Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide

The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two simila...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 15; pp. 8505 - 8509
Main Authors He, Wei‐Miao, Zhou, Zhe, Han, Zhen, Li, Si, Zhou, Zhan, Ma, Lu‐Fang, Zang, Shuang‐Quan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.04.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two similar Ag18 clusters are assembled by NO3− anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag62(S)13(StBu)32(NO3)4 (abbreviated as Ag62). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H2S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications. Two similar Ag18 clusters are assembled via NO3− anions to form a chain‐like thiolated AgI complex (abbreviated as Ag18). The solution containing Ag18 reacted with H2S with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster Ag62. Based on this cluster transformation, an ultra‐sensitive turn‐on sensor was developed to the detection of H2S gas with an ultrafast response time (30 s) at a low concentration (0.13 ppm).
AbstractList The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated Ag I complex {[Ag 18 (S t Bu) 10 (NO 3 ) 8 (CH 3 CN) 2 (H 2 O) 2 ] ⋅ [Ag 18 (S t Bu) 10 (NO 3 ) 8 (CH 3 CN) 6 ]} n (abbreviated as Ag 18 ) in which two similar Ag 18 clusters are assembled by NO 3 − anions. The solution containing Ag 18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag 62 (S) 13 (S t Bu) 32 (NO 3 ) 4 (abbreviated as Ag 62 ). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H 2 S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications.
The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two similar Ag18 clusters are assembled by NO3− anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag62(S)13(StBu)32(NO3)4 (abbreviated as Ag62). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H2S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications.
The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain-like thiolated AgI complex {[Ag18 (St Bu)10 (NO3 )8 (CH3 CN)2 (H2 O)2 ] ⋅ [Ag18 (St Bu)10 (NO3 )8 (CH3 CN)6 ]}n (abbreviated as Ag18 ) in which two similar Ag18 clusters are assembled by NO3 - anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red-emitting high-nuclearity silver(I) cluster, Ag62 (S)13 (St Bu)32 (NO3 )4 (abbreviated as Ag62 ). We tracked the transformation using time-dependent electrospray ionization mass spectrometry (ESI-MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra-sensitive turn-on sensor detecting H2 S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications.The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain-like thiolated AgI complex {[Ag18 (St Bu)10 (NO3 )8 (CH3 CN)2 (H2 O)2 ] ⋅ [Ag18 (St Bu)10 (NO3 )8 (CH3 CN)6 ]}n (abbreviated as Ag18 ) in which two similar Ag18 clusters are assembled by NO3 - anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red-emitting high-nuclearity silver(I) cluster, Ag62 (S)13 (St Bu)32 (NO3 )4 (abbreviated as Ag62 ). We tracked the transformation using time-dependent electrospray ionization mass spectrometry (ESI-MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra-sensitive turn-on sensor detecting H2 S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications.
The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain-like thiolated Ag complex {[Ag (S Bu) (NO ) (CH CN) (H O) ] ⋅ [Ag (S Bu) (NO ) (CH CN) ]} (abbreviated as Ag ) in which two similar Ag clusters are assembled by NO anions. The solution containing Ag reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red-emitting high-nuclearity silver(I) cluster, Ag (S) (S Bu) (NO ) (abbreviated as Ag ). We tracked the transformation using time-dependent electrospray ionization mass spectrometry (ESI-MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra-sensitive turn-on sensor detecting H S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications.
The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a chain‐like thiolated AgI complex {[Ag18(StBu)10(NO3)8(CH3CN)2(H2O)2] ⋅ [Ag18(StBu)10(NO3)8(CH3CN)6]}n (abbreviated as Ag18) in which two similar Ag18 clusters are assembled by NO3− anions. The solution containing Ag18 reacted with hydrogen sulfide with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster, Ag62(S)13(StBu)32(NO3)4 (abbreviated as Ag62). We tracked the transformation using time‐dependent electrospray ionization mass spectrometry (ESI‐MS), UV/Vis absorption and photoluminescence spectra. Based on this cluster transformation, we further developed an ultra‐sensitive turn‐on sensor detecting H2S gas with an ultrafast response time (30 s) at a low detection limit (0.13 ppm). This work opens a new way of understanding the growth of metal clusters and developing their luminescent sensing applications. Two similar Ag18 clusters are assembled via NO3− anions to form a chain‐like thiolated AgI complex (abbreviated as Ag18). The solution containing Ag18 reacted with H2S with controlled concentration, promptly producing another identifiable and bright red‐emitting high‐nuclearity silver(I) cluster Ag62. Based on this cluster transformation, an ultra‐sensitive turn‐on sensor was developed to the detection of H2S gas with an ultrafast response time (30 s) at a low concentration (0.13 ppm).
Author Zhou, Zhe
Han, Zhen
Ma, Lu‐Fang
Li, Si
Zang, Shuang‐Quan
He, Wei‐Miao
Zhou, Zhan
Author_xml – sequence: 1
  givenname: Wei‐Miao
  surname: He
  fullname: He, Wei‐Miao
  organization: Zhengzhou University
– sequence: 2
  givenname: Zhe
  surname: Zhou
  fullname: Zhou, Zhe
  organization: Zhengzhou University
– sequence: 3
  givenname: Zhen
  surname: Han
  fullname: Han, Zhen
  organization: Zhengzhou University
– sequence: 4
  givenname: Si
  surname: Li
  fullname: Li, Si
  organization: Zhengzhou University
– sequence: 5
  givenname: Zhan
  surname: Zhou
  fullname: Zhou, Zhan
  email: zhouzhan@lynu.edu.cn
  organization: Luoyang Normal University
– sequence: 6
  givenname: Lu‐Fang
  surname: Ma
  fullname: Ma, Lu‐Fang
  organization: Luoyang Normal University
– sequence: 7
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  email: zangsqzg@zzu.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33484217$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWGTwbfYyXI0GmilEUVqu44c5xi5cuzBToCw4hF4Rp4EV1OKVAmx8kXf53N8_lN0FGIAhF5SsqKEsLc6OFgxwsqBEPkEndCa0YorxY_KXnBeqaamx-g059vCNw2Rz9Ax56IRjKoTNN74KWmr84Sv3HfA2297HbKLAesw4Os5hV8_fl4GvJtHFyAbCAZwtHg9xdEZ7f2CPyYwLkPx_RdIeOPnPEHKuF_w-TKk-AkCvpq9dQM8R0-t9hle3K9n6Obd9npzXu0u319s1rvKCCVlZbVRUjBjQbfKDKYl5QYop5QpAEltK4lt-l7VfS2krZveGA5aiqG1TEjBz9Cbw7v7FD_PkKdudKV373WAOOeOiYaImrRcFvT1I_Q2ll-X7jpWCNYISepCvbqn5n6EodsnN-q0dH8GWYDVATAp5pzAPiCUdHdJdXdJdQ9JFUE8Eoyb9FQmX_Jw_t9ae9C-Og_Lf4p06w8X27_ub58IqWU
CitedBy_id crossref_primary_10_1002_ange_202206437
crossref_primary_10_1021_acs_chemmater_3c00038
crossref_primary_10_1039_D1CC06007D
crossref_primary_10_1039_D4SC01502A
crossref_primary_10_3390_molecules27217166
crossref_primary_10_1002_adfm_202410361
crossref_primary_10_1016_j_dyepig_2021_109697
crossref_primary_10_1021_acsnano_2c06492
crossref_primary_10_1016_j_jscs_2024_101885
crossref_primary_10_1039_D3DT00554B
crossref_primary_10_1007_s11051_022_05491_7
crossref_primary_10_1016_j_saa_2023_122628
crossref_primary_10_1039_D3NR03095D
crossref_primary_10_1039_D3CP05499C
crossref_primary_10_1007_s10562_023_04270_w
crossref_primary_10_1021_jacs_1c06354
crossref_primary_10_1039_D2CC03360G
crossref_primary_10_1002_anie_202402565
crossref_primary_10_1039_D1QM01181B
crossref_primary_10_1039_D4NR04371E
crossref_primary_10_1021_acs_inorgchem_2c04130
crossref_primary_10_1021_acs_cgd_1c00935
crossref_primary_10_1016_j_molstruc_2022_133990
crossref_primary_10_1016_j_saa_2022_121280
crossref_primary_10_1364_PRJ_446416
crossref_primary_10_1002_asia_202400413
crossref_primary_10_1021_jacs_3c01831
crossref_primary_10_1021_acscentsci_1c00746
crossref_primary_10_1002_ange_202317597
crossref_primary_10_1021_acs_jafc_2c00820
crossref_primary_10_1039_D4NR01152J
crossref_primary_10_3390_mi13050790
crossref_primary_10_1002_anie_202407887
crossref_primary_10_1021_acsanm_2c02496
crossref_primary_10_1515_zkri_2023_0001
crossref_primary_10_1016_j_actbio_2023_01_050
crossref_primary_10_1039_D2DT02470E
crossref_primary_10_1002_slct_202204289
crossref_primary_10_1016_j_trac_2023_117471
crossref_primary_10_1039_D2DT03418B
crossref_primary_10_1021_acs_jafc_1c06476
crossref_primary_10_1016_j_saa_2023_123530
crossref_primary_10_1039_D1RA07211K
crossref_primary_10_3389_fchem_2021_665880
crossref_primary_10_6023_A21050212
crossref_primary_10_1016_j_saa_2022_121692
crossref_primary_10_1039_D2CC05692E
crossref_primary_10_1039_D2CS00236A
crossref_primary_10_1016_j_actphy_2025_100046
crossref_primary_10_1002_ange_202407887
crossref_primary_10_1039_D1CC05396E
crossref_primary_10_1039_D2DT00810F
crossref_primary_10_1039_D2DT02194C
crossref_primary_10_1021_acs_jafc_2c04571
crossref_primary_10_1002_adma_202302984
crossref_primary_10_1021_acsaom_2c00065
crossref_primary_10_3390_molecules29112521
crossref_primary_10_1021_acs_inorgchem_1c03040
crossref_primary_10_1002_anie_202413830
crossref_primary_10_1016_j_surfin_2022_102112
crossref_primary_10_1021_jacs_2c06093
crossref_primary_10_1002_ange_202402565
crossref_primary_10_1007_s11426_021_1025_8
crossref_primary_10_1002_anie_202317597
crossref_primary_10_1039_D2NR01550A
crossref_primary_10_1039_D2NR06613K
crossref_primary_10_1021_acs_inorgchem_3c00070
crossref_primary_10_1002_smll_202207046
crossref_primary_10_1016_j_molstruc_2022_134192
crossref_primary_10_1021_acscatal_2c02649
crossref_primary_10_1039_D2TB00742H
crossref_primary_10_1021_jacsau_2c00517
crossref_primary_10_1002_asia_202100783
crossref_primary_10_1016_j_surfin_2022_102247
crossref_primary_10_1016_j_foodchem_2023_136376
crossref_primary_10_1039_D2NR00078D
crossref_primary_10_1021_acsnano_4c16160
crossref_primary_10_1016_j_ccr_2021_214268
crossref_primary_10_1039_D4NR02506G
crossref_primary_10_1002_anie_202209971
crossref_primary_10_1016_j_matt_2024_02_002
crossref_primary_10_1039_D4NR01963F
crossref_primary_10_1038_s41578_024_00741_7
crossref_primary_10_1002_anie_202213826
crossref_primary_10_1080_00032719_2023_2202916
crossref_primary_10_1002_agt2_675
crossref_primary_10_1016_j_foodchem_2023_136701
crossref_primary_10_1039_D1RA06569F
crossref_primary_10_3389_fchem_2023_1126309
crossref_primary_10_1515_zkri_2022_0047
crossref_primary_10_3390_molecules27144431
crossref_primary_10_1039_D2CS00876A
crossref_primary_10_26599_POM_2023_9140038
crossref_primary_10_1039_D1NJ02763H
crossref_primary_10_1021_acs_inorgchem_4c04353
crossref_primary_10_3389_fchem_2022_898324
crossref_primary_10_1002_ange_202209971
crossref_primary_10_26599_POM_2025_9140086
crossref_primary_10_1002_ange_202413830
crossref_primary_10_1002_smll_202306863
crossref_primary_10_1039_D3QI01723K
crossref_primary_10_1002_ange_202213826
crossref_primary_10_1016_j_chempr_2025_102457
crossref_primary_10_1021_acs_cgd_2c00744
crossref_primary_10_1021_acs_chemrev_3c00896
crossref_primary_10_1021_acs_inorgchem_1c02262
crossref_primary_10_1039_D2TC00920J
crossref_primary_10_1021_acs_inorgchem_2c01686
crossref_primary_10_1002_smll_202500700
crossref_primary_10_1016_j_ccr_2023_215297
crossref_primary_10_1002_anie_202206437
crossref_primary_10_1021_acsmaterialslett_3c01198
crossref_primary_10_1093_nsr_nwae174
crossref_primary_10_1039_D3CE00716B
crossref_primary_10_1016_j_saa_2024_124957
crossref_primary_10_1021_acs_inorgchem_3c01309
crossref_primary_10_1016_j_snb_2022_132341
crossref_primary_10_1021_acs_jafc_1c00862
crossref_primary_10_1002_anbr_202200065
Cites_doi 10.1021/acs.inorgchem.8b03298
10.1038/s41467-020-17198-1
10.1016/j.ccr.2011.02.003
10.1002/anie.201405936
10.1021/acs.chemrev.5b00703
10.1016/j.ccr.2016.02.013
10.1038/s41467-018-06755-4
10.1039/C6SC04578B
10.1038/s41467-020-19789-4
10.1002/ange.201903853
10.1021/jacs.9b05776
10.1002/ange.201001301
10.1021/jacs.5b09401
10.1002/ange.201909980
10.1002/anie.202004268
10.1021/jacs.0c04677
10.1039/C8SC05666H
10.1021/ja211438q
10.1039/c4nr01350f
10.1021/ja506773d
10.1021/jacs.6b06004
10.1039/C6CC02631A
10.1002/ange.201405936
10.1021/jacs.0c09110
10.1039/C9SC02667C
10.1021/jacs.6b08100
10.1002/anie.201207098
10.1016/j.ccr.2017.11.001
10.1002/advs.202000738
10.1002/ange.200704249
10.1002/anie.201903853
10.1021/jacs.6b03844
10.1021/acsami.8b22517
10.1038/s41467-019-11988-y
10.1021/acs.chemrev.6b00769
10.1002/anie.201807548
10.1021/jacs.9b08055
10.1021/acs.accounts.8b00065
10.1002/ange.201906740
10.1002/ange.202004268
10.1002/anie.201608780
10.1021/jacs.0c02117
10.1039/C9CC03533H
10.1002/chem.201805808
10.1002/advs.201801304
10.1002/smll.201703822
10.1039/C2CS35252D
10.1002/ange.201207098
10.1002/anie.201906740
10.1002/ange.201307480
10.1007/s11426-018-9387-7
10.1002/ange.201807548
10.1002/anie.200704249
10.1021/ja404058q
10.1021/ja108684m
10.1039/C8CS00800K
10.1021/jacs.7b12136
10.1021/ja506802n
10.1002/ange.201608780
10.1039/C6CC02873J
10.1039/C7NR00931C
10.1021/jacs.9b09460
10.1007/s12274-014-0403-5
10.1039/C9SC05700E
10.1039/C8CC00985F
10.1021/jacs.5b01232
10.1021/ja505599v
10.1021/acs.jpclett.5b00934
10.1021/acsmaterialslett.9b00175
10.1021/acs.inorgchem.9b00125
10.1002/anie.201307480
10.1038/nchem.2718
10.1039/C8NR01611A
10.1002/anie.201001301
10.1002/anie.201909980
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202100006
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8509
ExternalDocumentID 33484217
10_1002_anie_202100006
ANIE202100006
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: the Scientific Research Fund of Henan Provincial Education Department
  funderid: 21A150003
– fundername: the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province
  funderid: 19IRTSTHN022
– fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province
  funderid: 164100510005
– fundername: the National Natural Science Foundation of China
  funderid: 92061201; 21825106; 21801227
– fundername: the Scientific Research Fund of Henan Provincial Education Department
  grantid: 21A150003
– fundername: the National Natural Science Foundation of China
  grantid: 92061201
– fundername: the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province
  grantid: 19IRTSTHN022
– fundername: the National Natural Science Foundation of China
  grantid: 21801227
– fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province
  grantid: 164100510005
– fundername: the National Natural Science Foundation of China
  grantid: 21825106
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4766-fac7642cfea97cdc90face131127ee61f960f8bb75b546f58bcc3ea64d9f24643
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:52:35 EDT 2025
Sun Jul 13 04:52:04 EDT 2025
Wed Feb 19 02:28:38 EST 2025
Tue Jul 01 01:17:55 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Wed Jan 22 16:31:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords fluorescent probe
cluster to cluster transformation
hydrogen sulfide
silver(I) clusters
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-fac7642cfea97cdc90face131127ee61f960f8bb75b546f58bcc3ea64d9f24643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6728-0559
PMID 33484217
PQID 2509284605
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2480450936
proquest_journals_2509284605
pubmed_primary_33484217
crossref_primary_10_1002_anie_202100006
crossref_citationtrail_10_1002_anie_202100006
wiley_primary_10_1002_anie_202100006_ANIE202100006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 6, 2021
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: April 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 8
2015; 6
2018; 140
2019; 6
2020; 142
2019; 55
2019; 11
2019; 10
2019; 1
2013; 42
2019; 58
2020 2020; 59 132
2016; 320
2016; 52
2010 2010; 49 122
2020; 11
2008 2008; 47 120
2019; 141
2014; 136
2017; 9
2011; 255
2019 2019; 58 131
2017; 117
2020; 7
2018; 9
2016 2016; 55 128
2012; 134
2019; 62
2015; 137
2018 2018; 57 130
2012 2012; 51 124
2019; 48
2019; 25
2010; 132
2015 2015; 54 127
2019; 378
2013; 135
2016; 116
2018; 51
2016; 138
2018; 10
2014; 7
2018; 54
2014; 6
2018; 14
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_8_2
e_1_2_2_43_2
e_1_2_2_26_3
e_1_2_2_28_1
e_1_2_2_43_3
e_1_2_2_66_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_51_2
e_1_2_2_74_2
e_1_2_2_72_2
e_1_2_2_76_1
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_78_2
e_1_2_2_34_1
e_1_2_2_13_3
e_1_2_2_15_1
e_1_2_2_55_3
e_1_2_2_57_1
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_63_1
e_1_2_2_40_2
e_1_2_2_61_2
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_65_3
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_9_3
e_1_2_2_67_3
e_1_2_2_69_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_67_2
e_1_2_2_80_1
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_79_3
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_50_2
e_1_2_2_75_2
e_1_2_2_52_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_73_2
e_1_2_2_31_3
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_79_2
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_77_2
e_1_2_2_71_2
References_xml – volume: 141
  start-page: 18977
  year: 2019
  end-page: 18983
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 11898 11996
  year: 2020 2020
  end-page: 11902 12000
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 15994
  year: 2019
  end-page: 16002
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 16297 16443
  year: 2019 2019
  end-page: 16306 16452
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 2922
  year: 2012
  end-page: 2925
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 10754
  year: 2016
  end-page: 10757
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 8685
  year: 2019
  end-page: 8693
  publication-title: Chem. Sci.
– volume: 58
  start-page: 5388
  year: 2019
  end-page: 5392
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 6019
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 285
  year: 2014
  end-page: 300
  publication-title: Nano Res.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 142
  start-page: 20426
  year: 2020
  end-page: 20433
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 11922
  year: 2014
  end-page: 11925
  publication-title: J. Am. Chem. Soc.
– volume: 378
  start-page: 382
  year: 2019
  end-page: 394
  publication-title: Coord. Chem. Rev.
– volume: 47 120
  start-page: 1326 1346
  year: 2008 2008
  end-page: 1331 1351
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 2235
  year: 2017
  end-page: 2240
  publication-title: Chem. Sci.
– volume: 54 127
  start-page: 746 756
  year: 2015 2015
  end-page: 784 797
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 140
  start-page: 594
  year: 2018
  end-page: 597
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2422
  year: 2019
  end-page: 2457
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 11560
  year: 2020
  end-page: 11568
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4407
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3316
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4862
  year: 2019
  end-page: 4867
  publication-title: Chem. Sci.
– volume: 54
  start-page: 4314
  year: 2018
  end-page: 4316
  publication-title: Chem. Commun.
– volume: 62
  start-page: 331
  year: 2019
  end-page: 335
  publication-title: Sci. China Chem.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 1
  start-page: 277
  year: 2019
  end-page: 284
  publication-title: ACS Mater. Lett.
– volume: 11
  start-page: 1691
  year: 2020
  end-page: 1697
  publication-title: Chem. Sci.
– volume: 49 122
  start-page: 6899 7052
  year: 2010 2010
  end-page: 6903 7056
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 8930
  year: 2017
  end-page: 8937
  publication-title: Nanoscale
– volume: 42
  start-page: 1871
  year: 2013
  end-page: 1906
  publication-title: Chem. Soc. Rev.
– volume: 51 124
  start-page: 13114 13291
  year: 2012 2012
  end-page: 13118 13295
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 2376 2408
  year: 2014 2014
  end-page: 2380 2412
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 689
  year: 2017
  end-page: 697
  publication-title: Nat. Chem.
– volume: 51
  start-page: 1338
  year: 2018
  end-page: 1348
  publication-title: Acc. Chem. Res.
– volume: 135
  start-page: 10011
  year: 2013
  end-page: 10013
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 15559
  year: 2014
  end-page: 15565
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 17884
  year: 2019
  end-page: 17890
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4032
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 12761
  year: 2019
  end-page: 12769
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 4324
  year: 2015
  end-page: 4327
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3023
  year: 2015
  end-page: 3035
  publication-title: J. Phys. Chem. Lett.
– volume: 116
  start-page: 10346
  year: 2016
  end-page: 10413
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 15665 15812
  year: 2019 2019
  end-page: 15670 15817
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 8208
  year: 2017
  end-page: 8271
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 9964 10069
  year: 2019 2019
  end-page: 9968 10073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 10801
  year: 2014
  end-page: 10806
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 12140
  year: 2020
  end-page: 12145
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 17678
  year: 2010
  end-page: 17679
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 12093
  year: 2018
  end-page: 12099
  publication-title: Nanoscale
– volume: 57 130
  start-page: 12775 12957
  year: 2018 2018
  end-page: 12779 12961
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 15879 16111
  year: 2016 2016
  end-page: 15883 16115
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 8022
  year: 2016
  end-page: 8025
  publication-title: Chem. Commun.
– volume: 255
  start-page: 2111
  year: 2011
  end-page: 2123
  publication-title: Coord. Chem. Rev.
– volume: 25
  start-page: 3376
  year: 2019
  end-page: 3381
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 6458
  year: 2014
  end-page: 6462
  publication-title: Nanoscale
– volume: 138
  start-page: 12751
  year: 2016
  end-page: 12754
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 3690
  year: 2019
  end-page: 3697
  publication-title: Inorg. Chem.
– volume: 52
  start-page: 6119
  year: 2016
  end-page: 6122
  publication-title: Chem. Commun.
– volume: 320
  start-page: 238
  year: 2016
  end-page: 250
  publication-title: Coord. Chem. Rev.
– volume: 55
  start-page: 6771
  year: 2019
  end-page: 6774
  publication-title: Chem. Commun.
– volume: 138
  start-page: 140
  year: 2016
  end-page: 148
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 7260
  year: 2016
  end-page: 7263
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_73_2
  doi: 10.1021/acs.inorgchem.8b03298
– ident: e_1_2_2_60_2
  doi: 10.1038/s41467-020-17198-1
– ident: e_1_2_2_70_2
  doi: 10.1016/j.ccr.2011.02.003
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.201405936
– ident: e_1_2_2_3_2
  doi: 10.1021/acs.chemrev.5b00703
– ident: e_1_2_2_4_2
  doi: 10.1016/j.ccr.2016.02.013
– ident: e_1_2_2_38_1
– ident: e_1_2_2_27_2
  doi: 10.1038/s41467-018-06755-4
– ident: e_1_2_2_68_2
  doi: 10.1039/C6SC04578B
– ident: e_1_2_2_39_2
  doi: 10.1038/s41467-020-19789-4
– ident: e_1_2_2_76_1
– ident: e_1_2_2_80_1
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201903853
– ident: e_1_2_2_33_2
  doi: 10.1021/jacs.9b05776
– ident: e_1_2_2_55_3
  doi: 10.1002/ange.201001301
– ident: e_1_2_2_15_1
– ident: e_1_2_2_21_2
  doi: 10.1021/jacs.5b09401
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201909980
– ident: e_1_2_2_65_2
  doi: 10.1002/anie.202004268
– ident: e_1_2_2_71_2
  doi: 10.1021/jacs.0c04677
– ident: e_1_2_2_14_2
  doi: 10.1039/C8SC05666H
– ident: e_1_2_2_28_1
– ident: e_1_2_2_17_2
  doi: 10.1021/ja211438q
– ident: e_1_2_2_50_2
  doi: 10.1039/c4nr01350f
– ident: e_1_2_2_11_2
  doi: 10.1021/ja506773d
– ident: e_1_2_2_24_2
  doi: 10.1021/jacs.6b06004
– ident: e_1_2_2_59_2
  doi: 10.1039/C6CC02631A
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.201405936
– ident: e_1_2_2_16_2
  doi: 10.1021/jacs.0c09110
– ident: e_1_2_2_40_2
  doi: 10.1039/C9SC02667C
– ident: e_1_2_2_19_2
  doi: 10.1021/jacs.6b08100
– ident: e_1_2_2_52_2
  doi: 10.1002/anie.201207098
– ident: e_1_2_2_8_2
  doi: 10.1016/j.ccr.2017.11.001
– ident: e_1_2_2_22_1
– ident: e_1_2_2_41_2
  doi: 10.1002/advs.202000738
– ident: e_1_2_2_67_3
  doi: 10.1002/ange.200704249
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201903853
– ident: e_1_2_2_74_2
  doi: 10.1021/jacs.6b03844
– ident: e_1_2_2_78_2
  doi: 10.1021/acsami.8b22517
– ident: e_1_2_2_37_2
  doi: 10.1038/s41467-019-11988-y
– ident: e_1_2_2_5_2
  doi: 10.1021/acs.chemrev.6b00769
– ident: e_1_2_2_43_2
  doi: 10.1002/anie.201807548
– ident: e_1_2_2_69_1
– ident: e_1_2_2_63_1
– ident: e_1_2_2_30_2
  doi: 10.1021/jacs.9b08055
– ident: e_1_2_2_66_1
– ident: e_1_2_2_6_2
  doi: 10.1021/acs.accounts.8b00065
– ident: e_1_2_2_26_3
  doi: 10.1002/ange.201906740
– ident: e_1_2_2_65_3
  doi: 10.1002/ange.202004268
– ident: e_1_2_2_79_2
  doi: 10.1002/anie.201608780
– ident: e_1_2_2_36_2
  doi: 10.1021/jacs.0c02117
– ident: e_1_2_2_1_1
– ident: e_1_2_2_61_2
  doi: 10.1039/C9CC03533H
– ident: e_1_2_2_46_2
  doi: 10.1002/chem.201805808
– ident: e_1_2_2_57_1
– ident: e_1_2_2_45_2
  doi: 10.1002/advs.201801304
– ident: e_1_2_2_77_2
  doi: 10.1002/smll.201703822
– ident: e_1_2_2_54_2
  doi: 10.1039/C2CS35252D
– ident: e_1_2_2_52_3
  doi: 10.1002/ange.201207098
– ident: e_1_2_2_26_2
  doi: 10.1002/anie.201906740
– ident: e_1_2_2_13_3
  doi: 10.1002/ange.201307480
– ident: e_1_2_2_44_2
  doi: 10.1007/s11426-018-9387-7
– ident: e_1_2_2_43_3
  doi: 10.1002/ange.201807548
– ident: e_1_2_2_48_1
– ident: e_1_2_2_67_2
  doi: 10.1002/anie.200704249
– ident: e_1_2_2_42_1
– ident: e_1_2_2_51_2
  doi: 10.1021/ja404058q
– ident: e_1_2_2_58_2
  doi: 10.1021/ja108684m
– ident: e_1_2_2_7_2
  doi: 10.1039/C8CS00800K
– ident: e_1_2_2_18_2
  doi: 10.1021/jacs.7b12136
– ident: e_1_2_2_49_2
  doi: 10.1021/ja506802n
– ident: e_1_2_2_34_1
– ident: e_1_2_2_79_3
  doi: 10.1002/ange.201608780
– ident: e_1_2_2_47_2
  doi: 10.1039/C6CC02873J
– ident: e_1_2_2_53_1
– ident: e_1_2_2_64_2
  doi: 10.1039/C7NR00931C
– ident: e_1_2_2_56_2
  doi: 10.1021/jacs.9b09460
– ident: e_1_2_2_29_2
  doi: 10.1007/s12274-014-0403-5
– ident: e_1_2_2_20_2
  doi: 10.1039/C9SC05700E
– ident: e_1_2_2_62_2
  doi: 10.1039/C8CC00985F
– ident: e_1_2_2_25_2
  doi: 10.1021/jacs.5b01232
– ident: e_1_2_2_75_2
  doi: 10.1021/ja505599v
– ident: e_1_2_2_2_2
  doi: 10.1021/acs.jpclett.5b00934
– ident: e_1_2_2_72_2
  doi: 10.1021/acsmaterialslett.9b00175
– ident: e_1_2_2_32_2
  doi: 10.1021/acs.inorgchem.9b00125
– ident: e_1_2_2_10_1
– ident: e_1_2_2_13_2
  doi: 10.1002/anie.201307480
– ident: e_1_2_2_12_2
  doi: 10.1038/nchem.2718
– ident: e_1_2_2_23_2
  doi: 10.1039/C8NR01611A
– ident: e_1_2_2_55_2
  doi: 10.1002/anie.201001301
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201909980
SSID ssj0028806
Score 2.633187
Snippet The formation of high‐nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a...
The formation of high-nuclearity silver(I) clusters remains elusive and their potential applications are still underdeveloped. Herein, we firstly prepared a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8505
SubjectTerms Anions
cluster to cluster transformation
fluorescent probe
Hydrogen sulfide
Ionization
Ions
Mass spectrometry
Mass spectroscopy
Metal clusters
Photoluminescence
Photons
Response time
Silver
silver(I) clusters
Time dependence
Title Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100006
https://www.ncbi.nlm.nih.gov/pubmed/33484217
https://www.proquest.com/docview/2509284605
https://www.proquest.com/docview/2480450936
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL-VSWn7KlrYyEhInt1s7cZLjarWrBUFBbFfqLfKvVJEmaJNIbE88As_YJ-lMsgksCFUqNyfxJI5nxp6xZz4T8kZo54QWlg2VjxmmdrJEx4YpE1nL7ZkPJCYKfzyXs0Xw_jK8_C2Lv8WH6BfcUDOa8RoVXOny9BdoKGZgg3_HmwVqxNzGgC20ir70-FEchLNNLxKC4Sn0HWrjkJ9ukm_OSn-ZmpuWazP1TJ8Q1TW6jTj5elJX-sTc_IHn-D9_tUt21nYpHbWCtEceufwp2R53x8E9I9eLrFoqr8qKzq9uHJ18h3EEl9qoyi29APLbHz8_5fRDfY2R9AZHDFp4OqqKBpEgW9HPiKRROqDHcGw6zmpEaSipXtHZyi4LkGU6rzN_Zd1zsphOLsYztj6rgZkgkpJ5YC64MsY7lUTGmmQIdxxi-fDIOXnmwVPysdZRqMNA-jDWxginZGATzwMwi16QrbzI3UtCI6NMqKXQUMBdXGVE7GwUg-CEXEVyQFjHq9SsgczxPI0sbSGYeYqdmPadOCBv-_rfWgiPf9Y87FifrlW5TMFGTGAOB7dvQF73j6HzcWdF5a6ooU4Qg2k8TAS8Yr8Vmf5TmOocgOM3ILxh_D1tSEfn7yb91cFDiF6Rx1hu4ovkIdmqlrU7AtOp0seNetwBzIASBA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKWZQN78dAASOBWKWdOomTLFiMplPN0OmA6IzUXeqnVJEmaJIIpis-gV_hV_gEvoR780IDQkhIXbDLw3Yc-177XNv3XEKeu9IYV7ra6QsbOuja6UQyVI5QgdZM71mPo6Pw0YyPF97rE_9kg3xtfWFqfohuwQ01oxqvUcFxQXr3J2soumCDgceqFWrenKs8NKuPYLXlryb70MUvGDsYzYdjpwks4Cgv4NyxUBPA3coaEQVKq6gPTwwSz7DAGL5nAdbbUMrAl77HrR9KpVwjuKcjyzyYw6HcK-QqhhFHuv79dx1jFQN1qB2aXNfBuPctT2Sf7a7Xd30e_A3crmPlarI7uEG-tc1Un3F5v1MWckdd_MIg-V-1401yvYHedFDryi2yYdLbZGvYRry7Q84XSbEUVuQFPT67MHT0CYZKXE2kItV0Dtm_f_7yJqXT8hydBRQOijSzdFBkFelCsqJvkSwkN5AfT5zTYVIiEUVO5YqOV3qZgbrS4zKxZ9rcJYtL-dt7ZDPNUvOA0EAJ5UvuSrjAjWqh3NDoIATd8JkIeI84rXDEquFqx5AhSVyzTLMYOy3uOq1HXnbpP9QsJX9Mud3KWtyMVnkMMDgCmAKWbY88615D4-PmkUhNVkIaLwT0349cKOJ-LaPdp9Cb2wPbtkdYJWl_qUM8mE1G3d3Df8n0lGyN50fTeDqZHT4i1_B5dZyKb5PNYlmax4AUC_mk0k1KTi9biH8AfddyUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKkYAN78dAASOBWKVNncRJFixG89AMLUNFO1J3wU-pIk2qSSKYrvgEPoVf4Rf4Eu5NJkEDQkhIXbDLw3Yc-177XNv3XEKee9IYT3racYWNHHTtdGIZKUeoUGumd63P0VH4zYxP5v7r4-B4g3xtfWEafohuwQ01ox6vUcHPtN35SRqKHthg37F6gZqvjlXumeVHMNqKV9Mh9PALxsajo8HEWcUVcJQfcu5YqAjAbmWNiEOlVezCE4O8Myw0hu9aQPU2kjIMZOBzG0RSKc8I7uvYMh-mcCj3ErnsczfGYBHDdx1hFQNtaPyZPM_BsPctTaTLdtbruz4N_oZt16FyPdeNb5BvbSs1R1w-bFel3FbnvxBI_k_NeJNcXwFv2m805RbZMNltcnXQxru7Q07nabkQVhQlPTw5N3T0CQZKXEukItP0CLJ___zlbUb3q1N0FVA4JNLc0n6Z15QL6ZIeIFVIYSA_njeng7RCGoqCyiWdLPUiB2Wlh1VqT7S5S-YX8rf3yGaWZ-YBoaESKpDck3CB29RCeZHRYQSaETAR8h5xWtlI1IqpHQOGpEnDMc0S7LSk67QeedmlP2s4Sv6YcqsVtWQ1VhUJgOAYQArYtT3yrHsNjY9bRyIzeQVp_Aiwvxt7UMT9RkS7T6Evtw-WbY-wWtD-UoekP5uOuruH_5LpKblyMBwn-9PZ3iNyDR_XZ6n4FtksF5V5DDCxlE9qzaTk_UXL8A-hn3D_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Size+Expansion+and+Turn%E2%80%90On+Luminescence+of+Atomically+Precise+Silver+Clusters+by+Hydrogen+Sulfide&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wei%E2%80%90Miao+He&rft.au=Zhou%2C+Zhe&rft.au=Han%2C+Zhen&rft.au=Li%2C+Si&rft.date=2021-04-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8505&rft.epage=8509&rft_id=info:doi/10.1002%2Fanie.202100006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon