Near‐Infrared‐Driven Photocatalysts: Design, Construction, and Applications
Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 9; pp. e1904107 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields.
This Review summarizes recent progress on near‐infrared (NIR)‐driven photocatalysts, including four strategies such as adopting upconversion/surface plasmon resonance (SPR)/chromophore components and employing bandgap engineering to harvest NIR photons, as well as NIR active photocatalytic oxidation/reduction reactions such as water splitting, NO photooxidation, CO2 photoreduction, N2 photofixation, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is presented. |
---|---|
AbstractList | Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields.
This Review summarizes recent progress on near‐infrared (NIR)‐driven photocatalysts, including four strategies such as adopting upconversion/surface plasmon resonance (SPR)/chromophore components and employing bandgap engineering to harvest NIR photons, as well as NIR active photocatalytic oxidation/reduction reactions such as water splitting, NO photooxidation, CO2 photoreduction, N2 photofixation, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is presented. Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H and O evolution, CO reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields. Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields. Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields.Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields. Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H 2 and O 2 evolution, CO 2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields. |
Author | Cheng, Qunfeng Dou, Shi Xue Wang, Li Du, Yi Xu, Xun |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-9831-6884 surname: Wang fullname: Wang, Li organization: Monash University – sequence: 2 givenname: Xun surname: Xu fullname: Xu, Xun email: xun@uow.edu.au organization: Beihang University – sequence: 3 givenname: Qunfeng surname: Cheng fullname: Cheng, Qunfeng email: cheng@buaa.edu.cn organization: Beihang University – sequence: 4 givenname: Shi Xue surname: Dou fullname: Dou, Shi Xue organization: Beihang University – sequence: 5 givenname: Yi orcidid: 0000-0003-1932-6732 surname: Du fullname: Du, Yi email: yi_du@uow.edu.au organization: Beihang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31539198$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC6wZVmN1A2LJvg243F3VcIlUiBIwNoynjPFkWOn9gwouz4Cz8iT4JAQpEiIlY_t7zu2_jNCFz54QOg5wVOCMX2ZNs5NKSYSc4LFIzQkFWGTqqby4lQTPECjlNYYM0K5eIIGjJRMElkP0eo96Pjz4cfCt1FHaHI5j_Yb-OLD19AFozvtdqlLN8Uckr3z18Us-NTF3nQ25J32TXG73TqbyXyQnqLHrXYJnh3XMfr8-tWn2dvJcvVmMbtdTgwXlZjQ2gBojo2GVlNdQtNqJqCmQhrBoG5awkEbAhXjAhOAfCGa7DLWtrI0bIxeHPpuY7jvIXVqY5MB57SH0CdFqSy5kDInMEZXZ-g69NHn3ynKZSlrTmucqcsj1X_ZQKO20W503Kk_UWVgegBMDClFaE8IwWo_C7WfhTrNIgv8TDC2-51SF7V1_9bkQftuHez-84j6-G65_Ov-AtjHoII |
CitedBy_id | crossref_primary_10_1002_adma_202307759 crossref_primary_10_1016_j_apcata_2022_118836 crossref_primary_10_3390_catal11020155 crossref_primary_10_1016_j_seppur_2021_120145 crossref_primary_10_1038_s41565_022_01267_1 crossref_primary_10_1007_s12274_024_6773_4 crossref_primary_10_1021_acsbiomaterials_1c01291 crossref_primary_10_1021_acsmaterialslett_1c00160 crossref_primary_10_1039_D1TC03451K crossref_primary_10_1016_j_nantod_2023_101827 crossref_primary_10_1063_5_0218539 crossref_primary_10_1007_s11051_020_04926_3 crossref_primary_10_1016_j_jcis_2021_06_085 crossref_primary_10_1016_j_jcis_2022_10_143 crossref_primary_10_1007_s40820_020_00504_3 crossref_primary_10_1016_j_cej_2021_134134 crossref_primary_10_1002_sstr_202300142 crossref_primary_10_3390_pharmaceutics15041309 crossref_primary_10_1063_5_0202991 crossref_primary_10_1007_s40820_022_00848_y crossref_primary_10_1016_j_mtener_2021_100895 crossref_primary_10_3390_sym14102107 crossref_primary_10_1016_j_ccr_2023_215632 crossref_primary_10_1002_adma_202003521 crossref_primary_10_1002_adfm_202213039 crossref_primary_10_1016_j_apcata_2022_118927 crossref_primary_10_1039_D1CC04572E crossref_primary_10_1016_j_jcis_2022_06_159 crossref_primary_10_1016_j_jwpe_2024_106825 crossref_primary_10_3390_nano15020080 crossref_primary_10_1021_acsami_1c15883 crossref_primary_10_1016_j_fuel_2024_132903 crossref_primary_10_14356_hptf_21108 crossref_primary_10_1038_s41467_024_50761_8 crossref_primary_10_1021_acs_energyfuels_1c03374 crossref_primary_10_1088_1361_6463_abfb18 crossref_primary_10_1039_D1NJ05169E crossref_primary_10_1039_D1TC03826E crossref_primary_10_1002_smll_202005345 crossref_primary_10_1016_j_apcatb_2022_121960 crossref_primary_10_1016_j_chemosphere_2021_132781 crossref_primary_10_1016_j_seppur_2023_124515 crossref_primary_10_1039_D0SC04285D crossref_primary_10_3390_molecules28052142 crossref_primary_10_1016_j_jphotochem_2024_115725 crossref_primary_10_1039_D0TA09059J crossref_primary_10_1016_j_ccr_2020_213266 crossref_primary_10_1021_jacs_0c06976 crossref_primary_10_1016_j_mtcomm_2023_106333 crossref_primary_10_1039_D2TC04347E crossref_primary_10_1021_acscatal_0c01204 crossref_primary_10_1021_acscatal_3c05441 crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_12677_MS_2020_105041 crossref_primary_10_1016_j_ijhydene_2022_10_163 crossref_primary_10_1002_admi_202300828 crossref_primary_10_1021_acsenergylett_2c00951 crossref_primary_10_1039_D4QI01480D crossref_primary_10_3389_fbioe_2022_1047598 crossref_primary_10_1016_j_mtphys_2020_100294 crossref_primary_10_1021_acs_chemrev_1c00332 crossref_primary_10_1021_acsestengg_1c00103 crossref_primary_10_1039_D1CY01067K crossref_primary_10_1002_smll_202406513 crossref_primary_10_1002_smll_202311841 crossref_primary_10_1016_S1872_5805_22_60593_6 crossref_primary_10_1002_adfm_202108977 crossref_primary_10_1002_advs_202207514 crossref_primary_10_1126_sciadv_adn9441 crossref_primary_10_1002_smll_202004557 crossref_primary_10_1016_j_mtphys_2023_101080 crossref_primary_10_1021_acs_joc_1c03101 crossref_primary_10_1021_acsaem_4c02171 crossref_primary_10_1002_cctc_202200361 |
Cites_doi | 10.1016/j.nanoen.2018.12.006 10.1002/adma.201606688 10.1002/anie.201301306 10.1016/j.apcatb.2014.12.018 10.1039/C6CC07750A 10.1021/acsenergylett.8b00126 10.1002/anie.201810694 10.1002/adma.201404792 10.1002/adma.201606198 10.1021/acs.nanolett.5b00950 10.1016/j.chempr.2018.06.004 10.1039/C7EE02464A 10.1016/j.apcatb.2017.07.025 10.1016/0025-5408(76)90020-9 10.1021/cr100275d 10.1021/es101981r 10.1039/C6NR06300D 10.1002/adfm.201804055 10.1016/j.apcatb.2018.02.024 10.1016/j.apcatb.2015.10.039 10.1039/C6EE00383D 10.1002/adfm.201808696 10.1016/j.apcatb.2017.03.017 10.1002/advs.201800748 10.1016/j.nanoen.2015.09.005 10.1016/j.nanoen.2014.10.025 10.1021/jacs.7b02290 10.1039/C9TA02780G 10.1016/j.jallcom.2017.07.050 10.1016/j.joule.2018.02.019 10.1016/j.jcis.2018.02.005 10.1039/C7NR04851C 10.1002/inf2.12022 10.1002/anie.201708709 10.1021/acsami.5b00448 10.1073/pnas.0603395103 10.1016/j.nantod.2013.11.003 10.1002/aenm.201502555 10.1016/j.apcatb.2017.09.063 10.1016/j.cej.2017.05.044 10.1016/j.apcatb.2018.01.021 10.1002/adma.201701774 10.1016/j.apcatb.2017.03.022 10.1021/nl302142g 10.1002/anie.201612315 10.1021/cm2004227 10.1021/ja402956f 10.1021/jacs.8b07539 10.1039/C8TA10922B 10.1039/C6NR06767K 10.1021/jacs.7b10817 10.1038/ncomms11480 10.1007/s00216-004-2708-9 10.1002/smtd.201700080 10.1016/j.apcatb.2017.11.024 10.1021/acscatal.7b02972 10.1021/cr00017a016 10.1021/ja300823a 10.1002/smtd.201800388 10.1039/C7NR07010A 10.1021/cr1001645 10.1111/jace.15433 10.1039/C5NR02100F 10.1039/C8EE01146J 10.1016/j.jcis.2018.12.112 10.1021/cr00033a004 10.1002/smll.201503552 10.1021/acsami.5b08904 10.1016/j.apcatb.2016.03.075 10.1016/j.materresbull.2012.06.031 10.1002/smll.201900772 10.1021/acs.est.5b04584 10.1111/jace.13232 10.1002/smtd.201800331 10.1038/238037a0 10.1039/C4TA03309D 10.1039/C2CS35355E 10.1021/acsami.7b14541 10.1002/adfm.201705357 10.1039/c3ce42337a 10.1002/smtd.201800447 10.1021/cs400863c 10.1007/s12274-014-0644-3 10.1002/adma.201602581 10.1149/2.F08132if 10.1016/j.apcatb.2017.11.037 10.1016/j.apcatb.2018.02.018 10.1016/j.jhazmat.2009.08.104 10.1038/nnano.2013.171 10.1021/jacs.6b13100 10.1016/j.apcatb.2019.117764 10.1039/c0nr00253d 10.1021/ja305603t 10.1002/cssc.201802440 10.1021/jacs.8b13062 10.1007/s12274-017-1669-1 10.1039/C7TA02402A 10.1016/S1872-2067(17)62913-9 10.1021/jp809060p 10.1002/anie.201803514 10.1016/j.apcatb.2017.05.018 10.1021/jp026731y 10.1021/acs.langmuir.7b01052 10.1038/nmat3151 10.1039/C5CC02589C 10.1002/adfm.201706969 10.1002/adma.201705221 10.1021/acscatal.7b02013 10.1016/j.jhazmat.2017.10.015 10.1021/cr030063a 10.1002/adma.201601960 10.1039/C7CY00308K 10.1021/ar00051a007 10.1088/0957-4484/25/48/482001 10.1021/acssuschemeng.7b03658 10.1016/j.apcatb.2017.03.024 10.1021/am508590j 10.1016/j.scriptamat.2007.12.033 10.1021/cs300808r 10.1016/j.apcatb.2017.11.040 10.1016/j.apcatb.2018.04.075 10.1039/C7NJ01848G 10.1016/j.apcatb.2016.12.027 10.3390/s120302414 10.1039/C4CS00126E 10.1039/b924052g 10.1021/acscatal.8b05081 10.1021/jacs.6b05396 10.1002/smll.201602947 10.1002/smtd.201800352 10.1038/nmat2780 10.1021/cm0501517 10.1016/j.mattod.2018.04.008 10.1002/smtd.201800212 10.1021/jacs.8b12928 10.1016/j.jcis.2017.03.081 10.1039/C8SC04479A 10.1016/j.apcatb.2016.12.011 10.1002/adma.201802894 10.1021/acsami.7b00158 10.1021/acssuschemeng.7b02806 10.1002/adma.201403264 10.1039/C5TA10180H 10.1038/nnano.2016.138 10.1002/adfm.201703923 10.1039/c0cp00611d 10.1002/adma.201102752 10.1021/cs4002089 10.1038/nmat2629 10.1039/C7NR08090E 10.1016/j.apcatb.2018.01.070 10.1002/smtd.201800029 10.1021/ar960016n 10.1021/ie5042287 10.1002/aoc.4230 10.1039/C8TA08914K 10.1039/b405061d 10.1016/j.apcatb.2016.12.009 10.1021/ja042192u 10.1016/j.apcatb.2018.04.081 10.1021/ar800121r 10.1039/C7CC08811F |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201904107 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 31539198 10_1002_smll_201904107 SMLL201904107 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP160102627; DP170101467; FT180100585 – fundername: UOW‐BUAA Joint Research Centre – fundername: Australian Research Council grantid: DP170101467 – fundername: Australian Research Council grantid: DP160102627 – fundername: Australian Research Council grantid: FT180100585 – fundername: UOW-BUAA Joint Research Centre |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4767-28ceea40caefa2a5edfa37e8279c73e8df14eac1e634701ee2797dc4733ff95c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 10:33:19 EDT 2025 Fri Jul 25 10:10:46 EDT 2025 Thu Apr 03 06:55:28 EDT 2025 Tue Jul 01 02:10:47 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Wed Jan 22 16:29:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | solar energy conversion near-infrared vacancy photocatalysts plasmons |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4767-28ceea40caefa2a5edfa37e8279c73e8df14eac1e634701ee2797dc4733ff95c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1932-6732 0000-0002-9831-6884 |
PMID | 31539198 |
PQID | 2495984280 |
PQPubID | 1046358 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2295479961 proquest_journals_2495984280 pubmed_primary_31539198 crossref_primary_10_1002_smll_201904107 crossref_citationtrail_10_1002_smll_201904107 wiley_primary_10_1002_smll_201904107_SMLL201904107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2013; 3 2019; 12 2019; 15 2014; 25 2009; 113 2013; 8 2012; 12 2011; 111 2017; 724 2018; 6 2018; 9 2017; 209 2018; 8 2018; 39 2018; 3 2018; 2 2012; 134 2018; 5 2018; 4 1995; 28 2005; 105 2013; 52 2014; 16 2010; 110 2019; 29 2018; 30 2012; 24 2010; 2 2018; 32 2017; 204 2017; 325 2010; 9 2017; 205 2019; 7 2018; 221 2018; 28 2019; 9 2019; 3 2018; 227 2015; 51 2018; 229 2018; 228 2019; 1 2018; 344 2018; 101 2018; 225 2018; 224 2015; 54 2008; 58 2018; 21 2017; 498 2017; 139 2014; 43 2016; 12 2016; 11 2018; 230 2016; 4 2010; 44 2016; 6 2016; 7 2003; 107 2010; 46 2005; 127 2017; 56 2018; 235 2010; 173 2008; 41 2012; 47 2016; 28 2018; 11 2001; 34 2005; 17 2016; 8 2016; 9 2006; 103 2017; 5 2017; 7 2017; 41 2017; 1 2013; 22 2019; 57 2018; 522 2019; 58 2011; 10 2017; 9 2016; 183 2004; 379 2014; 4 2014; 2 2017; 33 2011; 23 2016; 193 2015; 168–169 2017; 219 1995; 95 2015; 15 2018; 140 2015; 18 2017; 27 2013; 42 2015; 11 2015; 98 2016; 52 2016; 50 2017; 29 2019; 141 2015; 8 2015; 7 2017; 213 1972; 238 2015; 27 1976; 11 1993; 93 2019; 539 2004; 16 2017; 13 2013; 135 2016; 138 2018; 54 2019; 255 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 235 start-page: 225 year: 2018 publication-title: Appl. Catal., B – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 219 start-page: 132 year: 2017 publication-title: Appl. Catal., B – volume: 209 start-page: 253 year: 2017 publication-title: Appl. Catal., B – volume: 235 start-page: 197 year: 2018 publication-title: Appl. Catal., B – volume: 56 start-page: 2064 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 559 year: 2010 publication-title: Nat. Mater. – volume: 139 start-page: 7586 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 122 year: 2018 publication-title: ACS Catal. – volume: 54 start-page: 2682 year: 2015 publication-title: Ind. Eng. Chem. Res. – volume: 43 start-page: 5234 year: 2014 publication-title: Chem. Soc. Rev. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 47 start-page: 3738 year: 2012 publication-title: Mater. Res. Bull. – volume: 539 start-page: 654 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 141 start-page: 5267 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 834 year: 2008 publication-title: Scr. Mater. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 228 start-page: 75 year: 2018 publication-title: Appl. Catal., B – volume: 16 start-page: 1810 year: 2004 publication-title: Chem. Commun. – volume: 173 start-page: 445 year: 2010 publication-title: J. Hazard. Mater. – volume: 57 start-page: 8719 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 162 year: 2014 publication-title: ACS Catal. – volume: 229 start-page: 218 year: 2018 publication-title: Appl. Catal., B – volume: 2 start-page: 1004 year: 2018 publication-title: Joule – volume: 3 start-page: 1486 year: 2013 publication-title: ACS Catal. – volume: 24 start-page: 229 year: 2012 publication-title: Adv. Mater. – volume: 58 start-page: 3077 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 2140 year: 2018 publication-title: Chem – volume: 225 start-page: 8 year: 2018 publication-title: Appl. Catal., B – volume: 11 start-page: 106 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 12 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 8363 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 230 start-page: 36 year: 2018 publication-title: Appl. Catal., B – volume: 8 start-page: 729 year: 2013 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 2414 year: 2012 publication-title: Sensors – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 16 start-page: 3059 year: 2014 publication-title: CrystEngComm – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 15 start-page: 6295 year: 2015 publication-title: Nano Lett. – volume: 127 start-page: 7632 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2821 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 year: 2016 publication-title: Nanoscale – volume: 41 start-page: 1742 year: 2008 publication-title: Acc. Chem. Res. – volume: 12 start-page: 841 year: 2019 publication-title: Energy Environ. Sci. – volume: 54 start-page: 1571 year: 2018 publication-title: Chem. Commun. – volume: 23 start-page: 3442 year: 2011 publication-title: Chem. Mater. – volume: 28 start-page: 6959 year: 2016 publication-title: Adv. Mater. – volume: 34 start-page: 257 year: 2001 publication-title: Acc. Chem. Res. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 224 start-page: 854 year: 2018 publication-title: Appl. Catal., B – volume: 7 start-page: 1076 year: 2019 publication-title: J. Mater. Chem. A – volume: 27 start-page: 1580 year: 2015 publication-title: Adv. Mater. – volume: 46 start-page: 2304 year: 2010 publication-title: Chem. Commun. – volume: 7 start-page: 6225 year: 2017 publication-title: ACS Catal. – volume: 11 start-page: 1098 year: 2016 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 417 year: 2019 publication-title: InfoMat. – volume: 95 start-page: 69 year: 1995 publication-title: Chem. Rev. – volume: 9 start-page: 1787 year: 2017 publication-title: Nanoscale – volume: 3 start-page: 405 year: 2013 publication-title: ACS Catal. – volume: 110 start-page: 6503 year: 2010 publication-title: Chem. Rev. – volume: 101 start-page: 3015 year: 2018 publication-title: J. Am. Ceram. Soc. – volume: 107 start-page: 668 year: 2003 publication-title: J. Phys. Chem. B – volume: 13 year: 2017 publication-title: Small – volume: 39 start-page: 718 year: 2018 publication-title: Chin. J. Catal. – volume: 17 start-page: 3537 year: 2005 publication-title: Chem. Mater. – volume: 2 start-page: 1417 year: 2010 publication-title: Nanoscale – volume: 10 start-page: 911 year: 2011 publication-title: Nat. Mater. – volume: 22 start-page: 63 year: 2013 publication-title: Interface Mag. – volume: 3 start-page: 932 year: 2018 publication-title: ACS Energy Lett. – volume: 227 start-page: 35 year: 2018 publication-title: Appl. Catal., B – volume: 50 start-page: 2514 year: 2016 publication-title: Environ. Sci. Technol. – volume: 52 start-page: 4810 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 98 start-page: 136 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 9 start-page: 205 year: 2010 publication-title: Nat. Mater. – volume: 4 start-page: 5314 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2177 year: 2016 publication-title: Energy Environ. Sci. – volume: 139 start-page: 3336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 year: 2018 publication-title: Small Methods – volume: 18 start-page: 143 year: 2015 publication-title: Nano Energy – volume: 57 start-page: 14 year: 2019 publication-title: Nano Energy – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9454 year: 2016 publication-title: Adv. Mater. – volume: 255 year: 2019 publication-title: Appl. Catal., B – volume: 325 start-page: 59 year: 2017 publication-title: Chem. Eng. J. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 5685 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 355 year: 2015 publication-title: Nano Res. – volume: 12 start-page: 4715 year: 2012 publication-title: Nano Lett. – volume: 42 start-page: 2568 year: 2013 publication-title: Chem. Soc. Rev. – volume: 204 start-page: 584 year: 2017 publication-title: Appl. Catal., B – volume: 8 start-page: 643 year: 2013 publication-title: Nano Today – volume: 379 start-page: 920 year: 2004 publication-title: Anal. Bioanal. Chem. – volume: 134 start-page: 6751 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 168–169 start-page: 9 year: 2015 publication-title: Appl. Catal., B – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 193 start-page: 36 year: 2016 publication-title: Appl. Catal., B – volume: 57 start-page: 491 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 498 start-page: 442 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 183 start-page: 142 year: 2016 publication-title: Appl. Catal., B – volume: 9 year: 2017 publication-title: Nanoscale – volume: 44 start-page: 6849 year: 2010 publication-title: Environ. Sci. Technol. – volume: 209 start-page: 566 year: 2017 publication-title: Appl. Catal., B – volume: 11 start-page: 1191 year: 1976 publication-title: Mater. Res. Bull. – volume: 138 start-page: 9316 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1310 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 12 start-page: 890 year: 2019 publication-title: ChemSusChem – volume: 213 start-page: 87 year: 2017 publication-title: Appl. Catal., B – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 8142 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 209 start-page: 543 year: 2017 publication-title: Appl. Catal., B – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 141 year: 1995 publication-title: Acc. Chem. Res. – volume: 7 start-page: 2236 year: 2017 publication-title: Catal. Sci. Technol. – volume: 32 year: 2018 publication-title: Appl. Organomet. Chem. – volume: 113 start-page: 772 year: 2009 publication-title: J. Phys. Chem. C – volume: 205 start-page: 158 year: 2017 publication-title: Appl. Catal., B – volume: 33 start-page: 5685 year: 2017 publication-title: Langmuir – volume: 141 start-page: 5083 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 724 start-page: 481 year: 2017 publication-title: J. Alloys Compd. – volume: 522 start-page: 29 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 15 year: 2019 publication-title: Small – volume: 1 year: 2017 publication-title: Small Methods – volume: 9 start-page: 8914 year: 2018 publication-title: Chem. Sci. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 204 start-page: 593 year: 2017 publication-title: Appl. Catal., B – volume: 3 year: 2019 publication-title: Small Methods – volume: 93 start-page: 341 year: 1993 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 221 start-page: 645 year: 2018 publication-title: Appl. Catal., B – volume: 52 year: 2016 publication-title: Chem. Commun. – volume: 11 start-page: 642 year: 2018 publication-title: Nano Res. – volume: 105 start-page: 1025 year: 2005 publication-title: Chem. Rev. – volume: 41 start-page: 8920 year: 2017 publication-title: New J. Chem. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1042 year: 2018 publication-title: Mater. Today – volume: 9 start-page: 3618 year: 2019 publication-title: ACS Catal. – volume: 103 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 111 start-page: 3669 year: 2011 publication-title: Chem. Rev. – volume: 27 start-page: 363 year: 2015 publication-title: Adv. Mater. – volume: 344 start-page: 42 year: 2018 publication-title: J. Hazard. Mater. – volume: 12 start-page: 1640 year: 2016 publication-title: Small – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 419 year: 2015 publication-title: Nano Energy – volume: 224 start-page: 671 year: 2018 publication-title: Appl. Catal., B – volume: 7 year: 2015 publication-title: Nanoscale – volume: 25 year: 2014 publication-title: Nanotechnology – ident: e_1_2_8_131_1 doi: 10.1016/j.nanoen.2018.12.006 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201606688 – ident: e_1_2_8_100_1 doi: 10.1002/anie.201301306 – ident: e_1_2_8_126_1 doi: 10.1016/j.apcatb.2014.12.018 – ident: e_1_2_8_141_1 doi: 10.1039/C6CC07750A – ident: e_1_2_8_90_1 doi: 10.1021/acsenergylett.8b00126 – ident: e_1_2_8_149_1 doi: 10.1002/anie.201810694 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201404792 – ident: e_1_2_8_151_1 doi: 10.1002/adma.201606198 – ident: e_1_2_8_124_1 doi: 10.1021/acs.nanolett.5b00950 – ident: e_1_2_8_73_1 doi: 10.1016/j.chempr.2018.06.004 – ident: e_1_2_8_85_1 doi: 10.1039/C7EE02464A – ident: e_1_2_8_115_1 doi: 10.1016/j.apcatb.2017.07.025 – ident: e_1_2_8_21_1 doi: 10.1016/0025-5408(76)90020-9 – ident: e_1_2_8_59_1 doi: 10.1021/cr100275d – ident: e_1_2_8_12_1 doi: 10.1021/es101981r – ident: e_1_2_8_68_1 doi: 10.1039/C6NR06300D – ident: e_1_2_8_72_1 doi: 10.1002/adfm.201804055 – ident: e_1_2_8_82_1 doi: 10.1016/j.apcatb.2018.02.024 – ident: e_1_2_8_123_1 doi: 10.1016/j.apcatb.2015.10.039 – ident: e_1_2_8_157_1 doi: 10.1039/C6EE00383D – ident: e_1_2_8_75_1 doi: 10.1002/adfm.201808696 – ident: e_1_2_8_117_1 doi: 10.1016/j.apcatb.2017.03.017 – ident: e_1_2_8_46_1 doi: 10.1002/advs.201800748 – ident: e_1_2_8_50_1 doi: 10.1016/j.nanoen.2015.09.005 – ident: e_1_2_8_51_1 doi: 10.1016/j.nanoen.2014.10.025 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.7b02290 – ident: e_1_2_8_43_1 doi: 10.1039/C9TA02780G – ident: e_1_2_8_116_1 doi: 10.1016/j.jallcom.2017.07.050 – ident: e_1_2_8_102_1 doi: 10.1016/j.joule.2018.02.019 – ident: e_1_2_8_110_1 doi: 10.1016/j.jcis.2018.02.005 – ident: e_1_2_8_91_1 doi: 10.1039/C7NR04851C – ident: e_1_2_8_162_1 doi: 10.1002/inf2.12022 – ident: e_1_2_8_101_1 doi: 10.1002/anie.201708709 – ident: e_1_2_8_56_1 doi: 10.1021/acsami.5b00448 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.0603395103 – ident: e_1_2_8_35_1 doi: 10.1016/j.nantod.2013.11.003 – ident: e_1_2_8_95_1 doi: 10.1002/aenm.201502555 – ident: e_1_2_8_134_1 doi: 10.1016/j.apcatb.2017.09.063 – ident: e_1_2_8_143_1 doi: 10.1016/j.cej.2017.05.044 – ident: e_1_2_8_133_1 doi: 10.1016/j.apcatb.2018.01.021 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201701774 – ident: e_1_2_8_88_1 doi: 10.1016/j.apcatb.2017.03.022 – ident: e_1_2_8_93_1 doi: 10.1021/nl302142g – ident: e_1_2_8_69_1 doi: 10.1002/anie.201612315 – ident: e_1_2_8_33_1 doi: 10.1021/cm2004227 – ident: e_1_2_8_44_1 doi: 10.1021/ja402956f – ident: e_1_2_8_109_1 doi: 10.1021/jacs.8b07539 – ident: e_1_2_8_142_1 doi: 10.1039/C8TA10922B – ident: e_1_2_8_122_1 doi: 10.1039/C6NR06767K – ident: e_1_2_8_161_1 doi: 10.1021/jacs.7b10817 – ident: e_1_2_8_4_1 doi: 10.1038/ncomms11480 – ident: e_1_2_8_60_1 doi: 10.1007/s00216-004-2708-9 – ident: e_1_2_8_97_1 doi: 10.1002/smtd.201700080 – ident: e_1_2_8_83_1 doi: 10.1016/j.apcatb.2017.11.024 – ident: e_1_2_8_30_1 doi: 10.1021/acscatal.7b02972 – ident: e_1_2_8_18_1 doi: 10.1021/cr00017a016 – ident: e_1_2_8_27_1 doi: 10.1021/ja300823a – ident: e_1_2_8_156_1 doi: 10.1002/smtd.201800388 – ident: e_1_2_8_45_1 doi: 10.1039/C7NR07010A – ident: e_1_2_8_107_1 doi: 10.1021/cr1001645 – ident: e_1_2_8_111_1 doi: 10.1111/jace.15433 – ident: e_1_2_8_40_1 doi: 10.1039/C5NR02100F – ident: e_1_2_8_148_1 doi: 10.1039/C8EE01146J – ident: e_1_2_8_53_1 doi: 10.1016/j.jcis.2018.12.112 – ident: e_1_2_8_17_1 doi: 10.1021/cr00033a004 – ident: e_1_2_8_71_1 doi: 10.1002/smll.201503552 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.5b08904 – ident: e_1_2_8_54_1 doi: 10.1016/j.apcatb.2016.03.075 – ident: e_1_2_8_94_1 doi: 10.1016/j.materresbull.2012.06.031 – ident: e_1_2_8_105_1 doi: 10.1002/smll.201900772 – ident: e_1_2_8_146_1 doi: 10.1021/acs.est.5b04584 – ident: e_1_2_8_125_1 doi: 10.1111/jace.13232 – ident: e_1_2_8_154_1 doi: 10.1002/smtd.201800331 – ident: e_1_2_8_8_1 doi: 10.1038/238037a0 – ident: e_1_2_8_127_1 doi: 10.1039/C4TA03309D – ident: e_1_2_8_1_1 doi: 10.1039/C2CS35355E – ident: e_1_2_8_31_1 doi: 10.1021/acsami.7b14541 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201705357 – ident: e_1_2_8_41_1 doi: 10.1039/c3ce42337a – ident: e_1_2_8_104_1 doi: 10.1002/smtd.201800447 – ident: e_1_2_8_106_1 doi: 10.1021/cs400863c – ident: e_1_2_8_57_1 doi: 10.1007/s12274-014-0644-3 – ident: e_1_2_8_55_1 doi: 10.1002/adma.201602581 – ident: e_1_2_8_77_1 doi: 10.1149/2.F08132if – ident: e_1_2_8_28_1 doi: 10.1016/j.apcatb.2017.11.037 – ident: e_1_2_8_139_1 doi: 10.1016/j.apcatb.2018.02.018 – ident: e_1_2_8_10_1 doi: 10.1016/j.jhazmat.2009.08.104 – ident: e_1_2_8_39_1 doi: 10.1038/nnano.2013.171 – ident: e_1_2_8_160_1 doi: 10.1021/jacs.6b13100 – ident: e_1_2_8_150_1 doi: 10.1016/j.apcatb.2019.117764 – ident: e_1_2_8_49_1 doi: 10.1039/c0nr00253d – ident: e_1_2_8_78_1 doi: 10.1021/ja305603t – ident: e_1_2_8_129_1 doi: 10.1002/cssc.201802440 – ident: e_1_2_8_81_1 doi: 10.1021/jacs.8b13062 – ident: e_1_2_8_58_1 doi: 10.1007/s12274-017-1669-1 – ident: e_1_2_8_135_1 doi: 10.1039/C7TA02402A – ident: e_1_2_8_89_1 doi: 10.1016/S1872-2067(17)62913-9 – ident: e_1_2_8_22_1 doi: 10.1021/jp809060p – ident: e_1_2_8_3_1 doi: 10.1002/anie.201803514 – ident: e_1_2_8_34_1 doi: 10.1016/j.apcatb.2017.05.018 – ident: e_1_2_8_62_1 doi: 10.1021/jp026731y – ident: e_1_2_8_66_1 doi: 10.1021/acs.langmuir.7b01052 – ident: e_1_2_8_20_1 doi: 10.1038/nmat3151 – ident: e_1_2_8_52_1 doi: 10.1039/C5CC02589C – ident: e_1_2_8_70_1 doi: 10.1002/adfm.201706969 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201705221 – ident: e_1_2_8_65_1 doi: 10.1021/acscatal.7b02013 – ident: e_1_2_8_24_1 doi: 10.1016/j.jhazmat.2017.10.015 – ident: e_1_2_8_63_1 doi: 10.1021/cr030063a – ident: e_1_2_8_103_1 doi: 10.1002/adma.201601960 – ident: e_1_2_8_25_1 doi: 10.1039/C7CY00308K – ident: e_1_2_8_9_1 doi: 10.1021/ar00051a007 – ident: e_1_2_8_36_1 doi: 10.1088/0957-4484/25/48/482001 – ident: e_1_2_8_114_1 doi: 10.1021/acssuschemeng.7b03658 – ident: e_1_2_8_147_1 doi: 10.1016/j.apcatb.2017.03.024 – ident: e_1_2_8_159_1 doi: 10.1021/am508590j – ident: e_1_2_8_92_1 doi: 10.1016/j.scriptamat.2007.12.033 – ident: e_1_2_8_42_1 doi: 10.1021/cs300808r – ident: e_1_2_8_112_1 doi: 10.1016/j.apcatb.2017.11.040 – ident: e_1_2_8_130_1 doi: 10.1016/j.apcatb.2018.04.075 – ident: e_1_2_8_84_1 doi: 10.1039/C7NJ01848G – ident: e_1_2_8_119_1 doi: 10.1016/j.apcatb.2016.12.027 – ident: e_1_2_8_38_1 doi: 10.3390/s120302414 – ident: e_1_2_8_19_1 doi: 10.1039/C4CS00126E – ident: e_1_2_8_128_1 doi: 10.1039/b924052g – ident: e_1_2_8_136_1 doi: 10.1021/acscatal.8b05081 – ident: e_1_2_8_87_1 doi: 10.1021/jacs.6b05396 – ident: e_1_2_8_67_1 doi: 10.1002/smll.201602947 – ident: e_1_2_8_155_1 doi: 10.1002/smtd.201800352 – ident: e_1_2_8_13_1 doi: 10.1038/nmat2780 – ident: e_1_2_8_14_1 doi: 10.1021/cm0501517 – ident: e_1_2_8_99_1 doi: 10.1016/j.mattod.2018.04.008 – ident: e_1_2_8_153_1 doi: 10.1002/smtd.201800212 – ident: e_1_2_8_86_1 doi: 10.1021/jacs.8b12928 – ident: e_1_2_8_118_1 doi: 10.1016/j.jcis.2017.03.081 – ident: e_1_2_8_74_1 doi: 10.1039/C8SC04479A – ident: e_1_2_8_120_1 doi: 10.1016/j.apcatb.2016.12.011 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201802894 – ident: e_1_2_8_121_1 doi: 10.1021/acsami.7b00158 – ident: e_1_2_8_32_1 doi: 10.1021/acssuschemeng.7b02806 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201403264 – ident: e_1_2_8_158_1 doi: 10.1039/C5TA10180H – ident: e_1_2_8_145_1 doi: 10.1038/nnano.2016.138 – ident: e_1_2_8_7_1 doi: 10.1002/adfm.201703923 – ident: e_1_2_8_108_1 doi: 10.1039/c0cp00611d – ident: e_1_2_8_16_1 doi: 10.1002/adma.201102752 – ident: e_1_2_8_98_1 doi: 10.1021/cs4002089 – ident: e_1_2_8_76_1 doi: 10.1038/nmat2629 – ident: e_1_2_8_113_1 doi: 10.1039/C7NR08090E – ident: e_1_2_8_132_1 doi: 10.1016/j.apcatb.2018.01.070 – ident: e_1_2_8_152_1 doi: 10.1002/smtd.201800029 – ident: e_1_2_8_61_1 doi: 10.1021/ar960016n – ident: e_1_2_8_96_1 doi: 10.1021/ie5042287 – ident: e_1_2_8_29_1 doi: 10.1002/aoc.4230 – ident: e_1_2_8_137_1 doi: 10.1039/C8TA08914K – ident: e_1_2_8_79_1 doi: 10.1039/b405061d – ident: e_1_2_8_144_1 doi: 10.1016/j.apcatb.2016.12.009 – ident: e_1_2_8_80_1 doi: 10.1021/ja042192u – ident: e_1_2_8_138_1 doi: 10.1016/j.apcatb.2018.04.081 – ident: e_1_2_8_64_1 doi: 10.1021/ar800121r – ident: e_1_2_8_140_1 doi: 10.1039/C7CC08811F |
SSID | ssj0031247 |
Score | 2.6031427 |
SecondaryResourceType | review_article |
Snippet | Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1904107 |
SubjectTerms | Chemical reactions Electrocatalysts Energy conversion Energy storage Energy utilization Infrared radiation Nanotechnology near‐infrared Optical properties Oxidation Photocatalysis Photocatalysts plasmons Pollutants Reduction Solar energy solar energy conversion vacancy Water splitting |
Title | Near‐Infrared‐Driven Photocatalysts: Design, Construction, and Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201904107 https://www.ncbi.nlm.nih.gov/pubmed/31539198 https://www.proquest.com/docview/2495984280 https://www.proquest.com/docview/2295479961 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6IJz24L9VRKgherDbLmMabuKDihgt4K2maIjh2xM4c9ORP8Df6S3xJp3VGEUEvpSUJTfvytryX7wGsEoorRUfomyih8UKaQSKUQVeFcRNpSoW2p5FPz7YOb_jxbfO27xR_iQ9Rb7hZznDy2jK4SorNT9DQ4qFlQweo0Dhxx8ltwpa1ii5r_CiGystVV0GdFVjgrQq1MaSbg8MHtdI3U3PQcnWq52AcVDXpMuPkfqPbSTb0yxc8x_981QSM9exSf6dcSJMwZPIpGO1DK5yG8zPkivfXt6M8e7Jp63i792SFpX9x1-603UbQc9Eptv09lxay7ttqoBU-7bqv8tTf6YuXz8DNwf717mHQq8cQaC5QntIINarioVYmU1Q1TZopJkxEhdSCmSjNCEc5TswW4yIkxmCDSHEsY1kmm5rNwnDezs08-CHTkjGthJCEE6qTRKeShUbLiGiWcA-Cih6x7oGV25oZrbiEWaax_VFx_aM8WKv7P5YwHT_2bFTkjXvsWsS2ALeM0BMLPVipm5HRbPRE5abdxT42IirQPSQezJXLon4VQ70hiYw8oI64v8whvjo9OamfFv4yaBFGqM2ucdlwDRhGYpolNI86ybJjgQ9w6Ajq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5V9FB6oOXRkpZCkJB6IRA_dh33hkrRArsLakHiFjmOo0pAttpdDnDqT-hv7C_pjLMJLAhVgkuUyLbiZDwvz_gbgA3GcaXYBH0ToyxeWCvKlHHoqgjpEsu5snQauddvd07lwVmrziakszAVPkSz4Uac4eU1MThtSG_fooaOLi8odoAaTTI6T_6Synp7r-p7gyAlUH35-iqotSKC3qpxG2O-PT1-Wi89MDanbVevfPbeQFZPu8o5Od-6Gmdb9uYeouOzvustzE1M03CnWkvz8MKVC_D6DmDhIhz1kTH-_v6zXxZDylzH290hycvw-OdgPPB7Qdej8ehLuOszQzZDKghaQ9RuhqbMw507IfMlON37dvK1E01KMkRWKhSpPEGlamRsjSsMNy2XF0Yol3ClrRIuyQsmUZQz1xZSxcw5bFA5jhWiKHTLincwUw5KtwxhLKwWwhqlNJOM2yyzuRaxszphVmQygKgmSGoneOVUNuMirZCWeUo_Km1-VACfm_6_KqSOR3uu1PRNJxw7SqkGt07QGYsDWG-akdcogGJKN7jCPhQUVeghsgDeV-uieZVA1aGZTgLgnrr_mUP6o9ftNk8fnjJoDV51TnrdtLvfP_wIs5ySbXxy3ArMIGHdJ7SWxtmq54d_9asNBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hVkJwgOW54RkkJC4E4kdre2-IUvEoBfGQuEWO4whpIUW0HJYTP4HfuL9kx0kTWhBCgkuUyLbiZF4ez_gbgA1CkVOMRN9EC4MXUgtioS26KoxbaSgVxp1GPmnXD6740XXteuAUf4EPUW24OcnI9bUT8Psk3XkFDe3e3brQARo0Ttxx8h-8HkrH143zCkCKofXKy6ug0Qoc8lYJ2xjSneHxw2bp3VpzeOma257mFOhy1kXKyZ_tx168bZ7eADp-57N-wmR_YervFpw0DSM2m4GJAbjCWThto1j8e345zNIHl7eOt40Hpy39s5tOr5PvBP3t9rq__UaeF7Llu3KgJUDtlq-zxN8dCJjPwVVz_3LvIOgXZAgMF6hQqUSTqnlotE011TWbpJoJK6lQRjArk5RwVOTE1hkXIbEWG0SCYxlLU1UzbB5Gs05mf4EfMqMYM1oIRTihJo5NolhojZLEsJh7EJT0iEwfrdwVzbiNCpxlGrkfFVU_yoPNqv99gdPxYc_lkrxRX167kavArSS6YqEH61UzSpoLn-jMdh6xjwuJCvQPiQcLBVtUr2JoOBRR0gOaE_eTOUQXJ61W9bT4lUFrMHbWaEatw_bxEoxTl2mTZ8YtwyjS1a7gUqkXr-bS8B_hKwu9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%E2%80%90Driven+Photocatalysts%3A+Design%2C+Construction%2C+and+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Li&rft.au=Xu%2C+Xun&rft.au=Cheng%2C+Qunfeng&rft.au=Dou%2C+Shi+Xue&rft.date=2021-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1002%2Fsmll.201904107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201904107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |