Optimal Configuration of N‐Doped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis
The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for m...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 29; pp. 11999 - 12006 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
13.07.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N‐doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site—a carbon edge defect doped with a graphitic valley N atom—was revealed to be responsible for the exceptional ORR performance of NDC material.
Defects on purpose: A two‐dimensional porous turbostratic carbon nanomesh with abundant carbon defects coupled with N doping sites was developed by a novel molecular design strategy. This material displays exceptional oxygen reduction reaction electrocatalytic activity, which is attributed to the formation of highly exposed carbon edge defects doped with graphitic valley N atoms. |
---|---|
AbstractList | The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N‐doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site—a carbon edge defect doped with a graphitic valley N atom—was revealed to be responsible for the exceptional ORR performance of NDC material. The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N-doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site-a carbon edge defect doped with a graphitic valley N atom-was revealed to be responsible for the exceptional ORR performance of NDC material.The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N-doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site-a carbon edge defect doped with a graphitic valley N atom-was revealed to be responsible for the exceptional ORR performance of NDC material. The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with significant oxygen reduction reaction (ORR) activity. The synergetic effect between the two approaches is thus expected to be more effective for manipulating the charge distribution of carbon materials for exceptional ORR performance. Herein we report a novel molecular design strategy to achieve a 2D porous turbostratic carbon nanomesh with abundant N‐doped carbon defects (NDC). The molecular level integration of aromatic rings as the carbon source and urea units as the N source and sacrificial template into the novel precursor of polyurea (PU) promises the formation of abundant carbon edge defects and N doping sites. A special active site—a carbon edge defect doped with a graphitic valley N atom—was revealed to be responsible for the exceptional ORR performance of NDC material. Defects on purpose: A two‐dimensional porous turbostratic carbon nanomesh with abundant carbon defects coupled with N doping sites was developed by a novel molecular design strategy. This material displays exceptional oxygen reduction reaction electrocatalytic activity, which is attributed to the formation of highly exposed carbon edge defects doped with graphitic valley N atoms. |
Author | Tang, Zeming Liang, Yanyu Bi, Da Lai, Qingxue Zheng, Jing Zhao, Jingxiang |
Author_xml | – sequence: 1 givenname: Qingxue orcidid: 0000-0002-3494-9586 surname: Lai fullname: Lai, Qingxue email: laiqingxue@126.com organization: Nanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Jing surname: Zheng fullname: Zheng, Jing organization: Nanjing Forestry University – sequence: 3 givenname: Zeming surname: Tang fullname: Tang, Zeming organization: Nanjing University of Aeronautics and Astronautics – sequence: 4 givenname: Da surname: Bi fullname: Bi, Da organization: Nanjing University of Aeronautics and Astronautics – sequence: 5 givenname: Jingxiang surname: Zhao fullname: Zhao, Jingxiang organization: Harbin Normal University – sequence: 6 givenname: Yanyu surname: Liang fullname: Liang, Yanyu email: liangyy403@126.com organization: Nanjing University of Aeronautics and Astronautics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32298534$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVJaS7ttssi6CabcXWZi7Q0ttsGgg0hXQuN5ihVGEuuNJPWu0BfoM_YJ6kcxy0EQlcSh-_7kf5zio588IDQW0omlBD2QXsHE0YYIUTy-gU6oRWjBW8afpTvJedFIyp6jE5Tus28EKR-hY45Y1JUvDxBP1ebwa11j2fBW3czRj244HGwePn7_tc8bKDDMx3bPJuDBTMk7Dxmc3w95mEadrw5EEvtwxrSV2xDxNPuTnuT9dWP7Q14fAXdaB7CF33OicHoQffb5NJr9NLqPsGbx_MMffm4uJ59Li5Xny5m08vClE1dF2A4rRtrGynKruRdW3eUt4TXhmoGomq1bPOHbSWs1JYa1lrBiQUtiWmYlPwMne9zNzF8GyENau2Sgb7XHsKYFOOSykbQimT0_RP0NozR59cpVjJCOWG8zNS7R2ps19CpTcxVxq061JuBcg-YGFKKYJVxw0PDuTjXK0rUbotqt0X1d4tZmzzRDsnPCnIvfHc9bP9Dq-nyYvHP_QPHT7DO |
CitedBy_id | crossref_primary_10_1002_advs_202308040 crossref_primary_10_2139_ssrn_4093936 crossref_primary_10_1002_celc_202101231 crossref_primary_10_1039_D2NJ02234F crossref_primary_10_1002_anie_202312255 crossref_primary_10_1016_j_cej_2022_135186 crossref_primary_10_1016_j_elecom_2023_107477 crossref_primary_10_1002_adfm_202111396 crossref_primary_10_1002_anie_202320037 crossref_primary_10_1038_s41467_023_37360_9 crossref_primary_10_1021_acsami_2c15574 crossref_primary_10_1021_acsnano_4c02591 crossref_primary_10_1016_j_chempr_2024_06_006 crossref_primary_10_1016_j_cej_2021_129973 crossref_primary_10_1002_anie_202116290 crossref_primary_10_1016_j_jpowsour_2023_233603 crossref_primary_10_1021_acsami_2c12503 crossref_primary_10_1021_acscatal_4c01713 crossref_primary_10_1016_j_jpowsour_2025_236330 crossref_primary_10_1002_smll_202401447 crossref_primary_10_1039_D1SC01231B crossref_primary_10_1002_advs_202201594 crossref_primary_10_1016_j_desal_2022_115919 crossref_primary_10_1007_s10853_021_06484_y crossref_primary_10_1039_D4NR00377B crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1016_j_apcatb_2024_123987 crossref_primary_10_1002_anie_202303409 crossref_primary_10_1021_acsaem_2c02976 crossref_primary_10_1021_acssuschemeng_3c03183 crossref_primary_10_1039_D2MA01009G crossref_primary_10_1002_anie_202406126 crossref_primary_10_1002_smll_202106606 crossref_primary_10_1016_j_apcatb_2023_123088 crossref_primary_10_1016_j_cej_2025_161762 crossref_primary_10_1016_j_apcatb_2022_122015 crossref_primary_10_1039_D2NJ05652F crossref_primary_10_1002_advs_202103477 crossref_primary_10_1016_j_jechem_2021_04_065 crossref_primary_10_1002_smll_202207821 crossref_primary_10_1016_j_scitotenv_2021_151059 crossref_primary_10_1016_j_cej_2023_145922 crossref_primary_10_1002_advs_202100120 crossref_primary_10_1016_j_jcis_2023_03_133 crossref_primary_10_1002_smtd_202100865 crossref_primary_10_1016_j_enchem_2021_100059 crossref_primary_10_1021_acsanm_3c05931 crossref_primary_10_1016_j_carbon_2021_09_042 crossref_primary_10_1016_j_jiec_2024_11_052 crossref_primary_10_1039_D2CC04628H crossref_primary_10_1016_j_ccr_2023_215082 crossref_primary_10_1016_j_cej_2023_143060 crossref_primary_10_1021_acscatal_4c02587 crossref_primary_10_1021_acsnano_3c07375 crossref_primary_10_1039_D3EE02090H crossref_primary_10_1016_j_cej_2021_131709 crossref_primary_10_1016_j_jcis_2021_09_008 crossref_primary_10_1016_j_apcatb_2020_119437 crossref_primary_10_1016_j_apcatb_2023_123346 crossref_primary_10_1016_j_electacta_2022_140667 crossref_primary_10_1016_j_apcatb_2021_120152 crossref_primary_10_1039_D1TA05485F crossref_primary_10_1016_j_jpowsour_2023_233232 crossref_primary_10_1039_D0NJ06080A crossref_primary_10_1039_D4DT01519C crossref_primary_10_1007_s40820_024_01560_9 crossref_primary_10_1016_j_apcatb_2021_120314 crossref_primary_10_1002_aenm_202204390 crossref_primary_10_1002_cssc_202402434 crossref_primary_10_1021_acsaem_1c00869 crossref_primary_10_1016_j_ijhydene_2021_11_220 crossref_primary_10_1016_j_apcatb_2021_120718 crossref_primary_10_1021_acsaem_1c04081 crossref_primary_10_1002_cphc_202200734 crossref_primary_10_1021_acsnano_1c02275 crossref_primary_10_1002_smll_202400304 crossref_primary_10_1016_j_jallcom_2022_164527 crossref_primary_10_1016_j_cej_2021_130401 crossref_primary_10_1016_j_ensm_2023_01_030 crossref_primary_10_1016_j_jece_2023_110595 crossref_primary_10_1021_acs_est_4c06461 crossref_primary_10_1002_smll_202401995 crossref_primary_10_1016_j_jallcom_2022_164520 crossref_primary_10_1002_smll_202406883 crossref_primary_10_1002_ange_202406126 crossref_primary_10_1016_j_microc_2023_108662 crossref_primary_10_1002_ange_202303409 crossref_primary_10_1039_D1TA07782A crossref_primary_10_1016_j_jmst_2025_01_022 crossref_primary_10_1088_1361_6528_ac5aed crossref_primary_10_1016_j_jcis_2020_08_063 crossref_primary_10_1021_jacs_3c06456 crossref_primary_10_1016_j_jechem_2025_01_005 crossref_primary_10_1002_adfm_202103187 crossref_primary_10_1016_j_jpowsour_2021_229677 crossref_primary_10_1021_acs_jpcc_3c06200 crossref_primary_10_1002_smll_202106122 crossref_primary_10_1016_j_apcatb_2023_122634 crossref_primary_10_3390_ijerph192214865 crossref_primary_10_1002_aenm_202401008 crossref_primary_10_1016_j_nanoen_2021_106868 crossref_primary_10_1021_acs_nanolett_3c00202 crossref_primary_10_1002_cctc_202200146 crossref_primary_10_1016_j_seppur_2024_127486 crossref_primary_10_1002_admi_202100051 crossref_primary_10_1039_D4TA07400A crossref_primary_10_1002_ange_202116290 crossref_primary_10_1002_eem2_12402 crossref_primary_10_1002_smll_202206341 crossref_primary_10_1016_j_gee_2022_11_002 crossref_primary_10_1016_j_jallcom_2020_157286 crossref_primary_10_1002_adfm_202502952 crossref_primary_10_1002_celc_202200892 crossref_primary_10_3390_polym15030521 crossref_primary_10_1002_adfm_202316207 crossref_primary_10_1016_j_nxmate_2024_100464 crossref_primary_10_1016_j_compositesa_2025_108764 crossref_primary_10_1039_D1NA00853F crossref_primary_10_1016_j_cclet_2022_03_112 crossref_primary_10_1016_j_fuel_2023_129469 crossref_primary_10_1039_D0TA09293B crossref_primary_10_2139_ssrn_4170562 crossref_primary_10_1002_advs_202407294 crossref_primary_10_1016_j_cej_2021_132691 crossref_primary_10_26599_NR_2025_94907244 crossref_primary_10_1002_smll_202106012 crossref_primary_10_1007_s11705_023_2300_5 crossref_primary_10_1016_j_electacta_2021_139475 crossref_primary_10_1021_acsaem_1c00259 crossref_primary_10_1016_j_cej_2021_132214 crossref_primary_10_1002_smll_202410010 crossref_primary_10_3390_polym14132581 crossref_primary_10_1016_j_jcis_2020_09_048 crossref_primary_10_1016_j_pmatsci_2020_100716 crossref_primary_10_20964_2021_07_27 crossref_primary_10_3390_molecules28104160 crossref_primary_10_15541_jim20220128 crossref_primary_10_1002_ange_202312255 crossref_primary_10_1021_acscatal_2c00164 crossref_primary_10_1021_acsami_1c18451 crossref_primary_10_1002_adfm_202302100 crossref_primary_10_1016_j_jhazmat_2024_135724 crossref_primary_10_1002_adfm_202311337 crossref_primary_10_1021_acssuschemeng_1c08560 crossref_primary_10_1039_D4NR03645J crossref_primary_10_1002_smll_202305004 crossref_primary_10_1016_j_fuel_2023_128929 crossref_primary_10_1002_cctc_202301345 crossref_primary_10_1016_j_cej_2021_132969 crossref_primary_10_1002_ange_202320037 |
Cites_doi | 10.1016/j.eurpolymj.2010.03.015 10.1126/science.1200770 10.1021/acsnano.8b07700 10.1016/j.carbon.2014.02.078 10.1038/ncomms2944 10.1002/adma.201802234 10.1016/j.nanoen.2012.02.008 10.1002/ange.201406695 10.1126/science.aad0832 10.1021/acsenergylett.8b00303 10.1016/j.ceramint.2016.04.055 10.1039/C8EE03276A 10.1063/1.2196057 10.1039/c1ee01437d 10.1016/j.carbon.2016.04.062 10.1002/adma.201604103 10.1002/ange.200907289 10.1039/c4sc01477d 10.1002/adma.201606459 10.1021/ja0178970 10.1002/anie.201406695 10.1016/j.nanoen.2018.08.003 10.1002/anie.201100170 10.1002/adma.201202424 10.1002/adma.201001068 10.1016/j.jcat.2014.03.011 10.1063/1.1674108 10.1021/nn302906r 10.1002/anie.200907289 10.1021/acs.accounts.6b00317 10.1021/acscatal.5b01835 10.1016/j.jpowsour.2007.07.004 10.1016/j.cap.2012.08.008 10.1039/c2gc36043h 10.1126/sciadv.1501122 10.1002/adma.201804799 10.1002/ange.201100170 10.1002/adma.201503211 10.1039/c0jm03613g 10.1021/acs.macromol.6b02678 10.1038/s41467-019-09503-4 10.1021/acscatal.8b00338 10.1126/sciadv.aau6852 10.1016/j.carbon.2005.02.018 10.1021/ja310566z 10.1039/c3ra46193a 10.1038/natrevmats.2016.64 10.1016/j.desal.2016.04.030 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202000936 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 12006 |
ExternalDocumentID | 32298534 10_1002_anie_202000936 ANIE202000936 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21771107; 21902077 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20190381 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20190381 – fundername: National Natural Science Foundation of China grantid: 21902077 – fundername: National Natural Science Foundation of China grantid: 21771107 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4766-ec3167ff7984d43db6d13b036c1a2e85ba9b433f58f9af1c2bf830fea90c72993 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:47:33 EDT 2025 Fri Jul 25 10:41:14 EDT 2025 Wed Feb 19 02:30:12 EST 2025 Tue Jul 01 01:17:38 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Wed Jan 22 16:34:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | carbon defects molecular design oxygen reduction reaction nitrogen doping |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-ec3167ff7984d43db6d13b036c1a2e85ba9b433f58f9af1c2bf830fea90c72993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3494-9586 |
PMID | 32298534 |
PQID | 2420130234 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2391978150 proquest_journals_2420130234 pubmed_primary_32298534 crossref_citationtrail_10_1002_anie_202000936 crossref_primary_10_1002_anie_202000936 wiley_primary_10_1002_anie_202000936_ANIE202000936 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 13, 2020 |
PublicationDateYYYYMMDD | 2020-07-13 |
PublicationDate_xml | – month: 07 year: 2020 text: July 13, 2020 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2014; 314 2013; 4 2015; 5 2019; 5 2019; 31 2019; 10 2019; 12 1970; 53 2005; 43 2016; 106 2010 2010; 49 122 2017; 29 2012; 14 2011; 4 2011; 332 2017; 50 2010; 22 2018; 8 2018; 3 2014; 5 2016; 1 2015; 27 2014; 4 2016; 2 2012; 1 2010; 46 2013; 13 2007; 171 2006; 88 2002; 124 2020 2020 2016; 42 2013; 135 2011; 21 2018; 52 2011 2011; 50 123 2018; 12 2012; 6 2012; 24 2014; 73 2016; 49 2016; 351 2016; 394 e_1_2_6_51_1 e_1_2_6_53_2 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_2 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_1 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_41_3 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 He D. (e_1_2_6_45_2) 2020 e_1_2_6_26_1 e_1_2_6_45_3 e_1_2_6_47_1 e_1_2_6_52_2 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_58_2 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_54_2 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_42_2 e_1_2_6_40_3 e_1_2_6_40_2 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 1 start-page: 514 year: 2012 end-page: 517 publication-title: Nano Energy – volume: 314 start-page: 66 year: 2014 end-page: 72 publication-title: J. Catal. – volume: 12 start-page: 9635 year: 2018 end-page: 9638 publication-title: ACS Nano – volume: 5 start-page: 6707 year: 2015 end-page: 6712 publication-title: ACS Catal. – volume: 52 start-page: 307 year: 2018 end-page: 314 publication-title: Nano Energy – year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 1873 year: 2016 end-page: 1883 publication-title: Acc. Chem. Res. – volume: 135 start-page: 1201 year: 2013 end-page: 1204 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 124 start-page: 10632 year: 2002 end-page: 10633 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1194 year: 2010 end-page: 1202 publication-title: Eur. Polym. J. – volume: 50 start-page: 2759 year: 2017 end-page: 2767 publication-title: Macromolecules – volume: 8 start-page: 6827 year: 2018 end-page: 6836 publication-title: ACS Catal. – volume: 27 start-page: 6834 year: 2015 end-page: 6840 publication-title: Adv. Mater. – volume: 53 start-page: 1126 year: 1970 end-page: 1130 publication-title: J. Chem. Phys. – volume: 50 123 start-page: 5339 5451 year: 2011 2011 end-page: 5343 5455 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 332 start-page: 1537 year: 2011 end-page: 1541 publication-title: Science – volume: 73 start-page: 371 year: 2014 end-page: 381 publication-title: Carbon – volume: 21 start-page: 11392 year: 2011 end-page: 11405 publication-title: J. Mater. Chem. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 42 start-page: 11603 year: 2016 end-page: 11610 publication-title: Ceram. Int. – volume: 43 start-page: 1731 year: 2005 end-page: 1742 publication-title: Carbon – volume: 351 start-page: 361 year: 2016 end-page: 365 publication-title: Science – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 24 start-page: 5593 year: 2012 end-page: 5597 publication-title: Adv. Mater. – volume: 3 start-page: 1183 year: 2018 end-page: 1191 publication-title: ACS Energy Lett. – volume: 106 start-page: 93 year: 2016 end-page: 105 publication-title: Carbon – volume: 10 start-page: 1506 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 1922 year: 2013 publication-title: Nat. Commun. – volume: 14 start-page: 2899 year: 2012 end-page: 2906 publication-title: Green Chem. – volume: 5 start-page: 3315 year: 2014 end-page: 3319 publication-title: Chem. Sci. – volume: 49 122 start-page: 2565 2619 year: 2010 2010 end-page: 2569 2623 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 53 126 start-page: 10804 10980 year: 2014 2014 end-page: 10808 10984 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 322 year: 2019 end-page: 333 publication-title: Energy Environ. Sci. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 4 start-page: 11331 year: 2014 end-page: 11342 publication-title: RSC Adv. – volume: 13 start-page: 309 year: 2013 end-page: 321 publication-title: Curr. Appl. Phys. – volume: 394 start-page: 123 year: 2016 end-page: 130 publication-title: Desalination – volume: 22 start-page: 3906 year: 2010 end-page: 3924 publication-title: Adv. Mater. – volume: 171 start-page: 558 year: 2007 end-page: 566 publication-title: J. Power Sources – volume: 1 start-page: 16064 year: 2016 publication-title: Nat. Rev. Mater. – volume: 4 start-page: 3389 year: 2011 end-page: 3394 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8904 year: 2012 end-page: 8912 publication-title: ACS Nano – ident: e_1_2_6_23_1 – ident: e_1_2_6_38_2 doi: 10.1016/j.eurpolymj.2010.03.015 – ident: e_1_2_6_33_2 doi: 10.1126/science.1200770 – ident: e_1_2_6_46_2 doi: 10.1021/acsnano.8b07700 – ident: e_1_2_6_47_1 doi: 10.1016/j.carbon.2014.02.078 – ident: e_1_2_6_2_2 doi: 10.1038/ncomms2944 – ident: e_1_2_6_5_2 doi: 10.1002/adma.201802234 – ident: e_1_2_6_7_1 doi: 10.1016/j.nanoen.2012.02.008 – ident: e_1_2_6_15_2 doi: 10.1002/ange.201406695 – ident: e_1_2_6_59_1 doi: 10.1126/science.aad0832 – ident: e_1_2_6_25_2 doi: 10.1021/acsenergylett.8b00303 – ident: e_1_2_6_37_2 doi: 10.1016/j.ceramint.2016.04.055 – ident: e_1_2_6_21_2 doi: 10.1039/C8EE03276A – ident: e_1_2_6_55_1 doi: 10.1063/1.2196057 – ident: e_1_2_6_36_1 – ident: e_1_2_6_4_1 – ident: e_1_2_6_34_2 doi: 10.1039/c1ee01437d – ident: e_1_2_6_35_1 doi: 10.1016/j.carbon.2016.04.062 – ident: e_1_2_6_17_2 doi: 10.1002/adma.201604103 – ident: e_1_2_6_40_3 doi: 10.1002/ange.200907289 – ident: e_1_2_6_44_1 – ident: e_1_2_6_43_2 doi: 10.1039/c4sc01477d – ident: e_1_2_6_19_2 doi: 10.1002/adma.201606459 – ident: e_1_2_6_27_2 doi: 10.1021/ja0178970 – ident: e_1_2_6_15_1 doi: 10.1002/anie.201406695 – ident: e_1_2_6_24_2 doi: 10.1016/j.nanoen.2018.08.003 – ident: e_1_2_6_41_2 doi: 10.1002/anie.201100170 – ident: e_1_2_6_42_2 doi: 10.1002/adma.201202424 – ident: e_1_2_6_49_1 doi: 10.1002/adma.201001068 – ident: e_1_2_6_22_2 doi: 10.1016/j.jcat.2014.03.011 – ident: e_1_2_6_50_1 doi: 10.1063/1.1674108 – ident: e_1_2_6_48_1 doi: 10.1021/nn302906r – ident: e_1_2_6_40_2 doi: 10.1002/anie.200907289 – ident: e_1_2_6_14_2 doi: 10.1021/acs.accounts.6b00317 – ident: e_1_2_6_20_1 – ident: e_1_2_6_26_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_18_2 doi: 10.1021/acscatal.5b01835 – ident: e_1_2_6_51_1 – ident: e_1_2_6_6_2 doi: 10.1016/j.jpowsour.2007.07.004 – ident: e_1_2_6_45_3 – ident: e_1_2_6_3_2 doi: 10.1016/j.cap.2012.08.008 – ident: e_1_2_6_11_1 – ident: e_1_2_6_31_1 doi: 10.1039/c2gc36043h – ident: e_1_2_6_56_1 – ident: e_1_2_6_39_1 – year: 2020 ident: e_1_2_6_45_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_6_57_2 doi: 10.1126/sciadv.1501122 – ident: e_1_2_6_13_2 doi: 10.1002/adma.201804799 – ident: e_1_2_6_41_3 doi: 10.1002/ange.201100170 – ident: e_1_2_6_12_2 doi: 10.1002/adma.201503211 – ident: e_1_2_6_52_2 doi: 10.1039/c0jm03613g – ident: e_1_2_6_29_1 doi: 10.1021/acs.macromol.6b02678 – ident: e_1_2_6_60_1 doi: 10.1038/s41467-019-09503-4 – ident: e_1_2_6_58_2 doi: 10.1021/acscatal.8b00338 – ident: e_1_2_6_16_1 – ident: e_1_2_6_28_2 doi: 10.1126/sciadv.aau6852 – ident: e_1_2_6_8_1 – ident: e_1_2_6_32_1 – ident: e_1_2_6_54_2 doi: 10.1016/j.carbon.2005.02.018 – ident: e_1_2_6_10_2 doi: 10.1021/ja310566z – ident: e_1_2_6_53_2 doi: 10.1039/c3ra46193a – ident: e_1_2_6_9_2 doi: 10.1038/natrevmats.2016.64 – ident: e_1_2_6_30_1 doi: 10.1016/j.desal.2016.04.030 |
SSID | ssj0028806 |
Score | 2.6506429 |
Snippet | The charge redistribution strategy driven by heteroatom doping or defect engineering has been developed as an efficient method to endow inert carbon with... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11999 |
SubjectTerms | Aromatic compounds Carbon carbon defects Carbon sources Charge distribution Charge materials Chemical reduction Defects Doping molecular design nitrogen doping Oxygen oxygen reduction reaction Oxygen reduction reactions Urea |
Title | Optimal Configuration of N‐Doped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202000936 https://www.ncbi.nlm.nih.gov/pubmed/32298534 https://www.proquest.com/docview/2420130234 https://www.proquest.com/docview/2391978150 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_VhakJGQOKVNbMdJjqvdrQoSW6lqpd4iP6EqTaruRqKckPgD_EZ-CTN2ElgQQoJb4owTxx7bn-2Zbwh56VwldIkc-7k0iWBGJqVPVZJrwLaO29w69B1-u5QHJ-LNaX76kxd_5IcYN9ywZ4TxGju40qu9H6Sh6IEN6zsWFuXIuY0GW4iKjkb-KAbKGd2LOE8wCv3A2piyvc3sm7PSb1BzE7mGqWf_DlFDoaPFyflut9a75tMvfI7_81d3ye0el9JpVKR75IZr7pObsyEc3APy5RAGlwsQQR_Bs3dd1Bzaerr89vnrvL10ls7UlYa0uQs2IvSsoWxOjztIjOy8ZpCAMb29cKv3FCAznfZmCPTw4zWoMz1CNtnw8kWM0RO2mJA55SE52V8czw6SPoJDYkQhZeIMOtp7X1SlsIJbLW3GNUyaJlPMlblWlYa28XnpK-Uzw7QveeqdqlIDqL_ij8hW0zbuCaE290WZudQWVopC2zL1XhiVSiu1hDXphCRDC9ampzfHKBsf6kjMzGqs2nqs2gl5NcpfRmKPP0ruDApR9x18VQOyCWe-XEzIi_ExNAmet6jGtR3I8CpDSrE8nZDHUZHGT8E4WgFSgtwsqMNfylBPl68X493Tf8m0TW7hNe5LZ3yHbK2vOvcMANVaPw-d5jttbRjn |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMql_MNCASMhcUqb2I6THFe7W22h3UrVVuIWxX9QQZOq3UiFExIvwDPyJMzYSdCCEBIc44wTJ56xP4893xDy0tpCqBw59lOpI8G0jHIXV1GqANtablJjMXb4cCHnJ-L127Q_TYixMIEfYnC4oWX48RoNHB3Suz9ZQzEEGxZ4zK_K5XVyA9N6-1XV8cAgxUA9Q4AR5xHmoe95G2O2u15_fV76DWyuY1c_-ezdIqpvdjhz8mGnXakd_fkXRsf_-q7bZKuDpnQcdOkOuWbru2Rz0meEu0e-HsH4cgYiGCZ4-q4NykMbRxffv3ybNufW0El1oaBsav0xEXpaUzalyxYKA0Gv7iVgWG_O7OV7CqiZjruTCPTo6hNoND1GQln_8FlI0-O9TEiecp-c7M2Wk3nUJXGItMikjKzGWHvnsiIXRnCjpEm4gnlTJxWzeaqqQkHnuDR3ReUSzZTLeexsVcQagH_BH5CNuqntI0JN6rI8sbHJjBSZMnnsnNBVLI1UEpalIxL1XVjqjuEcE218LAM3Myvx15bDrx2RV4P8eeD2-KPkdq8RZWfjlyWAG7_ty8WIvBhuQ5fglktV26YFGV4kyCqWxiPyMGjS8CoYSgsAS1CbeX34SxvK8WJ_Nlw9_pdKz8nmfHl4UB7sL948ITexHN3UCd8mG6uL1j4FfLVSz7wF_QDuqh0C |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCFd2GhgJGQOKVNbMdJjqvNrloeW1S1Um-Rn1BBk1W7kYBTpf6B_sb-EsZ2ElgQQoJjnHHixDPjz4_5BqGXxhRM5o5jP-UqYkTxKLexiFIJ2NZQnWrjYoffzfn2AXt9mB7-FMUf-CGGBTdnGd5fOwNfaLv1gzTURWDD_I74STm_iq4xHudOr8u9gUCKgHaG-CJKI5eGvqdtjMnWav3VYek3rLkKXf3YM7uNRN_qcOTk02a7lJvq2y-Ejv_zWXfQrQ6Y4nHQpLvoiqnvoRuTPh_cfXS-C97lGERckODRhzaoDm4snl-eXZTNwmg8EScSykrjD4ngoxqTEu-3UBjoeVUvAU69OTanHzFgZjzuziHg3S9fQZ_xnqOT9Q-fhiQ9fo3JUac8QAez6f5kO-pSOESKZZxHRrlIe2uzImeaUS25TqiEUVMlgpg8laKQ0Dc2zW0hbKKItDmNrRFFrAD2F3QdrdVNbR4hrFOb5YmJdaY5y6TOY2uZEjHXXHKYlI5Q1PdgpTp-c5dm43MVmJlJ5X5tNfzaEXo1yC8Cs8cfJTd6hag6Cz-tANr4TV_KRujFcBu6xG24iNo0LcjQInGcYmk8Qg-DIg2vAkdaAFSC2sSrw1_aUI3nO9Ph6vG_VHqOrr8vZ9XbnfmbJ-imK3Zr1AndQGvLk9Y8BXC1lM-8_XwHmz4bug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Configuration+of+N%E2%80%90Doped+Carbon+Defects+in+2D+Turbostratic+Carbon+Nanomesh+for+Advanced+Oxygen+Reduction+Electrocatalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lai%2C+Qingxue&rft.au=Zheng%2C+Jing&rft.au=Tang%2C+Zeming&rft.au=Bi%2C+Da&rft.date=2020-07-13&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=29&rft.spage=11999&rft.epage=12006&rft_id=info:doi/10.1002%2Fanie.202000936&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |