Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide
The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two simila...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 15; pp. 8505 - 8509 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.04.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two similar Ag18 clusters are assembled by NO3− anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag62(S)13(StBu)32(NO3)4 (abbreviated as Ag62). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H2S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications.
Two similar Ag18 clusters are assembled via NO3− anions to form a chain‐like thiolated AgI complex (abbreviated as Ag18). The solution containing Ag18 reacted with H2S with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster Ag62. Based on this cluster transformation, an ultra‐sensitive turn‐on sensor was developed to the detection of H2S gas with an ultrafast response time (30 s) at a low concentration (0.13 ppm). |
---|---|
AbstractList | The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated Ag
I
complex {[Ag
18
(S
t
Bu)
10
(NO
3
)
8
(CH
3
CN)
2
(H
2
O)
2
] ⋅ [Ag
18
(S
t
Bu)
10
(NO
3
)
8
(CH
3
CN)
6
]}
n
(abbreviated as
Ag
18
) in which two similar
Ag
18
clusters are assembled by NO
3
−
anions. The solution containing
Ag
18
reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag
62
(S)
13
(S
t
Bu)
32
(NO
3
)
4
(abbreviated as
Ag
62
). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H
2
S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications. The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two similar Ag18 clusters are assembled by NO3− anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag62(S)13(StBu)32(NO3)4 (abbreviated as Ag62). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H2S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications. The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain-like thiolated AgI complex {[Ag18 (St Bu)10 (NO3 )8 (CH3 CN)2 (H2 O)2 ] ⋅ [Ag18 (St Bu)10 (NO3 )8 (CH3 CN)6 ]}n (abbreviated as Ag18 ) in which two similar Ag18 clusters are assembled by NO3 - anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red-emitting high-nuclearity silver(I) cluster, Ag62 (S)13 (St Bu)32 (NO3 )4 (abbreviated as Ag62 ). We tracked the transformation using time-dependent electrospray ionization mass spectrometry (ESI-MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra-sensitive turn-on sensor detecting H2 S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications.The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain-like thiolated AgI complex {[Ag18 (St Bu)10 (NO3 )8 (CH3 CN)2 (H2 O)2 ] ⋅ [Ag18 (St Bu)10 (NO3 )8 (CH3 CN)6 ]}n (abbreviated as Ag18 ) in which two similar Ag18 clusters are assembled by NO3 - anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red-emitting high-nuclearity silver(I) cluster, Ag62 (S)13 (St Bu)32 (NO3 )4 (abbreviated as Ag62 ). We tracked the transformation using time-dependent electrospray ionization mass spectrometry (ESI-MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra-sensitive turn-on sensor detecting H2 S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications. The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain-like thiolated Ag complex {[Ag (S Bu) (NO ) (CH CN) (H O) ] ⋅ [Ag (S Bu) (NO ) (CH CN) ]} (abbreviated as Ag ) in which two similar Ag clusters are assembled by NO anions. The solution containing Ag reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red-emitting high-nuclearity silver(I) cluster, Ag (S) (S Bu) (NO ) (abbreviated as Ag ). We tracked the transformation using time-dependent electrospray ionization mass spectrometry (ESI-MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra-sensitive turn-on sensor detecting H S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications. The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two similar Ag18 clusters are assembled by NO3− anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag62(S)13(StBu)32(NO3)4 (abbreviated as Ag62). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H2S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications. Two similar Ag18 clusters are assembled via NO3− anions to form a chain‐like thiolated AgI complex (abbreviated as Ag18). The solution containing Ag18 reacted with H2S with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster Ag62. Based on this cluster transformation, an ultra‐sensitive turn‐on sensor was developed to the detection of H2S gas with an ultrafast response time (30 s) at a low concentration (0.13 ppm). |
Author | Zhou, Zhe Han, Zhen Ma, Lu‐Fang Li, Si Zang, Shuang‐Quan He, Wei‐Miao Zhou, Zhan |
Author_xml | – sequence: 1 givenname: Wei‐Miao surname: He fullname: He, Wei‐Miao organization: Zhengzhou University – sequence: 2 givenname: Zhe surname: Zhou fullname: Zhou, Zhe organization: Zhengzhou University – sequence: 3 givenname: Zhen surname: Han fullname: Han, Zhen organization: Zhengzhou University – sequence: 4 givenname: Si surname: Li fullname: Li, Si organization: Zhengzhou University – sequence: 5 givenname: Zhan surname: Zhou fullname: Zhou, Zhan email: zhouzhan@lynu.edu.cn organization: Luoyang Normal University – sequence: 6 givenname: Lu‐Fang surname: Ma fullname: Ma, Lu‐Fang organization: Luoyang Normal University – sequence: 7 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan email: zangsqzg@zzu.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33484217$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkssWGTwbfYyXI0GmilEUVqu44c5xi5cuzBToCw4hF4Rp4EV1OKVAmx8kXf53N8_lN0FGIAhF5SsqKEsLc6OFgxwsqBEPkEndCa0YorxY_KXnBeqaamx-g059vCNw2Rz9Ax56IRjKoTNN74KWmr84Sv3HfA2297HbKLAesw4Os5hV8_fl4GvJtHFyAbCAZwtHg9xdEZ7f2CPyYwLkPx_RdIeOPnPEHKuF_w-TKk-AkCvpq9dQM8R0-t9hle3K9n6Obd9npzXu0u319s1rvKCCVlZbVRUjBjQbfKDKYl5QYop5QpAEltK4lt-l7VfS2krZveGA5aiqG1TEjBz9Cbw7v7FD_PkKdudKV373WAOOeOiYaImrRcFvT1I_Q2ll-X7jpWCNYISepCvbqn5n6EodsnN-q0dH8GWYDVATAp5pzAPiCUdHdJdXdJdQ9JFUE8Eoyb9FQmX_Jw_t9ae9C-Og_Lf4p06w8X27_ub58IqWU |
CitedBy_id | crossref_primary_10_1002_ange_202206437 crossref_primary_10_1021_acs_chemmater_3c00038 crossref_primary_10_1039_D1CC06007D crossref_primary_10_1039_D4SC01502A crossref_primary_10_3390_molecules27217166 crossref_primary_10_1002_adfm_202410361 crossref_primary_10_1016_j_dyepig_2021_109697 crossref_primary_10_1021_acsnano_2c06492 crossref_primary_10_1016_j_jscs_2024_101885 crossref_primary_10_1039_D3DT00554B crossref_primary_10_1007_s11051_022_05491_7 crossref_primary_10_1016_j_saa_2023_122628 crossref_primary_10_1039_D3NR03095D crossref_primary_10_1039_D3CP05499C crossref_primary_10_1007_s10562_023_04270_w crossref_primary_10_1021_jacs_1c06354 crossref_primary_10_1039_D2CC03360G crossref_primary_10_1002_anie_202402565 crossref_primary_10_1039_D1QM01181B crossref_primary_10_1039_D4NR04371E crossref_primary_10_1021_acs_inorgchem_2c04130 crossref_primary_10_1021_acs_cgd_1c00935 crossref_primary_10_1016_j_molstruc_2022_133990 crossref_primary_10_1016_j_saa_2022_121280 crossref_primary_10_1364_PRJ_446416 crossref_primary_10_1002_asia_202400413 crossref_primary_10_1021_jacs_3c01831 crossref_primary_10_1021_acscentsci_1c00746 crossref_primary_10_1002_ange_202317597 crossref_primary_10_1021_acs_jafc_2c00820 crossref_primary_10_1039_D4NR01152J crossref_primary_10_3390_mi13050790 crossref_primary_10_1002_anie_202407887 crossref_primary_10_1021_acsanm_2c02496 crossref_primary_10_1515_zkri_2023_0001 crossref_primary_10_1016_j_actbio_2023_01_050 crossref_primary_10_1039_D2DT02470E crossref_primary_10_1002_slct_202204289 crossref_primary_10_1016_j_trac_2023_117471 crossref_primary_10_1039_D2DT03418B crossref_primary_10_1021_acs_jafc_1c06476 crossref_primary_10_1016_j_saa_2023_123530 crossref_primary_10_1039_D1RA07211K crossref_primary_10_3389_fchem_2021_665880 crossref_primary_10_6023_A21050212 crossref_primary_10_1016_j_saa_2022_121692 crossref_primary_10_1039_D2CC05692E crossref_primary_10_1039_D2CS00236A crossref_primary_10_1016_j_actphy_2025_100046 crossref_primary_10_1002_ange_202407887 crossref_primary_10_1039_D1CC05396E crossref_primary_10_1039_D2DT00810F crossref_primary_10_1039_D2DT02194C crossref_primary_10_1021_acs_jafc_2c04571 crossref_primary_10_1002_adma_202302984 crossref_primary_10_1021_acsaom_2c00065 crossref_primary_10_3390_molecules29112521 crossref_primary_10_1021_acs_inorgchem_1c03040 crossref_primary_10_1002_anie_202413830 crossref_primary_10_1016_j_surfin_2022_102112 crossref_primary_10_1021_jacs_2c06093 crossref_primary_10_1002_ange_202402565 crossref_primary_10_1007_s11426_021_1025_8 crossref_primary_10_1002_anie_202317597 crossref_primary_10_1039_D2NR01550A crossref_primary_10_1039_D2NR06613K crossref_primary_10_1021_acs_inorgchem_3c00070 crossref_primary_10_1002_smll_202207046 crossref_primary_10_1016_j_molstruc_2022_134192 crossref_primary_10_1021_acscatal_2c02649 crossref_primary_10_1039_D2TB00742H crossref_primary_10_1021_jacsau_2c00517 crossref_primary_10_1002_asia_202100783 crossref_primary_10_1016_j_surfin_2022_102247 crossref_primary_10_1016_j_foodchem_2023_136376 crossref_primary_10_1039_D2NR00078D crossref_primary_10_1021_acsnano_4c16160 crossref_primary_10_1016_j_ccr_2021_214268 crossref_primary_10_1039_D4NR02506G crossref_primary_10_1002_anie_202209971 crossref_primary_10_1016_j_matt_2024_02_002 crossref_primary_10_1039_D4NR01963F crossref_primary_10_1038_s41578_024_00741_7 crossref_primary_10_1002_anie_202213826 crossref_primary_10_1080_00032719_2023_2202916 crossref_primary_10_1002_agt2_675 crossref_primary_10_1016_j_foodchem_2023_136701 crossref_primary_10_1039_D1RA06569F crossref_primary_10_3389_fchem_2023_1126309 crossref_primary_10_1515_zkri_2022_0047 crossref_primary_10_3390_molecules27144431 crossref_primary_10_1039_D2CS00876A crossref_primary_10_26599_POM_2023_9140038 crossref_primary_10_1039_D1NJ02763H crossref_primary_10_1021_acs_inorgchem_4c04353 crossref_primary_10_3389_fchem_2022_898324 crossref_primary_10_1002_ange_202209971 crossref_primary_10_26599_POM_2025_9140086 crossref_primary_10_1002_ange_202413830 crossref_primary_10_1002_smll_202306863 crossref_primary_10_1039_D3QI01723K crossref_primary_10_1002_ange_202213826 crossref_primary_10_1016_j_chempr_2025_102457 crossref_primary_10_1021_acs_cgd_2c00744 crossref_primary_10_1021_acs_chemrev_3c00896 crossref_primary_10_1021_acs_inorgchem_1c02262 crossref_primary_10_1039_D2TC00920J crossref_primary_10_1021_acs_inorgchem_2c01686 crossref_primary_10_1002_smll_202500700 crossref_primary_10_1016_j_ccr_2023_215297 crossref_primary_10_1002_anie_202206437 crossref_primary_10_1021_acsmaterialslett_3c01198 crossref_primary_10_1093_nsr_nwae174 crossref_primary_10_1039_D3CE00716B crossref_primary_10_1016_j_saa_2024_124957 crossref_primary_10_1021_acs_inorgchem_3c01309 crossref_primary_10_1016_j_snb_2022_132341 crossref_primary_10_1021_acs_jafc_1c00862 crossref_primary_10_1002_anbr_202200065 |
Cites_doi | 10.1021/acs.inorgchem.8b03298 10.1038/s41467-020-17198-1 10.1016/j.ccr.2011.02.003 10.1002/anie.201405936 10.1021/acs.chemrev.5b00703 10.1016/j.ccr.2016.02.013 10.1038/s41467-018-06755-4 10.1039/C6SC04578B 10.1038/s41467-020-19789-4 10.1002/ange.201903853 10.1021/jacs.9b05776 10.1002/ange.201001301 10.1021/jacs.5b09401 10.1002/ange.201909980 10.1002/anie.202004268 10.1021/jacs.0c04677 10.1039/C8SC05666H 10.1021/ja211438q 10.1039/c4nr01350f 10.1021/ja506773d 10.1021/jacs.6b06004 10.1039/C6CC02631A 10.1002/ange.201405936 10.1021/jacs.0c09110 10.1039/C9SC02667C 10.1021/jacs.6b08100 10.1002/anie.201207098 10.1016/j.ccr.2017.11.001 10.1002/advs.202000738 10.1002/ange.200704249 10.1002/anie.201903853 10.1021/jacs.6b03844 10.1021/acsami.8b22517 10.1038/s41467-019-11988-y 10.1021/acs.chemrev.6b00769 10.1002/anie.201807548 10.1021/jacs.9b08055 10.1021/acs.accounts.8b00065 10.1002/ange.201906740 10.1002/ange.202004268 10.1002/anie.201608780 10.1021/jacs.0c02117 10.1039/C9CC03533H 10.1002/chem.201805808 10.1002/advs.201801304 10.1002/smll.201703822 10.1039/C2CS35252D 10.1002/ange.201207098 10.1002/anie.201906740 10.1002/ange.201307480 10.1007/s11426-018-9387-7 10.1002/ange.201807548 10.1002/anie.200704249 10.1021/ja404058q 10.1021/ja108684m 10.1039/C8CS00800K 10.1021/jacs.7b12136 10.1021/ja506802n 10.1002/ange.201608780 10.1039/C6CC02873J 10.1039/C7NR00931C 10.1021/jacs.9b09460 10.1007/s12274-014-0403-5 10.1039/C9SC05700E 10.1039/C8CC00985F 10.1021/jacs.5b01232 10.1021/ja505599v 10.1021/acs.jpclett.5b00934 10.1021/acsmaterialslett.9b00175 10.1021/acs.inorgchem.9b00125 10.1002/anie.201307480 10.1038/nchem.2718 10.1039/C8NR01611A 10.1002/anie.201001301 10.1002/anie.201909980 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202100006 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8509 |
ExternalDocumentID | 33484217 10_1002_anie_202100006 ANIE202100006 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: the Scientific Research Fund of Henan Provincial Education Department funderid: 21A150003 – fundername: the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province funderid: 19IRTSTHN022 – fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province funderid: 164100510005 – fundername: the National Natural Science Foundation of China funderid: 92061201; 21825106; 21801227 – fundername: the Scientific Research Fund of Henan Provincial Education Department grantid: 21A150003 – fundername: the National Natural Science Foundation of China grantid: 92061201 – fundername: the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province grantid: 19IRTSTHN022 – fundername: the National Natural Science Foundation of China grantid: 21801227 – fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province grantid: 164100510005 – fundername: the National Natural Science Foundation of China grantid: 21825106 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4766-fac7642cfea97cdc90face131127ee61f960f8bb75b546f58bcc3ea64d9f24643 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:52:35 EDT 2025 Sun Jul 13 04:52:04 EDT 2025 Wed Feb 19 02:28:38 EST 2025 Tue Jul 01 01:17:55 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Wed Jan 22 16:31:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | fluorescent probe cluster to cluster transformation hydrogen sulfide silver(I) clusters |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-fac7642cfea97cdc90face131127ee61f960f8bb75b546f58bcc3ea64d9f24643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6728-0559 |
PMID | 33484217 |
PQID | 2509284605 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2480450936 proquest_journals_2509284605 pubmed_primary_33484217 crossref_primary_10_1002_anie_202100006 crossref_citationtrail_10_1002_anie_202100006 wiley_primary_10_1002_anie_202100006_ANIE202100006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 6, 2021 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: April 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 8 2015; 6 2018; 140 2019; 6 2020; 142 2019; 55 2019; 11 2019; 10 2019; 1 2013; 42 2019; 58 2020 2020; 59 132 2016; 320 2016; 52 2010 2010; 49 122 2020; 11 2008 2008; 47 120 2019; 141 2014; 136 2017; 9 2011; 255 2019 2019; 58 131 2017; 117 2020; 7 2018; 9 2016 2016; 55 128 2012; 134 2019; 62 2015; 137 2018 2018; 57 130 2012 2012; 51 124 2019; 48 2019; 25 2010; 132 2015 2015; 54 127 2019; 378 2013; 135 2016; 116 2018; 51 2016; 138 2018; 10 2014; 7 2018; 54 2014; 6 2018; 14 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_8_2 e_1_2_2_43_2 e_1_2_2_26_3 e_1_2_2_28_1 e_1_2_2_43_3 e_1_2_2_66_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_51_2 e_1_2_2_74_2 e_1_2_2_72_2 e_1_2_2_76_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_78_2 e_1_2_2_34_1 e_1_2_2_13_3 e_1_2_2_15_1 e_1_2_2_55_3 e_1_2_2_57_1 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_48_1 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_63_1 e_1_2_2_40_2 e_1_2_2_61_2 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_65_3 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_9_3 e_1_2_2_67_3 e_1_2_2_69_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_67_2 e_1_2_2_80_1 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_79_3 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_50_2 e_1_2_2_75_2 e_1_2_2_52_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_73_2 e_1_2_2_31_3 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_79_2 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_77_2 e_1_2_2_71_2 |
References_xml | – volume: 141 start-page: 18977 year: 2019 end-page: 18983 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 11898 11996 year: 2020 2020 end-page: 11902 12000 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 15994 year: 2019 end-page: 16002 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 16297 16443 year: 2019 2019 end-page: 16306 16452 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 2922 year: 2012 end-page: 2925 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 10754 year: 2016 end-page: 10757 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 8685 year: 2019 end-page: 8693 publication-title: Chem. Sci. – volume: 58 start-page: 5388 year: 2019 end-page: 5392 publication-title: Inorg. Chem. – volume: 11 start-page: 6019 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 285 year: 2014 end-page: 300 publication-title: Nano Res. – volume: 14 year: 2018 publication-title: Small – volume: 142 start-page: 20426 year: 2020 end-page: 20433 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 11922 year: 2014 end-page: 11925 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 382 year: 2019 end-page: 394 publication-title: Coord. Chem. Rev. – volume: 47 120 start-page: 1326 1346 year: 2008 2008 end-page: 1331 1351 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 2235 year: 2017 end-page: 2240 publication-title: Chem. Sci. – volume: 54 127 start-page: 746 756 year: 2015 2015 end-page: 784 797 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 140 start-page: 594 year: 2018 end-page: 597 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2422 year: 2019 end-page: 2457 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 11560 year: 2020 end-page: 11568 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4407 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 3316 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 4862 year: 2019 end-page: 4867 publication-title: Chem. Sci. – volume: 54 start-page: 4314 year: 2018 end-page: 4316 publication-title: Chem. Commun. – volume: 62 start-page: 331 year: 2019 end-page: 335 publication-title: Sci. China Chem. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 1 start-page: 277 year: 2019 end-page: 284 publication-title: ACS Mater. Lett. – volume: 11 start-page: 1691 year: 2020 end-page: 1697 publication-title: Chem. Sci. – volume: 49 122 start-page: 6899 7052 year: 2010 2010 end-page: 6903 7056 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 8930 year: 2017 end-page: 8937 publication-title: Nanoscale – volume: 42 start-page: 1871 year: 2013 end-page: 1906 publication-title: Chem. Soc. Rev. – volume: 51 124 start-page: 13114 13291 year: 2012 2012 end-page: 13118 13295 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 2376 2408 year: 2014 2014 end-page: 2380 2412 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 689 year: 2017 end-page: 697 publication-title: Nat. Chem. – volume: 51 start-page: 1338 year: 2018 end-page: 1348 publication-title: Acc. Chem. Res. – volume: 135 start-page: 10011 year: 2013 end-page: 10013 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 15559 year: 2014 end-page: 15565 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 17884 year: 2019 end-page: 17890 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4032 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 12761 year: 2019 end-page: 12769 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 4324 year: 2015 end-page: 4327 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3023 year: 2015 end-page: 3035 publication-title: J. Phys. Chem. Lett. – volume: 116 start-page: 10346 year: 2016 end-page: 10413 publication-title: Chem. Rev. – volume: 58 131 start-page: 15665 15812 year: 2019 2019 end-page: 15670 15817 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 8208 year: 2017 end-page: 8271 publication-title: Chem. Rev. – volume: 58 131 start-page: 9964 10069 year: 2019 2019 end-page: 9968 10073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 10801 year: 2014 end-page: 10806 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 12140 year: 2020 end-page: 12145 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 17678 year: 2010 end-page: 17679 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 12093 year: 2018 end-page: 12099 publication-title: Nanoscale – volume: 57 130 start-page: 12775 12957 year: 2018 2018 end-page: 12779 12961 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 15879 16111 year: 2016 2016 end-page: 15883 16115 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 8022 year: 2016 end-page: 8025 publication-title: Chem. Commun. – volume: 255 start-page: 2111 year: 2011 end-page: 2123 publication-title: Coord. Chem. Rev. – volume: 25 start-page: 3376 year: 2019 end-page: 3381 publication-title: Chem. Eur. J. – volume: 6 start-page: 6458 year: 2014 end-page: 6462 publication-title: Nanoscale – volume: 138 start-page: 12751 year: 2016 end-page: 12754 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 3690 year: 2019 end-page: 3697 publication-title: Inorg. Chem. – volume: 52 start-page: 6119 year: 2016 end-page: 6122 publication-title: Chem. Commun. – volume: 320 start-page: 238 year: 2016 end-page: 250 publication-title: Coord. Chem. Rev. – volume: 55 start-page: 6771 year: 2019 end-page: 6774 publication-title: Chem. Commun. – volume: 138 start-page: 140 year: 2016 end-page: 148 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 7260 year: 2016 end-page: 7263 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_73_2 doi: 10.1021/acs.inorgchem.8b03298 – ident: e_1_2_2_60_2 doi: 10.1038/s41467-020-17198-1 – ident: e_1_2_2_70_2 doi: 10.1016/j.ccr.2011.02.003 – ident: e_1_2_2_9_2 doi: 10.1002/anie.201405936 – ident: e_1_2_2_3_2 doi: 10.1021/acs.chemrev.5b00703 – ident: e_1_2_2_4_2 doi: 10.1016/j.ccr.2016.02.013 – ident: e_1_2_2_38_1 – ident: e_1_2_2_27_2 doi: 10.1038/s41467-018-06755-4 – ident: e_1_2_2_68_2 doi: 10.1039/C6SC04578B – ident: e_1_2_2_39_2 doi: 10.1038/s41467-020-19789-4 – ident: e_1_2_2_76_1 – ident: e_1_2_2_80_1 – ident: e_1_2_2_31_3 doi: 10.1002/ange.201903853 – ident: e_1_2_2_33_2 doi: 10.1021/jacs.9b05776 – ident: e_1_2_2_55_3 doi: 10.1002/ange.201001301 – ident: e_1_2_2_15_1 – ident: e_1_2_2_21_2 doi: 10.1021/jacs.5b09401 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201909980 – ident: e_1_2_2_65_2 doi: 10.1002/anie.202004268 – ident: e_1_2_2_71_2 doi: 10.1021/jacs.0c04677 – ident: e_1_2_2_14_2 doi: 10.1039/C8SC05666H – ident: e_1_2_2_28_1 – ident: e_1_2_2_17_2 doi: 10.1021/ja211438q – ident: e_1_2_2_50_2 doi: 10.1039/c4nr01350f – ident: e_1_2_2_11_2 doi: 10.1021/ja506773d – ident: e_1_2_2_24_2 doi: 10.1021/jacs.6b06004 – ident: e_1_2_2_59_2 doi: 10.1039/C6CC02631A – ident: e_1_2_2_9_3 doi: 10.1002/ange.201405936 – ident: e_1_2_2_16_2 doi: 10.1021/jacs.0c09110 – ident: e_1_2_2_40_2 doi: 10.1039/C9SC02667C – ident: e_1_2_2_19_2 doi: 10.1021/jacs.6b08100 – ident: e_1_2_2_52_2 doi: 10.1002/anie.201207098 – ident: e_1_2_2_8_2 doi: 10.1016/j.ccr.2017.11.001 – ident: e_1_2_2_22_1 – ident: e_1_2_2_41_2 doi: 10.1002/advs.202000738 – ident: e_1_2_2_67_3 doi: 10.1002/ange.200704249 – ident: e_1_2_2_31_2 doi: 10.1002/anie.201903853 – ident: e_1_2_2_74_2 doi: 10.1021/jacs.6b03844 – ident: e_1_2_2_78_2 doi: 10.1021/acsami.8b22517 – ident: e_1_2_2_37_2 doi: 10.1038/s41467-019-11988-y – ident: e_1_2_2_5_2 doi: 10.1021/acs.chemrev.6b00769 – ident: e_1_2_2_43_2 doi: 10.1002/anie.201807548 – ident: e_1_2_2_69_1 – ident: e_1_2_2_63_1 – ident: e_1_2_2_30_2 doi: 10.1021/jacs.9b08055 – ident: e_1_2_2_66_1 – ident: e_1_2_2_6_2 doi: 10.1021/acs.accounts.8b00065 – ident: e_1_2_2_26_3 doi: 10.1002/ange.201906740 – ident: e_1_2_2_65_3 doi: 10.1002/ange.202004268 – ident: e_1_2_2_79_2 doi: 10.1002/anie.201608780 – ident: e_1_2_2_36_2 doi: 10.1021/jacs.0c02117 – ident: e_1_2_2_1_1 – ident: e_1_2_2_61_2 doi: 10.1039/C9CC03533H – ident: e_1_2_2_46_2 doi: 10.1002/chem.201805808 – ident: e_1_2_2_57_1 – ident: e_1_2_2_45_2 doi: 10.1002/advs.201801304 – ident: e_1_2_2_77_2 doi: 10.1002/smll.201703822 – ident: e_1_2_2_54_2 doi: 10.1039/C2CS35252D – ident: e_1_2_2_52_3 doi: 10.1002/ange.201207098 – ident: e_1_2_2_26_2 doi: 10.1002/anie.201906740 – ident: e_1_2_2_13_3 doi: 10.1002/ange.201307480 – ident: e_1_2_2_44_2 doi: 10.1007/s11426-018-9387-7 – ident: e_1_2_2_43_3 doi: 10.1002/ange.201807548 – ident: e_1_2_2_48_1 – ident: e_1_2_2_67_2 doi: 10.1002/anie.200704249 – ident: e_1_2_2_42_1 – ident: e_1_2_2_51_2 doi: 10.1021/ja404058q – ident: e_1_2_2_58_2 doi: 10.1021/ja108684m – ident: e_1_2_2_7_2 doi: 10.1039/C8CS00800K – ident: e_1_2_2_18_2 doi: 10.1021/jacs.7b12136 – ident: e_1_2_2_49_2 doi: 10.1021/ja506802n – ident: e_1_2_2_34_1 – ident: e_1_2_2_79_3 doi: 10.1002/ange.201608780 – ident: e_1_2_2_47_2 doi: 10.1039/C6CC02873J – ident: e_1_2_2_53_1 – ident: e_1_2_2_64_2 doi: 10.1039/C7NR00931C – ident: e_1_2_2_56_2 doi: 10.1021/jacs.9b09460 – ident: e_1_2_2_29_2 doi: 10.1007/s12274-014-0403-5 – ident: e_1_2_2_20_2 doi: 10.1039/C9SC05700E – ident: e_1_2_2_62_2 doi: 10.1039/C8CC00985F – ident: e_1_2_2_25_2 doi: 10.1021/jacs.5b01232 – ident: e_1_2_2_75_2 doi: 10.1021/ja505599v – ident: e_1_2_2_2_2 doi: 10.1021/acs.jpclett.5b00934 – ident: e_1_2_2_72_2 doi: 10.1021/acsmaterialslett.9b00175 – ident: e_1_2_2_32_2 doi: 10.1021/acs.inorgchem.9b00125 – ident: e_1_2_2_10_1 – ident: e_1_2_2_13_2 doi: 10.1002/anie.201307480 – ident: e_1_2_2_12_2 doi: 10.1038/nchem.2718 – ident: e_1_2_2_23_2 doi: 10.1039/C8NR01611A – ident: e_1_2_2_55_2 doi: 10.1002/anie.201001301 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201909980 |
SSID | ssj0028806 |
Score | 2.633187 |
Snippet | The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a... The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8505 |
SubjectTerms | Anions cluster to cluster transformation fluorescent probe Hydrogen sulfide Ionization Ions Mass spectrometry Mass spectroscopy Metal clusters Photoluminescence Photons Response time Silver silver(I) clusters Time dependence |
Title | Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100006 https://www.ncbi.nlm.nih.gov/pubmed/33484217 https://www.proquest.com/docview/2509284605 https://www.proquest.com/docview/2480450936 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL-VSWn7KlrYyEhInt1s7cZLjarWrBUFBbFfqLfKvVJEmaJNIbE88As_YJ-lMsgksCFUqNyfxJI5nxp6xZz4T8kZo54QWlg2VjxmmdrJEx4YpE1nL7ZkPJCYKfzyXs0Xw_jK8_C2Lv8WH6BfcUDOa8RoVXOny9BdoKGZgg3_HmwVqxNzGgC20ir70-FEchLNNLxKC4Sn0HWrjkJ9ukm_OSn-ZmpuWazP1TJ8Q1TW6jTj5elJX-sTc_IHn-D9_tUt21nYpHbWCtEceufwp2R53x8E9I9eLrFoqr8qKzq9uHJ18h3EEl9qoyi29APLbHz8_5fRDfY2R9AZHDFp4OqqKBpEgW9HPiKRROqDHcGw6zmpEaSipXtHZyi4LkGU6rzN_Zd1zsphOLsYztj6rgZkgkpJ5YC64MsY7lUTGmmQIdxxi-fDIOXnmwVPysdZRqMNA-jDWxginZGATzwMwi16QrbzI3UtCI6NMqKXQUMBdXGVE7GwUg-CEXEVyQFjHq9SsgczxPI0sbSGYeYqdmPadOCBv-_rfWgiPf9Y87FifrlW5TMFGTGAOB7dvQF73j6HzcWdF5a6ooU4Qg2k8TAS8Yr8Vmf5TmOocgOM3ILxh_D1tSEfn7yb91cFDiF6Rx1hu4ovkIdmqlrU7AtOp0seNetwBzIASBA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKWZQN78dAASOBWKWdOomTLFiMplPN0OmA6IzUXeqnVJEmaJIIpis-gV_hV_gEvoR780IDQkhIXbDLw3Yc-177XNv3XEKeu9IYV7ra6QsbOuja6UQyVI5QgdZM71mPo6Pw0YyPF97rE_9kg3xtfWFqfohuwQ01oxqvUcFxQXr3J2soumCDgceqFWrenKs8NKuPYLXlryb70MUvGDsYzYdjpwks4Cgv4NyxUBPA3coaEQVKq6gPTwwSz7DAGL5nAdbbUMrAl77HrR9KpVwjuKcjyzyYw6HcK-QqhhFHuv79dx1jFQN1qB2aXNfBuPctT2Sf7a7Xd30e_A3crmPlarI7uEG-tc1Un3F5v1MWckdd_MIg-V-1401yvYHedFDryi2yYdLbZGvYRry7Q84XSbEUVuQFPT67MHT0CYZKXE2kItV0Dtm_f_7yJqXT8hydBRQOijSzdFBkFelCsqJvkSwkN5AfT5zTYVIiEUVO5YqOV3qZgbrS4zKxZ9rcJYtL-dt7ZDPNUvOA0EAJ5UvuSrjAjWqh3NDoIATd8JkIeI84rXDEquFqx5AhSVyzTLMYOy3uOq1HXnbpP9QsJX9Mud3KWtyMVnkMMDgCmAKWbY88615D4-PmkUhNVkIaLwT0349cKOJ-LaPdp9Cb2wPbtkdYJWl_qUM8mE1G3d3Df8n0lGyN50fTeDqZHT4i1_B5dZyKb5PNYlmax4AUC_mk0k1KTi9biH8AfddyUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKkYAN78dAASOBWKVNncRJFixG89AMLUNFO1J3wU-pIk2qSSKYrvgEPoVf4Rf4Eu5NJkEDQkhIXbDLw3Yc-177XNv3XEKee9IYT3racYWNHHTtdGIZKUeoUGumd63P0VH4zYxP5v7r4-B4g3xtfWEafohuwQ01ox6vUcHPtN35SRqKHthg37F6gZqvjlXumeVHMNqKV9Mh9PALxsajo8HEWcUVcJQfcu5YqAjAbmWNiEOlVezCE4O8Myw0hu9aQPU2kjIMZOBzG0RSKc8I7uvYMh-mcCj3ErnsczfGYBHDdx1hFQNtaPyZPM_BsPctTaTLdtbruz4N_oZt16FyPdeNb5BvbSs1R1w-bFel3FbnvxBI_k_NeJNcXwFv2m805RbZMNltcnXQxru7Q07nabkQVhQlPTw5N3T0CQZKXEukItP0CLJ___zlbUb3q1N0FVA4JNLc0n6Z15QL6ZIeIFVIYSA_njeng7RCGoqCyiWdLPUiB2Wlh1VqT7S5S-YX8rf3yGaWZ-YBoaESKpDck3CB29RCeZHRYQSaETAR8h5xWtlI1IqpHQOGpEnDMc0S7LSk67QeedmlP2s4Sv6YcqsVtWQ1VhUJgOAYQArYtT3yrHsNjY9bRyIzeQVp_Aiwvxt7UMT9RkS7T6Evtw-WbY-wWtD-UoekP5uOuruH_5LpKblyMBwn-9PZ3iNyDR_XZ6n4FtksF5V5DDCxlE9qzaTk_UXL8A-hn3D_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Size+Expansion+and+Turn%E2%80%90On+Luminescence+of+Atomically+Precise+Silver+Clusters+by+Hydrogen+Sulfide&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wei%E2%80%90Miao+He&rft.au=Zhou%2C+Zhe&rft.au=Han%2C+Zhen&rft.au=Li%2C+Si&rft.date=2021-04-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8505&rft.epage=8509&rft_id=info:doi/10.1002%2Fanie.202100006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |