Rational Design of Multicolor‐Emitting Chiral Carbonized Polymer Dots for Full‐Color and White Circularly Polarized Luminescence
Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 25; pp. 14091 - 14099 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
14.06.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L‐/D‐tryptophan and o‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum) of 1×10−2. Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.
The synthesis of red‐ and multicolor‐emitting chiral carbonized polymer dots (Ch‐CPDs) is reported for the first time. The quantum yield of the Ch‐CPDs is between 31 % and 54 %. Furthermore, these Ch‐CPDs were combined with chiral gels through supramolecular self‐assembly, thereby yielding their multicolor and white circularly polarized luminescence. |
---|---|
AbstractList | Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L‐/D‐tryptophan and o‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum) of 1×10−2. Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials. Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L‐/D‐tryptophan and o‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum) of 1×10−2. Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials. The synthesis of red‐ and multicolor‐emitting chiral carbonized polymer dots (Ch‐CPDs) is reported for the first time. The quantum yield of the Ch‐CPDs is between 31 % and 54 %. Furthermore, these Ch‐CPDs were combined with chiral gels through supramolecular self‐assembly, thereby yielding their multicolor and white circularly polarized luminescence. Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L ‐/ D ‐tryptophan and o ‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (g lum ) of 1×10 −2 . Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials. Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (g ) of 1×10 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials. Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum ) of 1×10-2 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum ) of 1×10-2 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials. |
Author | Tang, Zhiyong Ru, Yi Song, Haoqiang Liu, Xingjiang Zang, Shuang‐Quan Yang, Bai Sui, Laizhi Lu, Siyu |
Author_xml | – sequence: 1 givenname: Yi surname: Ru fullname: Ru, Yi organization: Zhengzhou University – sequence: 2 givenname: Laizhi surname: Sui fullname: Sui, Laizhi organization: Chinese Academy of Sciences – sequence: 3 givenname: Haoqiang surname: Song fullname: Song, Haoqiang organization: Zhengzhou University – sequence: 4 givenname: Xingjiang surname: Liu fullname: Liu, Xingjiang organization: Zhengzhou University – sequence: 5 givenname: Zhiyong surname: Tang fullname: Tang, Zhiyong organization: National Center for Nanoscience and Technology – sequence: 6 givenname: Shuang‐Quan surname: Zang fullname: Zang, Shuang‐Quan organization: Zhengzhou University – sequence: 7 givenname: Bai surname: Yang fullname: Yang, Bai organization: Jilin University – sequence: 8 givenname: Siyu orcidid: 0000-0003-4538-7846 surname: Lu fullname: Lu, Siyu email: sylu2013@zzu.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33830583$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7IduXUrAjZu5zcckmbss09tauFURxWXIZDJtSiapSQa5XXXRH-Bv9JeY6W0VCuLqnMXzHA7vuw92fPAGgNcYLTBC5FB5axYEEYwopfwZ2MOM4IoKQXfKXlNaiYbhXbCf0lXhmwbxF2CX0oYi1tA9cPdZZRu8cvDYJHvhYRjg-eSy1cGF-Ov252q0OVt_AdtLGwvWqtgFb29MDz8FtxlNhMchJziECE8m54rSzipUvoffLm02sLVRT05Ft5kVFe_l9TRab5I2XpuX4PmgXDKvHuYB-Hqy-tK-r9YfT8_ao3Wla8F5pXmDe9QRMZTfO86Z1qwzWPREGaFVL0jfNUwo0jOOhMYc1ZpSrXCtlkvaaHoA3m3vXsfwfTIpy9GWD5xT3oQpScIwIoyJJSno2yfoVZhiyWmmqKgpErUo1JsHaupG08vraEcVN_Ix3wLUW0DHkFI0g9Q23yeeo7JOYiTnGuVco_xTY9EWT7THy_8Ullvhh3Vm8x9aHn04W_11fwPnwbJd |
CitedBy_id | crossref_primary_10_1021_acs_accounts_4c00516 crossref_primary_10_1016_j_cclet_2021_08_077 crossref_primary_10_1021_acssuschemeng_2c05268 crossref_primary_10_1016_j_ccr_2025_216510 crossref_primary_10_1016_j_carbpol_2024_122203 crossref_primary_10_2139_ssrn_4118407 crossref_primary_10_1002_anie_202420290 crossref_primary_10_1016_j_jcis_2021_12_192 crossref_primary_10_1002_smll_202306969 crossref_primary_10_1002_adma_202310455 crossref_primary_10_1039_D4SM00960F crossref_primary_10_1039_D1MA00843A crossref_primary_10_1002_adom_202201229 crossref_primary_10_3390_gels9080669 crossref_primary_10_52396_JUSTC_2022_0167 crossref_primary_10_1016_j_apsusc_2023_156564 crossref_primary_10_1002_smll_202202741 crossref_primary_10_1002_asia_202201284 crossref_primary_10_1016_j_colsurfa_2023_132672 crossref_primary_10_1039_D4NJ01100G crossref_primary_10_1007_s00604_023_06064_8 crossref_primary_10_1021_acs_nanolett_2c02674 crossref_primary_10_1021_acs_jpclett_2c03829 crossref_primary_10_1021_acsami_1c23494 crossref_primary_10_1002_ange_202200290 crossref_primary_10_1021_acs_jpclett_3c03497 crossref_primary_10_1016_j_cclet_2024_110284 crossref_primary_10_1016_j_seppur_2023_123666 crossref_primary_10_1039_D4NR03736G crossref_primary_10_1016_j_matt_2021_10_016 crossref_primary_10_1016_j_carbon_2022_08_003 crossref_primary_10_1002_ange_202200038 crossref_primary_10_1002_anie_202117042 crossref_primary_10_1002_ange_202311816 crossref_primary_10_1002_cjoc_202300062 crossref_primary_10_1016_j_foodchem_2024_141213 crossref_primary_10_1002_anie_202409020 crossref_primary_10_1002_anie_202111285 crossref_primary_10_1002_chem_202302383 crossref_primary_10_1016_j_matchar_2024_114026 crossref_primary_10_1016_j_optmat_2023_113620 crossref_primary_10_1002_smll_202205916 crossref_primary_10_1002_anie_202202397 crossref_primary_10_1016_j_jcis_2024_02_063 crossref_primary_10_1016_j_carbon_2022_09_060 crossref_primary_10_1021_acsbiomaterials_3c00918 crossref_primary_10_1016_j_jcis_2024_01_039 crossref_primary_10_1016_j_apsusc_2021_151447 crossref_primary_10_1016_j_nanoen_2023_108623 crossref_primary_10_1038_s41377_022_00764_1 crossref_primary_10_1039_D1TC05265A crossref_primary_10_1016_j_jcis_2024_06_208 crossref_primary_10_1360_SSC_2024_0066 crossref_primary_10_1016_j_snb_2023_133499 crossref_primary_10_1021_acsami_3c02423 crossref_primary_10_1002_smsc_202200012 crossref_primary_10_1016_j_carbon_2024_119208 crossref_primary_10_1021_acsanm_2c04130 crossref_primary_10_1038_s41377_022_00865_x crossref_primary_10_1039_D3NR02367B crossref_primary_10_1002_smll_202207048 crossref_primary_10_1016_j_jcis_2024_05_129 crossref_primary_10_1007_s12274_021_3776_2 crossref_primary_10_1016_j_cej_2021_134172 crossref_primary_10_1016_j_matt_2024_06_011 crossref_primary_10_1002_adma_202200152 crossref_primary_10_1002_adma_202209539 crossref_primary_10_1016_j_jlumin_2023_120013 crossref_primary_10_1016_j_nanoen_2022_107549 crossref_primary_10_1016_j_saa_2023_122545 crossref_primary_10_1007_s12274_024_6839_3 crossref_primary_10_1002_ange_202112582 crossref_primary_10_1002_ange_202211822 crossref_primary_10_1039_D2NR05008K crossref_primary_10_1016_j_nantod_2025_102675 crossref_primary_10_1016_j_saa_2024_125316 crossref_primary_10_1360_SSC_2023_0232 crossref_primary_10_1016_j_mtphys_2022_100752 crossref_primary_10_1002_adfm_202211013 crossref_primary_10_1038_s41377_022_00837_1 crossref_primary_10_1016_j_electacta_2023_142805 crossref_primary_10_1038_s41467_023_44643_8 crossref_primary_10_1002_smll_202206180 crossref_primary_10_1039_D1NJ05981E crossref_primary_10_1021_acsnano_1c10299 crossref_primary_10_1021_acsnano_3c08791 crossref_primary_10_1002_asia_202300770 crossref_primary_10_1002_anie_202112582 crossref_primary_10_1002_smll_202207983 crossref_primary_10_1002_ange_202115600 crossref_primary_10_1016_j_foodchem_2023_138167 crossref_primary_10_1039_D1RA04483D crossref_primary_10_1002_adma_202200011 crossref_primary_10_1007_s12274_024_6928_3 crossref_primary_10_1002_ange_202114759 crossref_primary_10_1016_j_cej_2024_157033 crossref_primary_10_1002_cplu_202200428 crossref_primary_10_1016_j_mtchem_2025_102608 crossref_primary_10_1021_acsami_1c07444 crossref_primary_10_1002_adom_202100961 crossref_primary_10_1002_adma_202302536 crossref_primary_10_1002_anie_202115600 crossref_primary_10_1016_j_apmt_2024_102154 crossref_primary_10_1016_j_cclet_2025_111060 crossref_primary_10_1016_j_susmat_2025_e01271 crossref_primary_10_1039_D4TC00071D crossref_primary_10_1126_sciadv_adi9944 crossref_primary_10_1002_advs_202203474 crossref_primary_10_1021_acs_analchem_3c01854 crossref_primary_10_1093_rb_rbad109 crossref_primary_10_1002_advs_202405043 crossref_primary_10_1002_anie_202114759 crossref_primary_10_1021_acs_biomac_4c00962 crossref_primary_10_1007_s12274_022_5285_3 crossref_primary_10_3390_solids6010014 crossref_primary_10_1002_adfm_202206696 crossref_primary_10_1002_anie_202208180 crossref_primary_10_1016_j_carbon_2022_10_078 crossref_primary_10_1016_j_jcis_2022_05_095 crossref_primary_10_1021_jacs_1c12767 crossref_primary_10_1002_adma_202404694 crossref_primary_10_1016_j_cclet_2023_109295 crossref_primary_10_26599_NR_2025_94907180 crossref_primary_10_1002_anie_202113979 crossref_primary_10_1016_j_polymer_2024_127571 crossref_primary_10_1016_j_carbon_2025_120073 crossref_primary_10_1016_j_cej_2024_153453 crossref_primary_10_1016_j_jcis_2022_02_115 crossref_primary_10_1002_adfm_202305209 crossref_primary_10_1021_acs_analchem_4c06405 crossref_primary_10_1002_ange_202208180 crossref_primary_10_1002_anie_202200038 crossref_primary_10_1016_j_matt_2022_01_001 crossref_primary_10_1021_acsami_2c07375 crossref_primary_10_1002_adfm_202420587 crossref_primary_10_1002_smll_202206709 crossref_primary_10_1002_adom_202300816 crossref_primary_10_1002_adma_202207265 crossref_primary_10_1002_smll_202106683 crossref_primary_10_1021_acs_jpclett_1c01856 crossref_primary_10_1016_j_jhazmat_2025_137944 crossref_primary_10_1002_ange_202111285 crossref_primary_10_1039_D3NR01056B crossref_primary_10_1039_D2NR03161B crossref_primary_10_1016_j_cej_2023_143465 crossref_primary_10_1016_j_cej_2023_143103 crossref_primary_10_1039_D2TC04848E crossref_primary_10_1016_j_dyepig_2022_110859 crossref_primary_10_1002_ange_202409020 crossref_primary_10_1002_anie_202410988 crossref_primary_10_1002_adom_202403251 crossref_primary_10_1002_asia_202401470 crossref_primary_10_1021_acs_nanolett_3c00655 crossref_primary_10_1002_advs_202305797 crossref_primary_10_1016_j_seppur_2024_129852 crossref_primary_10_1039_D3CC04068B crossref_primary_10_1007_s11426_021_1033_6 crossref_primary_10_1002_smll_202205880 crossref_primary_10_1002_smm2_1099 crossref_primary_10_1016_j_carbon_2024_119393 crossref_primary_10_1016_j_cclet_2022_01_059 crossref_primary_10_1016_j_foodchem_2023_137207 crossref_primary_10_1021_acs_nanolett_5c00359 crossref_primary_10_1021_acs_jpclett_4c03058 crossref_primary_10_1021_acs_analchem_2c04387 crossref_primary_10_1002_ange_202420290 crossref_primary_10_1016_j_cej_2025_159821 crossref_primary_10_1016_j_molliq_2024_125290 crossref_primary_10_2139_ssrn_4135017 crossref_primary_10_1021_acsmaterialslett_4c01815 crossref_primary_10_1021_acs_chemrev_3c00186 crossref_primary_10_1016_j_microc_2025_113066 crossref_primary_10_1002_anie_202211822 crossref_primary_10_1002_ange_202117042 crossref_primary_10_1002_anie_202424918 crossref_primary_10_1002_anie_202412341 crossref_primary_10_1002_ange_202202397 crossref_primary_10_1002_anie_202207817 crossref_primary_10_1007_s10895_023_03262_8 crossref_primary_10_1039_D4TB00382A crossref_primary_10_1002_ppsc_202300049 crossref_primary_10_1016_j_carbon_2022_11_048 crossref_primary_10_1007_s11426_022_1405_9 crossref_primary_10_1016_j_matt_2023_06_011 crossref_primary_10_1021_acs_langmuir_3c02835 crossref_primary_10_1002_ange_202410988 crossref_primary_10_1016_j_foodchem_2024_142485 crossref_primary_10_1007_s11426_021_1146_6 crossref_primary_10_1002_ange_202424918 crossref_primary_10_1016_j_jcis_2024_09_144 crossref_primary_10_1002_adma_202403329 crossref_primary_10_1002_adma_202410094 crossref_primary_10_1002_jmr_3085 crossref_primary_10_1002_adom_202401713 crossref_primary_10_1002_anie_202311816 crossref_primary_10_1007_s12274_024_6809_9 crossref_primary_10_1016_j_ccr_2024_215859 crossref_primary_10_1016_j_cej_2023_145614 crossref_primary_10_1002_adfm_202214364 crossref_primary_10_1039_D4NR00644E crossref_primary_10_1016_j_molstruc_2024_139419 crossref_primary_10_1039_D2TC03553G crossref_primary_10_1016_j_dyepig_2023_111685 crossref_primary_10_1016_j_saa_2022_122039 crossref_primary_10_1021_acsnano_2c06623 crossref_primary_10_1002_ijch_202100076 crossref_primary_10_1016_j_cej_2022_140069 crossref_primary_10_1016_j_talo_2023_100243 crossref_primary_10_1016_j_carbon_2024_119980 crossref_primary_10_1039_D2SC00952H crossref_primary_10_1002_agt2_311 crossref_primary_10_1002_cjoc_202200736 crossref_primary_10_1016_j_carbon_2022_11_023 crossref_primary_10_1039_D4TC01916D crossref_primary_10_1002_ange_202113979 crossref_primary_10_1002_smll_202302668 crossref_primary_10_1002_cey2_175 crossref_primary_10_1016_j_diamond_2021_108724 crossref_primary_10_1002_anie_202200290 crossref_primary_10_1002_adfm_202305867 crossref_primary_10_1007_s10854_023_10567_8 crossref_primary_10_1021_acssuschemeng_2c00715 crossref_primary_10_1016_j_mtnano_2023_100324 crossref_primary_10_1021_acsmaterialslett_2c01130 crossref_primary_10_1002_adfm_202423470 crossref_primary_10_1002_ange_202412341 crossref_primary_10_1002_ange_202207817 crossref_primary_10_1039_D1CC02823E crossref_primary_10_1039_D1TA09400A crossref_primary_10_1007_s12274_023_5601_6 crossref_primary_10_1002_adom_202201996 crossref_primary_10_1002_adfm_202413569 crossref_primary_10_1016_j_jlumin_2022_118928 |
Cites_doi | 10.1002/smll.201800612 10.1002/anie.201811060 10.1002/adma.201903200 10.1021/cm900567g 10.1002/anie.201706308 10.1039/C7TC05878K 10.1016/j.nantod.2020.100953 10.1002/anie.201712453 10.1039/C4NR04267K 10.1038/s41467-018-05561-2 10.1002/anie.202002904 10.1002/smll.201902237 10.1039/b800404h 10.1002/anie.201700757 10.1002/chem.201000595 10.1039/C6CC05947C 10.1021/acsanm.9b01677 10.1002/adma.202002914 10.1002/ange.201706308 10.1002/adom.201700416 10.1002/adma.201900110 10.1021/acs.chemrev.6b00755 10.1002/ange.202002904 10.1038/s41467-020-18525-2 10.1002/anie.201913910 10.1016/j.msec.2013.03.018 10.1002/adom.201801246 10.1126/sciadv.aay0107 10.1016/j.scib.2019.07.021 10.1002/adma.201705011 10.1039/C8RA09649J 10.1002/ange.201700757 10.1038/s41467-018-04635-5 10.1016/j.nanoen.2020.104730 10.1021/acs.bioconjchem.8b00736 10.1002/anie.201300519 10.1002/adma.201800676 10.1016/j.chempr.2020.11.012 10.1002/ange.201811060 10.1002/ange.201913910 10.1021/acs.chemmater.6b03695 10.1021/acs.jpclett.9b01384 10.1002/adom.201901911 10.1021/jp993691y 10.1039/C3CS60298B 10.1002/smll.201901512 10.1021/cr500671p 10.1016/j.mattod.2015.11.008 10.1021/ja512569m 10.1021/acs.langmuir.0c01513 10.1002/advs.202001453 10.1002/adma.201603443 10.1002/ange.201300519 10.1002/ange.201712453 10.1016/j.mattod.2019.05.003 10.1126/sciadv.abb6772 10.1038/ncomms3717 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202103336 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 14099 |
ExternalDocumentID | 33830583 10_1002_anie_202103336 ANIE202103336 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2018M640681; 2019T120632 – fundername: National Natural Science Foundation of China funderid: 21905253; 51973200; 92061201 – fundername: National Natural Science Foundation of China grantid: 21905253 – fundername: National Natural Science Foundation of China grantid: 92061201 – fundername: China Postdoctoral Science Foundation grantid: 2019T120632 – fundername: National Natural Science Foundation of China grantid: 51973200 – fundername: China Postdoctoral Science Foundation grantid: 2018M640681 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4766-c681d0b27f058b665cc5be17d2ae7cad72db857a2d5607c1604c33ca14a9938c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:24:40 EDT 2025 Fri Jul 25 10:49:56 EDT 2025 Wed Feb 19 02:27:25 EST 2025 Tue Jul 01 01:17:59 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Wed Jan 22 16:30:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | self-assembly carbonized polymer dots nanomaterials luminescence chirality |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-c681d0b27f058b665cc5be17d2ae7cad72db857a2d5607c1604c33ca14a9938c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4538-7846 |
PMID | 33830583 |
PQID | 2537430747 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2510255792 proquest_journals_2537430747 pubmed_primary_33830583 crossref_citationtrail_10_1002_anie_202103336 crossref_primary_10_1002_anie_202103336 wiley_primary_10_1002_anie_202103336_ANIE202103336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 14, 2021 |
PublicationDateYYYYMMDD | 2021-06-14 |
PublicationDate_xml | – month: 06 year: 2021 text: June 14, 2021 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2021; 8 2021; 7 2018; 29 2019; 9 2010; 16 2013; 4 2009; 21 2016; 19 2019; 31 2019; 30 2019; 10 2019; 15 2020 2020; 59 132 2016; 52 2020; 36 2020; 34 2017; 29 2020; 11 2020; 32 2017 2017; 56 129 2019 2019; 58 131 2014; 43 2017; 117 2013 2013; 52 125 2020; 8 2018; 6 2018; 9 2020; 6 2020; 3 2015; 115 2015; 137 2019; 64 2013; 33 2000; 104 2020; 72 2018 2018; 57 130 2018; 30 2016; 28 2014; 6 2009; 38 2018; 14 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_30_1 e_1_2_6_19_3 e_1_2_6_19_2 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_36_2 (e_1_2_6_42_3) 2019; 131 e_1_2_6_62_2 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_47_3 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_18_3 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_33_1 e_1_2_6_39_2 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_56_2 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_61_2 e_1_2_6_42_2 e_1_2_6_21_1 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 9 start-page: 3442 year: 2018 publication-title: Nat. Commun. – volume: 36 start-page: 8965 year: 2020 end-page: 8970 publication-title: Langmuir – volume: 7 start-page: 606 year: 2021 end-page: 628 publication-title: Chem – volume: 6 start-page: 13817 year: 2014 end-page: 13823 publication-title: Nanoscale – volume: 11 start-page: 4790 year: 2020 publication-title: Nat. Commun. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 72 year: 2020 publication-title: Nano Energy – volume: 56 129 start-page: 6187 6283 year: 2017 2017 end-page: 6191 6287 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 946 year: 2020 end-page: 952 publication-title: ACS Appl. Nano Mater. – volume: 9 start-page: 3208 year: 2019 end-page: 3214 publication-title: RSC Adv. – volume: 21 start-page: 2459 year: 2009 end-page: 2466 publication-title: Chem. Mater. – volume: 38 start-page: 757 year: 2009 end-page: 771 publication-title: Chem. Soc. Rev. – volume: 14 year: 2018 publication-title: Small – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 43 start-page: 1450 year: 2014 end-page: 1461 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 7944 year: 2018 end-page: 7970 publication-title: J. Mater. Chem. C – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 34 year: 2020 publication-title: Nano Today – volume: 58 131 start-page: 785 795 year: 2019 2019 end-page: 790 800 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 3747 year: 2015 end-page: 3750 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 12174 12342 year: 2017 2017 end-page: 12178 12346 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 11159 year: 2016 end-page: 11162 publication-title: Chem. Commun. – volume: 19 start-page: 382 year: 2016 end-page: 393 publication-title: Mater. Today – volume: 30 start-page: 52 year: 2019 end-page: 79 publication-title: Mater. Today – volume: 4 start-page: 2717 year: 2013 publication-title: Nat. Commun. – volume: 15 year: 2019 publication-title: Small – volume: 59 132 start-page: 1718 1735 year: 2020 2020 end-page: 1726 1743 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 33 start-page: 2914 year: 2013 end-page: 2917 publication-title: Mater. Sci. Eng. C – volume: 115 start-page: 7304 year: 2015 end-page: 7397 publication-title: Chem. Rev. – volume: 52 125 start-page: 3953 4045 year: 2013 2013 end-page: 3957 4049 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 2377 2401 year: 2018 2018 end-page: 2382 2406 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 64 start-page: 1285 year: 2019 end-page: 1292 publication-title: Sci. Bull. – volume: 9 start-page: 2249 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 29 start-page: 3913 year: 2018 end-page: 3922 publication-title: Bioconjugate Chem. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 16 start-page: 8034 year: 2010 end-page: 8040 publication-title: Chem. Eur. J. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 104 start-page: 2630 year: 2000 end-page: 2641 publication-title: J. Phys. Chem. B – volume: 28 start-page: 8659 year: 2016 end-page: 8668 publication-title: Chem. Mater. – volume: 10 start-page: 5182 year: 2019 end-page: 5188 publication-title: J. Phys. Chem. Lett. – volume: 59 132 start-page: 11087 11180 year: 2020 2020 end-page: 11092 11185 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 8041 year: 2017 end-page: 8093 publication-title: Chem. Rev. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_6_35_2 doi: 10.1002/smll.201800612 – ident: e_1_2_6_42_2 doi: 10.1002/anie.201811060 – ident: e_1_2_6_43_2 doi: 10.1002/adma.201903200 – ident: e_1_2_6_60_2 doi: 10.1021/cm900567g – ident: e_1_2_6_37_1 – ident: e_1_2_6_47_2 doi: 10.1002/anie.201706308 – ident: e_1_2_6_59_1 – ident: e_1_2_6_28_1 doi: 10.1039/C7TC05878K – ident: e_1_2_6_6_2 doi: 10.1016/j.nantod.2020.100953 – ident: e_1_2_6_21_1 doi: 10.1002/anie.201712453 – ident: e_1_2_6_49_1 doi: 10.1039/C4NR04267K – ident: e_1_2_6_20_1 doi: 10.1038/s41467-018-05561-2 – ident: e_1_2_6_9_2 doi: 10.1002/anie.202002904 – ident: e_1_2_6_14_2 doi: 10.1002/smll.201902237 – ident: e_1_2_6_44_1 – ident: e_1_2_6_12_2 doi: 10.1039/b800404h – ident: e_1_2_6_19_2 doi: 10.1002/anie.201700757 – ident: e_1_2_6_57_1 doi: 10.1002/chem.201000595 – ident: e_1_2_6_39_2 doi: 10.1039/C6CC05947C – ident: e_1_2_6_38_2 doi: 10.1021/acsanm.9b01677 – ident: e_1_2_6_4_2 doi: 10.1002/adma.202002914 – ident: e_1_2_6_47_3 doi: 10.1002/ange.201706308 – ident: e_1_2_6_36_2 doi: 10.1002/adom.201700416 – ident: e_1_2_6_50_1 – ident: e_1_2_6_3_2 doi: 10.1002/adma.201900110 – ident: e_1_2_6_13_2 doi: 10.1021/acs.chemrev.6b00755 – ident: e_1_2_6_9_3 doi: 10.1002/ange.202002904 – ident: e_1_2_6_15_2 doi: 10.1038/s41467-020-18525-2 – ident: e_1_2_6_18_2 doi: 10.1002/anie.201913910 – ident: e_1_2_6_55_1 doi: 10.1016/j.msec.2013.03.018 – ident: e_1_2_6_45_2 doi: 10.1002/adom.201801246 – ident: e_1_2_6_62_2 doi: 10.1126/sciadv.aay0107 – ident: e_1_2_6_1_1 – ident: e_1_2_6_26_2 doi: 10.1016/j.scib.2019.07.021 – ident: e_1_2_6_58_1 doi: 10.1002/adma.201705011 – ident: e_1_2_6_40_2 doi: 10.1039/C8RA09649J – ident: e_1_2_6_19_3 doi: 10.1002/ange.201700757 – ident: e_1_2_6_54_1 doi: 10.1038/s41467-018-04635-5 – ident: e_1_2_6_11_1 – ident: e_1_2_6_17_2 doi: 10.1016/j.nanoen.2020.104730 – ident: e_1_2_6_29_1 doi: 10.1021/acs.bioconjchem.8b00736 – ident: e_1_2_6_56_1 doi: 10.1002/anie.201300519 – ident: e_1_2_6_53_1 doi: 10.1002/adma.201800676 – ident: e_1_2_6_23_1 doi: 10.1016/j.chempr.2020.11.012 – volume: 131 start-page: 795 year: 2019 ident: e_1_2_6_42_3 publication-title: Angew. Chem. doi: 10.1002/ange.201811060 – ident: e_1_2_6_18_3 doi: 10.1002/ange.201913910 – ident: e_1_2_6_51_2 doi: 10.1021/acs.chemmater.6b03695 – ident: e_1_2_6_31_2 doi: 10.1021/acs.jpclett.9b01384 – ident: e_1_2_6_32_2 doi: 10.1002/adom.201901911 – ident: e_1_2_6_10_1 doi: 10.1021/jp993691y – ident: e_1_2_6_8_2 doi: 10.1039/C3CS60298B – ident: e_1_2_6_22_1 doi: 10.1002/smll.201901512 – ident: e_1_2_6_33_1 – ident: e_1_2_6_2_2 doi: 10.1021/cr500671p – ident: e_1_2_6_41_1 – ident: e_1_2_6_5_1 – ident: e_1_2_6_27_1 doi: 10.1016/j.mattod.2015.11.008 – ident: e_1_2_6_30_1 – ident: e_1_2_6_7_2 doi: 10.1021/ja512569m – ident: e_1_2_6_24_1 – ident: e_1_2_6_46_2 doi: 10.1021/acs.langmuir.0c01513 – ident: e_1_2_6_34_2 doi: 10.1002/advs.202001453 – ident: e_1_2_6_16_1 – ident: e_1_2_6_48_1 doi: 10.1002/adma.201603443 – ident: e_1_2_6_56_2 doi: 10.1002/ange.201300519 – ident: e_1_2_6_21_2 doi: 10.1002/ange.201712453 – ident: e_1_2_6_25_2 doi: 10.1016/j.mattod.2019.05.003 – ident: e_1_2_6_52_2 doi: 10.1126/sciadv.abb6772 – ident: e_1_2_6_61_2 doi: 10.1038/ncomms3717 |
SSID | ssj0028806 |
Score | 2.6912313 |
Snippet | Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their... Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14091 |
SubjectTerms | carbonized polymer dots chirality Circular polarization Emission Emissions Luminescence Mixing ratio nanomaterials Phenylenediamine Polymers self-assembly Tryptophan |
Title | Rational Design of Multicolor‐Emitting Chiral Carbonized Polymer Dots for Full‐Color and White Circularly Polarized Luminescence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103336 https://www.ncbi.nlm.nih.gov/pubmed/33830583 https://www.proquest.com/docview/2537430747 https://www.proquest.com/docview/2510255792 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhl-bSV_pwkxYFCj0psR6WvMfgbEhDEkpoIDej19Klu3bx7h6SUw79Af2N_SXVyI90W0qhvdl4BtvSSPpGmvkGobeeq1RQMyE-yyURmnKiR4ySfALnMGyUi5jFf34hT67E6XV2_VMWf8sPMWy4wciI8zUMcG0WB_ekoZCBHfy74LJwzoFzGwK2ABVdDvxRLBhnm17EOYEq9D1rY8oO1tXXV6XfoOY6co1Lz_EjpPuPbiNOPu-vlmbf3v7C5_g_f_UYPexwKT5sDekJ2vDVU_Sg6MvBbaOvl922IT6KQR-4nuCYvQu01833u2_j-TTGUOPi07QJYoVuTJgwbr3DH-rZzdw3-KheLnBAyRgc36BSgCrWlcOxTh8upk0Mi53dgErw4kH5bDWH0HwLU9AzdHU8_lickK6EA7FCSUmsDHg4NUxN0iw3UmbWZsZT5Zj2ymqnmDN5pjRzAXkpS2UqLOdWU6EDcMotf442q7ryLxEOFmU1F85ZzwUz0lBBdeqZyvxIGCcTRPouLG3Hbw5lNmZly8zMSmjbcmjbBL0b5L-0zB5_lNztLaLsRviiZBkP4AvKDyRob3gc-gQOXHTl6xXIUHDZ1Igl6EVrScOrYGsgtAlPEIv28JdvKA8v3o-Hu1f_orSDtuAa4tyo2EWby2blXwdEtTRv4qj5AS2EGVo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70dKASMhcUobP2Jnj1W61Ra2K1S1ErfIdrzqit1Nle4e2hMHfgC_kV-Cx3mgBSEkOCbxKIk9tr8Zz3wD8NZxlQhqprFLMxkLTXmsB4zG2RTPYdggEyGL_2QiR-fi_ae0iybEXJiGH6J3uOHMCOs1TnB0SO__ZA3FFGxv4HmbhXMub8MdLOsdrKrTnkGKefVsEow4j7EOfcfbmLD9TfnNfek3sLmJXcPmc3QfTPfZTczJ5731yuzZm18YHf_rvx7AvRaakoNGlx7CLbd8BNt5VxHuMXw9bT2H5DDEfZBqSkICLzJf19-_fBsuZiGMmuQXs9o3y3Vt_Jpx40rysZpfL1xNDqvVFfFAmaDt60VyFCV6WZJQqo_kszpExs6vUcQb8ig8Xi8wOt_iKvQEzo-GZ_kobqs4xFYoKWMrPSRODFPTJM2MlKm1qXFUlUw7ZXWpWGmyVGlWevClLJWJsJxbTYX22Cmz_ClsLaulew7EK5XVXJSldVwwIw0VVCeOqdQNhCllBHE3hoVtKc6x0sa8aMiZWYF9W_R9G8G7vv1lQ-7xx5a7nUoU7SS_KljKPf7CCgQRvOkf-zHBMxe9dNUa21C02tSARfCsUaX-Vegd8H3CI2BBIf7yDcXB5HjYX-38i9Br2B6dnYyL8fHkwwu4i_cx7I2KXdha1Wv30gOslXkVptAPscwddQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF9yNQwEhInNLGj9jZY5XdVQtlVVVU6i3yK-qK3aRKdw_tiQM_gN_IL8HjPGBBCAmOSWaUxB7b39gz3yD0xjGZcKLL2KWZiLkiLFYjSuKshHMYOsp4yOL_MBP7J_zdaXr6UxZ_yw8xbLjByAjzNQzwc1vu_iANhQxs7995l4UxJq6jG1wkGdj1-HggkKLeOtv8IsZiKEPf0zYmdHdTf3NZ-g1rbkLXsPZM7yLVf3UbcvJpZ73SO-bqF0LH__mte-hOB0zxXmtJ99E1Vz1At_K-HtxD9OW42zfE4xD1gesSh_Rd4L1uvn3-OlnOQxA1zs_mjRfLVaP9jHHlLD6qF5dL1-BxvbrAHiZj8Hy9Sg6qWFUWh0J9OJ83IS52cQkq3o0H5cP1EmLzDcxBj9DJdPIx34-7Gg6x4VKI2AgPiBNNZZmkmRYiNSbVjkhLlZNGWUmtzlKpqPXQSxoiEm4YM4pw5ZFTZthjtFXVlXuKsDcpoxi31jjGqRaacKISR2XqRlxbEaG478LCdATnUGdjUbTUzLSAti2Gto3Q20H-vKX2-KPkdm8RRTfELwqaMo--oP5AhF4Pj32fwImLqly9BhkCPpsc0Qg9aS1peBXsDfg2YRGiwR7-8g3F3uxgMlw9-xelV-jm0XhaHB7M3j9Ht-E2xLwRvo22Vs3avfDoaqVfhgH0HV9WHC0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Multicolor-Emitting+Chiral+Carbonized+Polymer+Dots+for+Full-Color+and+White+Circularly+Polarized+Luminescence&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ru%2C+Yi&rft.au=Sui%2C+Laizhi&rft.au=Song%2C+Haoqiang&rft.au=Liu%2C+Xingjiang&rft.date=2021-06-14&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202103336&rft_id=info%3Apmid%2F33830583&rft.externalDocID=33830583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |