Joint analysis of stochastic processes with application to smoking patterns and insomnia
This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., ‘cure’). We use a generalized linear mixed‐effects model and a stochastic mixed‐effects model for the longitu...
Saved in:
Published in | Statistics in medicine Vol. 32; no. 29; pp. 5133 - 5144 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
20.12.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.5906 |
Cover
Abstract | This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., ‘cure’). We use a generalized linear mixed‐effects model and a stochastic mixed‐effects model for the longitudinal measurements of insomnia symptom and for the smoking cessation process, respectively. We link these two models together via the latent random effects. We develop a Bayesian framework and Markov Chain Monte Carlo algorithm to obtain the parameter estimates. We formulate and compute the likelihood functions involving time‐dependent covariates. We explore the within‐subject correlation between insomnia and smoking processes. We apply the proposed methodology to simulation studies and the motivating dataset, that is, the Alpha‐Tocopherol, Beta‐Carotene Lung Cancer Prevention study, a large longitudinal cohort study of smokers from Finland. Copyright © 2013 John Wiley & Sons, Ltd. |
---|---|
AbstractList | This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., 'cure'). We use a generalized linear mixed-effects model and a stochastic mixed-effects model for the longitudinal measurements of insomnia symptom and for the smoking cessation process, respectively. We link these two models together via the latent random effects. We develop a Bayesian framework and Markov Chain Monte Carlo algorithm to obtain the parameter estimates. We formulate and compute the likelihood functions involving time-dependent covariates. We explore the within-subject correlation between insomnia and smoking processes. We apply the proposed methodology to simulation studies and the motivating dataset, that is, the Alpha-Tocopherol, Beta-Carotene Lung Cancer Prevention study, a large longitudinal cohort study of smokers from Finland. This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., ‘cure’). We use a generalized linear mixed‐effects model and a stochastic mixed‐effects model for the longitudinal measurements of insomnia symptom and for the smoking cessation process, respectively. We link these two models together via the latent random effects. We develop a Bayesian framework and Markov Chain Monte Carlo algorithm to obtain the parameter estimates. We formulate and compute the likelihood functions involving time‐dependent covariates. We explore the within‐subject correlation between insomnia and smoking processes. We apply the proposed methodology to simulation studies and the motivating dataset, that is, the Alpha‐Tocopherol, Beta‐Carotene Lung Cancer Prevention study, a large longitudinal cohort study of smokers from Finland. Copyright © 2013 John Wiley & Sons, Ltd. This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., 'cure'). We use a generalized linear mixed-effects model and a stochastic mixed-effects model for the longitudinal measurements of insomnia symptom and for the smoking cessation process, respectively. We link these two models together via the latent random effects. We develop a Bayesian framework and Markov Chain Monte Carlo algorithm to obtain the parameter estimates. We formulate and compute the likelihood functions involving time-dependent covariates. We explore the within-subject correlation between insomnia and smoking processes. We apply the proposed methodology to simulation studies and the motivating dataset, that is, the Alpha-Tocopherol, Beta-Carotene Lung Cancer Prevention study, a large longitudinal cohort study of smokers from Finland.This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., 'cure'). We use a generalized linear mixed-effects model and a stochastic mixed-effects model for the longitudinal measurements of insomnia symptom and for the smoking cessation process, respectively. We link these two models together via the latent random effects. We develop a Bayesian framework and Markov Chain Monte Carlo algorithm to obtain the parameter estimates. We formulate and compute the likelihood functions involving time-dependent covariates. We explore the within-subject correlation between insomnia and smoking processes. We apply the proposed methodology to simulation studies and the motivating dataset, that is, the Alpha-Tocopherol, Beta-Carotene Lung Cancer Prevention study, a large longitudinal cohort study of smokers from Finland. This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., “cure”). A generalized linear mixed-effects model is used for the longitudinal measurements of insomnia symptom and a stochastic mixed-effects model is used for the smoking cessation process. These two models are linked together via the latent random effects. A Bayesian framework and Markov Chain Monte Carlo algorithm are developed to obtain the parameter estimates. The likelihood functions involving time-dependent covariates are formulated and computed. The within-subject correlation between insomnia and smoking processes is explored. The proposed methodology is applied to simulation studies and the motivating dataset, i.e., the Alpha-Tocopherol, Beta-Carotene (ATBC) Lung Cancer Prevention study, a large longitudinal cohort study of smokers from Finland. This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent permanent quitting state (i.e., 'cure'). We use a generalized linear mixed-effects model and a stochastic mixed-effects model for the longitudinal measurements of insomnia symptom and for the smoking cessation process, respectively. We link these two models together via the latent random effects. We develop a Bayesian framework and Markov Chain Monte Carlo algorithm to obtain the parameter estimates. We formulate and compute the likelihood functions involving time-dependent covariates. We explore the within-subject correlation between insomnia and smoking processes. We apply the proposed methodology to simulation studies and the motivating dataset, that is, the Alpha-Tocopherol, Beta-Carotene Lung Cancer Prevention study, a large longitudinal cohort study of smokers from Finland. [PUBLICATION ABSTRACT] |
Author | Luo, Sheng |
Author_xml | – sequence: 1 givenname: Sheng surname: Luo fullname: Luo, Sheng email: Correspondence to: Sheng Luo, Division of Biostatistics University of Texas School of Public Health 1200 Pressler St Houston Texas 77030 U.S.A., sheng.t.luo@uth.tmc.edu organization: Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St, Texas 77030, Houston, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23913574$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAURS1URKcFiV-AIrFhk8EfsR1vkNAAnaIClQDBznIcp-M2sVM_D2X-PWmnHSiClRc-7-jq3gO0F2JwCD0leE4wpi_BD3OusHiAZgQrWWLK6z00w1TKUkjC99EBwDnGhHAqH6F9yhRhXFYz9P199CEXJph-Ax6K2BWQo10ZyN4WY4rWATgornxeFWYce29N9jEUORYwxAsfzorR5OxSgMnSFj5AHII3j9HDzvTgnty-h-jru7dfFsvy5NPR8eL1SWkrKUTZWGO5aykTvBWWGFw3tlYVMU3XqE4oZ5mlWDlmWkYZ4aShFRHcKata2RnLDtGrrXdcN4NrrQs5mV6PyQ8mbXQ0Xt__CX6lz-IPzWouBFGT4MWtIMXLtYOsBw_W9b0JLq5Bk4pjoipB5YQ-_ws9j-s0VXdD1YIxrOqJevZnol2Uu9InYL4FbIoAyXXa-nzT6hTQ95pgfb2qnlbV16v-jrg7uHP-Ay236JXv3ea_nP58_OE-7yG7nzvepAstJJNcf_t4pOXpm1O-XNZ6wX4BFS3B1w |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1177_0962280216659312 crossref_primary_10_1177_0962280215586010 crossref_primary_10_3109_10826084_2015_1126747 |
Cites_doi | 10.1001/jama.1989.03430110069030 10.1111/j.0006-341X.2002.00742.x 10.1002/sim.3825 10.1001/jama.290.4.476 10.1001/archpsyc.1985.01790260019002 10.1093/oso/9780198524847.001.0001 10.1006/pmed.1994.1046 10.1198/016214507000001030 10.1111/j.1541-0420.2011.01578.x 10.1002/sim.1470 10.1214/009053605000000480 10.1002/9781118032985 10.1080/14622200701188919 10.5664/jcsm.26913 10.1037/0022-006X.51.3.390 10.1176/ajp.136.10.1257 10.1093/biomet/88.4.973 10.1111/j.1541-0420.2008.01167.x |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Dec 20, 2013 Copyright © 2009 John Wiley & Sons, Ltd. 2009 |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Dec 20, 2013 – notice: Copyright © 2009 John Wiley & Sons, Ltd. 2009 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.5906 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 5144 |
ExternalDocumentID | PMC3856619 3127594161 23913574 10_1002_sim_5906 SIM5906 ark_67375_WNG_7PDP5HH8_C |
Genre | article Journal Article Research Support, N.I.H., Extramural Feature |
GeographicLocations | Finland |
GeographicLocations_xml | – name: Finland |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS43128 – fundername: NINDS NIH HHS grantid: U01 NS043128 – fundername: NINDS NIH HHS grantid: U01 NS043127 – fundername: NCATS NIH HHS grantid: KL2 TR000370 – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: U01 NS043128 || NS – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: U01 NS043127 || NS – fundername: National Center for Advancing Translational Sciences : NCATS grantid: KL2 TR000370 || TR |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4766-bcac5ed2365d6c1a08bc8941abfb9f69ec3c209e3ad323151b24165e9c9d7fac3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:17:38 EDT 2025 Thu Jul 10 18:49:22 EDT 2025 Fri Jul 25 04:30:49 EDT 2025 Mon Jul 21 05:56:21 EDT 2025 Tue Jul 01 03:28:05 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Wed Jan 22 16:59:48 EST 2025 Wed Oct 30 09:51:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | MCMC cure model joint modeling recurrent events mixed-effects model Bayes |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-bcac5ed2365d6c1a08bc8941abfb9f69ec3c209e3ad323151b24165e9c9d7fac3 |
Notes | Supporting info item ArticleID:SIM5906 istex:308406EF4E86137A4F8B79391DA06044A24FD659 ark:/67375/WNG-7PDP5HH8-C SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3856619 |
PMID | 23913574 |
PQID | 1458633098 |
PQPubID | 48361 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3856619 proquest_miscellaneous_1450194627 proquest_journals_1458633098 pubmed_primary_23913574 crossref_citationtrail_10_1002_sim_5906 crossref_primary_10_1002_sim_5906 wiley_primary_10_1002_sim_5906_SIM5906 istex_primary_ark_67375_WNG_7PDP5HH8_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20 December 2013 |
PublicationDateYYYYMMDD | 2013-12-20 |
PublicationDate_xml | – month: 12 year: 2013 text: 20 December 2013 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Li Y, Wileyto EP, Heitjan DF. Modeling smoking cessation data with alternating states and a cure fraction using frailty models. Statistics in Medicine 2010; 29(6):627-638. Bixler EO, Kales A, Soldatos CR, Kales JD, Healey S. Prevalence of sleep disorders in the Los Angeles metropolitan area. The American Journal of Psychiatry 1979; 136:1257-1262. Phillips B, Mannino DM. Do insomnia complaints cause hypertension or cardiovascular disease?. Journal of Clinical Sleep Medicine 2007; 3:489-94. Hughes JR. Effects of abstinence from tobacco: valid symptoms and time course. Nicotine & Tobacco Research 2007; 9:315-327. Group AS. Incidence of cancer and mortality following α-tocopherol and β-carotene supplementation. Journal of American Medical Association 2003; 290(4):476-485. Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data. Oxford University Press, 2002. Prochaska JO, DiClemente CC. Stages and processes of self-change of smoking: toward an integrative model of change. Journal of Consulting and Clinical Psychology 1983; 31:390-395. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. John Wiley & Sons, 2002. Daniels MJ, Zhao YD. Modelling the random effects covariance matrix in longitudinal data. Statistics in Medicine 2003; 22(10):1631-1647. Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis. CRC press, 2004. Luo S, Crainiceanu CM, Louis TA, Chatterjee N. Analysis of smoking cessation patterns using a stochastic mixed-effects model with a latent cured state. Journal of the American Statistical Association 2008; 103:1002-13. Wetter DW, Young TB. The relation between cigarette smoking and sleep disturbance. Preventive Medicine 1994; 23:328-334. Zeng D, Cai J. Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. The Annals of Statistics 2005; 33(5):2132-2163. Mellinger GD, Balter MB, Uhlenhuth EH. Insomnia and its treatment. Prevalence and correlates. Archives of General Psychiatry 1985; 42:225-232. Zeger SL, Liang KY. Feedback models for discrete and continuous time series. Statistica Sinica 1991; 1:51-64. Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 2001; 88(4):973. Ford DE, Kamerow DB. Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention?. The Journal of American Medical Association 1989; 262:1479-1484. Anderson T. An Introduction to Multivariate Statistical Analysis, 3rd edn. John Wiley & Sons, 2003. Song X, Davidian M, Tsiatis AA. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 2002; 58(4):742-753. Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. Springer Verlag, 2005. Li Y, Wileyto EP, Heitjan DF. Prediction of individual long-term outcomes in smoking cessation trials using frailty models. Biometrics 2011; 67:1321-1329. Luo S, Crainiceanu CM, Louis TA, Chatterjee N. Bayesian inference for smoking cessation with a latent cure state. Biometrics 2009; 65:970-978. 1979; 136 2002; 58 1991; 1 2009; 65 2010; 29 1989; 262 1983; 31 1994; 23 2007; 9 2003; 290 2005 2004 2011; 67 2008; 103 2003 2007; 3 2002 2001; 88 1985; 42 2005; 33 2003; 22 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 Anderson T (e_1_2_8_16_1) 2003 Prochaska JO (e_1_2_8_5_1) 1983; 31 Phillips B (e_1_2_8_7_1) 2007; 3 Molenberghs G (e_1_2_8_15_1) 2005 Zeger SL (e_1_2_8_9_1) 1991; 1 e_1_2_8_3_1 Gelman A (e_1_2_8_17_1) 2004 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 Diggle PJ (e_1_2_8_14_1) 2002 2858188 - Arch Gen Psychiatry. 1985 Mar;42(3):225-32 2769898 - JAMA. 1989 Sep 15;262(11):1479-84 8078854 - Prev Med. 1994 May;23(3):328-34 314756 - Am J Psychiatry. 1979 Oct;136(10):1257-62 17803012 - J Clin Sleep Med. 2007 Aug 15;3(5):489-94 12876090 - JAMA. 2003 Jul 23;290(4):476-85 19305513 - J Am Stat Assoc. 2008 Sep 1;103(483):1002-1013 20077505 - Stat Med. 2010 Mar 15;29(6):627-38 19173701 - Biometrics. 2009 Sep;65(3):970-8 12495128 - Biometrics. 2002 Dec;58(4):742-53 6863699 - J Consult Clin Psychol. 1983 Jun;51(3):390-5 17365764 - Nicotine Tob Res. 2007 Mar;9(3):315-27 21401566 - Biometrics. 2011 Dec;67(4):1321-9 12720301 - Stat Med. 2003 May 30;22(10):1631-47 |
References_xml | – reference: Mellinger GD, Balter MB, Uhlenhuth EH. Insomnia and its treatment. Prevalence and correlates. Archives of General Psychiatry 1985; 42:225-232. – reference: Wetter DW, Young TB. The relation between cigarette smoking and sleep disturbance. Preventive Medicine 1994; 23:328-334. – reference: Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data. Oxford University Press, 2002. – reference: Song X, Davidian M, Tsiatis AA. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 2002; 58(4):742-753. – reference: Ford DE, Kamerow DB. Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention?. The Journal of American Medical Association 1989; 262:1479-1484. – reference: Luo S, Crainiceanu CM, Louis TA, Chatterjee N. Bayesian inference for smoking cessation with a latent cure state. Biometrics 2009; 65:970-978. – reference: Hughes JR. Effects of abstinence from tobacco: valid symptoms and time course. Nicotine & Tobacco Research 2007; 9:315-327. – reference: Group AS. Incidence of cancer and mortality following α-tocopherol and β-carotene supplementation. Journal of American Medical Association 2003; 290(4):476-485. – reference: Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. John Wiley & Sons, 2002. – reference: Zeng D, Cai J. Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. The Annals of Statistics 2005; 33(5):2132-2163. – reference: Luo S, Crainiceanu CM, Louis TA, Chatterjee N. Analysis of smoking cessation patterns using a stochastic mixed-effects model with a latent cured state. Journal of the American Statistical Association 2008; 103:1002-13. – reference: Bixler EO, Kales A, Soldatos CR, Kales JD, Healey S. Prevalence of sleep disorders in the Los Angeles metropolitan area. The American Journal of Psychiatry 1979; 136:1257-1262. – reference: Prochaska JO, DiClemente CC. Stages and processes of self-change of smoking: toward an integrative model of change. Journal of Consulting and Clinical Psychology 1983; 31:390-395. – reference: Anderson T. An Introduction to Multivariate Statistical Analysis, 3rd edn. John Wiley & Sons, 2003. – reference: Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 2001; 88(4):973. – reference: Li Y, Wileyto EP, Heitjan DF. Prediction of individual long-term outcomes in smoking cessation trials using frailty models. Biometrics 2011; 67:1321-1329. – reference: Zeger SL, Liang KY. Feedback models for discrete and continuous time series. Statistica Sinica 1991; 1:51-64. – reference: Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis. CRC press, 2004. – reference: Li Y, Wileyto EP, Heitjan DF. Modeling smoking cessation data with alternating states and a cure fraction using frailty models. Statistics in Medicine 2010; 29(6):627-638. – reference: Phillips B, Mannino DM. Do insomnia complaints cause hypertension or cardiovascular disease?. Journal of Clinical Sleep Medicine 2007; 3:489-94. – reference: Daniels MJ, Zhao YD. Modelling the random effects covariance matrix in longitudinal data. Statistics in Medicine 2003; 22(10):1631-1647. – reference: Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. Springer Verlag, 2005. – volume: 29 start-page: 627 issue: 6 year: 2010 end-page: 638 article-title: Modeling smoking cessation data with alternating states and a cure fraction using frailty models publication-title: Statistics in Medicine – volume: 67 start-page: 1321 year: 2011 end-page: 1329 article-title: Prediction of individual long‐term outcomes in smoking cessation trials using frailty models publication-title: Biometrics – volume: 58 start-page: 742 issue: 4 year: 2002 end-page: 753 article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time‐to‐event data publication-title: Biometrics – year: 2005 – volume: 31 start-page: 390 year: 1983 end-page: 395 article-title: Stages and processes of self‐change of smoking: toward an integrative model of change publication-title: Journal of Consulting and Clinical Psychology – year: 2002 – volume: 23 start-page: 328 year: 1994 end-page: 334 article-title: The relation between cigarette smoking and sleep disturbance publication-title: Preventive Medicine – volume: 65 start-page: 970 year: 2009 end-page: 978 article-title: Bayesian inference for smoking cessation with a latent cure state publication-title: Biometrics – year: 2003 – year: 2004 – volume: 103 start-page: 1002 year: 2008 end-page: 13 article-title: Analysis of smoking cessation patterns using a stochastic mixed‐effects model with a latent cured state publication-title: Journal of the American Statistical Association – volume: 22 start-page: 1631 issue: 10 year: 2003 end-page: 1647 article-title: Modelling the random effects covariance matrix in longitudinal data publication-title: Statistics in Medicine – volume: 136 start-page: 1257 year: 1979 end-page: 1262 article-title: Prevalence of sleep disorders in the Los Angeles metropolitan area publication-title: The American Journal of Psychiatry – volume: 42 start-page: 225 year: 1985 end-page: 232 article-title: Insomnia and its treatment. Prevalence and correlates publication-title: Archives of General Psychiatry – volume: 262 start-page: 1479 year: 1989 end-page: 1484 article-title: Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention? publication-title: The Journal of American Medical Association – volume: 290 start-page: 476 issue: 4 year: 2003 end-page: 485 article-title: Incidence of cancer and mortality following ‐tocopherol and ‐carotene supplementation publication-title: Journal of American Medical Association – volume: 3 start-page: 489 year: 2007 end-page: 94 article-title: Do insomnia complaints cause hypertension or cardiovascular disease? publication-title: Journal of Clinical Sleep Medicine – volume: 1 start-page: 51 year: 1991 end-page: 64 article-title: Feedback models for discrete and continuous time series publication-title: Statistica Sinica – volume: 88 start-page: 973 issue: 4 year: 2001 article-title: Misspecified maximum likelihood estimates and generalised linear mixed models publication-title: Biometrika – volume: 9 start-page: 315 year: 2007 end-page: 327 article-title: Effects of abstinence from tobacco: valid symptoms and time course publication-title: Nicotine & Tobacco Research – volume: 33 start-page: 2132 issue: 5 year: 2005 end-page: 2163 article-title: Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time publication-title: The Annals of Statistics – ident: e_1_2_8_4_1 doi: 10.1001/jama.1989.03430110069030 – ident: e_1_2_8_20_1 doi: 10.1111/j.0006-341X.2002.00742.x – volume-title: An Introduction to Multivariate Statistical Analysis year: 2003 ident: e_1_2_8_16_1 – ident: e_1_2_8_18_1 doi: 10.1002/sim.3825 – ident: e_1_2_8_10_1 doi: 10.1001/jama.290.4.476 – ident: e_1_2_8_3_1 doi: 10.1001/archpsyc.1985.01790260019002 – volume-title: Analysis of Longitudinal Data year: 2002 ident: e_1_2_8_14_1 doi: 10.1093/oso/9780198524847.001.0001 – ident: e_1_2_8_6_1 doi: 10.1006/pmed.1994.1046 – ident: e_1_2_8_11_1 doi: 10.1198/016214507000001030 – ident: e_1_2_8_19_1 doi: 10.1111/j.1541-0420.2011.01578.x – ident: e_1_2_8_23_1 doi: 10.1002/sim.1470 – ident: e_1_2_8_21_1 doi: 10.1214/009053605000000480 – volume: 1 start-page: 51 year: 1991 ident: e_1_2_8_9_1 article-title: Feedback models for discrete and continuous time series publication-title: Statistica Sinica – ident: e_1_2_8_13_1 doi: 10.1002/9781118032985 – volume-title: Bayesian Data Analysis year: 2004 ident: e_1_2_8_17_1 – ident: e_1_2_8_8_1 doi: 10.1080/14622200701188919 – volume: 3 start-page: 489 year: 2007 ident: e_1_2_8_7_1 article-title: Do insomnia complaints cause hypertension or cardiovascular disease? publication-title: Journal of Clinical Sleep Medicine doi: 10.5664/jcsm.26913 – volume: 31 start-page: 390 year: 1983 ident: e_1_2_8_5_1 article-title: Stages and processes of self‐change of smoking: toward an integrative model of change publication-title: Journal of Consulting and Clinical Psychology doi: 10.1037/0022-006X.51.3.390 – ident: e_1_2_8_2_1 doi: 10.1176/ajp.136.10.1257 – ident: e_1_2_8_22_1 doi: 10.1093/biomet/88.4.973 – ident: e_1_2_8_12_1 doi: 10.1111/j.1541-0420.2008.01167.x – volume-title: Models for Discrete Longitudinal Data year: 2005 ident: e_1_2_8_15_1 – reference: 12495128 - Biometrics. 2002 Dec;58(4):742-53 – reference: 314756 - Am J Psychiatry. 1979 Oct;136(10):1257-62 – reference: 6863699 - J Consult Clin Psychol. 1983 Jun;51(3):390-5 – reference: 2858188 - Arch Gen Psychiatry. 1985 Mar;42(3):225-32 – reference: 19305513 - J Am Stat Assoc. 2008 Sep 1;103(483):1002-1013 – reference: 21401566 - Biometrics. 2011 Dec;67(4):1321-9 – reference: 2769898 - JAMA. 1989 Sep 15;262(11):1479-84 – reference: 17803012 - J Clin Sleep Med. 2007 Aug 15;3(5):489-94 – reference: 20077505 - Stat Med. 2010 Mar 15;29(6):627-38 – reference: 17365764 - Nicotine Tob Res. 2007 Mar;9(3):315-27 – reference: 12720301 - Stat Med. 2003 May 30;22(10):1631-47 – reference: 12876090 - JAMA. 2003 Jul 23;290(4):476-85 – reference: 19173701 - Biometrics. 2009 Sep;65(3):970-8 – reference: 8078854 - Prev Med. 1994 May;23(3):328-34 |
SSID | ssj0011527 |
Score | 2.0958908 |
Snippet | This article proposes a joint modeling framework for longitudinal insomnia measurements and a stochastic smoking cessation process in the presence of a latent... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5133 |
SubjectTerms | Bayes Bayes Theorem Bayesian analysis Cohort Studies Computer Simulation cure model Finland Humans Insomnia joint modeling Longitudinal Studies Markov analysis MCMC mixed-effects model Models, Statistical Monte Carlo simulation Parameter estimation recurrent events Sleep Initiation and Maintenance Disorders - psychology Smoking cessation Smoking Cessation - psychology Stochastic Processes |
Title | Joint analysis of stochastic processes with application to smoking patterns and insomnia |
URI | https://api.istex.fr/ark:/67375/WNG-7PDP5HH8-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.5906 https://www.ncbi.nlm.nih.gov/pubmed/23913574 https://www.proquest.com/docview/1458633098 https://www.proquest.com/docview/1450194627 https://pubmed.ncbi.nlm.nih.gov/PMC3856619 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kghSk6qk1tcoKUp9yzX5nH6W1noUrRS0e-BD2K_SolxzNHYh_vbvZJPa0gviUh51k2dmZ3V9mdn4LwGudKZ1ZSVJSZiylOVOpVganllArnFCWqVA7PD3jkwt6OmOz7lRlqIWJ_BBDwC14RrteBwdXujn8RRrazBdjJlu2bUR4oM0__jgwR6H-ttaQoeQCsZ53NsOH_YsbO9HdoNTvt8HMP09L3kSx7TZ08gB87QcQT59cjdcrPTY_fuN2_L8RPgQ7HTqFb6M5PQJ3XDUC96Zd_n0E7scoH4zFSyOwHbBqpHp-DGan9bxaQdXRnMC6hB5ZmksV2uEyViS4BobQL7yROIerGjaLOsTs4bKl-6wa_xULQ2HaopqrJ-Di5N3no0naXdyQGio4T7VRhjmLCWeWG6SyXJtcUqR0qWXJpTPE4Ew6oizx-JIh7XEEZ04aaUWpDHkKtqq6cs8ApCW21OR-Nr1MWfrN1Pg_HI9ZDDKWIpmAN_0kFqZjNQ-Xa3wrIh8zLrwWi6DFBLwaJJeRyeMWmYPWDgYBdX0VTr4JVnw5e1-I8-NzNpnkxVEC9ntDKTqnb_xfFMs5IZnMfV9Ds3fXkINRlavXrYwH1ZRjkYDdaFdDZ5hIRJigCRAbFjcIBCrwzZZqftlSgpPcw_KgjYPWoP46wOLTh2l47v2r4HOwjcMFIAj79XQfbK2u1-6Fh2Er_bJ1uJ-aGjGE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NmwST0IDyKzDASGg8pUtiO4nFE9oY3VirCTbRh0mRYydatTWpllRC_PX44iSsMCTEUx58SeTznf357PsO4G3qydTTgro097jLYi7dVKrA1ZTpKIuk5hJzh8eTcHTGjqZ8ugbvu1wYyw_RB9zQM5r5Gh0cA9K7v1hDq9l8yAXSbW8wgzNw57X_peeO8rt6rXhGGUY-75hnvWC3e3NlLdpAtX6_DWj-eV_yJo5tFqKD-3DedcHeP7kcLut0qH78xu74n318AFstQCUfrEU9hLWsGMCdcXsEP4B7NtBHbP7SADYRrlq250cwPSpnRU1ky3RCypwYcKkuJLaThU1KyCqC0V9y4-yc1CWp5iWG7cmiYfwsKvMVTTA3bV7M5GM4O_h4ujdy29oNrmJRGLqpkopnOqAh16HypRenKhbMl2meijwUmaIq8ERGpaYGYnI_NVAi5JlQQke5VPQJrBdlkT0DwvJAMxWb4TQyeW7WU2U2OQa2KF9p5gsH3nWjmKiW2Bzra1wllpI5SIwWE9SiA296yYUl87hFZqcxhF5AXl_i5beIJ98mn5LoZP-Ej0ZxsufAdmcpSev3ldlI8Tik1BOx-VffbDwWj2FkkZXLRsbgahYGkQNPrWH1Pwuo8CmPmAPRisn1AsgGvtpSzC4aVnAaG2SO2thpLOqvHUy-Ho7x-fxfBV_D3dHp-Dg5Ppx8fgGbAdYD8QMzvW7Den29zF4aVFanrxrv-wmR0jWj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJk2TEIMCIzDASGg8pUvij8SPaKN0g1YVMFGJB8uxHa0aTaollSb-enz5YoUhIZ7y4Essn-_sX-58PyP0Og1UGhhBfJIFzKcJU36qdOQbQk1sY2WYgtrhyZSPz-nZnM3bU5VQC9PwQ_QBN_CMer0GB1-Z7OgXaWi5WA6ZALbtbcodkABA9Kmnjgq761ohRcnjkHXEs0F01L25sRVtg1avb8OZfx6XvAlj631otIe-dSNojp9cDtdVOtQ_fiN3_L8h3kf3WniK3zb29ADdsfkA7UzaBPwA3W3CfLipXhqgXQCrDdfzQzQ_KxZ5hVXLc4KLDDtoqS8UtONVU5JgSwyxX3wjc46rApfLAoL2eFXzfeal-4rBUJm2zBfqETofvftyPPbbmxt8TWPO_VQrzayJCGeG61AFSaoTQUOVZqnIuLCa6CgQlihDHMBkYeqABGdWaGHiTGnyGG3lRW6fIEyzyFCduNl0MlnmdlPtfnEcaNGhNjQUHnrTTaLULa053K7xXTaEzJF0WpSgRQ-96iVXDZXHLTKHtR30AurqEo6-xUx-nb6X8exkxsbjRB576KAzFNl6fel-o1jCCQlE4vrqm52_QhJG5bZY1zIOVVMexR7ab-yq7ywiIiQsph6KNyyuFwAu8M2WfHFRc4KTxOFy0MZhbVB_HaD8fDqB59N_FXyJdmYnI_nxdPrhGdqN4DKQMHJr6wHaqq7W9rmDZFX6ova9n9RFNFI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+analysis+of+stochastic+processes+with+application+to+smoking+patterns+and+insomnia&rft.jtitle=Statistics+in+medicine&rft.au=Luo%2C+Sheng&rft.date=2013-12-20&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=32&rft.issue=29&rft.spage=5133&rft.epage=5144&rft_id=info:doi/10.1002%2Fsim.5906&rft.externalDBID=10.1002%252Fsim.5906&rft.externalDocID=SIM5906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |