 351
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 42 115
  start-page: 112 116
  year: 2003 2003
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 3661 3723
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 864
  year: 2017
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 12803 12934
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 6576 6638
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 4777 4855
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 105
  start-page: 4581
  year: 2005
  publication-title: Chem. Rev.
– volume: 126
  start-page: 7192
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 10128
  year: 2015
  publication-title: Dalton Trans.
– volume: 3
  start-page: 2165
  year: 2012
  publication-title: Chem. Sci.
– volume: 6
  start-page: 497
  year: 2020
  publication-title: Chem
– volume: 58 131
  start-page: 6708 6780
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 359
  year: 2018
  publication-title: Science
– volume: 53 126
  start-page: 13244 13460
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 843
  year: 2014
  publication-title: Org. Chem. Front.
– volume: 38
  start-page: 635
  year: 2020
  publication-title: Chin. J. Chem.
– volume: 141
  start-page: 15730
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 7346
  year: 2020
  publication-title: Chem. Eur. J.
– volume: 44
  start-page: 8665
  year: 2003
  publication-title: Tetrahedron Lett.
– volume: 48 121
  start-page: 5094 5196
  year: 2009 2009
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 1028
  year: 2016
  publication-title: Org. Chem. Front.
– volume: 58 131
  start-page: 6818 6890
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 4022
  year: 2019
  publication-title: Organometallics
– volume: 117
  start-page: 8908
  year: 2017
  publication-title: Chem. Rev.
– volume: 39
  start-page: 1655
  year: 2019
  publication-title: Chin. J. Org. Chem.
– volume: 44 117
  start-page: 2112 2150
  year: 2005 2005
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 4223
  year: 2005
  publication-title: Eur. J. Org. Chem.
– volume: 4
  start-page: 2026
  year: 2018
  publication-title: Chem
– volume: 111
  start-page: 563
  year: 2011
  publication-title: Chem. Rev.
– volume: 44
  start-page: 3418
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 53 126
  start-page: 13871 14091
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 103
  year: 2019
  publication-title: Chin. J. Chem.
– volume: 4
  start-page: 199
  year: 2018
  publication-title: Chem
– volume: 117
  start-page: 8977
  year: 2017
  publication-title: Chem. Rev.
– volume: 110
  start-page: 1147
  year: 2010
  publication-title: Chem. Rev.
– volume: 138
  start-page: 9269
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 12385
  year: 2017
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1956
  year: 2019
  publication-title: ACS Catal.
– volume: 39
  start-page: 1522
  year: 2019
  publication-title: Chin. J. Org. Chem.
– volume: 57 130
  start-page: 17151 17397
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 6617 6717
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 6635
  year: 2011
  publication-title: Chem. Commun.
– volume: 8
  start-page: 2981
  year: 2018
  publication-title: ACS Catal.
– volume: 120
  start-page: 1788
  year: 2020
  publication-title: Chem. Rev.
– volume: 51
  start-page: 534
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 58 131
  start-page: 11464 11586
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 107
  year: 2019
  end-page: 130
– volume: 10
  start-page: 755
  year: 2018
  publication-title: Nat. Chem.
– volume: 78
  start-page: 289
  year: 2020
  publication-title: Acta Chim. Sinica
– volume: 8
  start-page: 15238
  year: 2017
  publication-title: Nat. Commun.
– volume: 345
  start-page: 68
  year: 2014
  publication-title: Science
– volume: 8
  start-page: 19456
  year: 2018
  publication-title: RSC Adv.
– volume: 139
  start-page: 1714
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 3352
  year: 2019
  publication-title: Org. Lett.
– volume: 59 132
  start-page: 9594 9681
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 689
  year: 2018
  publication-title: Chem. Commun.
– volume: 45 118
  start-page: 7674 7836
  year: 2006 2006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_9_43_2
  doi: 10.1002/anie.200462884
– ident: e_1_2_9_9_2
  doi: 10.1021/acs.chemrev.6b00622
– ident: e_1_2_9_48_1
– ident: e_1_2_9_142_2
  doi: 10.1016/j.trechm.2019.03.013
– ident: e_1_2_9_68_1
  doi: 10.1002/anie.201913733
– ident: e_1_2_9_81_2
  doi: 10.1039/C5CS00012B
– ident: e_1_2_9_119_2
  doi: 10.1038/nchem.2710
– ident: e_1_2_9_32_3
  doi: 10.1002/ange.201904214
– ident: e_1_2_9_2_2
  doi: 10.1021/ar9000058
– ident: e_1_2_9_78_1
– ident: e_1_2_9_141_1
– ident: e_1_2_9_80_2
  doi: 10.1002/anie.200462661
– ident: e_1_2_9_92_2
  doi: 10.1002/anie.201801130
– ident: e_1_2_9_36_2
  doi: 10.1016/j.chempr.2017.11.002
– ident: e_1_2_9_89_2
  doi: 10.1002/anie.201407865
– ident: e_1_2_9_37_2
  doi: 10.1039/C8OB00926K
– ident: e_1_2_9_39_2
  doi: 10.1002/cssc.201900151
– ident: e_1_2_9_54_2
  doi: 10.1126/science.1254465
– ident: e_1_2_9_19_2
  doi: 10.1007/3418_2015_130
– ident: e_1_2_9_12_2
  doi: 10.1021/ar5004626
– ident: e_1_2_9_63_1
– ident: e_1_2_9_112_2
  doi: 10.1016/j.chempr.2018.08.011
– year: 2020
  ident: e_1_2_9_40_2
  publication-title: Chin. J. Org. Chem.
– ident: e_1_2_9_64_3
  doi: 10.1002/ange.202000532
– ident: e_1_2_9_110_2
  doi: 10.1002/anie.201808700
– ident: e_1_2_9_46_2
  doi: 10.1021/acs.orglett.5b00844
– ident: e_1_2_9_7_2
  doi: 10.1039/c1cs15082k
– ident: e_1_2_9_103_2
  doi: 10.1021/acscatal.7b04343
– ident: e_1_2_9_59_2
  doi: 10.1039/c1cc10683j
– ident: e_1_2_9_107_1
  doi: 10.1021/acs.organomet.9b00490
– ident: e_1_2_9_52_1
– ident: e_1_2_9_31_2
  doi: 10.1002/cjoc.201900090
– ident: e_1_2_9_93_2
  doi: 10.1002/anie.201902126
– ident: e_1_2_9_126_1
– ident: e_1_2_9_98_1
  doi: 10.1002/anie.201713106
– ident: e_1_2_9_44_2
  doi: 10.1002/adsc.201300446
– ident: e_1_2_9_84_2
  doi: 10.1021/acs.accounts.7b00602
– ident: e_1_2_9_118_3
  doi: 10.1002/ange.201701467
– ident: e_1_2_9_132_2
  doi: 10.1021/acs.accounts.6b00573
– ident: e_1_2_9_137_2
  doi: 10.1002/anie.201201666
– ident: e_1_2_9_140_1
  doi: 10.1021/acs.orglett.7b02906
– ident: e_1_2_9_79_2
  doi: 10.1002/ejoc.200500394
– ident: e_1_2_9_85_2
  doi: 10.1039/C9CC03967H
– ident: e_1_2_9_91_2
  doi: 10.1021/acs.orglett.7b00608
– ident: e_1_2_9_129_3
  doi: 10.1002/ange.200602482
– ident: e_1_2_9_3_2
  doi: 10.1002/anie.200806273
– ident: e_1_2_9_6_2
  doi: 10.1021/cr100412j
– ident: e_1_2_9_111_2
  doi: 10.1002/cjoc.201800478
– ident: e_1_2_9_114_1
  doi: 10.1126/science.aat4210
– ident: e_1_2_9_121_2
  doi: 10.6023/cjoc201903050
– ident: e_1_2_9_11_2
  doi: 10.1039/C4QO00068D
– ident: e_1_2_9_76_2
  doi: 10.1002/anie.200901719
– ident: e_1_2_9_29_2
  doi: 10.1021/acs.chemrev.6b00692
– ident: e_1_2_9_101_2
  doi: 10.1039/C7CC06863H
– ident: e_1_2_9_87_2
  doi: 10.1021/acs.accounts.9b00549
– ident: e_1_2_9_51_1
  doi: 10.1002/anie.200390037
– ident: e_1_2_9_88_2
  doi: 10.1039/c2sc20277h
– ident: e_1_2_9_93_3
  doi: 10.1002/ange.201902126
– ident: e_1_2_9_96_1
  doi: 10.1021/acs.orglett.9b01099
– ident: e_1_2_9_50_2
  doi: 10.1016/S0040-4039(97)01562-1
– ident: e_1_2_9_90_2
  doi: 10.1002/anie.201408805
– volume: 131
  start-page: 11586
  year: 2019
  ident: e_1_2_9_115_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201906700
– ident: e_1_2_9_70_3
  doi: 10.1002/ange.201309207
– ident: e_1_2_9_1_1
– ident: e_1_2_9_118_2
  doi: 10.1002/anie.201701467
– ident: e_1_2_9_74_2
  doi: 10.1021/cr050531b
– ident: e_1_2_9_66_1
  doi: 10.1021/ol402145m
– ident: e_1_2_9_22_2
  doi: 10.1021/acs.accounts.6b00613
– ident: e_1_2_9_94_2
  doi: 10.1021/jacs.9b12299
– ident: e_1_2_9_14_2
  doi: 10.1002/cjoc.201900468
– ident: e_1_2_9_47_1
  doi: 10.1021/acs.chemrev.6b00657
– ident: e_1_2_9_58_3
  doi: 10.1002/ange.200503627
– ident: e_1_2_9_104_2
  doi: 10.1021/jacs.6b09634
– ident: e_1_2_9_83_2
  doi: 10.1021/acscatal.7b04337
– ident: e_1_2_9_21_1
– ident: e_1_2_9_65_2
  doi: 10.1021/jacs.6b04966
– ident: e_1_2_9_16_2
  doi: 10.1002/anie.201812116
– ident: e_1_2_9_35_2
  doi: 10.1021/acs.chemrev.6b00554
– ident: e_1_2_9_125_2
  doi: 10.1002/ange.201915949
– ident: e_1_2_9_128_2
  doi: 10.1021/ar020153m
– ident: e_1_2_9_23_2
  doi: 10.1039/C6SC04157D
– ident: e_1_2_9_102_2
  doi: 10.6023/cjoc201904030
– ident: e_1_2_9_109_1
– ident: e_1_2_9_38_2
  doi: 10.1039/C8RA03230K
– ident: e_1_2_9_86_2
  doi: 10.6023/A19060222
– ident: e_1_2_9_4_2
  doi: 10.1021/cr900184e
– ident: e_1_2_9_61_1
  doi: 10.1126/science.aad7893
– ident: e_1_2_9_25_2
  doi: 10.6023/A20020027
– ident: e_1_2_9_71_2
  doi: 10.1021/ja0394986
– ident: e_1_2_9_13_2
  doi: 10.1039/C8CS00201K
– ident: e_1_2_9_34_1
– ident: e_1_2_9_99_2
  doi: 10.1002/ange.201811256
– ident: e_1_2_9_33_2
  doi: 10.1002/chem.201905417
– ident: e_1_2_9_100_1
– ident: e_1_2_9_51_2
  doi: 10.1002/ange.200390005
– ident: e_1_2_9_27_2
  doi: 10.1002/chem.201302576
– ident: e_1_2_9_105_2
  doi: 10.1021/acscatal.7b01855
– ident: e_1_2_9_8_2
  doi: 10.1021/acscatal.5b00050
– ident: e_1_2_9_64_2
  doi: 10.1002/anie.202000532
– ident: e_1_2_9_110_3
  doi: 10.1002/ange.201808700
– ident: e_1_2_9_122_2
  doi: 10.1016/j.chempr.2019.12.011
– ident: e_1_2_9_49_2
  doi: 10.1021/jo961887d
– ident: e_1_2_9_116_1
  doi: 10.1039/C6CS00371K
– ident: e_1_2_9_115_1
  doi: 10.1002/anie.201906700
– ident: e_1_2_9_73_1
– ident: e_1_2_9_113_1
  doi: 10.1021/jacs.8b06676
– ident: e_1_2_9_135_2
  doi: 10.1039/c0cs00182a
– ident: e_1_2_9_139_2
  doi: 10.1016/j.tet.2016.03.060
– ident: e_1_2_9_95_2
  doi: 10.1002/ange.201701849
– ident: e_1_2_9_106_1
  doi: 10.1021/acscatal.8b04870
– ident: e_1_2_9_136_2
  doi: 10.1039/c1cs15013h
– ident: e_1_2_9_28_2
  doi: 10.1039/c3ra46996d
– ident: e_1_2_9_98_2
  doi: 10.1002/ange.201713106
– ident: e_1_2_9_129_2
  doi: 10.1002/anie.200602482
– ident: e_1_2_9_131_2
  doi: 10.1039/C5DT01373A
– ident: e_1_2_9_124_2
  doi: 10.1002/cjoc.202000131
– ident: e_1_2_9_3_3
  doi: 10.1002/ange.200806273
– ident: e_1_2_9_82_2
  doi: 10.1021/acs.chemrev.5b00136
– ident: e_1_2_9_57_2
  doi: 10.1021/om050700i
– ident: e_1_2_9_69_1
– ident: e_1_2_9_32_2
  doi: 10.1002/anie.201904214
– ident: e_1_2_9_62_1
  doi: 10.1038/s41557-018-0048-1
– ident: e_1_2_9_15_2
  doi: 10.1021/acs.chemrev.9b00495
– ident: e_1_2_9_77_2
  doi: 10.1002/9783527635207
– ident: e_1_2_9_55_1
– ident: e_1_2_9_20_1
  doi: 10.1021/acscentsci.6b00032
– ident: e_1_2_9_41_1
– ident: e_1_2_9_70_2
  doi: 10.1002/anie.201309207
– ident: e_1_2_9_92_3
  doi: 10.1002/ange.201801130
– ident: e_1_2_9_80_3
  doi: 10.1002/ange.200462661
– ident: e_1_2_9_108_1
  doi: 10.1021/acs.orglett.9b02243
– ident: e_1_2_9_143_2
  doi: 10.1021/acs.chemrev.8b00507
– ident: e_1_2_9_123_2
  doi: 10.6023/cjoc202000030
– ident: e_1_2_9_18_2
  doi: 10.1039/C6QO00156D
– ident: e_1_2_9_134_1
– ident: e_1_2_9_138_2
  doi: 10.1039/C8CS00716K
– ident: e_1_2_9_17_2
  doi: 10.1039/C7CS00496F
– ident: e_1_2_9_127_2
  doi: 10.1021/ar990077w
– ident: e_1_2_9_125_1
  doi: 10.1002/anie.201915949
– ident: e_1_2_9_75_2
  doi: 10.1021/cr100155e
– ident: e_1_2_9_16_3
  doi: 10.1002/ange.201812116
– ident: e_1_2_9_120_2
  doi: 10.1038/ncomms15238
– ident: e_1_2_9_56_2
  doi: 10.1016/j.tetlet.2003.09.151
– ident: e_1_2_9_24_2
  doi: 10.1016/j.tetlet.2018.01.098
– ident: e_1_2_9_30_2
  doi: 10.1126/science.aao4798
– ident: e_1_2_9_97_2
– ident: e_1_2_9_133_1
  doi: 10.1039/C7CC09273C
– ident: e_1_2_9_137_3
  doi: 10.1002/ange.201201666
– ident: e_1_2_9_99_1
  doi: 10.1002/anie.201811256
– ident: e_1_2_9_53_2
  doi: 10.1021/ja306123m
– ident: e_1_2_9_5_2
  doi: 10.1021/cr900005n
– ident: e_1_2_9_45_2
  doi: 10.1002/chem.201603507
– ident: e_1_2_9_43_3
  doi: 10.1002/ange.200462884
– ident: e_1_2_9_68_2
  doi: 10.1002/ange.201913733
– ident: e_1_2_9_76_3
  doi: 10.1002/ange.200901719
– ident: e_1_2_9_60_1
  doi: 10.1021/jo300779q
– ident: e_1_2_9_10_1
– ident: e_1_2_9_67_1
  doi: 10.1002/chem.201900762
– year: 2020
  ident: e_1_2_9_97_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_9_72_1
  doi: 10.1021/jacs.9b07251
– ident: e_1_2_9_117_1
– ident: e_1_2_9_89_3
  doi: 10.1002/ange.201407865
– ident: e_1_2_9_90_3
  doi: 10.1002/ange.201408805
– ident: e_1_2_9_95_1
  doi: 10.1002/anie.201701849
– ident: e_1_2_9_130_1
– ident: e_1_2_9_26_1
– start-page: 107
  volume-title: C−H Activation for Asymmetric Synthesis
  year: 2019
  ident: e_1_2_9_42_2
  doi: 10.1002/9783527810857.ch4
– ident: e_1_2_9_58_2
  doi: 10.1002/anie.200503627
SSID ssj0028806
Score 2.6838617
SecondaryResourceType review_article
Snippet Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient...
Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19773
SubjectTerms asymmetric catalysis
Chemical synthesis
chiral transient directing group
C−H activation
Enantiomers
enantioselectivity
Hydrogen bonds
Natural products
Organic chemistry
total synthesis
Transition metals
Title Transition Metal‐Catalyzed Enantioselective C−H Functionalization via Chiral Transient Directing Group Strategies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202008437
https://www.ncbi.nlm.nih.gov/pubmed/32687690
https://www.proquest.com/docview/2454094781
https://www.proquest.com/docview/2425897575
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC5kL3rx_Yiu0oLgKbsz3Xn1cQkzjMLuQVzYW-hHRQclIzszgnvy6FH8iftLrOpOoqOIoLeEdCed7np8_aivAJ753GcolUtzX9o0861NbSF9ql1WYUuIAcNE8fikWJxmL8_ys5-i-CM_xLjgxpoR7DUruLHrwx-koRyBTfM73r_PFIeT84EtRkWvRv4oScIZw4uUSjkL_cDaOJGHu9V3vdJvUHMXuQbXM78BZmh0PHHy7mC7sQfu4hc-x__5q5twvcel4igK0i24gt1tuFoP6eDuwDZ4tXDASxwjQfbLz19rXvv5dIFezPg8zXK1Dll1yICK-vLLt4WYk9eMi419uKf4uDSifrs8p2_FF5LTE73d7d6IsBQmBspcXN-F0_nsdb1I-5wNqctKsrmVtBYLX2FZ2qmxxlem9UaZXGpXWJWhnxitTVFVRdX6UuWts1N0Er2nqWY7Ufdgr1t1-ACELbTLK-2ULwk2SWeQwESLU69t3trcJZAOY9a4ntCc82q8byIVs2y4M5uxMxN4Ppb_EKk8_lhyfxCBplfpdSOZq1BzZG4CT8fHNAi8w2I6XG25jKQWlwSBE7gfRWf8FOFk8jx6koAMAvCXNjRHJy9m493Df6n0CK7xdYiclPuwtznf4mOCUBv7JKjJd0bGF8s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL5VlSChgJiVPaXTsvH6uwqy1094BaiVvkV2BVlEXdXSR64sgR8RP7S5ixk6AFISQ4JrETxx57Po9nvgF4blObOC5MnNpcx4mtdawzbmNpksLViBic3yhOZ9nkLHn1Nu28CSkWJvBD9AY3mhl-vaYJTgbpw5-soRSCjRs8OsBPRH4dblBab6LPf_mmZ5DiKJ4hwEiImPLQd7yNA364WX9TL_0GNjexq1c-4x3QXbODz8n5wXqlD8zlL4yO__Vft-FWC03ZUZClO3DNNXdhu-wywt2DtVds3seLTR2i9qsv30oy_3y-dJaNyKVmvlj6xDq4hrLy6uv3CRuj4gz2xjbik32aK1a-n1_gt8ILUe-xdult3jFvDWMda65b3oez8ei0nMRt2obYJDkuuwXX2mW2cHmuh0orW6jaKqFSLk2mReLsQEmpsqLIitrmIq2NHjrDnbW426wH4gFsNYvGPQSmM2nSQhphc0RO3CiHeKJ2Qyt1WuvURBB3g1aZltOcUmt8qAIbM6-oM6u-MyN40Zf_GNg8_lhyv5OBqp3Vy4oTXaGk4NwInvWPcRDokEU1brGmMhxbnCMKjmA3yE7_KYTKqHzkIALuJeAvbaiOZsej_mrvXyo9he3J6fSkOjmevX4EN-m-D6Tk-7C1uli7x4ioVvqJnzM_AK6xG-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3pRAASMhcUqbtfPysUp3tQW6QohKvUV-lhUoW3V3keipxx5Rf2J_Scd2ElgQQoJjEjtx7BnP57HnG4BXOtOpoUzFmS5knGorY5lTHXOVlsYiYjB-obg_yccH6ZvD7PCnKP7AD9E73Jxm-PnaKfixtts_SENdBDau79z-fcqK63AjzRPukjfsfugJpChKZ4gvYix2aeg72saEbq_WXzVLv2HNVejqbc_oDoiu1eHIyeet5UJuqdNfCB3_57fuwu0WmJKdIEn34Jpp7sOtqssH9wCW3qz5E15k3yBmvzz7Xjnnz7dTo8nQHaiZzuY-rQ7OoKS6PL8YkxGazeBtbOM9ydepINWn6Ql-K7wQrR5pJ97miHhfGOk4c838IRyMhh-rcdwmbYhVWuCkW1IpTa5LUxRyIKTQpbBaMJFRrnLJUqMTwbnIyzIvrS5YZpUcGEWN1rjWtAl7BGvNrDGPgcicq6zkiukCcRNVwiCasGagucyszFQEcTdmtWoZzV1ijS914GKmtevMuu_MCF735Y8Dl8cfS252IlC3Oj2vqSMr5C40N4KX_WMcBLfFIhozW7oyFFtcIAaOYCOITv8pBMpoengSAfUC8Jc21DuTvWF_9eRfKr2Am-93R_W7vcnbp7DubvsoSroJa4uTpXmGcGohn3uNuQJLghqW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal-Catalyzed+Enantioselective+C-H+Functionalization+via+Chiral+Transient+Directing+Group+Strategies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liao%2C+Gang&rft.au=Zhang%2C+Tao&rft.au=Lin%2C+Zhi-Keng&rft.au=Shi%2C+Bing-Feng&rft.date=2020-11-02&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=45&rft.spage=19773&rft_id=info:doi/10.1002%2Fanie.202008437&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon