Near‐Infrared‐Driven Photocatalysts: Design, Construction, and Applications

Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 9; pp. e1904107 - n/a
Main Authors Wang, Li, Xu, Xun, Cheng, Qunfeng, Dou, Shi Xue, Du, Yi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields. This Review summarizes recent progress on near‐infrared (NIR)‐driven photocatalysts, including four strategies such as adopting upconversion/surface plasmon resonance (SPR)/chromophore components and employing bandgap engineering to harvest NIR photons, as well as NIR active photocatalytic oxidation/reduction reactions such as water splitting, NO photooxidation, CO2 photoreduction, N2 photofixation, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is presented.
AbstractList Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields. This Review summarizes recent progress on near‐infrared (NIR)‐driven photocatalysts, including four strategies such as adopting upconversion/surface plasmon resonance (SPR)/chromophore components and employing bandgap engineering to harvest NIR photons, as well as NIR active photocatalytic oxidation/reduction reactions such as water splitting, NO photooxidation, CO2 photoreduction, N2 photofixation, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is presented.
Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H and O evolution, CO reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields.
Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields.
Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields.Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields.
Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near‐infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR‐driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H 2 and O 2 evolution, CO 2 reduction, etc. The application of NIR‐active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy–related fields and other energy conversion and storage fields.
Author Cheng, Qunfeng
Dou, Shi Xue
Wang, Li
Du, Yi
Xu, Xun
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-9831-6884
  surname: Wang
  fullname: Wang, Li
  organization: Monash University
– sequence: 2
  givenname: Xun
  surname: Xu
  fullname: Xu, Xun
  email: xun@uow.edu.au
  organization: Beihang University
– sequence: 3
  givenname: Qunfeng
  surname: Cheng
  fullname: Cheng, Qunfeng
  email: cheng@buaa.edu.cn
  organization: Beihang University
– sequence: 4
  givenname: Shi Xue
  surname: Dou
  fullname: Dou, Shi Xue
  organization: Beihang University
– sequence: 5
  givenname: Yi
  orcidid: 0000-0003-1932-6732
  surname: Du
  fullname: Du, Yi
  email: yi_du@uow.edu.au
  organization: Beihang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31539198$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC6wZVmN1A2LJvg243F3VcIlUiBIwNoynjPFkWOn9gwouz4Cz8iT4JAQpEiIlY_t7zu2_jNCFz54QOg5wVOCMX2ZNs5NKSYSc4LFIzQkFWGTqqby4lQTPECjlNYYM0K5eIIGjJRMElkP0eo96Pjz4cfCt1FHaHI5j_Yb-OLD19AFozvtdqlLN8Uckr3z18Us-NTF3nQ25J32TXG73TqbyXyQnqLHrXYJnh3XMfr8-tWn2dvJcvVmMbtdTgwXlZjQ2gBojo2GVlNdQtNqJqCmQhrBoG5awkEbAhXjAhOAfCGa7DLWtrI0bIxeHPpuY7jvIXVqY5MB57SH0CdFqSy5kDInMEZXZ-g69NHn3ynKZSlrTmucqcsj1X_ZQKO20W503Kk_UWVgegBMDClFaE8IwWo_C7WfhTrNIgv8TDC2-51SF7V1_9bkQftuHez-84j6-G65_Ov-AtjHoII
CitedBy_id crossref_primary_10_1002_adma_202307759
crossref_primary_10_1016_j_apcata_2022_118836
crossref_primary_10_3390_catal11020155
crossref_primary_10_1016_j_seppur_2021_120145
crossref_primary_10_1038_s41565_022_01267_1
crossref_primary_10_1007_s12274_024_6773_4
crossref_primary_10_1021_acsbiomaterials_1c01291
crossref_primary_10_1021_acsmaterialslett_1c00160
crossref_primary_10_1039_D1TC03451K
crossref_primary_10_1016_j_nantod_2023_101827
crossref_primary_10_1063_5_0218539
crossref_primary_10_1007_s11051_020_04926_3
crossref_primary_10_1016_j_jcis_2021_06_085
crossref_primary_10_1016_j_jcis_2022_10_143
crossref_primary_10_1007_s40820_020_00504_3
crossref_primary_10_1016_j_cej_2021_134134
crossref_primary_10_1002_sstr_202300142
crossref_primary_10_3390_pharmaceutics15041309
crossref_primary_10_1063_5_0202991
crossref_primary_10_1007_s40820_022_00848_y
crossref_primary_10_1016_j_mtener_2021_100895
crossref_primary_10_3390_sym14102107
crossref_primary_10_1016_j_ccr_2023_215632
crossref_primary_10_1002_adma_202003521
crossref_primary_10_1002_adfm_202213039
crossref_primary_10_1016_j_apcata_2022_118927
crossref_primary_10_1039_D1CC04572E
crossref_primary_10_1016_j_jcis_2022_06_159
crossref_primary_10_1016_j_jwpe_2024_106825
crossref_primary_10_3390_nano15020080
crossref_primary_10_1021_acsami_1c15883
crossref_primary_10_1016_j_fuel_2024_132903
crossref_primary_10_14356_hptf_21108
crossref_primary_10_1038_s41467_024_50761_8
crossref_primary_10_1021_acs_energyfuels_1c03374
crossref_primary_10_1088_1361_6463_abfb18
crossref_primary_10_1039_D1NJ05169E
crossref_primary_10_1039_D1TC03826E
crossref_primary_10_1002_smll_202005345
crossref_primary_10_1016_j_apcatb_2022_121960
crossref_primary_10_1016_j_chemosphere_2021_132781
crossref_primary_10_1016_j_seppur_2023_124515
crossref_primary_10_1039_D0SC04285D
crossref_primary_10_3390_molecules28052142
crossref_primary_10_1016_j_jphotochem_2024_115725
crossref_primary_10_1039_D0TA09059J
crossref_primary_10_1016_j_ccr_2020_213266
crossref_primary_10_1021_jacs_0c06976
crossref_primary_10_1016_j_mtcomm_2023_106333
crossref_primary_10_1039_D2TC04347E
crossref_primary_10_1021_acscatal_0c01204
crossref_primary_10_1021_acscatal_3c05441
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_12677_MS_2020_105041
crossref_primary_10_1016_j_ijhydene_2022_10_163
crossref_primary_10_1002_admi_202300828
crossref_primary_10_1021_acsenergylett_2c00951
crossref_primary_10_1039_D4QI01480D
crossref_primary_10_3389_fbioe_2022_1047598
crossref_primary_10_1016_j_mtphys_2020_100294
crossref_primary_10_1021_acs_chemrev_1c00332
crossref_primary_10_1021_acsestengg_1c00103
crossref_primary_10_1039_D1CY01067K
crossref_primary_10_1002_smll_202406513
crossref_primary_10_1002_smll_202311841
crossref_primary_10_1016_S1872_5805_22_60593_6
crossref_primary_10_1002_adfm_202108977
crossref_primary_10_1002_advs_202207514
crossref_primary_10_1126_sciadv_adn9441
crossref_primary_10_1002_smll_202004557
crossref_primary_10_1016_j_mtphys_2023_101080
crossref_primary_10_1021_acs_joc_1c03101
crossref_primary_10_1021_acsaem_4c02171
crossref_primary_10_1002_cctc_202200361
Cites_doi 10.1016/j.nanoen.2018.12.006
10.1002/adma.201606688
10.1002/anie.201301306
10.1016/j.apcatb.2014.12.018
10.1039/C6CC07750A
10.1021/acsenergylett.8b00126
10.1002/anie.201810694
10.1002/adma.201404792
10.1002/adma.201606198
10.1021/acs.nanolett.5b00950
10.1016/j.chempr.2018.06.004
10.1039/C7EE02464A
10.1016/j.apcatb.2017.07.025
10.1016/0025-5408(76)90020-9
10.1021/cr100275d
10.1021/es101981r
10.1039/C6NR06300D
10.1002/adfm.201804055
10.1016/j.apcatb.2018.02.024
10.1016/j.apcatb.2015.10.039
10.1039/C6EE00383D
10.1002/adfm.201808696
10.1016/j.apcatb.2017.03.017
10.1002/advs.201800748
10.1016/j.nanoen.2015.09.005
10.1016/j.nanoen.2014.10.025
10.1021/jacs.7b02290
10.1039/C9TA02780G
10.1016/j.jallcom.2017.07.050
10.1016/j.joule.2018.02.019
10.1016/j.jcis.2018.02.005
10.1039/C7NR04851C
10.1002/inf2.12022
10.1002/anie.201708709
10.1021/acsami.5b00448
10.1073/pnas.0603395103
10.1016/j.nantod.2013.11.003
10.1002/aenm.201502555
10.1016/j.apcatb.2017.09.063
10.1016/j.cej.2017.05.044
10.1016/j.apcatb.2018.01.021
10.1002/adma.201701774
10.1016/j.apcatb.2017.03.022
10.1021/nl302142g
10.1002/anie.201612315
10.1021/cm2004227
10.1021/ja402956f
10.1021/jacs.8b07539
10.1039/C8TA10922B
10.1039/C6NR06767K
10.1021/jacs.7b10817
10.1038/ncomms11480
10.1007/s00216-004-2708-9
10.1002/smtd.201700080
10.1016/j.apcatb.2017.11.024
10.1021/acscatal.7b02972
10.1021/cr00017a016
10.1021/ja300823a
10.1002/smtd.201800388
10.1039/C7NR07010A
10.1021/cr1001645
10.1111/jace.15433
10.1039/C5NR02100F
10.1039/C8EE01146J
10.1016/j.jcis.2018.12.112
10.1021/cr00033a004
10.1002/smll.201503552
10.1021/acsami.5b08904
10.1016/j.apcatb.2016.03.075
10.1016/j.materresbull.2012.06.031
10.1002/smll.201900772
10.1021/acs.est.5b04584
10.1111/jace.13232
10.1002/smtd.201800331
10.1038/238037a0
10.1039/C4TA03309D
10.1039/C2CS35355E
10.1021/acsami.7b14541
10.1002/adfm.201705357
10.1039/c3ce42337a
10.1002/smtd.201800447
10.1021/cs400863c
10.1007/s12274-014-0644-3
10.1002/adma.201602581
10.1149/2.F08132if
10.1016/j.apcatb.2017.11.037
10.1016/j.apcatb.2018.02.018
10.1016/j.jhazmat.2009.08.104
10.1038/nnano.2013.171
10.1021/jacs.6b13100
10.1016/j.apcatb.2019.117764
10.1039/c0nr00253d
10.1021/ja305603t
10.1002/cssc.201802440
10.1021/jacs.8b13062
10.1007/s12274-017-1669-1
10.1039/C7TA02402A
10.1016/S1872-2067(17)62913-9
10.1021/jp809060p
10.1002/anie.201803514
10.1016/j.apcatb.2017.05.018
10.1021/jp026731y
10.1021/acs.langmuir.7b01052
10.1038/nmat3151
10.1039/C5CC02589C
10.1002/adfm.201706969
10.1002/adma.201705221
10.1021/acscatal.7b02013
10.1016/j.jhazmat.2017.10.015
10.1021/cr030063a
10.1002/adma.201601960
10.1039/C7CY00308K
10.1021/ar00051a007
10.1088/0957-4484/25/48/482001
10.1021/acssuschemeng.7b03658
10.1016/j.apcatb.2017.03.024
10.1021/am508590j
10.1016/j.scriptamat.2007.12.033
10.1021/cs300808r
10.1016/j.apcatb.2017.11.040
10.1016/j.apcatb.2018.04.075
10.1039/C7NJ01848G
10.1016/j.apcatb.2016.12.027
10.3390/s120302414
10.1039/C4CS00126E
10.1039/b924052g
10.1021/acscatal.8b05081
10.1021/jacs.6b05396
10.1002/smll.201602947
10.1002/smtd.201800352
10.1038/nmat2780
10.1021/cm0501517
10.1016/j.mattod.2018.04.008
10.1002/smtd.201800212
10.1021/jacs.8b12928
10.1016/j.jcis.2017.03.081
10.1039/C8SC04479A
10.1016/j.apcatb.2016.12.011
10.1002/adma.201802894
10.1021/acsami.7b00158
10.1021/acssuschemeng.7b02806
10.1002/adma.201403264
10.1039/C5TA10180H
10.1038/nnano.2016.138
10.1002/adfm.201703923
10.1039/c0cp00611d
10.1002/adma.201102752
10.1021/cs4002089
10.1038/nmat2629
10.1039/C7NR08090E
10.1016/j.apcatb.2018.01.070
10.1002/smtd.201800029
10.1021/ar960016n
10.1021/ie5042287
10.1002/aoc.4230
10.1039/C8TA08914K
10.1039/b405061d
10.1016/j.apcatb.2016.12.009
10.1021/ja042192u
10.1016/j.apcatb.2018.04.081
10.1021/ar800121r
10.1039/C7CC08811F
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201904107
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 31539198
10_1002_smll_201904107
SMLL201904107
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160102627; DP170101467; FT180100585
– fundername: UOW‐BUAA Joint Research Centre
– fundername: Australian Research Council
  grantid: DP170101467
– fundername: Australian Research Council
  grantid: DP160102627
– fundername: Australian Research Council
  grantid: FT180100585
– fundername: UOW-BUAA Joint Research Centre
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4767-28ceea40caefa2a5edfa37e8279c73e8df14eac1e634701ee2797dc4733ff95c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 10:33:19 EDT 2025
Fri Jul 25 10:10:46 EDT 2025
Thu Apr 03 06:55:28 EDT 2025
Tue Jul 01 02:10:47 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Wed Jan 22 16:29:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords solar energy conversion
near-infrared
vacancy
photocatalysts
plasmons
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-28ceea40caefa2a5edfa37e8279c73e8df14eac1e634701ee2797dc4733ff95c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1932-6732
0000-0002-9831-6884
PMID 31539198
PQID 2495984280
PQPubID 1046358
PageCount 30
ParticipantIDs proquest_miscellaneous_2295479961
proquest_journals_2495984280
pubmed_primary_31539198
crossref_primary_10_1002_smll_201904107
crossref_citationtrail_10_1002_smll_201904107
wiley_primary_10_1002_smll_201904107_SMLL201904107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2013; 3
2019; 12
2019; 15
2014; 25
2009; 113
2013; 8
2012; 12
2011; 111
2017; 724
2018; 6
2018; 9
2017; 209
2018; 8
2018; 39
2018; 3
2018; 2
2012; 134
2018; 5
2018; 4
1995; 28
2005; 105
2013; 52
2014; 16
2010; 110
2019; 29
2018; 30
2012; 24
2010; 2
2018; 32
2017; 204
2017; 325
2010; 9
2017; 205
2019; 7
2018; 221
2018; 28
2019; 9
2019; 3
2018; 227
2015; 51
2018; 229
2018; 228
2019; 1
2018; 344
2018; 101
2018; 225
2018; 224
2015; 54
2008; 58
2018; 21
2017; 498
2017; 139
2014; 43
2016; 12
2016; 11
2018; 230
2016; 4
2010; 44
2016; 6
2016; 7
2003; 107
2010; 46
2005; 127
2017; 56
2018; 235
2010; 173
2008; 41
2012; 47
2016; 28
2018; 11
2001; 34
2005; 17
2016; 8
2016; 9
2006; 103
2017; 5
2017; 7
2017; 41
2017; 1
2013; 22
2019; 57
2018; 522
2019; 58
2011; 10
2017; 9
2016; 183
2004; 379
2014; 4
2014; 2
2017; 33
2011; 23
2016; 193
2015; 168–169
2017; 219
1995; 95
2015; 15
2018; 140
2015; 18
2017; 27
2013; 42
2015; 11
2015; 98
2016; 52
2016; 50
2017; 29
2019; 141
2015; 8
2015; 7
2017; 213
1972; 238
2015; 27
1976; 11
1993; 93
2019; 539
2004; 16
2017; 13
2013; 135
2016; 138
2018; 54
2019; 255
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 235
  start-page: 225
  year: 2018
  publication-title: Appl. Catal., B
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 219
  start-page: 132
  year: 2017
  publication-title: Appl. Catal., B
– volume: 209
  start-page: 253
  year: 2017
  publication-title: Appl. Catal., B
– volume: 235
  start-page: 197
  year: 2018
  publication-title: Appl. Catal., B
– volume: 56
  start-page: 2064
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 559
  year: 2010
  publication-title: Nat. Mater.
– volume: 139
  start-page: 7586
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 122
  year: 2018
  publication-title: ACS Catal.
– volume: 54
  start-page: 2682
  year: 2015
  publication-title: Ind. Eng. Chem. Res.
– volume: 43
  start-page: 5234
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 47
  start-page: 3738
  year: 2012
  publication-title: Mater. Res. Bull.
– volume: 539
  start-page: 654
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 141
  start-page: 5267
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 834
  year: 2008
  publication-title: Scr. Mater.
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 228
  start-page: 75
  year: 2018
  publication-title: Appl. Catal., B
– volume: 16
  start-page: 1810
  year: 2004
  publication-title: Chem. Commun.
– volume: 173
  start-page: 445
  year: 2010
  publication-title: J. Hazard. Mater.
– volume: 57
  start-page: 8719
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 162
  year: 2014
  publication-title: ACS Catal.
– volume: 229
  start-page: 218
  year: 2018
  publication-title: Appl. Catal., B
– volume: 2
  start-page: 1004
  year: 2018
  publication-title: Joule
– volume: 3
  start-page: 1486
  year: 2013
  publication-title: ACS Catal.
– volume: 24
  start-page: 229
  year: 2012
  publication-title: Adv. Mater.
– volume: 58
  start-page: 3077
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 2140
  year: 2018
  publication-title: Chem
– volume: 225
  start-page: 8
  year: 2018
  publication-title: Appl. Catal., B
– volume: 11
  start-page: 106
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 8363
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 230
  start-page: 36
  year: 2018
  publication-title: Appl. Catal., B
– volume: 8
  start-page: 729
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 2414
  year: 2012
  publication-title: Sensors
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 16
  start-page: 3059
  year: 2014
  publication-title: CrystEngComm
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 15
  start-page: 6295
  year: 2015
  publication-title: Nano Lett.
– volume: 127
  start-page: 7632
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2821
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 41
  start-page: 1742
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 841
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 1571
  year: 2018
  publication-title: Chem. Commun.
– volume: 23
  start-page: 3442
  year: 2011
  publication-title: Chem. Mater.
– volume: 28
  start-page: 6959
  year: 2016
  publication-title: Adv. Mater.
– volume: 34
  start-page: 257
  year: 2001
  publication-title: Acc. Chem. Res.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 224
  start-page: 854
  year: 2018
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 1076
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1580
  year: 2015
  publication-title: Adv. Mater.
– volume: 46
  start-page: 2304
  year: 2010
  publication-title: Chem. Commun.
– volume: 7
  start-page: 6225
  year: 2017
  publication-title: ACS Catal.
– volume: 11
  start-page: 1098
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 417
  year: 2019
  publication-title: InfoMat.
– volume: 95
  start-page: 69
  year: 1995
  publication-title: Chem. Rev.
– volume: 9
  start-page: 1787
  year: 2017
  publication-title: Nanoscale
– volume: 3
  start-page: 405
  year: 2013
  publication-title: ACS Catal.
– volume: 110
  start-page: 6503
  year: 2010
  publication-title: Chem. Rev.
– volume: 101
  start-page: 3015
  year: 2018
  publication-title: J. Am. Ceram. Soc.
– volume: 107
  start-page: 668
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 13
  year: 2017
  publication-title: Small
– volume: 39
  start-page: 718
  year: 2018
  publication-title: Chin. J. Catal.
– volume: 17
  start-page: 3537
  year: 2005
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1417
  year: 2010
  publication-title: Nanoscale
– volume: 10
  start-page: 911
  year: 2011
  publication-title: Nat. Mater.
– volume: 22
  start-page: 63
  year: 2013
  publication-title: Interface Mag.
– volume: 3
  start-page: 932
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 227
  start-page: 35
  year: 2018
  publication-title: Appl. Catal., B
– volume: 50
  start-page: 2514
  year: 2016
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 4810
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 98
  start-page: 136
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 9
  start-page: 205
  year: 2010
  publication-title: Nat. Mater.
– volume: 4
  start-page: 5314
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2177
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 3336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 18
  start-page: 143
  year: 2015
  publication-title: Nano Energy
– volume: 57
  start-page: 14
  year: 2019
  publication-title: Nano Energy
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 9454
  year: 2016
  publication-title: Adv. Mater.
– volume: 255
  year: 2019
  publication-title: Appl. Catal., B
– volume: 325
  start-page: 59
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 5685
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 355
  year: 2015
  publication-title: Nano Res.
– volume: 12
  start-page: 4715
  year: 2012
  publication-title: Nano Lett.
– volume: 42
  start-page: 2568
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 204
  start-page: 584
  year: 2017
  publication-title: Appl. Catal., B
– volume: 8
  start-page: 643
  year: 2013
  publication-title: Nano Today
– volume: 379
  start-page: 920
  year: 2004
  publication-title: Anal. Bioanal. Chem.
– volume: 134
  start-page: 6751
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 168–169
  start-page: 9
  year: 2015
  publication-title: Appl. Catal., B
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 193
  start-page: 36
  year: 2016
  publication-title: Appl. Catal., B
– volume: 57
  start-page: 491
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 498
  start-page: 442
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 183
  start-page: 142
  year: 2016
  publication-title: Appl. Catal., B
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 44
  start-page: 6849
  year: 2010
  publication-title: Environ. Sci. Technol.
– volume: 209
  start-page: 566
  year: 2017
  publication-title: Appl. Catal., B
– volume: 11
  start-page: 1191
  year: 1976
  publication-title: Mater. Res. Bull.
– volume: 138
  start-page: 9316
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1310
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 890
  year: 2019
  publication-title: ChemSusChem
– volume: 213
  start-page: 87
  year: 2017
  publication-title: Appl. Catal., B
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 8142
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 209
  start-page: 543
  year: 2017
  publication-title: Appl. Catal., B
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 141
  year: 1995
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 2236
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 32
  year: 2018
  publication-title: Appl. Organomet. Chem.
– volume: 113
  start-page: 772
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 205
  start-page: 158
  year: 2017
  publication-title: Appl. Catal., B
– volume: 33
  start-page: 5685
  year: 2017
  publication-title: Langmuir
– volume: 141
  start-page: 5083
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 724
  start-page: 481
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 522
  start-page: 29
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 9
  start-page: 8914
  year: 2018
  publication-title: Chem. Sci.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 204
  start-page: 593
  year: 2017
  publication-title: Appl. Catal., B
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 93
  start-page: 341
  year: 1993
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 221
  start-page: 645
  year: 2018
  publication-title: Appl. Catal., B
– volume: 52
  year: 2016
  publication-title: Chem. Commun.
– volume: 11
  start-page: 642
  year: 2018
  publication-title: Nano Res.
– volume: 105
  start-page: 1025
  year: 2005
  publication-title: Chem. Rev.
– volume: 41
  start-page: 8920
  year: 2017
  publication-title: New J. Chem.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1042
  year: 2018
  publication-title: Mater. Today
– volume: 9
  start-page: 3618
  year: 2019
  publication-title: ACS Catal.
– volume: 103
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 111
  start-page: 3669
  year: 2011
  publication-title: Chem. Rev.
– volume: 27
  start-page: 363
  year: 2015
  publication-title: Adv. Mater.
– volume: 344
  start-page: 42
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 12
  start-page: 1640
  year: 2016
  publication-title: Small
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 419
  year: 2015
  publication-title: Nano Energy
– volume: 224
  start-page: 671
  year: 2018
  publication-title: Appl. Catal., B
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 25
  year: 2014
  publication-title: Nanotechnology
– ident: e_1_2_8_131_1
  doi: 10.1016/j.nanoen.2018.12.006
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201606688
– ident: e_1_2_8_100_1
  doi: 10.1002/anie.201301306
– ident: e_1_2_8_126_1
  doi: 10.1016/j.apcatb.2014.12.018
– ident: e_1_2_8_141_1
  doi: 10.1039/C6CC07750A
– ident: e_1_2_8_90_1
  doi: 10.1021/acsenergylett.8b00126
– ident: e_1_2_8_149_1
  doi: 10.1002/anie.201810694
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201404792
– ident: e_1_2_8_151_1
  doi: 10.1002/adma.201606198
– ident: e_1_2_8_124_1
  doi: 10.1021/acs.nanolett.5b00950
– ident: e_1_2_8_73_1
  doi: 10.1016/j.chempr.2018.06.004
– ident: e_1_2_8_85_1
  doi: 10.1039/C7EE02464A
– ident: e_1_2_8_115_1
  doi: 10.1016/j.apcatb.2017.07.025
– ident: e_1_2_8_21_1
  doi: 10.1016/0025-5408(76)90020-9
– ident: e_1_2_8_59_1
  doi: 10.1021/cr100275d
– ident: e_1_2_8_12_1
  doi: 10.1021/es101981r
– ident: e_1_2_8_68_1
  doi: 10.1039/C6NR06300D
– ident: e_1_2_8_72_1
  doi: 10.1002/adfm.201804055
– ident: e_1_2_8_82_1
  doi: 10.1016/j.apcatb.2018.02.024
– ident: e_1_2_8_123_1
  doi: 10.1016/j.apcatb.2015.10.039
– ident: e_1_2_8_157_1
  doi: 10.1039/C6EE00383D
– ident: e_1_2_8_75_1
  doi: 10.1002/adfm.201808696
– ident: e_1_2_8_117_1
  doi: 10.1016/j.apcatb.2017.03.017
– ident: e_1_2_8_46_1
  doi: 10.1002/advs.201800748
– ident: e_1_2_8_50_1
  doi: 10.1016/j.nanoen.2015.09.005
– ident: e_1_2_8_51_1
  doi: 10.1016/j.nanoen.2014.10.025
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.7b02290
– ident: e_1_2_8_43_1
  doi: 10.1039/C9TA02780G
– ident: e_1_2_8_116_1
  doi: 10.1016/j.jallcom.2017.07.050
– ident: e_1_2_8_102_1
  doi: 10.1016/j.joule.2018.02.019
– ident: e_1_2_8_110_1
  doi: 10.1016/j.jcis.2018.02.005
– ident: e_1_2_8_91_1
  doi: 10.1039/C7NR04851C
– ident: e_1_2_8_162_1
  doi: 10.1002/inf2.12022
– ident: e_1_2_8_101_1
  doi: 10.1002/anie.201708709
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.5b00448
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.0603395103
– ident: e_1_2_8_35_1
  doi: 10.1016/j.nantod.2013.11.003
– ident: e_1_2_8_95_1
  doi: 10.1002/aenm.201502555
– ident: e_1_2_8_134_1
  doi: 10.1016/j.apcatb.2017.09.063
– ident: e_1_2_8_143_1
  doi: 10.1016/j.cej.2017.05.044
– ident: e_1_2_8_133_1
  doi: 10.1016/j.apcatb.2018.01.021
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201701774
– ident: e_1_2_8_88_1
  doi: 10.1016/j.apcatb.2017.03.022
– ident: e_1_2_8_93_1
  doi: 10.1021/nl302142g
– ident: e_1_2_8_69_1
  doi: 10.1002/anie.201612315
– ident: e_1_2_8_33_1
  doi: 10.1021/cm2004227
– ident: e_1_2_8_44_1
  doi: 10.1021/ja402956f
– ident: e_1_2_8_109_1
  doi: 10.1021/jacs.8b07539
– ident: e_1_2_8_142_1
  doi: 10.1039/C8TA10922B
– ident: e_1_2_8_122_1
  doi: 10.1039/C6NR06767K
– ident: e_1_2_8_161_1
  doi: 10.1021/jacs.7b10817
– ident: e_1_2_8_4_1
  doi: 10.1038/ncomms11480
– ident: e_1_2_8_60_1
  doi: 10.1007/s00216-004-2708-9
– ident: e_1_2_8_97_1
  doi: 10.1002/smtd.201700080
– ident: e_1_2_8_83_1
  doi: 10.1016/j.apcatb.2017.11.024
– ident: e_1_2_8_30_1
  doi: 10.1021/acscatal.7b02972
– ident: e_1_2_8_18_1
  doi: 10.1021/cr00017a016
– ident: e_1_2_8_27_1
  doi: 10.1021/ja300823a
– ident: e_1_2_8_156_1
  doi: 10.1002/smtd.201800388
– ident: e_1_2_8_45_1
  doi: 10.1039/C7NR07010A
– ident: e_1_2_8_107_1
  doi: 10.1021/cr1001645
– ident: e_1_2_8_111_1
  doi: 10.1111/jace.15433
– ident: e_1_2_8_40_1
  doi: 10.1039/C5NR02100F
– ident: e_1_2_8_148_1
  doi: 10.1039/C8EE01146J
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jcis.2018.12.112
– ident: e_1_2_8_17_1
  doi: 10.1021/cr00033a004
– ident: e_1_2_8_71_1
  doi: 10.1002/smll.201503552
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.5b08904
– ident: e_1_2_8_54_1
  doi: 10.1016/j.apcatb.2016.03.075
– ident: e_1_2_8_94_1
  doi: 10.1016/j.materresbull.2012.06.031
– ident: e_1_2_8_105_1
  doi: 10.1002/smll.201900772
– ident: e_1_2_8_146_1
  doi: 10.1021/acs.est.5b04584
– ident: e_1_2_8_125_1
  doi: 10.1111/jace.13232
– ident: e_1_2_8_154_1
  doi: 10.1002/smtd.201800331
– ident: e_1_2_8_8_1
  doi: 10.1038/238037a0
– ident: e_1_2_8_127_1
  doi: 10.1039/C4TA03309D
– ident: e_1_2_8_1_1
  doi: 10.1039/C2CS35355E
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.7b14541
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.201705357
– ident: e_1_2_8_41_1
  doi: 10.1039/c3ce42337a
– ident: e_1_2_8_104_1
  doi: 10.1002/smtd.201800447
– ident: e_1_2_8_106_1
  doi: 10.1021/cs400863c
– ident: e_1_2_8_57_1
  doi: 10.1007/s12274-014-0644-3
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.201602581
– ident: e_1_2_8_77_1
  doi: 10.1149/2.F08132if
– ident: e_1_2_8_28_1
  doi: 10.1016/j.apcatb.2017.11.037
– ident: e_1_2_8_139_1
  doi: 10.1016/j.apcatb.2018.02.018
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jhazmat.2009.08.104
– ident: e_1_2_8_39_1
  doi: 10.1038/nnano.2013.171
– ident: e_1_2_8_160_1
  doi: 10.1021/jacs.6b13100
– ident: e_1_2_8_150_1
  doi: 10.1016/j.apcatb.2019.117764
– ident: e_1_2_8_49_1
  doi: 10.1039/c0nr00253d
– ident: e_1_2_8_78_1
  doi: 10.1021/ja305603t
– ident: e_1_2_8_129_1
  doi: 10.1002/cssc.201802440
– ident: e_1_2_8_81_1
  doi: 10.1021/jacs.8b13062
– ident: e_1_2_8_58_1
  doi: 10.1007/s12274-017-1669-1
– ident: e_1_2_8_135_1
  doi: 10.1039/C7TA02402A
– ident: e_1_2_8_89_1
  doi: 10.1016/S1872-2067(17)62913-9
– ident: e_1_2_8_22_1
  doi: 10.1021/jp809060p
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.201803514
– ident: e_1_2_8_34_1
  doi: 10.1016/j.apcatb.2017.05.018
– ident: e_1_2_8_62_1
  doi: 10.1021/jp026731y
– ident: e_1_2_8_66_1
  doi: 10.1021/acs.langmuir.7b01052
– ident: e_1_2_8_20_1
  doi: 10.1038/nmat3151
– ident: e_1_2_8_52_1
  doi: 10.1039/C5CC02589C
– ident: e_1_2_8_70_1
  doi: 10.1002/adfm.201706969
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201705221
– ident: e_1_2_8_65_1
  doi: 10.1021/acscatal.7b02013
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jhazmat.2017.10.015
– ident: e_1_2_8_63_1
  doi: 10.1021/cr030063a
– ident: e_1_2_8_103_1
  doi: 10.1002/adma.201601960
– ident: e_1_2_8_25_1
  doi: 10.1039/C7CY00308K
– ident: e_1_2_8_9_1
  doi: 10.1021/ar00051a007
– ident: e_1_2_8_36_1
  doi: 10.1088/0957-4484/25/48/482001
– ident: e_1_2_8_114_1
  doi: 10.1021/acssuschemeng.7b03658
– ident: e_1_2_8_147_1
  doi: 10.1016/j.apcatb.2017.03.024
– ident: e_1_2_8_159_1
  doi: 10.1021/am508590j
– ident: e_1_2_8_92_1
  doi: 10.1016/j.scriptamat.2007.12.033
– ident: e_1_2_8_42_1
  doi: 10.1021/cs300808r
– ident: e_1_2_8_112_1
  doi: 10.1016/j.apcatb.2017.11.040
– ident: e_1_2_8_130_1
  doi: 10.1016/j.apcatb.2018.04.075
– ident: e_1_2_8_84_1
  doi: 10.1039/C7NJ01848G
– ident: e_1_2_8_119_1
  doi: 10.1016/j.apcatb.2016.12.027
– ident: e_1_2_8_38_1
  doi: 10.3390/s120302414
– ident: e_1_2_8_19_1
  doi: 10.1039/C4CS00126E
– ident: e_1_2_8_128_1
  doi: 10.1039/b924052g
– ident: e_1_2_8_136_1
  doi: 10.1021/acscatal.8b05081
– ident: e_1_2_8_87_1
  doi: 10.1021/jacs.6b05396
– ident: e_1_2_8_67_1
  doi: 10.1002/smll.201602947
– ident: e_1_2_8_155_1
  doi: 10.1002/smtd.201800352
– ident: e_1_2_8_13_1
  doi: 10.1038/nmat2780
– ident: e_1_2_8_14_1
  doi: 10.1021/cm0501517
– ident: e_1_2_8_99_1
  doi: 10.1016/j.mattod.2018.04.008
– ident: e_1_2_8_153_1
  doi: 10.1002/smtd.201800212
– ident: e_1_2_8_86_1
  doi: 10.1021/jacs.8b12928
– ident: e_1_2_8_118_1
  doi: 10.1016/j.jcis.2017.03.081
– ident: e_1_2_8_74_1
  doi: 10.1039/C8SC04479A
– ident: e_1_2_8_120_1
  doi: 10.1016/j.apcatb.2016.12.011
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201802894
– ident: e_1_2_8_121_1
  doi: 10.1021/acsami.7b00158
– ident: e_1_2_8_32_1
  doi: 10.1021/acssuschemeng.7b02806
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201403264
– ident: e_1_2_8_158_1
  doi: 10.1039/C5TA10180H
– ident: e_1_2_8_145_1
  doi: 10.1038/nnano.2016.138
– ident: e_1_2_8_7_1
  doi: 10.1002/adfm.201703923
– ident: e_1_2_8_108_1
  doi: 10.1039/c0cp00611d
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201102752
– ident: e_1_2_8_98_1
  doi: 10.1021/cs4002089
– ident: e_1_2_8_76_1
  doi: 10.1038/nmat2629
– ident: e_1_2_8_113_1
  doi: 10.1039/C7NR08090E
– ident: e_1_2_8_132_1
  doi: 10.1016/j.apcatb.2018.01.070
– ident: e_1_2_8_152_1
  doi: 10.1002/smtd.201800029
– ident: e_1_2_8_61_1
  doi: 10.1021/ar960016n
– ident: e_1_2_8_96_1
  doi: 10.1021/ie5042287
– ident: e_1_2_8_29_1
  doi: 10.1002/aoc.4230
– ident: e_1_2_8_137_1
  doi: 10.1039/C8TA08914K
– ident: e_1_2_8_79_1
  doi: 10.1039/b405061d
– ident: e_1_2_8_144_1
  doi: 10.1016/j.apcatb.2016.12.009
– ident: e_1_2_8_80_1
  doi: 10.1021/ja042192u
– ident: e_1_2_8_138_1
  doi: 10.1016/j.apcatb.2018.04.081
– ident: e_1_2_8_64_1
  doi: 10.1021/ar800121r
– ident: e_1_2_8_140_1
  doi: 10.1039/C7CC08811F
SSID ssj0031247
Score 2.6031427
SecondaryResourceType review_article
Snippet Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1904107
SubjectTerms Chemical reactions
Electrocatalysts
Energy conversion
Energy storage
Energy utilization
Infrared radiation
Nanotechnology
near‐infrared
Optical properties
Oxidation
Photocatalysis
Photocatalysts
plasmons
Pollutants
Reduction
Solar energy
solar energy conversion
vacancy
Water splitting
Title Near‐Infrared‐Driven Photocatalysts: Design, Construction, and Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201904107
https://www.ncbi.nlm.nih.gov/pubmed/31539198
https://www.proquest.com/docview/2495984280
https://www.proquest.com/docview/2295479961
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6IJz24L9VRKgherDbLmMabuKDihgt4K2maIjh2xM4c9ORP8Df6S3xJp3VGEUEvpSUJTfvytryX7wGsEoorRUfomyih8UKaQSKUQVeFcRNpSoW2p5FPz7YOb_jxbfO27xR_iQ9Rb7hZznDy2jK4SorNT9DQ4qFlQweo0Dhxx8ltwpa1ii5r_CiGystVV0GdFVjgrQq1MaSbg8MHtdI3U3PQcnWq52AcVDXpMuPkfqPbSTb0yxc8x_981QSM9exSf6dcSJMwZPIpGO1DK5yG8zPkivfXt6M8e7Jp63i792SFpX9x1-603UbQc9Eptv09lxay7ttqoBU-7bqv8tTf6YuXz8DNwf717mHQq8cQaC5QntIINarioVYmU1Q1TZopJkxEhdSCmSjNCEc5TswW4yIkxmCDSHEsY1kmm5rNwnDezs08-CHTkjGthJCEE6qTRKeShUbLiGiWcA-Cih6x7oGV25oZrbiEWaax_VFx_aM8WKv7P5YwHT_2bFTkjXvsWsS2ALeM0BMLPVipm5HRbPRE5abdxT42IirQPSQezJXLon4VQ70hiYw8oI64v8whvjo9OamfFv4yaBFGqM2ucdlwDRhGYpolNI86ybJjgQ9w6Ajq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5V9FB6oOXRkpZCkJB6IRA_dh33hkrRArsLakHiFjmOo0pAttpdDnDqT-hv7C_pjLMJLAhVgkuUyLbiZDwvz_gbgA3GcaXYBH0ToyxeWCvKlHHoqgjpEsu5snQauddvd07lwVmrziakszAVPkSz4Uac4eU1MThtSG_fooaOLi8odoAaTTI6T_6Synp7r-p7gyAlUH35-iqotSKC3qpxG2O-PT1-Wi89MDanbVevfPbeQFZPu8o5Od-6Gmdb9uYeouOzvustzE1M03CnWkvz8MKVC_D6DmDhIhz1kTH-_v6zXxZDylzH290hycvw-OdgPPB7Qdej8ehLuOszQzZDKghaQ9RuhqbMw507IfMlON37dvK1E01KMkRWKhSpPEGlamRsjSsMNy2XF0Yol3ClrRIuyQsmUZQz1xZSxcw5bFA5jhWiKHTLincwUw5KtwxhLKwWwhqlNJOM2yyzuRaxszphVmQygKgmSGoneOVUNuMirZCWeUo_Km1-VACfm_6_KqSOR3uu1PRNJxw7SqkGt07QGYsDWG-akdcogGJKN7jCPhQUVeghsgDeV-uieZVA1aGZTgLgnrr_mUP6o9ftNk8fnjJoDV51TnrdtLvfP_wIs5ySbXxy3ArMIGHdJ7SWxtmq54d_9asNBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hVkJwgOW54RkkJC4E4kdre2-IUvEoBfGQuEWO4whpIUW0HJYTP4HfuL9kx0kTWhBCgkuUyLbiZF4ez_gbgA1CkVOMRN9EC4MXUgtioS26KoxbaSgVxp1GPmnXD6740XXteuAUf4EPUW24OcnI9bUT8Psk3XkFDe3e3brQARo0Ttxx8h-8HkrH143zCkCKofXKy6ug0Qoc8lYJ2xjSneHxw2bp3VpzeOma257mFOhy1kXKyZ_tx168bZ7eADp-57N-wmR_YervFpw0DSM2m4GJAbjCWThto1j8e345zNIHl7eOt40Hpy39s5tOr5PvBP3t9rq__UaeF7Llu3KgJUDtlq-zxN8dCJjPwVVz_3LvIOgXZAgMF6hQqUSTqnlotE011TWbpJoJK6lQRjArk5RwVOTE1hkXIbEWG0SCYxlLU1UzbB5Gs05mf4EfMqMYM1oIRTihJo5NolhojZLEsJh7EJT0iEwfrdwVzbiNCpxlGrkfFVU_yoPNqv99gdPxYc_lkrxRX167kavArSS6YqEH61UzSpoLn-jMdh6xjwuJCvQPiQcLBVtUr2JoOBRR0gOaE_eTOUQXJ61W9bT4lUFrMHbWaEatw_bxEoxTl2mTZ8YtwyjS1a7gUqkXr-bS8B_hKwu9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%E2%80%90Driven+Photocatalysts%3A+Design%2C+Construction%2C+and+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Li&rft.au=Xu%2C+Xun&rft.au=Cheng%2C+Qunfeng&rft.au=Dou%2C+Shi+Xue&rft.date=2021-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1002%2Fsmll.201904107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201904107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon