Optimal Configuration of N‐Doped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis

The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for m...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 29; pp. 11999 - 12006
Main Authors Lai, Qingxue, Zheng, Jing, Tang, Zeming, Bi, Da, Zhao, Jingxiang, Liang, Yanyu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 13.07.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N‐doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site—a carbon edge defect doped with a graphitic valley N atom—was revealed to be responsible for the exceptional ORR performance of NDC material. Defects on purpose: A two‐dimensional porous turbostratic carbon nanomesh with abundant carbon defects coupled with N doping sites was developed by a novel molecular design strategy. This material displays exceptional oxygen reduction reaction electrocatalytic activity, which is attributed to the formation of highly exposed carbon edge defects doped with graphitic valley N atoms.
AbstractList The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N‐doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site—a carbon edge defect doped with a graphitic valley N atom—was revealed to be responsible for the exceptional ORR performance of NDC material.
The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N-doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site-a carbon edge defect doped with a graphitic valley N atom-was revealed to be responsible for the exceptional ORR performance of NDC material.The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N-doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site-a carbon edge defect doped with a graphitic valley N atom-was revealed to be responsible for the exceptional ORR performance of NDC material.
The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N‐doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site—a carbon edge defect doped with a graphitic valley N atom—was revealed to be responsible for the exceptional ORR performance of NDC material. Defects on purpose: A two‐dimensional porous turbostratic carbon nanomesh with abundant carbon defects coupled with N doping sites was developed by a novel molecular design strategy. This material displays exceptional oxygen reduction reaction electrocatalytic activity, which is attributed to the formation of highly exposed carbon edge defects doped with graphitic valley N atoms.
Author Tang, Zeming
Liang, Yanyu
Bi, Da
Lai, Qingxue
Zheng, Jing
Zhao, Jingxiang
Author_xml – sequence: 1
  givenname: Qingxue
  orcidid: 0000-0002-3494-9586
  surname: Lai
  fullname: Lai, Qingxue
  email: laiqingxue@126.com
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Jing
  surname: Zheng
  fullname: Zheng, Jing
  organization: Nanjing Forestry University
– sequence: 3
  givenname: Zeming
  surname: Tang
  fullname: Tang, Zeming
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 4
  givenname: Da
  surname: Bi
  fullname: Bi, Da
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Jingxiang
  surname: Zhao
  fullname: Zhao, Jingxiang
  organization: Harbin Normal University
– sequence: 6
  givenname: Yanyu
  surname: Liang
  fullname: Liang, Yanyu
  email: liangyy403@126.com
  organization: Nanjing University of Aeronautics and Astronautics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32298534$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVJaS7ttssi6CabcXWZi7Q0ttsGgg0hXQuN5ihVGEuuNJPWu0BfoM_YJ6kcxy0EQlcSh-_7kf5zio588IDQW0omlBD2QXsHE0YYIUTy-gU6oRWjBW8afpTvJedFIyp6jE5Tus28EKR-hY45Y1JUvDxBP1ebwa11j2fBW3czRj244HGwePn7_tc8bKDDMx3bPJuDBTMk7Dxmc3w95mEadrw5EEvtwxrSV2xDxNPuTnuT9dWP7Q14fAXdaB7CF33OicHoQffb5NJr9NLqPsGbx_MMffm4uJ59Li5Xny5m08vClE1dF2A4rRtrGynKruRdW3eUt4TXhmoGomq1bPOHbSWs1JYa1lrBiQUtiWmYlPwMne9zNzF8GyENau2Sgb7XHsKYFOOSykbQimT0_RP0NozR59cpVjJCOWG8zNS7R2ps19CpTcxVxq061JuBcg-YGFKKYJVxw0PDuTjXK0rUbotqt0X1d4tZmzzRDsnPCnIvfHc9bP9Dq-nyYvHP_QPHT7DO
CitedBy_id crossref_primary_10_1002_advs_202308040
crossref_primary_10_2139_ssrn_4093936
crossref_primary_10_1002_celc_202101231
crossref_primary_10_1039_D2NJ02234F
crossref_primary_10_1002_anie_202312255
crossref_primary_10_1016_j_cej_2022_135186
crossref_primary_10_1016_j_elecom_2023_107477
crossref_primary_10_1002_adfm_202111396
crossref_primary_10_1002_anie_202320037
crossref_primary_10_1038_s41467_023_37360_9
crossref_primary_10_1021_acsami_2c15574
crossref_primary_10_1021_acsnano_4c02591
crossref_primary_10_1016_j_chempr_2024_06_006
crossref_primary_10_1016_j_cej_2021_129973
crossref_primary_10_1002_anie_202116290
crossref_primary_10_1016_j_jpowsour_2023_233603
crossref_primary_10_1021_acsami_2c12503
crossref_primary_10_1021_acscatal_4c01713
crossref_primary_10_1016_j_jpowsour_2025_236330
crossref_primary_10_1002_smll_202401447
crossref_primary_10_1039_D1SC01231B
crossref_primary_10_1002_advs_202201594
crossref_primary_10_1016_j_desal_2022_115919
crossref_primary_10_1007_s10853_021_06484_y
crossref_primary_10_1039_D4NR00377B
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1016_j_apcatb_2024_123987
crossref_primary_10_1002_anie_202303409
crossref_primary_10_1021_acsaem_2c02976
crossref_primary_10_1021_acssuschemeng_3c03183
crossref_primary_10_1039_D2MA01009G
crossref_primary_10_1002_anie_202406126
crossref_primary_10_1002_smll_202106606
crossref_primary_10_1016_j_apcatb_2023_123088
crossref_primary_10_1016_j_cej_2025_161762
crossref_primary_10_1016_j_apcatb_2022_122015
crossref_primary_10_1039_D2NJ05652F
crossref_primary_10_1002_advs_202103477
crossref_primary_10_1016_j_jechem_2021_04_065
crossref_primary_10_1002_smll_202207821
crossref_primary_10_1016_j_scitotenv_2021_151059
crossref_primary_10_1016_j_cej_2023_145922
crossref_primary_10_1002_advs_202100120
crossref_primary_10_1016_j_jcis_2023_03_133
crossref_primary_10_1002_smtd_202100865
crossref_primary_10_1016_j_enchem_2021_100059
crossref_primary_10_1021_acsanm_3c05931
crossref_primary_10_1016_j_carbon_2021_09_042
crossref_primary_10_1016_j_jiec_2024_11_052
crossref_primary_10_1039_D2CC04628H
crossref_primary_10_1016_j_ccr_2023_215082
crossref_primary_10_1016_j_cej_2023_143060
crossref_primary_10_1021_acscatal_4c02587
crossref_primary_10_1021_acsnano_3c07375
crossref_primary_10_1039_D3EE02090H
crossref_primary_10_1016_j_cej_2021_131709
crossref_primary_10_1016_j_jcis_2021_09_008
crossref_primary_10_1016_j_apcatb_2020_119437
crossref_primary_10_1016_j_apcatb_2023_123346
crossref_primary_10_1016_j_electacta_2022_140667
crossref_primary_10_1016_j_apcatb_2021_120152
crossref_primary_10_1039_D1TA05485F
crossref_primary_10_1016_j_jpowsour_2023_233232
crossref_primary_10_1039_D0NJ06080A
crossref_primary_10_1039_D4DT01519C
crossref_primary_10_1007_s40820_024_01560_9
crossref_primary_10_1016_j_apcatb_2021_120314
crossref_primary_10_1002_aenm_202204390
crossref_primary_10_1002_cssc_202402434
crossref_primary_10_1021_acsaem_1c00869
crossref_primary_10_1016_j_ijhydene_2021_11_220
crossref_primary_10_1016_j_apcatb_2021_120718
crossref_primary_10_1021_acsaem_1c04081
crossref_primary_10_1002_cphc_202200734
crossref_primary_10_1021_acsnano_1c02275
crossref_primary_10_1002_smll_202400304
crossref_primary_10_1016_j_jallcom_2022_164527
crossref_primary_10_1016_j_cej_2021_130401
crossref_primary_10_1016_j_ensm_2023_01_030
crossref_primary_10_1016_j_jece_2023_110595
crossref_primary_10_1021_acs_est_4c06461
crossref_primary_10_1002_smll_202401995
crossref_primary_10_1016_j_jallcom_2022_164520
crossref_primary_10_1002_smll_202406883
crossref_primary_10_1002_ange_202406126
crossref_primary_10_1016_j_microc_2023_108662
crossref_primary_10_1002_ange_202303409
crossref_primary_10_1039_D1TA07782A
crossref_primary_10_1016_j_jmst_2025_01_022
crossref_primary_10_1088_1361_6528_ac5aed
crossref_primary_10_1016_j_jcis_2020_08_063
crossref_primary_10_1021_jacs_3c06456
crossref_primary_10_1016_j_jechem_2025_01_005
crossref_primary_10_1002_adfm_202103187
crossref_primary_10_1016_j_jpowsour_2021_229677
crossref_primary_10_1021_acs_jpcc_3c06200
crossref_primary_10_1002_smll_202106122
crossref_primary_10_1016_j_apcatb_2023_122634
crossref_primary_10_3390_ijerph192214865
crossref_primary_10_1002_aenm_202401008
crossref_primary_10_1016_j_nanoen_2021_106868
crossref_primary_10_1021_acs_nanolett_3c00202
crossref_primary_10_1002_cctc_202200146
crossref_primary_10_1016_j_seppur_2024_127486
crossref_primary_10_1002_admi_202100051
crossref_primary_10_1039_D4TA07400A
crossref_primary_10_1002_ange_202116290
crossref_primary_10_1002_eem2_12402
crossref_primary_10_1002_smll_202206341
crossref_primary_10_1016_j_gee_2022_11_002
crossref_primary_10_1016_j_jallcom_2020_157286
crossref_primary_10_1002_adfm_202502952
crossref_primary_10_1002_celc_202200892
crossref_primary_10_3390_polym15030521
crossref_primary_10_1002_adfm_202316207
crossref_primary_10_1016_j_nxmate_2024_100464
crossref_primary_10_1016_j_compositesa_2025_108764
crossref_primary_10_1039_D1NA00853F
crossref_primary_10_1016_j_cclet_2022_03_112
crossref_primary_10_1016_j_fuel_2023_129469
crossref_primary_10_1039_D0TA09293B
crossref_primary_10_2139_ssrn_4170562
crossref_primary_10_1002_advs_202407294
crossref_primary_10_1016_j_cej_2021_132691
crossref_primary_10_26599_NR_2025_94907244
crossref_primary_10_1002_smll_202106012
crossref_primary_10_1007_s11705_023_2300_5
crossref_primary_10_1016_j_electacta_2021_139475
crossref_primary_10_1021_acsaem_1c00259
crossref_primary_10_1016_j_cej_2021_132214
crossref_primary_10_1002_smll_202410010
crossref_primary_10_3390_polym14132581
crossref_primary_10_1016_j_jcis_2020_09_048
crossref_primary_10_1016_j_pmatsci_2020_100716
crossref_primary_10_20964_2021_07_27
crossref_primary_10_3390_molecules28104160
crossref_primary_10_15541_jim20220128
crossref_primary_10_1002_ange_202312255
crossref_primary_10_1021_acscatal_2c00164
crossref_primary_10_1021_acsami_1c18451
crossref_primary_10_1002_adfm_202302100
crossref_primary_10_1016_j_jhazmat_2024_135724
crossref_primary_10_1002_adfm_202311337
crossref_primary_10_1021_acssuschemeng_1c08560
crossref_primary_10_1039_D4NR03645J
crossref_primary_10_1002_smll_202305004
crossref_primary_10_1016_j_fuel_2023_128929
crossref_primary_10_1002_cctc_202301345
crossref_primary_10_1016_j_cej_2021_132969
crossref_primary_10_1002_ange_202320037
Cites_doi 10.1016/j.eurpolymj.2010.03.015
10.1126/science.1200770
10.1021/acsnano.8b07700
10.1016/j.carbon.2014.02.078
10.1038/ncomms2944
10.1002/adma.201802234
10.1016/j.nanoen.2012.02.008
10.1002/ange.201406695
10.1126/science.aad0832
10.1021/acsenergylett.8b00303
10.1016/j.ceramint.2016.04.055
10.1039/C8EE03276A
10.1063/1.2196057
10.1039/c1ee01437d
10.1016/j.carbon.2016.04.062
10.1002/adma.201604103
10.1002/ange.200907289
10.1039/c4sc01477d
10.1002/adma.201606459
10.1021/ja0178970
10.1002/anie.201406695
10.1016/j.nanoen.2018.08.003
10.1002/anie.201100170
10.1002/adma.201202424
10.1002/adma.201001068
10.1016/j.jcat.2014.03.011
10.1063/1.1674108
10.1021/nn302906r
10.1002/anie.200907289
10.1021/acs.accounts.6b00317
10.1021/acscatal.5b01835
10.1016/j.jpowsour.2007.07.004
10.1016/j.cap.2012.08.008
10.1039/c2gc36043h
10.1126/sciadv.1501122
10.1002/adma.201804799
10.1002/ange.201100170
10.1002/adma.201503211
10.1039/c0jm03613g
10.1021/acs.macromol.6b02678
10.1038/s41467-019-09503-4
10.1021/acscatal.8b00338
10.1126/sciadv.aau6852
10.1016/j.carbon.2005.02.018
10.1021/ja310566z
10.1039/c3ra46193a
10.1038/natrevmats.2016.64
10.1016/j.desal.2016.04.030
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202000936
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 12006
ExternalDocumentID 32298534
10_1002_anie_202000936
ANIE202000936
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21771107; 21902077
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20190381
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20190381
– fundername: National Natural Science Foundation of China
  grantid: 21902077
– fundername: National Natural Science Foundation of China
  grantid: 21771107
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4766-ec3167ff7984d43db6d13b036c1a2e85ba9b433f58f9af1c2bf830fea90c72993
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:47:33 EDT 2025
Fri Jul 25 10:41:14 EDT 2025
Wed Feb 19 02:30:12 EST 2025
Tue Jul 01 01:17:38 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Wed Jan 22 16:34:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords carbon defects
molecular design
oxygen reduction reaction
nitrogen doping
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-ec3167ff7984d43db6d13b036c1a2e85ba9b433f58f9af1c2bf830fea90c72993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3494-9586
PMID 32298534
PQID 2420130234
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2391978150
proquest_journals_2420130234
pubmed_primary_32298534
crossref_citationtrail_10_1002_anie_202000936
crossref_primary_10_1002_anie_202000936
wiley_primary_10_1002_anie_202000936_ANIE202000936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 13, 2020
PublicationDateYYYYMMDD 2020-07-13
PublicationDate_xml – month: 07
  year: 2020
  text: July 13, 2020
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2014; 314
2013; 4
2015; 5
2019; 5
2019; 31
2019; 10
2019; 12
1970; 53
2005; 43
2016; 106
2010 2010; 49 122
2017; 29
2012; 14
2011; 4
2011; 332
2017; 50
2010; 22
2018; 8
2018; 3
2014; 5
2016; 1
2015; 27
2014; 4
2016; 2
2012; 1
2010; 46
2013; 13
2007; 171
2006; 88
2002; 124
2020 2020
2016; 42
2013; 135
2011; 21
2018; 52
2011 2011; 50 123
2018; 12
2012; 6
2012; 24
2014; 73
2016; 49
2016; 351
2016; 394
e_1_2_6_51_1
e_1_2_6_53_2
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_2
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_1
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_41_3
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
He D. (e_1_2_6_45_2) 2020
e_1_2_6_26_1
e_1_2_6_45_3
e_1_2_6_47_1
e_1_2_6_52_2
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_58_2
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_54_2
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_16_1
e_1_2_6_42_2
e_1_2_6_40_3
e_1_2_6_40_2
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 1
  start-page: 514
  year: 2012
  end-page: 517
  publication-title: Nano Energy
– volume: 314
  start-page: 66
  year: 2014
  end-page: 72
  publication-title: J. Catal.
– volume: 12
  start-page: 9635
  year: 2018
  end-page: 9638
  publication-title: ACS Nano
– volume: 5
  start-page: 6707
  year: 2015
  end-page: 6712
  publication-title: ACS Catal.
– volume: 52
  start-page: 307
  year: 2018
  end-page: 314
  publication-title: Nano Energy
– year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 1873
  year: 2016
  end-page: 1883
  publication-title: Acc. Chem. Res.
– volume: 135
  start-page: 1201
  year: 2013
  end-page: 1204
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 124
  start-page: 10632
  year: 2002
  end-page: 10633
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1194
  year: 2010
  end-page: 1202
  publication-title: Eur. Polym. J.
– volume: 50
  start-page: 2759
  year: 2017
  end-page: 2767
  publication-title: Macromolecules
– volume: 8
  start-page: 6827
  year: 2018
  end-page: 6836
  publication-title: ACS Catal.
– volume: 27
  start-page: 6834
  year: 2015
  end-page: 6840
  publication-title: Adv. Mater.
– volume: 53
  start-page: 1126
  year: 1970
  end-page: 1130
  publication-title: J. Chem. Phys.
– volume: 50 123
  start-page: 5339 5451
  year: 2011 2011
  end-page: 5343 5455
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 332
  start-page: 1537
  year: 2011
  end-page: 1541
  publication-title: Science
– volume: 73
  start-page: 371
  year: 2014
  end-page: 381
  publication-title: Carbon
– volume: 21
  start-page: 11392
  year: 2011
  end-page: 11405
  publication-title: J. Mater. Chem.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 42
  start-page: 11603
  year: 2016
  end-page: 11610
  publication-title: Ceram. Int.
– volume: 43
  start-page: 1731
  year: 2005
  end-page: 1742
  publication-title: Carbon
– volume: 351
  start-page: 361
  year: 2016
  end-page: 365
  publication-title: Science
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5593
  year: 2012
  end-page: 5597
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1183
  year: 2018
  end-page: 1191
  publication-title: ACS Energy Lett.
– volume: 106
  start-page: 93
  year: 2016
  end-page: 105
  publication-title: Carbon
– volume: 10
  start-page: 1506
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1922
  year: 2013
  publication-title: Nat. Commun.
– volume: 14
  start-page: 2899
  year: 2012
  end-page: 2906
  publication-title: Green Chem.
– volume: 5
  start-page: 3315
  year: 2014
  end-page: 3319
  publication-title: Chem. Sci.
– volume: 49 122
  start-page: 2565 2619
  year: 2010 2010
  end-page: 2569 2623
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 53 126
  start-page: 10804 10980
  year: 2014 2014
  end-page: 10808 10984
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 322
  year: 2019
  end-page: 333
  publication-title: Energy Environ. Sci.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 4
  start-page: 11331
  year: 2014
  end-page: 11342
  publication-title: RSC Adv.
– volume: 13
  start-page: 309
  year: 2013
  end-page: 321
  publication-title: Curr. Appl. Phys.
– volume: 394
  start-page: 123
  year: 2016
  end-page: 130
  publication-title: Desalination
– volume: 22
  start-page: 3906
  year: 2010
  end-page: 3924
  publication-title: Adv. Mater.
– volume: 171
  start-page: 558
  year: 2007
  end-page: 566
  publication-title: J. Power Sources
– volume: 1
  start-page: 16064
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 4
  start-page: 3389
  year: 2011
  end-page: 3394
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8904
  year: 2012
  end-page: 8912
  publication-title: ACS Nano
– ident: e_1_2_6_23_1
– ident: e_1_2_6_38_2
  doi: 10.1016/j.eurpolymj.2010.03.015
– ident: e_1_2_6_33_2
  doi: 10.1126/science.1200770
– ident: e_1_2_6_46_2
  doi: 10.1021/acsnano.8b07700
– ident: e_1_2_6_47_1
  doi: 10.1016/j.carbon.2014.02.078
– ident: e_1_2_6_2_2
  doi: 10.1038/ncomms2944
– ident: e_1_2_6_5_2
  doi: 10.1002/adma.201802234
– ident: e_1_2_6_7_1
  doi: 10.1016/j.nanoen.2012.02.008
– ident: e_1_2_6_15_2
  doi: 10.1002/ange.201406695
– ident: e_1_2_6_59_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_6_25_2
  doi: 10.1021/acsenergylett.8b00303
– ident: e_1_2_6_37_2
  doi: 10.1016/j.ceramint.2016.04.055
– ident: e_1_2_6_21_2
  doi: 10.1039/C8EE03276A
– ident: e_1_2_6_55_1
  doi: 10.1063/1.2196057
– ident: e_1_2_6_36_1
– ident: e_1_2_6_4_1
– ident: e_1_2_6_34_2
  doi: 10.1039/c1ee01437d
– ident: e_1_2_6_35_1
  doi: 10.1016/j.carbon.2016.04.062
– ident: e_1_2_6_17_2
  doi: 10.1002/adma.201604103
– ident: e_1_2_6_40_3
  doi: 10.1002/ange.200907289
– ident: e_1_2_6_44_1
– ident: e_1_2_6_43_2
  doi: 10.1039/c4sc01477d
– ident: e_1_2_6_19_2
  doi: 10.1002/adma.201606459
– ident: e_1_2_6_27_2
  doi: 10.1021/ja0178970
– ident: e_1_2_6_15_1
  doi: 10.1002/anie.201406695
– ident: e_1_2_6_24_2
  doi: 10.1016/j.nanoen.2018.08.003
– ident: e_1_2_6_41_2
  doi: 10.1002/anie.201100170
– ident: e_1_2_6_42_2
  doi: 10.1002/adma.201202424
– ident: e_1_2_6_49_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_6_22_2
  doi: 10.1016/j.jcat.2014.03.011
– ident: e_1_2_6_50_1
  doi: 10.1063/1.1674108
– ident: e_1_2_6_48_1
  doi: 10.1021/nn302906r
– ident: e_1_2_6_40_2
  doi: 10.1002/anie.200907289
– ident: e_1_2_6_14_2
  doi: 10.1021/acs.accounts.6b00317
– ident: e_1_2_6_20_1
– ident: e_1_2_6_26_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_18_2
  doi: 10.1021/acscatal.5b01835
– ident: e_1_2_6_51_1
– ident: e_1_2_6_6_2
  doi: 10.1016/j.jpowsour.2007.07.004
– ident: e_1_2_6_45_3
– ident: e_1_2_6_3_2
  doi: 10.1016/j.cap.2012.08.008
– ident: e_1_2_6_11_1
– ident: e_1_2_6_31_1
  doi: 10.1039/c2gc36043h
– ident: e_1_2_6_56_1
– ident: e_1_2_6_39_1
– year: 2020
  ident: e_1_2_6_45_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_6_57_2
  doi: 10.1126/sciadv.1501122
– ident: e_1_2_6_13_2
  doi: 10.1002/adma.201804799
– ident: e_1_2_6_41_3
  doi: 10.1002/ange.201100170
– ident: e_1_2_6_12_2
  doi: 10.1002/adma.201503211
– ident: e_1_2_6_52_2
  doi: 10.1039/c0jm03613g
– ident: e_1_2_6_29_1
  doi: 10.1021/acs.macromol.6b02678
– ident: e_1_2_6_60_1
  doi: 10.1038/s41467-019-09503-4
– ident: e_1_2_6_58_2
  doi: 10.1021/acscatal.8b00338
– ident: e_1_2_6_16_1
– ident: e_1_2_6_28_2
  doi: 10.1126/sciadv.aau6852
– ident: e_1_2_6_8_1
– ident: e_1_2_6_32_1
– ident: e_1_2_6_54_2
  doi: 10.1016/j.carbon.2005.02.018
– ident: e_1_2_6_10_2
  doi: 10.1021/ja310566z
– ident: e_1_2_6_53_2
  doi: 10.1039/c3ra46193a
– ident: e_1_2_6_9_2
  doi: 10.1038/natrevmats.2016.64
– ident: e_1_2_6_30_1
  doi: 10.1016/j.desal.2016.04.030
SSID ssj0028806
Score 2.6506429
Snippet The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11999
SubjectTerms Aromatic compounds
Carbon
carbon defects
Carbon sources
Charge distribution
Charge materials
Chemical reduction
Defects
Doping
molecular design
nitrogen doping
Oxygen
oxygen reduction reaction
Oxygen reduction reactions
Urea
Title Optimal Configuration of N‐Doped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202000936
https://www.ncbi.nlm.nih.gov/pubmed/32298534
https://www.proquest.com/docview/2420130234
https://www.proquest.com/docview/2391978150
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_VhakJGQOKVNbMdJjqvdrQoSW6lqpd4iP6EqTaruRqKckPgD_EZ-CTN2ElgQQoJb4owTxx7bn-2Zbwh56VwldIkc-7k0iWBGJqVPVZJrwLaO29w69B1-u5QHJ-LNaX76kxd_5IcYN9ywZ4TxGju40qu9H6Sh6IEN6zsWFuXIuY0GW4iKjkb-KAbKGd2LOE8wCv3A2piyvc3sm7PSb1BzE7mGqWf_DlFDoaPFyflut9a75tMvfI7_81d3ye0el9JpVKR75IZr7pObsyEc3APy5RAGlwsQQR_Bs3dd1Bzaerr89vnrvL10ls7UlYa0uQs2IvSsoWxOjztIjOy8ZpCAMb29cKv3FCAznfZmCPTw4zWoMz1CNtnw8kWM0RO2mJA55SE52V8czw6SPoJDYkQhZeIMOtp7X1SlsIJbLW3GNUyaJlPMlblWlYa28XnpK-Uzw7QveeqdqlIDqL_ij8hW0zbuCaE290WZudQWVopC2zL1XhiVSiu1hDXphCRDC9ampzfHKBsf6kjMzGqs2nqs2gl5NcpfRmKPP0ruDApR9x18VQOyCWe-XEzIi_ExNAmet6jGtR3I8CpDSrE8nZDHUZHGT8E4WgFSgtwsqMNfylBPl68X493Tf8m0TW7hNe5LZ3yHbK2vOvcMANVaPw-d5jttbRjn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMql_MNCASMhcUqb2I6THFe7W22h3UrVVuIWxX9QQZOq3UiFExIvwDPyJMzYSdCCEBIc44wTJ56xP4893xDy0tpCqBw59lOpI8G0jHIXV1GqANtablJjMXb4cCHnJ-L127Q_TYixMIEfYnC4oWX48RoNHB3Suz9ZQzEEGxZ4zK_K5XVyA9N6-1XV8cAgxUA9Q4AR5xHmoe95G2O2u15_fV76DWyuY1c_-ezdIqpvdjhz8mGnXakd_fkXRsf_-q7bZKuDpnQcdOkOuWbru2Rz0meEu0e-HsH4cgYiGCZ4-q4NykMbRxffv3ybNufW0El1oaBsav0xEXpaUzalyxYKA0Gv7iVgWG_O7OV7CqiZjruTCPTo6hNoND1GQln_8FlI0-O9TEiecp-c7M2Wk3nUJXGItMikjKzGWHvnsiIXRnCjpEm4gnlTJxWzeaqqQkHnuDR3ReUSzZTLeexsVcQagH_BH5CNuqntI0JN6rI8sbHJjBSZMnnsnNBVLI1UEpalIxL1XVjqjuEcE218LAM3Myvx15bDrx2RV4P8eeD2-KPkdq8RZWfjlyWAG7_ty8WIvBhuQ5fglktV26YFGV4kyCqWxiPyMGjS8CoYSgsAS1CbeX34SxvK8WJ_Nlw9_pdKz8nmfHl4UB7sL948ITexHN3UCd8mG6uL1j4FfLVSz7wF_QDuqh0C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCFd2GhgJGQOKVNbMdJjqvNrloeW1S1Um-Rn1BBk1W7kYBTpf6B_sb-EsZ2ElgQQoJjnHHixDPjz4_5BqGXxhRM5o5jP-UqYkTxKLexiFIJ2NZQnWrjYoffzfn2AXt9mB7-FMUf-CGGBTdnGd5fOwNfaLv1gzTURWDD_I74STm_iq4xHudOr8u9gUCKgHaG-CJKI5eGvqdtjMnWav3VYek3rLkKXf3YM7uNRN_qcOTk02a7lJvq2y-Ejv_zWXfQrQ6Y4nHQpLvoiqnvoRuTPh_cfXS-C97lGERckODRhzaoDm4snl-eXZTNwmg8EScSykrjD4ngoxqTEu-3UBjoeVUvAU69OTanHzFgZjzuziHg3S9fQZ_xnqOT9Q-fhiQ9fo3JUac8QAez6f5kO-pSOESKZZxHRrlIe2uzImeaUS25TqiEUVMlgpg8laKQ0Dc2zW0hbKKItDmNrRFFrAD2F3QdrdVNbR4hrFOb5YmJdaY5y6TOY2uZEjHXXHKYlI5Q1PdgpTp-c5dm43MVmJlJ5X5tNfzaEXo1yC8Cs8cfJTd6hag6Cz-tANr4TV_KRujFcBu6xG24iNo0LcjQInGcYmk8Qg-DIg2vAkdaAFSC2sSrw1_aUI3nO9Ph6vG_VHqOrr8vZ9XbnfmbJ-imK3Zr1AndQGvLk9Y8BXC1lM-8_XwHmz4bug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Configuration+of+N%E2%80%90Doped+Carbon+Defects+in+2D+Turbostratic+Carbon+Nanomesh+for+Advanced+Oxygen+Reduction+Electrocatalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lai%2C+Qingxue&rft.au=Zheng%2C+Jing&rft.au=Tang%2C+Zeming&rft.au=Bi%2C+Da&rft.date=2020-07-13&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=29&rft.spage=11999&rft.epage=12006&rft_id=info:doi/10.1002%2Fanie.202000936&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon