Rational Design of Multicolor‐Emitting Chiral Carbonized Polymer Dots for Full‐Color and White Circularly Polarized Luminescence

Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 25; pp. 14091 - 14099
Main Authors Ru, Yi, Sui, Laizhi, Song, Haoqiang, Liu, Xingjiang, Tang, Zhiyong, Zang, Shuang‐Quan, Yang, Bai, Lu, Siyu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 14.06.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L‐/D‐tryptophan and o‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum) of 1×10−2. Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials. The synthesis of red‐ and multicolor‐emitting chiral carbonized polymer dots (Ch‐CPDs) is reported for the first time. The quantum yield of the Ch‐CPDs is between 31 % and 54 %. Furthermore, these Ch‐CPDs were combined with chiral gels through supramolecular self‐assembly, thereby yielding their multicolor and white circularly polarized luminescence.
AbstractList Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L‐/D‐tryptophan and o‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum) of 1×10−2. Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.
Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L‐/D‐tryptophan and o‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum) of 1×10−2. Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials. The synthesis of red‐ and multicolor‐emitting chiral carbonized polymer dots (Ch‐CPDs) is reported for the first time. The quantum yield of the Ch‐CPDs is between 31 % and 54 %. Furthermore, these Ch‐CPDs were combined with chiral gels through supramolecular self‐assembly, thereby yielding their multicolor and white circularly polarized luminescence.
Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band‐gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high‐emission Ch‐CPDs remains challenging. Reported here for the first time is the synthesis of red‐ and multicolor‐emitting Ch‐CPDs using the common precursors L ‐/ D ‐tryptophan and o ‐phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch‐CPDs was between 31 % and 54 %. Supramolecular self‐assembly provided multicolor‐emitting Ch‐CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (g lum ) of 1×10 −2 . Importantly, circularly polarized white‐emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch‐CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.
Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (g ) of 1×10 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.
Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum ) of 1×10-2 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their band-gap emission, especially at long wavelength, and maintaining their chiral structure to achieve multicolor, high-emission Ch-CPDs remains challenging. Reported here for the first time is the synthesis of red- and multicolor-emitting Ch-CPDs using the common precursors L-/D-tryptophan and o-phenylenediamine, and a solvothermal approach at one temperature. The quantum yield of the Ch-CPDs was between 31 % and 54 %. Supramolecular self-assembly provided multicolor-emitting Ch-CPDs showing novel circularly polarized luminescence, with the highest dissymmetric factor (glum ) of 1×10-2 . Importantly, circularly polarized white-emitting CPDs were fabricated for the first time by tuning the mixing ratio of the three colored Ch-CPDs in a gel. This strategy affords exciting opportunities for designing functional chiroptical materials.
Author Tang, Zhiyong
Ru, Yi
Song, Haoqiang
Liu, Xingjiang
Zang, Shuang‐Quan
Yang, Bai
Sui, Laizhi
Lu, Siyu
Author_xml – sequence: 1
  givenname: Yi
  surname: Ru
  fullname: Ru, Yi
  organization: Zhengzhou University
– sequence: 2
  givenname: Laizhi
  surname: Sui
  fullname: Sui, Laizhi
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Haoqiang
  surname: Song
  fullname: Song, Haoqiang
  organization: Zhengzhou University
– sequence: 4
  givenname: Xingjiang
  surname: Liu
  fullname: Liu, Xingjiang
  organization: Zhengzhou University
– sequence: 5
  givenname: Zhiyong
  surname: Tang
  fullname: Tang, Zhiyong
  organization: National Center for Nanoscience and Technology
– sequence: 6
  givenname: Shuang‐Quan
  surname: Zang
  fullname: Zang, Shuang‐Quan
  organization: Zhengzhou University
– sequence: 7
  givenname: Bai
  surname: Yang
  fullname: Yang, Bai
  organization: Jilin University
– sequence: 8
  givenname: Siyu
  orcidid: 0000-0003-4538-7846
  surname: Lu
  fullname: Lu, Siyu
  email: sylu2013@zzu.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33830583$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7IduXUrAjZu5zcckmbss09tauFURxWXIZDJtSiapSQa5XXXRH-Bv9JeY6W0VCuLqnMXzHA7vuw92fPAGgNcYLTBC5FB5axYEEYwopfwZ2MOM4IoKQXfKXlNaiYbhXbCf0lXhmwbxF2CX0oYi1tA9cPdZZRu8cvDYJHvhYRjg-eSy1cGF-Ov252q0OVt_AdtLGwvWqtgFb29MDz8FtxlNhMchJziECE8m54rSzipUvoffLm02sLVRT05Ft5kVFe_l9TRab5I2XpuX4PmgXDKvHuYB-Hqy-tK-r9YfT8_ao3Wla8F5pXmDe9QRMZTfO86Z1qwzWPREGaFVL0jfNUwo0jOOhMYc1ZpSrXCtlkvaaHoA3m3vXsfwfTIpy9GWD5xT3oQpScIwIoyJJSno2yfoVZhiyWmmqKgpErUo1JsHaupG08vraEcVN_Ix3wLUW0DHkFI0g9Q23yeeo7JOYiTnGuVco_xTY9EWT7THy_8Ullvhh3Vm8x9aHn04W_11fwPnwbJd
CitedBy_id crossref_primary_10_1021_acs_accounts_4c00516
crossref_primary_10_1016_j_cclet_2021_08_077
crossref_primary_10_1021_acssuschemeng_2c05268
crossref_primary_10_1016_j_ccr_2025_216510
crossref_primary_10_1016_j_carbpol_2024_122203
crossref_primary_10_2139_ssrn_4118407
crossref_primary_10_1002_anie_202420290
crossref_primary_10_1016_j_jcis_2021_12_192
crossref_primary_10_1002_smll_202306969
crossref_primary_10_1002_adma_202310455
crossref_primary_10_1039_D4SM00960F
crossref_primary_10_1039_D1MA00843A
crossref_primary_10_1002_adom_202201229
crossref_primary_10_3390_gels9080669
crossref_primary_10_52396_JUSTC_2022_0167
crossref_primary_10_1016_j_apsusc_2023_156564
crossref_primary_10_1002_smll_202202741
crossref_primary_10_1002_asia_202201284
crossref_primary_10_1016_j_colsurfa_2023_132672
crossref_primary_10_1039_D4NJ01100G
crossref_primary_10_1007_s00604_023_06064_8
crossref_primary_10_1021_acs_nanolett_2c02674
crossref_primary_10_1021_acs_jpclett_2c03829
crossref_primary_10_1021_acsami_1c23494
crossref_primary_10_1002_ange_202200290
crossref_primary_10_1021_acs_jpclett_3c03497
crossref_primary_10_1016_j_cclet_2024_110284
crossref_primary_10_1016_j_seppur_2023_123666
crossref_primary_10_1039_D4NR03736G
crossref_primary_10_1016_j_matt_2021_10_016
crossref_primary_10_1016_j_carbon_2022_08_003
crossref_primary_10_1002_ange_202200038
crossref_primary_10_1002_anie_202117042
crossref_primary_10_1002_ange_202311816
crossref_primary_10_1002_cjoc_202300062
crossref_primary_10_1016_j_foodchem_2024_141213
crossref_primary_10_1002_anie_202409020
crossref_primary_10_1002_anie_202111285
crossref_primary_10_1002_chem_202302383
crossref_primary_10_1016_j_matchar_2024_114026
crossref_primary_10_1016_j_optmat_2023_113620
crossref_primary_10_1002_smll_202205916
crossref_primary_10_1002_anie_202202397
crossref_primary_10_1016_j_jcis_2024_02_063
crossref_primary_10_1016_j_carbon_2022_09_060
crossref_primary_10_1021_acsbiomaterials_3c00918
crossref_primary_10_1016_j_jcis_2024_01_039
crossref_primary_10_1016_j_apsusc_2021_151447
crossref_primary_10_1016_j_nanoen_2023_108623
crossref_primary_10_1038_s41377_022_00764_1
crossref_primary_10_1039_D1TC05265A
crossref_primary_10_1016_j_jcis_2024_06_208
crossref_primary_10_1360_SSC_2024_0066
crossref_primary_10_1016_j_snb_2023_133499
crossref_primary_10_1021_acsami_3c02423
crossref_primary_10_1002_smsc_202200012
crossref_primary_10_1016_j_carbon_2024_119208
crossref_primary_10_1021_acsanm_2c04130
crossref_primary_10_1038_s41377_022_00865_x
crossref_primary_10_1039_D3NR02367B
crossref_primary_10_1002_smll_202207048
crossref_primary_10_1016_j_jcis_2024_05_129
crossref_primary_10_1007_s12274_021_3776_2
crossref_primary_10_1016_j_cej_2021_134172
crossref_primary_10_1016_j_matt_2024_06_011
crossref_primary_10_1002_adma_202200152
crossref_primary_10_1002_adma_202209539
crossref_primary_10_1016_j_jlumin_2023_120013
crossref_primary_10_1016_j_nanoen_2022_107549
crossref_primary_10_1016_j_saa_2023_122545
crossref_primary_10_1007_s12274_024_6839_3
crossref_primary_10_1002_ange_202112582
crossref_primary_10_1002_ange_202211822
crossref_primary_10_1039_D2NR05008K
crossref_primary_10_1016_j_nantod_2025_102675
crossref_primary_10_1016_j_saa_2024_125316
crossref_primary_10_1360_SSC_2023_0232
crossref_primary_10_1016_j_mtphys_2022_100752
crossref_primary_10_1002_adfm_202211013
crossref_primary_10_1038_s41377_022_00837_1
crossref_primary_10_1016_j_electacta_2023_142805
crossref_primary_10_1038_s41467_023_44643_8
crossref_primary_10_1002_smll_202206180
crossref_primary_10_1039_D1NJ05981E
crossref_primary_10_1021_acsnano_1c10299
crossref_primary_10_1021_acsnano_3c08791
crossref_primary_10_1002_asia_202300770
crossref_primary_10_1002_anie_202112582
crossref_primary_10_1002_smll_202207983
crossref_primary_10_1002_ange_202115600
crossref_primary_10_1016_j_foodchem_2023_138167
crossref_primary_10_1039_D1RA04483D
crossref_primary_10_1002_adma_202200011
crossref_primary_10_1007_s12274_024_6928_3
crossref_primary_10_1002_ange_202114759
crossref_primary_10_1016_j_cej_2024_157033
crossref_primary_10_1002_cplu_202200428
crossref_primary_10_1016_j_mtchem_2025_102608
crossref_primary_10_1021_acsami_1c07444
crossref_primary_10_1002_adom_202100961
crossref_primary_10_1002_adma_202302536
crossref_primary_10_1002_anie_202115600
crossref_primary_10_1016_j_apmt_2024_102154
crossref_primary_10_1016_j_cclet_2025_111060
crossref_primary_10_1016_j_susmat_2025_e01271
crossref_primary_10_1039_D4TC00071D
crossref_primary_10_1126_sciadv_adi9944
crossref_primary_10_1002_advs_202203474
crossref_primary_10_1021_acs_analchem_3c01854
crossref_primary_10_1093_rb_rbad109
crossref_primary_10_1002_advs_202405043
crossref_primary_10_1002_anie_202114759
crossref_primary_10_1021_acs_biomac_4c00962
crossref_primary_10_1007_s12274_022_5285_3
crossref_primary_10_3390_solids6010014
crossref_primary_10_1002_adfm_202206696
crossref_primary_10_1002_anie_202208180
crossref_primary_10_1016_j_carbon_2022_10_078
crossref_primary_10_1016_j_jcis_2022_05_095
crossref_primary_10_1021_jacs_1c12767
crossref_primary_10_1002_adma_202404694
crossref_primary_10_1016_j_cclet_2023_109295
crossref_primary_10_26599_NR_2025_94907180
crossref_primary_10_1002_anie_202113979
crossref_primary_10_1016_j_polymer_2024_127571
crossref_primary_10_1016_j_carbon_2025_120073
crossref_primary_10_1016_j_cej_2024_153453
crossref_primary_10_1016_j_jcis_2022_02_115
crossref_primary_10_1002_adfm_202305209
crossref_primary_10_1021_acs_analchem_4c06405
crossref_primary_10_1002_ange_202208180
crossref_primary_10_1002_anie_202200038
crossref_primary_10_1016_j_matt_2022_01_001
crossref_primary_10_1021_acsami_2c07375
crossref_primary_10_1002_adfm_202420587
crossref_primary_10_1002_smll_202206709
crossref_primary_10_1002_adom_202300816
crossref_primary_10_1002_adma_202207265
crossref_primary_10_1002_smll_202106683
crossref_primary_10_1021_acs_jpclett_1c01856
crossref_primary_10_1016_j_jhazmat_2025_137944
crossref_primary_10_1002_ange_202111285
crossref_primary_10_1039_D3NR01056B
crossref_primary_10_1039_D2NR03161B
crossref_primary_10_1016_j_cej_2023_143465
crossref_primary_10_1016_j_cej_2023_143103
crossref_primary_10_1039_D2TC04848E
crossref_primary_10_1016_j_dyepig_2022_110859
crossref_primary_10_1002_ange_202409020
crossref_primary_10_1002_anie_202410988
crossref_primary_10_1002_adom_202403251
crossref_primary_10_1002_asia_202401470
crossref_primary_10_1021_acs_nanolett_3c00655
crossref_primary_10_1002_advs_202305797
crossref_primary_10_1016_j_seppur_2024_129852
crossref_primary_10_1039_D3CC04068B
crossref_primary_10_1007_s11426_021_1033_6
crossref_primary_10_1002_smll_202205880
crossref_primary_10_1002_smm2_1099
crossref_primary_10_1016_j_carbon_2024_119393
crossref_primary_10_1016_j_cclet_2022_01_059
crossref_primary_10_1016_j_foodchem_2023_137207
crossref_primary_10_1021_acs_nanolett_5c00359
crossref_primary_10_1021_acs_jpclett_4c03058
crossref_primary_10_1021_acs_analchem_2c04387
crossref_primary_10_1002_ange_202420290
crossref_primary_10_1016_j_cej_2025_159821
crossref_primary_10_1016_j_molliq_2024_125290
crossref_primary_10_2139_ssrn_4135017
crossref_primary_10_1021_acsmaterialslett_4c01815
crossref_primary_10_1021_acs_chemrev_3c00186
crossref_primary_10_1016_j_microc_2025_113066
crossref_primary_10_1002_anie_202211822
crossref_primary_10_1002_ange_202117042
crossref_primary_10_1002_anie_202424918
crossref_primary_10_1002_anie_202412341
crossref_primary_10_1002_ange_202202397
crossref_primary_10_1002_anie_202207817
crossref_primary_10_1007_s10895_023_03262_8
crossref_primary_10_1039_D4TB00382A
crossref_primary_10_1002_ppsc_202300049
crossref_primary_10_1016_j_carbon_2022_11_048
crossref_primary_10_1007_s11426_022_1405_9
crossref_primary_10_1016_j_matt_2023_06_011
crossref_primary_10_1021_acs_langmuir_3c02835
crossref_primary_10_1002_ange_202410988
crossref_primary_10_1016_j_foodchem_2024_142485
crossref_primary_10_1007_s11426_021_1146_6
crossref_primary_10_1002_ange_202424918
crossref_primary_10_1016_j_jcis_2024_09_144
crossref_primary_10_1002_adma_202403329
crossref_primary_10_1002_adma_202410094
crossref_primary_10_1002_jmr_3085
crossref_primary_10_1002_adom_202401713
crossref_primary_10_1002_anie_202311816
crossref_primary_10_1007_s12274_024_6809_9
crossref_primary_10_1016_j_ccr_2024_215859
crossref_primary_10_1016_j_cej_2023_145614
crossref_primary_10_1002_adfm_202214364
crossref_primary_10_1039_D4NR00644E
crossref_primary_10_1016_j_molstruc_2024_139419
crossref_primary_10_1039_D2TC03553G
crossref_primary_10_1016_j_dyepig_2023_111685
crossref_primary_10_1016_j_saa_2022_122039
crossref_primary_10_1021_acsnano_2c06623
crossref_primary_10_1002_ijch_202100076
crossref_primary_10_1016_j_cej_2022_140069
crossref_primary_10_1016_j_talo_2023_100243
crossref_primary_10_1016_j_carbon_2024_119980
crossref_primary_10_1039_D2SC00952H
crossref_primary_10_1002_agt2_311
crossref_primary_10_1002_cjoc_202200736
crossref_primary_10_1016_j_carbon_2022_11_023
crossref_primary_10_1039_D4TC01916D
crossref_primary_10_1002_ange_202113979
crossref_primary_10_1002_smll_202302668
crossref_primary_10_1002_cey2_175
crossref_primary_10_1016_j_diamond_2021_108724
crossref_primary_10_1002_anie_202200290
crossref_primary_10_1002_adfm_202305867
crossref_primary_10_1007_s10854_023_10567_8
crossref_primary_10_1021_acssuschemeng_2c00715
crossref_primary_10_1016_j_mtnano_2023_100324
crossref_primary_10_1021_acsmaterialslett_2c01130
crossref_primary_10_1002_adfm_202423470
crossref_primary_10_1002_ange_202412341
crossref_primary_10_1002_ange_202207817
crossref_primary_10_1039_D1CC02823E
crossref_primary_10_1039_D1TA09400A
crossref_primary_10_1007_s12274_023_5601_6
crossref_primary_10_1002_adom_202201996
crossref_primary_10_1002_adfm_202413569
crossref_primary_10_1016_j_jlumin_2022_118928
Cites_doi 10.1002/smll.201800612
10.1002/anie.201811060
10.1002/adma.201903200
10.1021/cm900567g
10.1002/anie.201706308
10.1039/C7TC05878K
10.1016/j.nantod.2020.100953
10.1002/anie.201712453
10.1039/C4NR04267K
10.1038/s41467-018-05561-2
10.1002/anie.202002904
10.1002/smll.201902237
10.1039/b800404h
10.1002/anie.201700757
10.1002/chem.201000595
10.1039/C6CC05947C
10.1021/acsanm.9b01677
10.1002/adma.202002914
10.1002/ange.201706308
10.1002/adom.201700416
10.1002/adma.201900110
10.1021/acs.chemrev.6b00755
10.1002/ange.202002904
10.1038/s41467-020-18525-2
10.1002/anie.201913910
10.1016/j.msec.2013.03.018
10.1002/adom.201801246
10.1126/sciadv.aay0107
10.1016/j.scib.2019.07.021
10.1002/adma.201705011
10.1039/C8RA09649J
10.1002/ange.201700757
10.1038/s41467-018-04635-5
10.1016/j.nanoen.2020.104730
10.1021/acs.bioconjchem.8b00736
10.1002/anie.201300519
10.1002/adma.201800676
10.1016/j.chempr.2020.11.012
10.1002/ange.201811060
10.1002/ange.201913910
10.1021/acs.chemmater.6b03695
10.1021/acs.jpclett.9b01384
10.1002/adom.201901911
10.1021/jp993691y
10.1039/C3CS60298B
10.1002/smll.201901512
10.1021/cr500671p
10.1016/j.mattod.2015.11.008
10.1021/ja512569m
10.1021/acs.langmuir.0c01513
10.1002/advs.202001453
10.1002/adma.201603443
10.1002/ange.201300519
10.1002/ange.201712453
10.1016/j.mattod.2019.05.003
10.1126/sciadv.abb6772
10.1038/ncomms3717
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202103336
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 14099
ExternalDocumentID 33830583
10_1002_anie_202103336
ANIE202103336
Genre article
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2018M640681; 2019T120632
– fundername: National Natural Science Foundation of China
  funderid: 21905253; 51973200; 92061201
– fundername: National Natural Science Foundation of China
  grantid: 21905253
– fundername: National Natural Science Foundation of China
  grantid: 92061201
– fundername: China Postdoctoral Science Foundation
  grantid: 2019T120632
– fundername: National Natural Science Foundation of China
  grantid: 51973200
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M640681
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4766-c681d0b27f058b665cc5be17d2ae7cad72db857a2d5607c1604c33ca14a9938c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:24:40 EDT 2025
Fri Jul 25 10:49:56 EDT 2025
Wed Feb 19 02:27:25 EST 2025
Tue Jul 01 01:17:59 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Wed Jan 22 16:30:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords self-assembly
carbonized polymer dots
nanomaterials
luminescence
chirality
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-c681d0b27f058b665cc5be17d2ae7cad72db857a2d5607c1604c33ca14a9938c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4538-7846
PMID 33830583
PQID 2537430747
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2510255792
proquest_journals_2537430747
pubmed_primary_33830583
crossref_citationtrail_10_1002_anie_202103336
crossref_primary_10_1002_anie_202103336
wiley_primary_10_1002_anie_202103336_ANIE202103336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 14, 2021
PublicationDateYYYYMMDD 2021-06-14
PublicationDate_xml – month: 06
  year: 2021
  text: June 14, 2021
  day: 14
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2021; 8
2021; 7
2018; 29
2019; 9
2010; 16
2013; 4
2009; 21
2016; 19
2019; 31
2019; 30
2019; 10
2019; 15
2020 2020; 59 132
2016; 52
2020; 36
2020; 34
2017; 29
2020; 11
2020; 32
2017 2017; 56 129
2019 2019; 58 131
2014; 43
2017; 117
2013 2013; 52 125
2020; 8
2018; 6
2018; 9
2020; 6
2020; 3
2015; 115
2015; 137
2019; 64
2013; 33
2000; 104
2020; 72
2018 2018; 57 130
2018; 30
2016; 28
2014; 6
2009; 38
2018; 14
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_30_1
e_1_2_6_19_3
e_1_2_6_19_2
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_32_2
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_36_2
(e_1_2_6_42_3) 2019; 131
e_1_2_6_62_2
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_47_2
e_1_2_6_24_1
e_1_2_6_47_3
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_52_2
e_1_2_6_54_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_18_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_33_1
e_1_2_6_39_2
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_56_2
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_61_2
e_1_2_6_42_2
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 9
  start-page: 3442
  year: 2018
  publication-title: Nat. Commun.
– volume: 36
  start-page: 8965
  year: 2020
  end-page: 8970
  publication-title: Langmuir
– volume: 7
  start-page: 606
  year: 2021
  end-page: 628
  publication-title: Chem
– volume: 6
  start-page: 13817
  year: 2014
  end-page: 13823
  publication-title: Nanoscale
– volume: 11
  start-page: 4790
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 56 129
  start-page: 6187 6283
  year: 2017 2017
  end-page: 6191 6287
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 946
  year: 2020
  end-page: 952
  publication-title: ACS Appl. Nano Mater.
– volume: 9
  start-page: 3208
  year: 2019
  end-page: 3214
  publication-title: RSC Adv.
– volume: 21
  start-page: 2459
  year: 2009
  end-page: 2466
  publication-title: Chem. Mater.
– volume: 38
  start-page: 757
  year: 2009
  end-page: 771
  publication-title: Chem. Soc. Rev.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 43
  start-page: 1450
  year: 2014
  end-page: 1461
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 7944
  year: 2018
  end-page: 7970
  publication-title: J. Mater. Chem. C
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 34
  year: 2020
  publication-title: Nano Today
– volume: 58 131
  start-page: 785 795
  year: 2019 2019
  end-page: 790 800
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 3747
  year: 2015
  end-page: 3750
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 12174 12342
  year: 2017 2017
  end-page: 12178 12346
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 11159
  year: 2016
  end-page: 11162
  publication-title: Chem. Commun.
– volume: 19
  start-page: 382
  year: 2016
  end-page: 393
  publication-title: Mater. Today
– volume: 30
  start-page: 52
  year: 2019
  end-page: 79
  publication-title: Mater. Today
– volume: 4
  start-page: 2717
  year: 2013
  publication-title: Nat. Commun.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 59 132
  start-page: 1718 1735
  year: 2020 2020
  end-page: 1726 1743
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 33
  start-page: 2914
  year: 2013
  end-page: 2917
  publication-title: Mater. Sci. Eng. C
– volume: 115
  start-page: 7304
  year: 2015
  end-page: 7397
  publication-title: Chem. Rev.
– volume: 52 125
  start-page: 3953 4045
  year: 2013 2013
  end-page: 3957 4049
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 2377 2401
  year: 2018 2018
  end-page: 2382 2406
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 64
  start-page: 1285
  year: 2019
  end-page: 1292
  publication-title: Sci. Bull.
– volume: 9
  start-page: 2249
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 29
  start-page: 3913
  year: 2018
  end-page: 3922
  publication-title: Bioconjugate Chem.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 16
  start-page: 8034
  year: 2010
  end-page: 8040
  publication-title: Chem. Eur. J.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 104
  start-page: 2630
  year: 2000
  end-page: 2641
  publication-title: J. Phys. Chem. B
– volume: 28
  start-page: 8659
  year: 2016
  end-page: 8668
  publication-title: Chem. Mater.
– volume: 10
  start-page: 5182
  year: 2019
  end-page: 5188
  publication-title: J. Phys. Chem. Lett.
– volume: 59 132
  start-page: 11087 11180
  year: 2020 2020
  end-page: 11092 11185
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 8041
  year: 2017
  end-page: 8093
  publication-title: Chem. Rev.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_6_35_2
  doi: 10.1002/smll.201800612
– ident: e_1_2_6_42_2
  doi: 10.1002/anie.201811060
– ident: e_1_2_6_43_2
  doi: 10.1002/adma.201903200
– ident: e_1_2_6_60_2
  doi: 10.1021/cm900567g
– ident: e_1_2_6_37_1
– ident: e_1_2_6_47_2
  doi: 10.1002/anie.201706308
– ident: e_1_2_6_59_1
– ident: e_1_2_6_28_1
  doi: 10.1039/C7TC05878K
– ident: e_1_2_6_6_2
  doi: 10.1016/j.nantod.2020.100953
– ident: e_1_2_6_21_1
  doi: 10.1002/anie.201712453
– ident: e_1_2_6_49_1
  doi: 10.1039/C4NR04267K
– ident: e_1_2_6_20_1
  doi: 10.1038/s41467-018-05561-2
– ident: e_1_2_6_9_2
  doi: 10.1002/anie.202002904
– ident: e_1_2_6_14_2
  doi: 10.1002/smll.201902237
– ident: e_1_2_6_44_1
– ident: e_1_2_6_12_2
  doi: 10.1039/b800404h
– ident: e_1_2_6_19_2
  doi: 10.1002/anie.201700757
– ident: e_1_2_6_57_1
  doi: 10.1002/chem.201000595
– ident: e_1_2_6_39_2
  doi: 10.1039/C6CC05947C
– ident: e_1_2_6_38_2
  doi: 10.1021/acsanm.9b01677
– ident: e_1_2_6_4_2
  doi: 10.1002/adma.202002914
– ident: e_1_2_6_47_3
  doi: 10.1002/ange.201706308
– ident: e_1_2_6_36_2
  doi: 10.1002/adom.201700416
– ident: e_1_2_6_50_1
– ident: e_1_2_6_3_2
  doi: 10.1002/adma.201900110
– ident: e_1_2_6_13_2
  doi: 10.1021/acs.chemrev.6b00755
– ident: e_1_2_6_9_3
  doi: 10.1002/ange.202002904
– ident: e_1_2_6_15_2
  doi: 10.1038/s41467-020-18525-2
– ident: e_1_2_6_18_2
  doi: 10.1002/anie.201913910
– ident: e_1_2_6_55_1
  doi: 10.1016/j.msec.2013.03.018
– ident: e_1_2_6_45_2
  doi: 10.1002/adom.201801246
– ident: e_1_2_6_62_2
  doi: 10.1126/sciadv.aay0107
– ident: e_1_2_6_1_1
– ident: e_1_2_6_26_2
  doi: 10.1016/j.scib.2019.07.021
– ident: e_1_2_6_58_1
  doi: 10.1002/adma.201705011
– ident: e_1_2_6_40_2
  doi: 10.1039/C8RA09649J
– ident: e_1_2_6_19_3
  doi: 10.1002/ange.201700757
– ident: e_1_2_6_54_1
  doi: 10.1038/s41467-018-04635-5
– ident: e_1_2_6_11_1
– ident: e_1_2_6_17_2
  doi: 10.1016/j.nanoen.2020.104730
– ident: e_1_2_6_29_1
  doi: 10.1021/acs.bioconjchem.8b00736
– ident: e_1_2_6_56_1
  doi: 10.1002/anie.201300519
– ident: e_1_2_6_53_1
  doi: 10.1002/adma.201800676
– ident: e_1_2_6_23_1
  doi: 10.1016/j.chempr.2020.11.012
– volume: 131
  start-page: 795
  year: 2019
  ident: e_1_2_6_42_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201811060
– ident: e_1_2_6_18_3
  doi: 10.1002/ange.201913910
– ident: e_1_2_6_51_2
  doi: 10.1021/acs.chemmater.6b03695
– ident: e_1_2_6_31_2
  doi: 10.1021/acs.jpclett.9b01384
– ident: e_1_2_6_32_2
  doi: 10.1002/adom.201901911
– ident: e_1_2_6_10_1
  doi: 10.1021/jp993691y
– ident: e_1_2_6_8_2
  doi: 10.1039/C3CS60298B
– ident: e_1_2_6_22_1
  doi: 10.1002/smll.201901512
– ident: e_1_2_6_33_1
– ident: e_1_2_6_2_2
  doi: 10.1021/cr500671p
– ident: e_1_2_6_41_1
– ident: e_1_2_6_5_1
– ident: e_1_2_6_27_1
  doi: 10.1016/j.mattod.2015.11.008
– ident: e_1_2_6_30_1
– ident: e_1_2_6_7_2
  doi: 10.1021/ja512569m
– ident: e_1_2_6_24_1
– ident: e_1_2_6_46_2
  doi: 10.1021/acs.langmuir.0c01513
– ident: e_1_2_6_34_2
  doi: 10.1002/advs.202001453
– ident: e_1_2_6_16_1
– ident: e_1_2_6_48_1
  doi: 10.1002/adma.201603443
– ident: e_1_2_6_56_2
  doi: 10.1002/ange.201300519
– ident: e_1_2_6_21_2
  doi: 10.1002/ange.201712453
– ident: e_1_2_6_25_2
  doi: 10.1016/j.mattod.2019.05.003
– ident: e_1_2_6_52_2
  doi: 10.1126/sciadv.abb6772
– ident: e_1_2_6_61_2
  doi: 10.1038/ncomms3717
SSID ssj0028806
Score 2.6912313
Snippet Light‐emitting chiral carbonized polymer dots (Ch‐CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their...
Light-emitting chiral carbonized polymer dots (Ch-CPDs) are attracting great interest because of their extraordinary photonic properties, but modulating their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14091
SubjectTerms carbonized polymer dots
chirality
Circular polarization
Emission
Emissions
Luminescence
Mixing ratio
nanomaterials
Phenylenediamine
Polymers
self-assembly
Tryptophan
Title Rational Design of Multicolor‐Emitting Chiral Carbonized Polymer Dots for Full‐Color and White Circularly Polarized Luminescence
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202103336
https://www.ncbi.nlm.nih.gov/pubmed/33830583
https://www.proquest.com/docview/2537430747
https://www.proquest.com/docview/2510255792
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhl-bSV_pwkxYFCj0psR6WvMfgbEhDEkpoIDej19Klu3bx7h6SUw79Af2N_SXVyI90W0qhvdl4BtvSSPpGmvkGobeeq1RQMyE-yyURmnKiR4ySfALnMGyUi5jFf34hT67E6XV2_VMWf8sPMWy4wciI8zUMcG0WB_ekoZCBHfy74LJwzoFzGwK2ABVdDvxRLBhnm17EOYEq9D1rY8oO1tXXV6XfoOY6co1Lz_EjpPuPbiNOPu-vlmbf3v7C5_g_f_UYPexwKT5sDekJ2vDVU_Sg6MvBbaOvl922IT6KQR-4nuCYvQu01833u2_j-TTGUOPi07QJYoVuTJgwbr3DH-rZzdw3-KheLnBAyRgc36BSgCrWlcOxTh8upk0Mi53dgErw4kH5bDWH0HwLU9AzdHU8_lickK6EA7FCSUmsDHg4NUxN0iw3UmbWZsZT5Zj2ymqnmDN5pjRzAXkpS2UqLOdWU6EDcMotf442q7ryLxEOFmU1F85ZzwUz0lBBdeqZyvxIGCcTRPouLG3Hbw5lNmZly8zMSmjbcmjbBL0b5L-0zB5_lNztLaLsRviiZBkP4AvKDyRob3gc-gQOXHTl6xXIUHDZ1Igl6EVrScOrYGsgtAlPEIv28JdvKA8v3o-Hu1f_orSDtuAa4tyo2EWby2blXwdEtTRv4qj5AS2EGVo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70dKASMhcUobP2Jnj1W61Ra2K1S1ErfIdrzqit1Nle4e2hMHfgC_kV-Cx3mgBSEkOCbxKIk9tr8Zz3wD8NZxlQhqprFLMxkLTXmsB4zG2RTPYdggEyGL_2QiR-fi_ae0iybEXJiGH6J3uOHMCOs1TnB0SO__ZA3FFGxv4HmbhXMub8MdLOsdrKrTnkGKefVsEow4j7EOfcfbmLD9TfnNfek3sLmJXcPmc3QfTPfZTczJ5731yuzZm18YHf_rvx7AvRaakoNGlx7CLbd8BNt5VxHuMXw9bT2H5DDEfZBqSkICLzJf19-_fBsuZiGMmuQXs9o3y3Vt_Jpx40rysZpfL1xNDqvVFfFAmaDt60VyFCV6WZJQqo_kszpExs6vUcQb8ig8Xi8wOt_iKvQEzo-GZ_kobqs4xFYoKWMrPSRODFPTJM2MlKm1qXFUlUw7ZXWpWGmyVGlWevClLJWJsJxbTYX22Cmz_ClsLaulew7EK5XVXJSldVwwIw0VVCeOqdQNhCllBHE3hoVtKc6x0sa8aMiZWYF9W_R9G8G7vv1lQ-7xx5a7nUoU7SS_KljKPf7CCgQRvOkf-zHBMxe9dNUa21C02tSARfCsUaX-Vegd8H3CI2BBIf7yDcXB5HjYX-38i9Br2B6dnYyL8fHkwwu4i_cx7I2KXdha1Wv30gOslXkVptAPscwddQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCF9yNQwEhInNLGj9jZY5XdVQtlVVVU6i3yK-qK3aRKdw_tiQM_gN_IL8HjPGBBCAmOSWaUxB7b39gz3yD0xjGZcKLL2KWZiLkiLFYjSuKshHMYOsp4yOL_MBP7J_zdaXr6UxZ_yw8xbLjByAjzNQzwc1vu_iANhQxs7995l4UxJq6jG1wkGdj1-HggkKLeOtv8IsZiKEPf0zYmdHdTf3NZ-g1rbkLXsPZM7yLVf3UbcvJpZ73SO-bqF0LH__mte-hOB0zxXmtJ99E1Vz1At_K-HtxD9OW42zfE4xD1gesSh_Rd4L1uvn3-OlnOQxA1zs_mjRfLVaP9jHHlLD6qF5dL1-BxvbrAHiZj8Hy9Sg6qWFUWh0J9OJ83IS52cQkq3o0H5cP1EmLzDcxBj9DJdPIx34-7Gg6x4VKI2AgPiBNNZZmkmRYiNSbVjkhLlZNGWUmtzlKpqPXQSxoiEm4YM4pw5ZFTZthjtFXVlXuKsDcpoxi31jjGqRaacKISR2XqRlxbEaG478LCdATnUGdjUbTUzLSAti2Gto3Q20H-vKX2-KPkdm8RRTfELwqaMo--oP5AhF4Pj32fwImLqly9BhkCPpsc0Qg9aS1peBXsDfg2YRGiwR7-8g3F3uxgMlw9-xelV-jm0XhaHB7M3j9Ht-E2xLwRvo22Vs3avfDoaqVfhgH0HV9WHC0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Multicolor-Emitting+Chiral+Carbonized+Polymer+Dots+for+Full-Color+and+White+Circularly+Polarized+Luminescence&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ru%2C+Yi&rft.au=Sui%2C+Laizhi&rft.au=Song%2C+Haoqiang&rft.au=Liu%2C+Xingjiang&rft.date=2021-06-14&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202103336&rft_id=info%3Apmid%2F33830583&rft.externalDocID=33830583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon