Transition Metal‐Catalyzed Enantioselective C−H Functionalization via Chiral Transient Directing Group Strategies
Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled s...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 45; pp. 19773 - 19786 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.11.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors.
Chiral transient directing group (cTDG) strategies give rise to fundamentally new concepts in asymmetric C−H activation and enable the synthesis of chiral molecules without the need of pre‐installation and removal of directing groups. This Minireview provides an overview of recent advances in cTDG for the construction of chiral compounds with different types of chirality. |
---|---|
AbstractList | Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors. Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group-enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C-H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors.Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group-enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C-H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors. Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors. Chiral transient directing group (cTDG) strategies give rise to fundamentally new concepts in asymmetric C−H activation and enable the synthesis of chiral molecules without the need of pre‐installation and removal of directing groups. This Minireview provides an overview of recent advances in cTDG for the construction of chiral compounds with different types of chirality. Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group-enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C-H functionalization using chiral transient directing groups (cTDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of cTDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors. Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient synthetic approach to streamline the synthesis of complex chiral molecules. Despite significant progress, traditional directing group‐enabled strategies require additional steps for the installation and removal of directing groups from the target molecule. The recently developed asymmetric C−H functionalization using chiral transient directing groups ( c TDGs) offers a promising alternative that can circumvent this obstacle and therefore simplify the process. In this Minireview, we briefly discuss the advent and recent advances of this emerging concept, with an emphasis on discussing the creation of various stereogenic centers and the developments of c TDGs. Applications in natural product synthesis and ligand derivatizations are also discussed. We hope this Minireview will highlight the great potential of this strategy and help to inspire further endeavors. |
Author | Shi, Bing‐Feng Liao, Gang Lin, Zhi‐Keng Zhang, Tao |
Author_xml | – sequence: 1 givenname: Gang surname: Liao fullname: Liao, Gang organization: Zhejiang University – sequence: 2 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: National University of Singapore – sequence: 3 givenname: Zhi‐Keng surname: Lin fullname: Lin, Zhi‐Keng organization: National University of Singapore – sequence: 4 givenname: Bing‐Feng orcidid: 0000-0003-0375-955X surname: Shi fullname: Shi, Bing‐Feng email: bfshi@zju.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32687690$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAURi1URB-wZYkisWGTwa_EzrIK04dUYEFZWzfxTXGVcQY7KZquWHZZ8RP7S3A6LUiVEKtryed80r3fPtnxg0dCXjO6YJTy9-AdLjjllGop1DOyxwrOcqGU2ElvKUSudMF2yX6Ml4nXmpYvyK7gpVZlRffIdB7ARze6wWcfcYT-7udtDWlurtFmSw8-fUXssR3dFWb13c2vk-xo8u1sQO-u4V69cpDV31yAPtsGoh-zDy7Mmr_IjsMwrbMvY4ARLxzGl-R5B33EVw_zgHw9Wp7XJ_nZ5-PT-vAsb6UqVa5502BpNSrVMGjAaugsCCh41ZaNkGgpVBWUWpe6s0oUXdswbDlaqyXtqDgg77a56zB8nzCOZuVii30PHocpGi55oStVqCKhb5-gl8MU0oozVUhaSaVZot48UFOzQmvWwa0gbMzjQRMgt0AbhhgDdqZ14_2N0vKuN4yauTcz92b-9Ja0xRPtMfmfQrUVfrgeN_-hzeGn0-Vf9zcrTq8f |
CitedBy_id | crossref_primary_10_1021_jacs_2c08752 crossref_primary_10_1002_anie_202218871 crossref_primary_10_1038_s41467_023_43278_z crossref_primary_10_1021_acs_orglett_2c03760 crossref_primary_10_6023_cjoc202403012 crossref_primary_10_1002_ange_202303966 crossref_primary_10_1039_D1OB01683K crossref_primary_10_1002_anie_202402612 crossref_primary_10_1002_ange_202309709 crossref_primary_10_1021_acs_orglett_4c03142 crossref_primary_10_1038_s43586_021_00042_1 crossref_primary_10_1039_D1CC01690C crossref_primary_10_1039_D3CC03592A crossref_primary_10_1055_a_1672_6284 crossref_primary_10_1002_anie_202318803 crossref_primary_10_1039_D1QO00895A crossref_primary_10_1002_ange_202209895 crossref_primary_10_1021_acs_orglett_1c02692 crossref_primary_10_1016_j_checat_2024_101009 crossref_primary_10_3390_molecules28165956 crossref_primary_10_1021_acs_orglett_4c01656 crossref_primary_10_1002_anie_202401756 crossref_primary_10_1039_D4QO01905A crossref_primary_10_1016_j_molstruc_2022_134286 crossref_primary_10_1002_ange_202117340 crossref_primary_10_1021_acscentsci_4c02049 crossref_primary_10_1021_acs_chemrev_3c00327 crossref_primary_10_1055_a_2021_9514 crossref_primary_10_1002_ange_202401498 crossref_primary_10_1021_acs_joc_2c02938 crossref_primary_10_1039_D1OB00656H crossref_primary_10_1002_asia_202201259 crossref_primary_10_1002_adsc_202300208 crossref_primary_10_1021_acscatal_3c01709 crossref_primary_10_1002_ange_202421412 crossref_primary_10_1021_acs_orglett_1c00296 crossref_primary_10_1039_D3QO00316G crossref_primary_10_1039_D1SC02119B crossref_primary_10_1039_D3CC05052A crossref_primary_10_1055_a_2230_0759 crossref_primary_10_1002_anie_202407640 crossref_primary_10_1021_acs_orglett_1c00615 crossref_primary_10_1021_acs_orglett_2c00285 crossref_primary_10_1039_D1CC04877E crossref_primary_10_1002_ange_202108853 crossref_primary_10_1021_acscatal_3c04661 crossref_primary_10_1021_acs_orglett_1c02918 crossref_primary_10_1039_D0QO00988A crossref_primary_10_1016_j_chempr_2021_07_013 crossref_primary_10_1002_ange_202401756 crossref_primary_10_1021_jacs_3c00003 crossref_primary_10_1039_D1CC03971G crossref_primary_10_1039_D2SC03009H crossref_primary_10_1002_cssc_202002397 crossref_primary_10_1039_D5SC00014A crossref_primary_10_1021_acscatal_2c03187 crossref_primary_10_1016_j_tet_2025_134470 crossref_primary_10_1021_acs_oprd_4c00064 crossref_primary_10_1021_acs_orglett_4c01322 crossref_primary_10_1002_anie_202108853 crossref_primary_10_1021_acs_orglett_3c01590 crossref_primary_10_1021_acs_joc_2c01626 crossref_primary_10_1002_anie_202117340 crossref_primary_10_1002_anie_202210825 crossref_primary_10_1039_D3SC02714G crossref_primary_10_1002_ange_202103638 crossref_primary_10_2174_1385272827666230915101920 crossref_primary_10_34133_research_0293 crossref_primary_10_1021_acscatal_3c02199 crossref_primary_10_1021_acscatal_1c04473 crossref_primary_10_1002_ange_202402612 crossref_primary_10_1002_anie_202202892 crossref_primary_10_1039_D1SC01130H crossref_primary_10_1039_D5SC00158G crossref_primary_10_1039_D2QO00946C crossref_primary_10_1021_acs_orglett_4c01214 crossref_primary_10_1039_D1QO00183C crossref_primary_10_1002_anie_202303966 crossref_primary_10_1002_cjoc_202100466 crossref_primary_10_1021_acs_accounts_1c00168 crossref_primary_10_1002_cctc_202301764 crossref_primary_10_1039_D4QO02144D crossref_primary_10_1002_ange_202202892 crossref_primary_10_1002_anie_202012932 crossref_primary_10_1021_acs_chemrev_2c00032 crossref_primary_10_1080_17518253_2022_2134740 crossref_primary_10_1002_anie_202117233 crossref_primary_10_1021_acscatal_4c00513 crossref_primary_10_1039_D1OB00232E crossref_primary_10_1021_acscatal_2c02193 crossref_primary_10_1002_ajoc_202000566 crossref_primary_10_1055_a_1711_5889 crossref_primary_10_1002_ange_202310004 crossref_primary_10_1021_jacs_1c08562 crossref_primary_10_1002_anie_202211211 crossref_primary_10_1055_a_1677_5870 crossref_primary_10_1016_j_gresc_2021_12_005 crossref_primary_10_1021_acs_joc_4c00505 crossref_primary_10_1021_jacs_2c01223 crossref_primary_10_1021_acs_orglett_3c02307 crossref_primary_10_1002_adsc_202200396 crossref_primary_10_1021_acs_orglett_4c01540 crossref_primary_10_1038_s43586_021_00041_2 crossref_primary_10_1002_ange_202310112 crossref_primary_10_1002_ange_202210825 crossref_primary_10_1002_ange_202117233 crossref_primary_10_1039_D3QO01790G crossref_primary_10_1002_ange_202012932 crossref_primary_10_1021_acs_joc_2c01080 crossref_primary_10_1021_acs_orglett_0c03775 crossref_primary_10_1021_acs_orglett_2c02303 crossref_primary_10_1021_acs_orglett_4c04827 crossref_primary_10_1021_jacs_3c12234 crossref_primary_10_1039_D2QO00677D crossref_primary_10_1002_adsc_202300370 crossref_primary_10_1038_s41467_023_39968_3 crossref_primary_10_1039_D0SC06661C crossref_primary_10_1021_acs_accounts_1c00629 crossref_primary_10_1039_D1CC02765D crossref_primary_10_1002_chem_202100700 crossref_primary_10_1002_chem_202101598 crossref_primary_10_1002_anie_202103638 crossref_primary_10_1055_a_2310_0880 crossref_primary_10_6023_A23070336 crossref_primary_10_1021_acs_accounts_2c00175 crossref_primary_10_6023_cjoc202100052 crossref_primary_10_1039_D4SC06806H crossref_primary_10_1055_a_1954_4920 crossref_primary_10_1021_acs_chemrev_3c00149 crossref_primary_10_1055_a_2167_8298 crossref_primary_10_1039_D4SC02178A crossref_primary_10_6023_cjoc202204058 crossref_primary_10_1002_adsc_202200659 crossref_primary_10_1021_acs_orglett_2c01981 crossref_primary_10_1002_anie_202421412 crossref_primary_10_1007_s11426_023_1637_8 crossref_primary_10_1039_D3CC01328F crossref_primary_10_1021_acs_orglett_1c00204 crossref_primary_10_1002_anie_202310112 crossref_primary_10_1021_acscatal_2c02691 crossref_primary_10_1021_acs_chemrev_1c00519 crossref_primary_10_1039_D1CC05042G crossref_primary_10_1039_D4SC01837K crossref_primary_10_1016_j_cclet_2024_110310 crossref_primary_10_1021_acs_orglett_4c02692 crossref_primary_10_1002_anie_202115221 crossref_primary_10_1021_acscatal_2c03531 crossref_primary_10_1039_D4OB02090A crossref_primary_10_1021_acs_orglett_0c03757 crossref_primary_10_1002_anie_202310004 crossref_primary_10_1021_acs_orglett_4c03315 crossref_primary_10_1002_anie_202209895 crossref_primary_10_6023_cjoc202100071 crossref_primary_10_1002_ange_202211211 crossref_primary_10_1021_acscatal_4c02092 crossref_primary_10_1007_s11426_021_1068_2 crossref_primary_10_1039_D4SC00649F crossref_primary_10_1021_acscatal_4c06579 crossref_primary_10_1055_a_1588_0072 crossref_primary_10_1021_acscatal_1c05080 crossref_primary_10_1021_acs_orglett_3c03568 crossref_primary_10_1021_acs_orglett_0c02872 crossref_primary_10_1021_acscatal_4c03944 crossref_primary_10_1002_anie_202309709 crossref_primary_10_1021_acscatal_2c04292 crossref_primary_10_1002_adsc_202300167 crossref_primary_10_1021_acs_orglett_1c00107 crossref_primary_10_1021_jacs_1c03111 crossref_primary_10_1021_acscatal_2c06355 crossref_primary_10_1002_ange_202407640 crossref_primary_10_1002_ange_202218871 crossref_primary_10_3390_catal14110813 crossref_primary_10_1039_D1QO01344K crossref_primary_10_1002_ejoc_202300582 crossref_primary_10_1021_acs_joc_0c01906 crossref_primary_10_1021_acscatal_4c06788 crossref_primary_10_1039_D3QO00598D crossref_primary_10_1021_acs_joc_2c00234 crossref_primary_10_1021_acs_orglett_1c02513 crossref_primary_10_1021_acs_orglett_1c03967 crossref_primary_10_1021_acs_orglett_2c00686 crossref_primary_10_1039_D4CY01098A crossref_primary_10_1021_acs_chemrev_3c00059 crossref_primary_10_1021_acs_orglett_0c03734 crossref_primary_10_1002_chem_202302788 crossref_primary_10_1002_adsc_202101242 crossref_primary_10_1002_anie_202401498 crossref_primary_10_1039_D3CS00762F crossref_primary_10_1039_D1QO00133G crossref_primary_10_1039_D2QO00765G crossref_primary_10_1021_acscatal_4c00572 crossref_primary_10_1039_D1SC04687J crossref_primary_10_1039_D1QO01884A crossref_primary_10_3389_fchem_2021_687817 crossref_primary_10_1016_j_chempr_2023_04_003 crossref_primary_10_1039_D2SC06131G crossref_primary_10_1016_j_xcrp_2023_101423 crossref_primary_10_1002_ange_202115221 crossref_primary_10_1039_D3CC06011J crossref_primary_10_1021_acs_orglett_3c02969 crossref_primary_10_1002_ange_202312923 crossref_primary_10_1021_acscatal_1c01351 crossref_primary_10_1021_jacs_3c08129 crossref_primary_10_1002_adsc_202100325 crossref_primary_10_1021_acs_orglett_2c01141 crossref_primary_10_1021_acs_orglett_4c02819 crossref_primary_10_1021_acs_orglett_4c02138 crossref_primary_10_1039_D4QO02236J crossref_primary_10_6023_cjoc202104004 crossref_primary_10_1021_acsomega_1c05830 crossref_primary_10_1002_ange_202105776 crossref_primary_10_1021_acs_joc_4c00329 crossref_primary_10_1039_D0QO01227K crossref_primary_10_1002_anie_202214584 crossref_primary_10_1021_acs_orglett_3c02721 crossref_primary_10_1039_D2CY00164K crossref_primary_10_1021_jacs_0c13057 crossref_primary_10_1021_acscatal_1c02450 crossref_primary_10_1021_jacs_2c08285 crossref_primary_10_1021_jacs_4c18255 crossref_primary_10_1021_acs_orglett_2c03699 crossref_primary_10_1002_ange_202105093 crossref_primary_10_1002_ajoc_202300579 crossref_primary_10_1039_D2QO01390H crossref_primary_10_1021_jacsau_3c00623 crossref_primary_10_1021_acscatal_0c03317 crossref_primary_10_6023_cjoc202110027 crossref_primary_10_6023_cjoc202300067 crossref_primary_10_1021_acs_orglett_3c01865 crossref_primary_10_1021_jacs_3c01162 crossref_primary_10_1021_acscatal_0c05081 crossref_primary_10_1021_acs_orglett_1c02722 crossref_primary_10_1021_acscatal_4c04837 crossref_primary_10_1002_ange_202318803 crossref_primary_10_1038_s41570_021_00311_3 crossref_primary_10_1021_acs_chemrev_1c00220 crossref_primary_10_1039_D2RA00241H crossref_primary_10_1016_j_chempr_2021_11_015 crossref_primary_10_1002_anie_202105093 crossref_primary_10_59761_RCR5104 crossref_primary_10_1039_D2OB00558A crossref_primary_10_1021_acs_orglett_1c01632 crossref_primary_10_1055_a_1770_1078 crossref_primary_10_1002_adsc_202001475 crossref_primary_10_1021_acscatal_5c00132 crossref_primary_10_1002_chem_202100093 crossref_primary_10_1021_acs_orglett_1c01083 crossref_primary_10_1021_acscatal_4c01212 crossref_primary_10_1021_jacs_2c01985 crossref_primary_10_1039_D2SC00748G crossref_primary_10_1002_anie_202312923 crossref_primary_10_1021_acscatal_2c00962 crossref_primary_10_1016_j_checat_2025_101329 crossref_primary_10_1039_D1QO00056J crossref_primary_10_1016_j_jmgm_2023_108551 crossref_primary_10_1002_aoc_7626 crossref_primary_10_1021_acs_orglett_1c04215 crossref_primary_10_1002_anie_202105776 crossref_primary_10_1002_advs_202309706 crossref_primary_10_1002_ange_202214584 crossref_primary_10_1021_acs_orglett_1c02041 crossref_primary_10_1038_s41467_024_47589_7 crossref_primary_10_1039_D0OB01587C crossref_primary_10_1002_cjoc_202300398 crossref_primary_10_1021_acscatal_3c05955 |
Cites_doi | 10.1002/anie.200462884 10.1021/acs.chemrev.6b00622 10.1016/j.trechm.2019.03.013 10.1002/anie.201913733 10.1039/C5CS00012B 10.1038/nchem.2710 10.1002/ange.201904214 10.1021/ar9000058 10.1002/anie.200462661 10.1002/anie.201801130 10.1016/j.chempr.2017.11.002 10.1002/anie.201407865 10.1039/C8OB00926K 10.1002/cssc.201900151 10.1126/science.1254465 10.1007/3418_2015_130 10.1021/ar5004626 10.1016/j.chempr.2018.08.011 10.1002/ange.202000532 10.1002/anie.201808700 10.1021/acs.orglett.5b00844 10.1039/c1cs15082k 10.1021/acscatal.7b04343 10.1039/c1cc10683j 10.1021/acs.organomet.9b00490 10.1002/cjoc.201900090 10.1002/anie.201902126 10.1002/anie.201713106 10.1002/adsc.201300446 10.1021/acs.accounts.7b00602 10.1002/ange.201701467 10.1021/acs.accounts.6b00573 10.1002/anie.201201666 10.1021/acs.orglett.7b02906 10.1002/ejoc.200500394 10.1039/C9CC03967H 10.1021/acs.orglett.7b00608 10.1002/ange.200602482 10.1002/anie.200806273 10.1021/cr100412j 10.1002/cjoc.201800478 10.1126/science.aat4210 10.6023/cjoc201903050 10.1039/C4QO00068D 10.1002/anie.200901719 10.1021/acs.chemrev.6b00692 10.1039/C7CC06863H 10.1021/acs.accounts.9b00549 10.1002/anie.200390037 10.1039/c2sc20277h 10.1002/ange.201902126 10.1021/acs.orglett.9b01099 10.1016/S0040-4039(97)01562-1 10.1002/anie.201408805 10.1002/ange.201906700 10.1002/ange.201309207 10.1002/anie.201701467 10.1021/cr050531b 10.1021/ol402145m 10.1021/acs.accounts.6b00613 10.1021/jacs.9b12299 10.1002/cjoc.201900468 10.1021/acs.chemrev.6b00657 10.1002/ange.200503627 10.1021/jacs.6b09634 10.1021/acscatal.7b04337 10.1021/jacs.6b04966 10.1002/anie.201812116 10.1021/acs.chemrev.6b00554 10.1002/ange.201915949 10.1021/ar020153m 10.1039/C6SC04157D 10.6023/cjoc201904030 10.1039/C8RA03230K 10.6023/A19060222 10.1021/cr900184e 10.1126/science.aad7893 10.6023/A20020027 10.1021/ja0394986 10.1039/C8CS00201K 10.1002/ange.201811256 10.1002/chem.201905417 10.1002/ange.200390005 10.1002/chem.201302576 10.1021/acscatal.7b01855 10.1021/acscatal.5b00050 10.1002/anie.202000532 10.1002/ange.201808700 10.1016/j.chempr.2019.12.011 10.1021/jo961887d 10.1039/C6CS00371K 10.1002/anie.201906700 10.1021/jacs.8b06676 10.1039/c0cs00182a 10.1016/j.tet.2016.03.060 10.1002/ange.201701849 10.1021/acscatal.8b04870 10.1039/c1cs15013h 10.1039/c3ra46996d 10.1002/ange.201713106 10.1002/anie.200602482 10.1039/C5DT01373A 10.1002/cjoc.202000131 10.1002/ange.200806273 10.1021/acs.chemrev.5b00136 10.1021/om050700i 10.1002/anie.201904214 10.1038/s41557-018-0048-1 10.1021/acs.chemrev.9b00495 10.1002/9783527635207 10.1021/acscentsci.6b00032 10.1002/anie.201309207 10.1002/ange.201801130 10.1002/ange.200462661 10.1021/acs.orglett.9b02243 10.1021/acs.chemrev.8b00507 10.6023/cjoc202000030 10.1039/C6QO00156D 10.1039/C8CS00716K 10.1039/C7CS00496F 10.1021/ar990077w 10.1002/anie.201915949 10.1021/cr100155e 10.1002/ange.201812116 10.1038/ncomms15238 10.1016/j.tetlet.2003.09.151 10.1016/j.tetlet.2018.01.098 10.1126/science.aao4798 10.1039/C7CC09273C 10.1002/ange.201201666 10.1002/anie.201811256 10.1021/ja306123m 10.1021/cr900005n 10.1002/chem.201603507 10.1002/ange.200462884 10.1002/ange.201913733 10.1002/ange.200901719 10.1021/jo300779q 10.1002/chem.201900762 10.1021/jacs.9b07251 10.1002/ange.201407865 10.1002/ange.201408805 10.1002/anie.201701849 10.1002/9783527810857.ch4 10.1002/anie.200503627 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202008437 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 19786 |
ExternalDocumentID | 32687690 10_1002_anie_202008437 ANIE202008437 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Out-standing Young Talents of Zhejiang Province High-level Personnel of Special Support funderid: ZJWR0108 – fundername: the Fundamental Research Funds for the Central Universities funderid: 2018XZZX001-02 – fundername: National Natural Science Foundation of China funderid: 21901228; 21925109; 21772170 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4767-82bbe6d8e77b1abad8afda3a529c6b34ed0a99a68868fd735fcb1ec2edd840f03 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 13:57:19 EDT 2025 Fri Jul 25 10:43:43 EDT 2025 Wed Feb 19 02:29:50 EST 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 01:17:44 EDT 2025 Wed Jan 22 16:31:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | enantioselectivity C−H activation asymmetric catalysis total synthesis chiral transient directing group |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-82bbe6d8e77b1abad8afda3a529c6b34ed0a99a68868fd735fcb1ec2edd840f03 |
Notes | Dedicated to the 70th anniversary of Shanghai Institute of Organic Chemistry, CAS ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0375-955X |
PMID | 32687690 |
PQID | 2454094781 |
PQPubID | 946352 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2425897575 proquest_journals_2454094781 pubmed_primary_32687690 crossref_citationtrail_10_1002_anie_202008437 crossref_primary_10_1002_anie_202008437 wiley_primary_10_1002_anie_202008437_ANIE202008437 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2, 2020 |
PublicationDateYYYYMMDD | 2020-11-02 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2, 2020 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 7 2017; 8 2004; 126 2018; 360 2009; 42 2009 2009; 48 121 2020; 120 2019; 55 2019; 12 2017; 46 2020 2020; 59 132 2016; 72 2017; 9 2011; 111 2017; 117 2018; 47 2005; 24 2014; 1 2013; 19 2015; 48 2020; 6 2018; 8 2013; 15 2014; 4 2012; 134 2018; 4 2020; 53 2019; 21 2018 2018; 57 130 2012 2012; 51 124 2005; 105 2015; 44 2019; 25 2010; 110 2005 2005; 44 117 2013; 355 2019; 119 2016; 351 2003; 44 2016; 45 2019; 9 2015; 17 1997; 62 2015; 5 2018; 140 2011 2019; 77 2020; 142 2020; 40 2019; 1 2011; 40 2015; 55 2019; 37 2019; 39 2020; 38 2019; 38 2003; 36 2005 2020; 78 2003 2003; 42 115 2017 2017; 56 129 2019; 141 2012; 77 2019 2019; 58 131 2017; 139 2017; 50 2006 2006; 45 118 2017; 53 2012; 3 2016; 2 2016; 3 2018; 359 2015; 115 2020 2000; 33 2020 2020 2019 2020; 26 1997; 38 2017; 19 2016; 138 2018; 51 2011; 47 2018; 10 2018; 54 2018; 16 2014; 345 2018; 59 2016; 22 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_98_2 e_1_2_9_71_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_10_1 e_1_2_9_94_2 e_1_2_9_75_2 e_1_2_9_90_2 e_1_2_9_90_3 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_2 e_1_2_9_103_2 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_141_1 e_1_2_9_18_2 e_1_2_9_79_2 Yan S.-Y. (e_1_2_9_42_2) 2019 e_1_2_9_41_1 e_1_2_9_87_2 e_1_2_9_68_1 e_1_2_9_45_2 e_1_2_9_83_2 e_1_2_9_64_3 e_1_2_9_22_2 e_1_2_9_64_2 e_1_2_9_6_2 e_1_2_9_119_2 e_1_2_9_60_1 e_1_2_9_2_2 e_1_2_9_111_2 e_1_2_9_138_2 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_2 e_1_2_9_130_1 e_1_2_9_68_2 e_1_2_9_30_2 e_1_2_9_99_1 e_1_2_9_99_2 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_76_3 e_1_2_9_95_1 e_1_2_9_76_2 e_1_2_9_95_2 e_1_2_9_11_2 e_1_2_9_53_2 e_1_2_9_91_2 e_1_2_9_129_2 e_1_2_9_129_3 e_1_2_9_102_2 e_1_2_9_125_2 e_1_2_9_121_2 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_140_1 e_1_2_9_38_2 e_1_2_9_15_2 e_1_2_9_57_2 e_1_2_9_19_2 e_1_2_9_88_2 e_1_2_9_61_1 e_1_2_9_23_2 e_1_2_9_65_2 e_1_2_9_84_2 e_1_2_9_5_2 e_1_2_9_80_2 e_1_2_9_118_3 e_1_2_9_80_3 e_1_2_9_118_2 e_1_2_9_1_1 e_1_2_9_114_1 (e_1_2_9_115_2) 2019; 131 e_1_2_9_137_2 e_1_2_9_110_3 e_1_2_9_137_3 e_1_2_9_110_2 e_1_2_9_133_1 e_1_2_9_9_2 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_69_1 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_92_3 e_1_2_9_77_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_96_1 e_1_2_9_109_1 e_1_2_9_92_2 e_1_2_9_101_2 Wu Y.-J. (e_1_2_9_40_2) 2020 e_1_2_9_128_2 e_1_2_9_143_2 e_1_2_9_105_2 e_1_2_9_124_2 e_1_2_9_58_3 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_120_2 e_1_2_9_16_3 e_1_2_9_39_2 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_2 e_1_2_9_43_3 e_1_2_9_66_1 e_1_2_9_43_2 e_1_2_9_85_2 e_1_2_9_4_2 e_1_2_9_81_2 e_1_2_9_136_2 e_1_2_9_113_1 e_1_2_9_132_2 e_1_2_9_117_1 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_47_1 e_1_2_9_89_3 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_97_2 e_1_2_9_51_1 e_1_2_9_70_3 e_1_2_9_32_3 e_1_2_9_93_2 e_1_2_9_78_1 e_1_2_9_93_3 e_1_2_9_55_1 e_1_2_9_32_2 e_1_2_9_108_1 e_1_2_9_70_2 e_1_2_9_127_2 e_1_2_9_100_1 e_1_2_9_104_2 e_1_2_9_123_2 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_36_2 e_1_2_9_142_2 e_1_2_9_17_2 e_1_2_9_86_2 e_1_2_9_63_1 e_1_2_9_44_2 e_1_2_9_82_2 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_7_2 e_1_2_9_3_3 e_1_2_9_3_2 Dhawa U. (e_1_2_9_97_1) 2020 e_1_2_9_112_2 e_1_2_9_139_2 e_1_2_9_116_1 e_1_2_9_135_2 e_1_2_9_25_2 e_1_2_9_48_1 e_1_2_9_131_2 e_1_2_9_29_2 |
References_xml | – year: 2011 – volume: 355 start-page: 2139 year: 2013 publication-title: Adv. Synth. Catal. – volume: 42 start-page: 1074 year: 2009 publication-title: Acc. Chem. Res. – volume: 19 start-page: 6280 year: 2017 publication-title: Org. Lett. – volume: 17 start-page: 2034 year: 2015 publication-title: Org. Lett. – volume: 72 start-page: 5238 year: 2016 publication-title: Tetrahedron – volume: 50 start-page: 609 year: 2017 publication-title: Acc. Chem. Res. – volume: 15 start-page: 5166 year: 2013 publication-title: Org. Lett. – volume: 55 start-page: 217 year: 2015 publication-title: Top. Organomet. Chem. – volume: 140 start-page: 9774 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 647 year: 2019 publication-title: Chin. J. Chem. – volume: 12 start-page: 2955 year: 2019 publication-title: ChemSusChem – volume: 38 start-page: 543 year: 2020 publication-title: Chin. J. Chem. – volume: 1 start-page: 471 year: 2019 publication-title: Trends Chem. – volume: 8 start-page: 2805 year: 2018 publication-title: ACS Catal. – volume: 134 start-page: 13954 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1863 year: 2015 publication-title: ACS Catal. – volume: 48 121 start-page: 6398 6516 year: 2009 2009 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 118 start-page: 2766 2832 year: 2006 2006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 8960 9092 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 start-page: 412 year: 2000 publication-title: Acc. Chem. Res. – volume: 22 start-page: 17397 year: 2016 publication-title: Chem. Eur. J. – volume: 48 start-page: 1053 year: 2015 publication-title: Acc. Chem. Res. – volume: 19 start-page: 14010 year: 2013 publication-title: Chem. Eur. J. – volume: 53 126 start-page: 507 517 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 6603 year: 2018 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 6361 year: 2019 publication-title: Org. Lett. – volume: 45 start-page: 6462 year: 2016 publication-title: Chem. Soc. Rev. – year: 2020 publication-title: Chin. J. Org. Chem. – volume: 40 start-page: 5068 year: 2011 publication-title: Chem. Soc. Rev. – volume: 77 start-page: 5884 year: 2012 publication-title: J. Org. Chem. – volume: 44 117 start-page: 5384 5518 year: 2005 2005 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 425 year: 2020 publication-title: Acc. Chem. Res. – volume: 47 start-page: 8925 year: 2018 publication-title: Chem. Soc. Rev. – year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 1976 year: 2011 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 1269 year: 2018 publication-title: Tetrahedron Lett. – volume: 40 start-page: 1787 year: 2020 publication-title: Chin. J. Org. Chem. – volume: 117 start-page: 9433 year: 2017 publication-title: Chem. Rev. – volume: 142 start-page: 2161 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 11239 year: 2015 publication-title: Chem. Rev. – volume: 19 start-page: 1842 year: 2017 publication-title: Org. Lett. – volume: 119 start-page: 2192 year: 2019 publication-title: Chem. Rev. – volume: 55 start-page: 8514 year: 2019 publication-title: Chem. Commun. – volume: 4 start-page: 6173 year: 2014 publication-title: RSC Adv. – volume: 7 start-page: 5316 year: 2017 publication-title: ACS Catal. – volume: 58 131 start-page: 10820 10934 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 111 start-page: 1315 year: 2011 publication-title: Chem. Rev. – volume: 25 start-page: 4688 year: 2019 publication-title: Chem. Eur. J. – volume: 62 start-page: 1200 year: 1997 publication-title: J. Org. Chem. – volume: 16 start-page: 4582 year: 2018 publication-title: Org. Biomol. Chem. – volume: 38 start-page: 6673 year: 1997 publication-title: Tetrahedron Lett. – volume: 40 start-page: 1885 year: 2011 publication-title: Chem. Soc. Rev. – volume: 59 132 start-page: 3475 3503 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 351 start-page: 252 year: 2016 publication-title: Science – volume: 57 130 start-page: 4668 4758 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 659 year: 2003 publication-title: Acc. Chem. Res. – volume: 110 start-page: 624 year: 2010 publication-title: Chem. Rev. – volume: 9 start-page: 558 year: 2017 publication-title: Nat. Chem. – volume: 24 start-page: 5737 year: 2005 publication-title: Organometallics – volume: 2 start-page: 281 year: 2016 publication-title: ACS Cent. Sci. – volume: 46 start-page: 7145 year: 2017 publication-title: Chem. Soc. Rev. – volume: 77 start-page: 690 year: 2019 publication-title: Acta Chim. Sinica – volume: 360 start-page: 1438 year: 2018 publication-title: Science – volume: 117 start-page: 8754 year: 2017 publication-title: Chem. Rev. – volume: 50 start-page: 351 year: 2017 publication-title: Acc. Chem. Res. – volume: 42 115 start-page: 112 116 year: 2003 2003 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 3661 3723 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 864 year: 2017 publication-title: Chem. Sci. – volume: 58 131 start-page: 12803 12934 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 6576 6638 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 4777 4855 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 105 start-page: 4581 year: 2005 publication-title: Chem. Rev. – volume: 126 start-page: 7192 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 10128 year: 2015 publication-title: Dalton Trans. – volume: 3 start-page: 2165 year: 2012 publication-title: Chem. Sci. – volume: 6 start-page: 497 year: 2020 publication-title: Chem – volume: 58 131 start-page: 6708 6780 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 359 year: 2018 publication-title: Science – volume: 53 126 start-page: 13244 13460 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 843 year: 2014 publication-title: Org. Chem. Front. – volume: 38 start-page: 635 year: 2020 publication-title: Chin. J. Chem. – volume: 141 start-page: 15730 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 7346 year: 2020 publication-title: Chem. Eur. J. – volume: 44 start-page: 8665 year: 2003 publication-title: Tetrahedron Lett. – volume: 48 121 start-page: 5094 5196 year: 2009 2009 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 1028 year: 2016 publication-title: Org. Chem. Front. – volume: 58 131 start-page: 6818 6890 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 4022 year: 2019 publication-title: Organometallics – volume: 117 start-page: 8908 year: 2017 publication-title: Chem. Rev. – volume: 39 start-page: 1655 year: 2019 publication-title: Chin. J. Org. Chem. – volume: 44 117 start-page: 2112 2150 year: 2005 2005 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 4223 year: 2005 publication-title: Eur. J. Org. Chem. – volume: 4 start-page: 2026 year: 2018 publication-title: Chem – volume: 111 start-page: 563 year: 2011 publication-title: Chem. Rev. – volume: 44 start-page: 3418 year: 2015 publication-title: Chem. Soc. Rev. – volume: 53 126 start-page: 13871 14091 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 103 year: 2019 publication-title: Chin. J. Chem. – volume: 4 start-page: 199 year: 2018 publication-title: Chem – volume: 117 start-page: 8977 year: 2017 publication-title: Chem. Rev. – volume: 110 start-page: 1147 year: 2010 publication-title: Chem. Rev. – volume: 138 start-page: 9269 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 12385 year: 2017 publication-title: Chem. Commun. – volume: 9 start-page: 1956 year: 2019 publication-title: ACS Catal. – volume: 39 start-page: 1522 year: 2019 publication-title: Chin. J. Org. Chem. – volume: 57 130 start-page: 17151 17397 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 6617 6717 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 6635 year: 2011 publication-title: Chem. Commun. – volume: 8 start-page: 2981 year: 2018 publication-title: ACS Catal. – volume: 120 start-page: 1788 year: 2020 publication-title: Chem. Rev. – volume: 51 start-page: 534 year: 2018 publication-title: Acc. Chem. Res. – volume: 58 131 start-page: 11464 11586 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 107 year: 2019 end-page: 130 – volume: 10 start-page: 755 year: 2018 publication-title: Nat. Chem. – volume: 78 start-page: 289 year: 2020 publication-title: Acta Chim. Sinica – volume: 8 start-page: 15238 year: 2017 publication-title: Nat. Commun. – volume: 345 start-page: 68 year: 2014 publication-title: Science – volume: 8 start-page: 19456 year: 2018 publication-title: RSC Adv. – volume: 139 start-page: 1714 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 3352 year: 2019 publication-title: Org. Lett. – volume: 59 132 start-page: 9594 9681 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 689 year: 2018 publication-title: Chem. Commun. – volume: 45 118 start-page: 7674 7836 year: 2006 2006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_9_43_2 doi: 10.1002/anie.200462884 – ident: e_1_2_9_9_2 doi: 10.1021/acs.chemrev.6b00622 – ident: e_1_2_9_48_1 – ident: e_1_2_9_142_2 doi: 10.1016/j.trechm.2019.03.013 – ident: e_1_2_9_68_1 doi: 10.1002/anie.201913733 – ident: e_1_2_9_81_2 doi: 10.1039/C5CS00012B – ident: e_1_2_9_119_2 doi: 10.1038/nchem.2710 – ident: e_1_2_9_32_3 doi: 10.1002/ange.201904214 – ident: e_1_2_9_2_2 doi: 10.1021/ar9000058 – ident: e_1_2_9_78_1 – ident: e_1_2_9_141_1 – ident: e_1_2_9_80_2 doi: 10.1002/anie.200462661 – ident: e_1_2_9_92_2 doi: 10.1002/anie.201801130 – ident: e_1_2_9_36_2 doi: 10.1016/j.chempr.2017.11.002 – ident: e_1_2_9_89_2 doi: 10.1002/anie.201407865 – ident: e_1_2_9_37_2 doi: 10.1039/C8OB00926K – ident: e_1_2_9_39_2 doi: 10.1002/cssc.201900151 – ident: e_1_2_9_54_2 doi: 10.1126/science.1254465 – ident: e_1_2_9_19_2 doi: 10.1007/3418_2015_130 – ident: e_1_2_9_12_2 doi: 10.1021/ar5004626 – ident: e_1_2_9_63_1 – ident: e_1_2_9_112_2 doi: 10.1016/j.chempr.2018.08.011 – year: 2020 ident: e_1_2_9_40_2 publication-title: Chin. J. Org. Chem. – ident: e_1_2_9_64_3 doi: 10.1002/ange.202000532 – ident: e_1_2_9_110_2 doi: 10.1002/anie.201808700 – ident: e_1_2_9_46_2 doi: 10.1021/acs.orglett.5b00844 – ident: e_1_2_9_7_2 doi: 10.1039/c1cs15082k – ident: e_1_2_9_103_2 doi: 10.1021/acscatal.7b04343 – ident: e_1_2_9_59_2 doi: 10.1039/c1cc10683j – ident: e_1_2_9_107_1 doi: 10.1021/acs.organomet.9b00490 – ident: e_1_2_9_52_1 – ident: e_1_2_9_31_2 doi: 10.1002/cjoc.201900090 – ident: e_1_2_9_93_2 doi: 10.1002/anie.201902126 – ident: e_1_2_9_126_1 – ident: e_1_2_9_98_1 doi: 10.1002/anie.201713106 – ident: e_1_2_9_44_2 doi: 10.1002/adsc.201300446 – ident: e_1_2_9_84_2 doi: 10.1021/acs.accounts.7b00602 – ident: e_1_2_9_118_3 doi: 10.1002/ange.201701467 – ident: e_1_2_9_132_2 doi: 10.1021/acs.accounts.6b00573 – ident: e_1_2_9_137_2 doi: 10.1002/anie.201201666 – ident: e_1_2_9_140_1 doi: 10.1021/acs.orglett.7b02906 – ident: e_1_2_9_79_2 doi: 10.1002/ejoc.200500394 – ident: e_1_2_9_85_2 doi: 10.1039/C9CC03967H – ident: e_1_2_9_91_2 doi: 10.1021/acs.orglett.7b00608 – ident: e_1_2_9_129_3 doi: 10.1002/ange.200602482 – ident: e_1_2_9_3_2 doi: 10.1002/anie.200806273 – ident: e_1_2_9_6_2 doi: 10.1021/cr100412j – ident: e_1_2_9_111_2 doi: 10.1002/cjoc.201800478 – ident: e_1_2_9_114_1 doi: 10.1126/science.aat4210 – ident: e_1_2_9_121_2 doi: 10.6023/cjoc201903050 – ident: e_1_2_9_11_2 doi: 10.1039/C4QO00068D – ident: e_1_2_9_76_2 doi: 10.1002/anie.200901719 – ident: e_1_2_9_29_2 doi: 10.1021/acs.chemrev.6b00692 – ident: e_1_2_9_101_2 doi: 10.1039/C7CC06863H – ident: e_1_2_9_87_2 doi: 10.1021/acs.accounts.9b00549 – ident: e_1_2_9_51_1 doi: 10.1002/anie.200390037 – ident: e_1_2_9_88_2 doi: 10.1039/c2sc20277h – ident: e_1_2_9_93_3 doi: 10.1002/ange.201902126 – ident: e_1_2_9_96_1 doi: 10.1021/acs.orglett.9b01099 – ident: e_1_2_9_50_2 doi: 10.1016/S0040-4039(97)01562-1 – ident: e_1_2_9_90_2 doi: 10.1002/anie.201408805 – volume: 131 start-page: 11586 year: 2019 ident: e_1_2_9_115_2 publication-title: Angew. Chem. doi: 10.1002/ange.201906700 – ident: e_1_2_9_70_3 doi: 10.1002/ange.201309207 – ident: e_1_2_9_1_1 – ident: e_1_2_9_118_2 doi: 10.1002/anie.201701467 – ident: e_1_2_9_74_2 doi: 10.1021/cr050531b – ident: e_1_2_9_66_1 doi: 10.1021/ol402145m – ident: e_1_2_9_22_2 doi: 10.1021/acs.accounts.6b00613 – ident: e_1_2_9_94_2 doi: 10.1021/jacs.9b12299 – ident: e_1_2_9_14_2 doi: 10.1002/cjoc.201900468 – ident: e_1_2_9_47_1 doi: 10.1021/acs.chemrev.6b00657 – ident: e_1_2_9_58_3 doi: 10.1002/ange.200503627 – ident: e_1_2_9_104_2 doi: 10.1021/jacs.6b09634 – ident: e_1_2_9_83_2 doi: 10.1021/acscatal.7b04337 – ident: e_1_2_9_21_1 – ident: e_1_2_9_65_2 doi: 10.1021/jacs.6b04966 – ident: e_1_2_9_16_2 doi: 10.1002/anie.201812116 – ident: e_1_2_9_35_2 doi: 10.1021/acs.chemrev.6b00554 – ident: e_1_2_9_125_2 doi: 10.1002/ange.201915949 – ident: e_1_2_9_128_2 doi: 10.1021/ar020153m – ident: e_1_2_9_23_2 doi: 10.1039/C6SC04157D – ident: e_1_2_9_102_2 doi: 10.6023/cjoc201904030 – ident: e_1_2_9_109_1 – ident: e_1_2_9_38_2 doi: 10.1039/C8RA03230K – ident: e_1_2_9_86_2 doi: 10.6023/A19060222 – ident: e_1_2_9_4_2 doi: 10.1021/cr900184e – ident: e_1_2_9_61_1 doi: 10.1126/science.aad7893 – ident: e_1_2_9_25_2 doi: 10.6023/A20020027 – ident: e_1_2_9_71_2 doi: 10.1021/ja0394986 – ident: e_1_2_9_13_2 doi: 10.1039/C8CS00201K – ident: e_1_2_9_34_1 – ident: e_1_2_9_99_2 doi: 10.1002/ange.201811256 – ident: e_1_2_9_33_2 doi: 10.1002/chem.201905417 – ident: e_1_2_9_100_1 – ident: e_1_2_9_51_2 doi: 10.1002/ange.200390005 – ident: e_1_2_9_27_2 doi: 10.1002/chem.201302576 – ident: e_1_2_9_105_2 doi: 10.1021/acscatal.7b01855 – ident: e_1_2_9_8_2 doi: 10.1021/acscatal.5b00050 – ident: e_1_2_9_64_2 doi: 10.1002/anie.202000532 – ident: e_1_2_9_110_3 doi: 10.1002/ange.201808700 – ident: e_1_2_9_122_2 doi: 10.1016/j.chempr.2019.12.011 – ident: e_1_2_9_49_2 doi: 10.1021/jo961887d – ident: e_1_2_9_116_1 doi: 10.1039/C6CS00371K – ident: e_1_2_9_115_1 doi: 10.1002/anie.201906700 – ident: e_1_2_9_73_1 – ident: e_1_2_9_113_1 doi: 10.1021/jacs.8b06676 – ident: e_1_2_9_135_2 doi: 10.1039/c0cs00182a – ident: e_1_2_9_139_2 doi: 10.1016/j.tet.2016.03.060 – ident: e_1_2_9_95_2 doi: 10.1002/ange.201701849 – ident: e_1_2_9_106_1 doi: 10.1021/acscatal.8b04870 – ident: e_1_2_9_136_2 doi: 10.1039/c1cs15013h – ident: e_1_2_9_28_2 doi: 10.1039/c3ra46996d – ident: e_1_2_9_98_2 doi: 10.1002/ange.201713106 – ident: e_1_2_9_129_2 doi: 10.1002/anie.200602482 – ident: e_1_2_9_131_2 doi: 10.1039/C5DT01373A – ident: e_1_2_9_124_2 doi: 10.1002/cjoc.202000131 – ident: e_1_2_9_3_3 doi: 10.1002/ange.200806273 – ident: e_1_2_9_82_2 doi: 10.1021/acs.chemrev.5b00136 – ident: e_1_2_9_57_2 doi: 10.1021/om050700i – ident: e_1_2_9_69_1 – ident: e_1_2_9_32_2 doi: 10.1002/anie.201904214 – ident: e_1_2_9_62_1 doi: 10.1038/s41557-018-0048-1 – ident: e_1_2_9_15_2 doi: 10.1021/acs.chemrev.9b00495 – ident: e_1_2_9_77_2 doi: 10.1002/9783527635207 – ident: e_1_2_9_55_1 – ident: e_1_2_9_20_1 doi: 10.1021/acscentsci.6b00032 – ident: e_1_2_9_41_1 – ident: e_1_2_9_70_2 doi: 10.1002/anie.201309207 – ident: e_1_2_9_92_3 doi: 10.1002/ange.201801130 – ident: e_1_2_9_80_3 doi: 10.1002/ange.200462661 – ident: e_1_2_9_108_1 doi: 10.1021/acs.orglett.9b02243 – ident: e_1_2_9_143_2 doi: 10.1021/acs.chemrev.8b00507 – ident: e_1_2_9_123_2 doi: 10.6023/cjoc202000030 – ident: e_1_2_9_18_2 doi: 10.1039/C6QO00156D – ident: e_1_2_9_134_1 – ident: e_1_2_9_138_2 doi: 10.1039/C8CS00716K – ident: e_1_2_9_17_2 doi: 10.1039/C7CS00496F – ident: e_1_2_9_127_2 doi: 10.1021/ar990077w – ident: e_1_2_9_125_1 doi: 10.1002/anie.201915949 – ident: e_1_2_9_75_2 doi: 10.1021/cr100155e – ident: e_1_2_9_16_3 doi: 10.1002/ange.201812116 – ident: e_1_2_9_120_2 doi: 10.1038/ncomms15238 – ident: e_1_2_9_56_2 doi: 10.1016/j.tetlet.2003.09.151 – ident: e_1_2_9_24_2 doi: 10.1016/j.tetlet.2018.01.098 – ident: e_1_2_9_30_2 doi: 10.1126/science.aao4798 – ident: e_1_2_9_97_2 – ident: e_1_2_9_133_1 doi: 10.1039/C7CC09273C – ident: e_1_2_9_137_3 doi: 10.1002/ange.201201666 – ident: e_1_2_9_99_1 doi: 10.1002/anie.201811256 – ident: e_1_2_9_53_2 doi: 10.1021/ja306123m – ident: e_1_2_9_5_2 doi: 10.1021/cr900005n – ident: e_1_2_9_45_2 doi: 10.1002/chem.201603507 – ident: e_1_2_9_43_3 doi: 10.1002/ange.200462884 – ident: e_1_2_9_68_2 doi: 10.1002/ange.201913733 – ident: e_1_2_9_76_3 doi: 10.1002/ange.200901719 – ident: e_1_2_9_60_1 doi: 10.1021/jo300779q – ident: e_1_2_9_10_1 – ident: e_1_2_9_67_1 doi: 10.1002/chem.201900762 – year: 2020 ident: e_1_2_9_97_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_9_72_1 doi: 10.1021/jacs.9b07251 – ident: e_1_2_9_117_1 – ident: e_1_2_9_89_3 doi: 10.1002/ange.201407865 – ident: e_1_2_9_90_3 doi: 10.1002/ange.201408805 – ident: e_1_2_9_95_1 doi: 10.1002/anie.201701849 – ident: e_1_2_9_130_1 – ident: e_1_2_9_26_1 – start-page: 107 volume-title: C−H Activation for Asymmetric Synthesis year: 2019 ident: e_1_2_9_42_2 doi: 10.1002/9783527810857.ch4 – ident: e_1_2_9_58_2 doi: 10.1002/anie.200503627 |
SSID | ssj0028806 |
Score | 2.6838617 |
SecondaryResourceType | review_article |
Snippet | Transition metal‐catalyzed enantioselective functionalization of C−H bond, the most abundant functionality in organic molecules, has emerged as an expedient... Transition metal-catalyzed enantioselective functionalization of C-H bond, the most abundant functionality in organic molecules, has emerged as an expedient... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19773 |
SubjectTerms | asymmetric catalysis Chemical synthesis chiral transient directing group C−H activation Enantiomers enantioselectivity Hydrogen bonds Natural products Organic chemistry total synthesis Transition metals |
Title | Transition Metal‐Catalyzed Enantioselective C−H Functionalization via Chiral Transient Directing Group Strategies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202008437 https://www.ncbi.nlm.nih.gov/pubmed/32687690 https://www.proquest.com/docview/2454094781 https://www.proquest.com/docview/2425897575 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC5kL3rx_Yiu0oLgKbsz3Xn1cQkzjMLuQVzYW-hHRQclIzszgnvy6FH8iftLrOpOoqOIoLeEdCed7np8_aivAJ753GcolUtzX9o0861NbSF9ql1WYUuIAcNE8fikWJxmL8_ys5-i-CM_xLjgxpoR7DUruLHrwx-koRyBTfM73r_PFIeT84EtRkWvRv4oScIZw4uUSjkL_cDaOJGHu9V3vdJvUHMXuQbXM78BZmh0PHHy7mC7sQfu4hc-x__5q5twvcel4igK0i24gt1tuFoP6eDuwDZ4tXDASxwjQfbLz19rXvv5dIFezPg8zXK1Dll1yICK-vLLt4WYk9eMi419uKf4uDSifrs8p2_FF5LTE73d7d6IsBQmBspcXN-F0_nsdb1I-5wNqctKsrmVtBYLX2FZ2qmxxlem9UaZXGpXWJWhnxitTVFVRdX6UuWts1N0Er2nqWY7Ufdgr1t1-ACELbTLK-2ULwk2SWeQwESLU69t3trcJZAOY9a4ntCc82q8byIVs2y4M5uxMxN4Ppb_EKk8_lhyfxCBplfpdSOZq1BzZG4CT8fHNAi8w2I6XG25jKQWlwSBE7gfRWf8FOFk8jx6koAMAvCXNjRHJy9m493Df6n0CK7xdYiclPuwtznf4mOCUBv7JKjJd0bGF8s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL5VlSChgJiVPaXTsvH6uwqy1094BaiVvkV2BVlEXdXSR64sgR8RP7S5ixk6AFISQ4JrETxx57Po9nvgF4blObOC5MnNpcx4mtdawzbmNpksLViBic3yhOZ9nkLHn1Nu28CSkWJvBD9AY3mhl-vaYJTgbpw5-soRSCjRs8OsBPRH4dblBab6LPf_mmZ5DiKJ4hwEiImPLQd7yNA364WX9TL_0GNjexq1c-4x3QXbODz8n5wXqlD8zlL4yO__Vft-FWC03ZUZClO3DNNXdhu-wywt2DtVds3seLTR2i9qsv30oy_3y-dJaNyKVmvlj6xDq4hrLy6uv3CRuj4gz2xjbik32aK1a-n1_gt8ILUe-xdult3jFvDWMda65b3oez8ei0nMRt2obYJDkuuwXX2mW2cHmuh0orW6jaKqFSLk2mReLsQEmpsqLIitrmIq2NHjrDnbW426wH4gFsNYvGPQSmM2nSQhphc0RO3CiHeKJ2Qyt1WuvURBB3g1aZltOcUmt8qAIbM6-oM6u-MyN40Zf_GNg8_lhyv5OBqp3Vy4oTXaGk4NwInvWPcRDokEU1brGmMhxbnCMKjmA3yE7_KYTKqHzkIALuJeAvbaiOZsej_mrvXyo9he3J6fSkOjmevX4EN-m-D6Tk-7C1uli7x4ioVvqJnzM_AK6xG-c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3pRAASMhcUqbtfPysUp3tQW6QohKvUV-lhUoW3V3keipxx5Rf2J_Scd2ElgQQoJjEjtx7BnP57HnG4BXOtOpoUzFmS5knGorY5lTHXOVlsYiYjB-obg_yccH6ZvD7PCnKP7AD9E73Jxm-PnaKfixtts_SENdBDau79z-fcqK63AjzRPukjfsfugJpChKZ4gvYix2aeg72saEbq_WXzVLv2HNVejqbc_oDoiu1eHIyeet5UJuqdNfCB3_57fuwu0WmJKdIEn34Jpp7sOtqssH9wCW3qz5E15k3yBmvzz7Xjnnz7dTo8nQHaiZzuY-rQ7OoKS6PL8YkxGazeBtbOM9ydepINWn6Ql-K7wQrR5pJ97miHhfGOk4c838IRyMhh-rcdwmbYhVWuCkW1IpTa5LUxRyIKTQpbBaMJFRrnLJUqMTwbnIyzIvrS5YZpUcGEWN1rjWtAl7BGvNrDGPgcicq6zkiukCcRNVwiCasGagucyszFQEcTdmtWoZzV1ijS914GKmtevMuu_MCF735Y8Dl8cfS252IlC3Oj2vqSMr5C40N4KX_WMcBLfFIhozW7oyFFtcIAaOYCOITv8pBMpoengSAfUC8Jc21DuTvWF_9eRfKr2Am-93R_W7vcnbp7DubvsoSroJa4uTpXmGcGohn3uNuQJLghqW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal-Catalyzed+Enantioselective+C-H+Functionalization+via+Chiral+Transient+Directing+Group+Strategies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liao%2C+Gang&rft.au=Zhang%2C+Tao&rft.au=Lin%2C+Zhi-Keng&rft.au=Shi%2C+Bing-Feng&rft.date=2020-11-02&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=45&rft.spage=19773&rft_id=info:doi/10.1002%2Fanie.202008437&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |