MOF Nanosheet Reconstructed Two‐Dimensional Bionic Nanochannel for Protonic Field‐Effect Transistors
The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abunda...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 18; pp. 9931 - 9935 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.04.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H+‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10−3 cm2 V−1 s−1 and highest on‐off ratio of 4.1 among all of the reported H+‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices.
A MOF thin film‐based bionic proton field‐effect transistor (H+‐FET) has been fabricated for the first time. It displays the highest proton mobility and highest on–off ratio among all reported H+‐FETs. |
---|---|
AbstractList | The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H
+
‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10
−3
cm
2
V
−1
s
−1
and highest on‐off ratio of 4.1 among all of the reported H
+
‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices. The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H+‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10−3 cm2 V−1 s−1 and highest on‐off ratio of 4.1 among all of the reported H+‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices. The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H+‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10−3 cm2 V−1 s−1 and highest on‐off ratio of 4.1 among all of the reported H+‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices. A MOF thin film‐based bionic proton field‐effect transistor (H+‐FET) has been fabricated for the first time. It displays the highest proton mobility and highest on–off ratio among all reported H+‐FETs. The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10 cm V s and highest on-off ratio of 4.1 among all of the reported H -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices. The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H+ -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10-3 cm2 V-1 s-1 and highest on-off ratio of 4.1 among all of the reported H+ -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices.The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H+ -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10-3 cm2 V-1 s-1 and highest on-off ratio of 4.1 among all of the reported H+ -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices. |
Author | Li, Qiao‐hong Li, Wen‐Hua Yao, Ming‐Shui Fu, Zhi‐Hua Zhou, Hai‐Lun Xu, Gang Wu, Guo‐Dong Xiu, Jing‐Wei |
Author_xml | – sequence: 1 givenname: Guo‐Dong surname: Wu fullname: Wu, Guo‐Dong organization: Chinese Academy of Sciences – sequence: 2 givenname: Hai‐Lun surname: Zhou fullname: Zhou, Hai‐Lun organization: Chinese Academy of Sciences – sequence: 3 givenname: Zhi‐Hua surname: Fu fullname: Fu, Zhi‐Hua organization: Chinese Academy of Sciences – sequence: 4 givenname: Wen‐Hua surname: Li fullname: Li, Wen‐Hua organization: Chinese Academy of Sciences – sequence: 5 givenname: Jing‐Wei surname: Xiu fullname: Xiu, Jing‐Wei organization: Chinese Academy of Sciences – sequence: 6 givenname: Ming‐Shui surname: Yao fullname: Yao, Ming‐Shui organization: Chinese Academy of Sciences – sequence: 7 givenname: Qiao‐hong surname: Li fullname: Li, Qiao‐hong email: lqh2382@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 8 givenname: Gang orcidid: 0000-0001-8562-0724 surname: Xu fullname: Xu, Gang email: gxu@fjirsm.ac.cn organization: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33591574$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaL567bEYeunFG33LPqbJbhpIkxK2ZyHLY1bBK6WSTMitP6G_sb8k2mzSQqD0NBLzPAMz7wHa8cEDQu8JnhGM6bHxDmYU0_JhQr5B-0RQUjOl2E55c8Zq1Qiyhw5Sui1802D5Fu0xJloiFN9Hq6_Xi-rK-JBWALm6ARt8ynGyGfpqeR9-__x15tbgkwvejNXnUpx9EuzKeA9jNYRYfYshPzUWDsa-OPNhAJurZTTFTDnEdIR2BzMmePdcD9H3xXx5-qW-vD6_OD25rC1XUtYdwYJ1imEgApddFBk47lpuGNCOSzw0UgoGgvbCMlUU3Csjleo7zgnBLTtEn7Zz72L4MUHKeu2ShXE0HsKUNOUtJlRQpgr68RV6G6ZY1iyUILKRrWCbgR-eqalbQ6_volub-KBfblgAvgVsDClFGLR12eRyqRyNGzXBehOV3kSl_0RVtNkr7WXyP4V2K9y7ER7-Q-uTq4v5X_cRqg2mYg |
CitedBy_id | crossref_primary_10_1039_D3NR03464J crossref_primary_10_1002_adfm_202300239 crossref_primary_10_1016_j_fuel_2024_132855 crossref_primary_10_1021_acsmaterialslett_3c01358 crossref_primary_10_1016_j_jssc_2023_124268 crossref_primary_10_1021_acsanm_2c03205 crossref_primary_10_1038_s41467_024_46809_4 crossref_primary_10_1002_ange_202302997 crossref_primary_10_1002_adfm_202302135 crossref_primary_10_1021_acs_inorgchem_3c01258 crossref_primary_10_1016_j_jssc_2022_123740 crossref_primary_10_1021_acsanm_2c04383 crossref_primary_10_1021_acs_inorgchem_2c03445 crossref_primary_10_1021_acsnano_4c03649 crossref_primary_10_2139_ssrn_4063437 crossref_primary_10_1016_j_jssc_2021_122874 crossref_primary_10_1021_acsami_1c10351 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_1126_sciadv_adj7867 crossref_primary_10_1039_D3CS00259D crossref_primary_10_1016_j_jssc_2023_124491 crossref_primary_10_1002_chem_202402747 crossref_primary_10_1002_aenm_202204376 crossref_primary_10_1002_ange_202213077 crossref_primary_10_1021_acs_inorgchem_2c00809 crossref_primary_10_1002_anie_202302997 crossref_primary_10_1021_acs_langmuir_1c02579 crossref_primary_10_1039_D2CC02470E crossref_primary_10_1016_j_apsusc_2023_158357 crossref_primary_10_1002_smll_202201642 crossref_primary_10_1016_j_jssc_2022_123154 crossref_primary_10_1016_j_jssc_2022_123550 crossref_primary_10_1021_acs_inorgchem_3c03400 crossref_primary_10_3389_fbioe_2024_1386534 crossref_primary_10_1021_acs_cgd_1c00385 crossref_primary_10_1039_D4CC02093F crossref_primary_10_1002_aelm_202400773 crossref_primary_10_1002_chem_202301929 crossref_primary_10_5796_electrochemistry_21_00042 crossref_primary_10_1002_anie_202213077 crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_1002_sstr_202200150 crossref_primary_10_1016_j_microc_2024_112341 crossref_primary_10_1021_acs_inorgchem_1c01522 crossref_primary_10_1002_anie_202306942 crossref_primary_10_1002_slct_202201337 crossref_primary_10_1021_jacsau_2c00069 crossref_primary_10_1021_acsnano_3c06190 crossref_primary_10_1016_j_jssc_2024_124696 crossref_primary_10_1002_sstr_202300190 crossref_primary_10_1002_adfm_202111660 crossref_primary_10_1016_j_jssc_2023_124070 crossref_primary_10_1021_acs_inorgchem_1c03679 crossref_primary_10_1016_j_pmatsci_2024_101356 crossref_primary_10_1007_s42864_021_00122_5 crossref_primary_10_1021_acs_inorgchem_1c00800 crossref_primary_10_2139_ssrn_4172129 crossref_primary_10_1002_ange_202306942 |
Cites_doi | 10.1021/ar400265x 10.1002/advs.201600527 10.1002/adma.201705189 10.1088/0022-3735/19/1/016 10.1038/414872a 10.1021/ja5069855 10.1021/jacs.0c04442 10.1021/acs.chemrev.9b00842 10.1038/s41467-018-05615-5 10.1039/C7CS00315C 10.1039/C6CS00930A 10.1021/jacs.7b11364 10.1021/ja044646t 10.1038/nchem.1960 10.1021/ar300291s 10.1002/adma.202000730 10.1016/j.ccr.2020.213366 10.1021/ja107035w 10.1002/anie.201902738 10.1016/j.matt.2020.05.021 10.1021/ja2078637 10.1038/ncomms1489 10.1021/acs.accounts.7b00259 10.1021/ja110720f 10.1021/jacs.7b01559 10.1088/0953-8984/28/2/023001 10.2142/biophysico.16.0_274 10.1039/C7CS00122C 10.1021/jacs.7b09163 10.1021/jacs.8b02598 10.1039/C8SC04475A 10.1039/C4CS90059F 10.1002/ange.201902738 10.1002/adma.201503648 10.1021/cr300014x 10.1021/jacs.6b12847 10.1016/j.enchem.2020.100029 10.1021/ja9040016 10.1039/C5TC00502G 10.1038/35036519 10.1021/ar400024p 10.1126/science.1230444 10.1021/acs.inorgchem.9b02649 10.1021/ma201949s 10.1021/ja307953m 10.1021/ja402727d |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202100356 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 9935 |
ExternalDocumentID | 33591574 10_1002_anie_202100356 ANIE202100356 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Post-doctoral Science Foundation funderid: 2019M662254 – fundername: the Strategic Priority Research Program of CAS funderid: XDB20000000 – fundername: National Natural Science Foundation of China funderid: 21822109, 21773245, 2020000052 – fundername: International Partnership Program of CAS funderid: 121835KYSB201800 – fundername: Key Research Program of Frontier Science, CAS funderid: QYZDB-SSW-SLH023 – fundername: the Natural Science Foundation of Fujian Province funderid: 2017J05094 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4766-b1053b730e15015271f40b94a3e2b460f86653e52d5c374760d7a677db4411093 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:11:09 EDT 2025 Fri Jul 25 10:32:22 EDT 2025 Thu Apr 03 06:58:32 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 01:17:56 EDT 2025 Wed Jan 22 16:29:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | bionic proton nanochannels thin film proton transport electrical device metal-organic framework |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4766-b1053b730e15015271f40b94a3e2b460f86653e52d5c374760d7a677db4411093 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8562-0724 |
PMID | 33591574 |
PQID | 2516869539 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2490125237 proquest_journals_2516869539 pubmed_primary_33591574 crossref_citationtrail_10_1002_anie_202100356 crossref_primary_10_1002_anie_202100356 wiley_primary_10_1002_anie_202100356_ANIE202100356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 26, 2021 |
PublicationDateYYYYMMDD | 2021-04-26 |
PublicationDate_xml | – month: 04 year: 2021 text: April 26, 2021 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 126 2011; 2 2018; 140 2015; 3 2017; 4 2013; 46 2020; 120 2020; 142 2019; 10 2017; 46 2019; 16 2014; 47 2020; 59 1986; 19 2013; 341 2020; 32 2009; 131 2014; 136 2019 2019; 58 131 2011; 133 2014; 43 2017; 139 2000; 407 2017; 50 2018; 9 2015; 27 2020; 3 2012; 112 2020; 2 2012; 134 2010; 132 2011; 44 2013; 135 2018; 30 2016; 28 2014; 6 2020; 417 2001; 414 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_24_3 e_1_2_2_47_1 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_3_2 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_37_2 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 136 start-page: 12444 year: 2014 end-page: 12449 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 596 year: 2014 end-page: 602 publication-title: Nat. Chem. – volume: 126 start-page: 15960 year: 2004 end-page: 15961 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 673 year: 2012 end-page: 674 publication-title: Chem. Rev. – volume: 46 start-page: 2834 year: 2013 end-page: 2846 publication-title: Acc. Chem. Res. – volume: 10 start-page: 16 year: 2019 end-page: 33 publication-title: Chem. Sci. – volume: 132 start-page: 14055 year: 2010 end-page: 14057 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 7438 year: 2013 end-page: 7441 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 3185 year: 2017 end-page: 3241 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 15604 year: 2017 end-page: 15607 publication-title: J. Am. Chem. Soc. – volume: 414 start-page: 872 year: 2001 end-page: 878 publication-title: Nature – volume: 133 start-page: 17950 year: 2011 end-page: 17958 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 5730 year: 2017 end-page: 5770 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 396 year: 2020 end-page: 402 publication-title: Inorg. Chem. – volume: 3 start-page: 904 year: 2020 end-page: 919 publication-title: Matter – volume: 131 start-page: 9906 year: 2009 end-page: 9907 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 10331 year: 2020 end-page: 10336 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 80 year: 1986 end-page: 82 publication-title: Phys. E Sci. Instrum. – volume: 2 year: 2020 publication-title: EnergyChem – volume: 46 start-page: 3242 year: 2017 end-page: 3285 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 5640 year: 2011 end-page: 5643 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7372 year: 2015 end-page: 7378 publication-title: Adv. Mater. – volume: 140 start-page: 6146 year: 2018 end-page: 6155 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 16524 year: 2012 end-page: 16527 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 8073 8157 year: 2019 2019 end-page: 8077 8161 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 2376 year: 2013 end-page: 2384 publication-title: Acc. Chem. Res. – volume: 9 start-page: 3187 year: 2018 publication-title: Nat. Commun. – volume: 341 year: 2013 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 16 start-page: 274 year: 2019 end-page: 279 publication-title: Biophys. Physicobiol. – volume: 120 start-page: 8416 year: 2020 end-page: 8467 publication-title: Chem. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 47 start-page: 1199 year: 2014 end-page: 1207 publication-title: Acc. Chem. Res. – volume: 2 start-page: 476 year: 2011 publication-title: Nat. Commun. – volume: 407 start-page: 599 year: 2000 end-page: 605 publication-title: Nature – volume: 417 year: 2020 publication-title: Coord. Chem. Rev. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 50 start-page: 2684 year: 2017 end-page: 2692 publication-title: Acc. Chem. Res. – volume: 44 start-page: 8936 year: 2011 end-page: 8943 publication-title: Macromolecules – volume: 3 start-page: 6407 year: 2015 end-page: 6412 publication-title: J. Mater. Chem. C – volume: 139 start-page: 3505 year: 2017 end-page: 3512 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5415 year: 2014 end-page: 5418 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 6183 year: 2017 end-page: 6189 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1077 year: 2018 end-page: 1082 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2016 publication-title: J. Phys. Condens. Matter – ident: e_1_2_2_22_2 doi: 10.1021/ar400265x – ident: e_1_2_2_12_1 doi: 10.1002/advs.201600527 – ident: e_1_2_2_21_2 doi: 10.1002/adma.201705189 – ident: e_1_2_2_55_1 doi: 10.1088/0022-3735/19/1/016 – ident: e_1_2_2_15_2 doi: 10.1038/414872a – ident: e_1_2_2_38_1 – ident: e_1_2_2_41_2 doi: 10.1021/ja5069855 – ident: e_1_2_2_45_2 doi: 10.1021/jacs.0c04442 – ident: e_1_2_2_30_2 doi: 10.1021/acs.chemrev.9b00842 – ident: e_1_2_2_2_2 doi: 10.1038/s41467-018-05615-5 – ident: e_1_2_2_51_2 doi: 10.1039/C7CS00315C – ident: e_1_2_2_27_2 doi: 10.1039/C6CS00930A – ident: e_1_2_2_29_1 – ident: e_1_2_2_39_2 doi: 10.1021/jacs.7b11364 – ident: e_1_2_2_4_2 doi: 10.1021/ja044646t – ident: e_1_2_2_8_2 doi: 10.1038/nchem.1960 – ident: e_1_2_2_37_2 doi: 10.1021/ar300291s – ident: e_1_2_2_9_2 doi: 10.1002/adma.202000730 – ident: e_1_2_2_25_2 doi: 10.1016/j.ccr.2020.213366 – ident: e_1_2_2_52_1 – ident: e_1_2_2_6_1 – ident: e_1_2_2_32_2 doi: 10.1021/ja107035w – ident: e_1_2_2_24_2 doi: 10.1002/anie.201902738 – ident: e_1_2_2_46_2 doi: 10.1016/j.matt.2020.05.021 – ident: e_1_2_2_33_2 doi: 10.1021/ja2078637 – ident: e_1_2_2_49_1 – ident: e_1_2_2_43_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_7_2 doi: 10.1038/ncomms1489 – ident: e_1_2_2_23_2 doi: 10.1021/acs.accounts.7b00259 – ident: e_1_2_2_48_1 doi: 10.1021/ja110720f – ident: e_1_2_2_36_2 doi: 10.1021/jacs.7b01559 – ident: e_1_2_2_11_2 doi: 10.1088/0953-8984/28/2/023001 – ident: e_1_2_2_3_2 doi: 10.2142/biophysico.16.0_274 – ident: e_1_2_2_20_1 – ident: e_1_2_2_28_2 doi: 10.1039/C7CS00122C – ident: e_1_2_2_34_2 doi: 10.1021/jacs.7b09163 – ident: e_1_2_2_35_2 doi: 10.1021/jacs.8b02598 – ident: e_1_2_2_54_2 doi: 10.1039/C8SC04475A – ident: e_1_2_2_19_2 doi: 10.1039/C4CS90059F – ident: e_1_2_2_24_3 doi: 10.1002/ange.201902738 – ident: e_1_2_2_44_2 doi: 10.1002/adma.201503648 – ident: e_1_2_2_18_2 doi: 10.1021/cr300014x – ident: e_1_2_2_42_2 doi: 10.1021/jacs.6b12847 – ident: e_1_2_2_26_2 doi: 10.1016/j.enchem.2020.100029 – ident: e_1_2_2_31_2 doi: 10.1021/ja9040016 – ident: e_1_2_2_10_2 doi: 10.1039/C5TC00502G – ident: e_1_2_2_14_2 doi: 10.1038/35036519 – ident: e_1_2_2_5_1 doi: 10.1021/ar400024p – ident: e_1_2_2_17_2 doi: 10.1126/science.1230444 – ident: e_1_2_2_40_2 doi: 10.1021/acs.inorgchem.9b02649 – ident: e_1_2_2_53_2 doi: 10.1021/ma201949s – ident: e_1_2_2_13_1 – ident: e_1_2_2_50_2 doi: 10.1021/ja307953m – ident: e_1_2_2_47_1 doi: 10.1021/ja402727d – ident: e_1_2_2_16_1 |
SSID | ssj0028806 |
Score | 2.561733 |
Snippet | The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the... The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9931 |
SubjectTerms | bionic proton nanochannels Bionics electrical device Field effect transistors Hydrogen Hydrophilicity Hydrophobicity metal–organic framework Mimicry Nanochannels Nanosheets proton transport Protons Semiconductor devices thin film Thin films |
Title | MOF Nanosheet Reconstructed Two‐Dimensional Bionic Nanochannel for Protonic Field‐Effect Transistors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100356 https://www.ncbi.nlm.nih.gov/pubmed/33591574 https://www.proquest.com/docview/2516869539 https://www.proquest.com/docview/2490125237 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxUxEB6kL_VFrdfVViIIPqXNyW1PHtvaQxVaRVro25LboVA5K55TBJ_8Cf5Gf4kzm93Vo4igb7skw2aTmeSbJPMNwPM4SSKjHvCokuBa5cCn2keeTJbCJOukpwDnk1N7fK5fX5iLn6L4Cz_EuOFGltHN12TgPiz3fpCGUgQ2-nfosghliHObLmwRKno38kdJVM4SXqQUpyz0A2ujkHvr4uur0m9Qcx25dkvP7Db4odHlxsnV7vUq7MbPv_A5_s9f3YFbPS5l-0WRtuBGXtyFzcMhHdw9uDx5M2M4F7fLy5xXjNzWnnw2J3b2qf325etLyhRQWD7YAe3zxk6AYouxWQzhMXv7sV11BTO6OYcyhT2ZdUtmx1iyvA_ns6Ozw2Pep2ngUdfW8oAQTQWcKTKCS8qSO5lrEZz2KsugrZgTpZ7KRiYTFXovVqTa27pOAaEYsVk9gI1Fu8iPgE0VeusKMVcKXvuJCyJ5G-PcBeeCTrYCPgxTE3sOc0ql8b4p7Muyof5rxv6r4MVY_0Nh7_hjze1h1JveipcNYj87tc4oV8GzsRj7nQ5V_CK311hHI6KS6M7XFTws2jJ-SinjJqbWFchuzP_Shmb_9NXR-Pb4X4SewE16puMuabdhA9Ug7yBqWoWnnWV8B261DoE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB5V5VAu_ENTChgJxGnbjf82PnAoTaOENgGhVOptWf9ElUBZ1KSq4MQj8Cq8Co_AkzCz3l0UEEJC6oHjrm2tdzxjf2N7vgF44ro-DagHiRM-TaQINunJwiVeBZ4qrw0vKMB5PNHDY_nyRJ2swdcmFibyQ7QbbmQZ1XxNBk4b0rs_WUMpBBsdPPRZUqF0fa_yMHy8QK9t8XzUxyF-yvngYLo_TOrEAomTmdaJRVAhLOp2QDhEeV27M5laIwsRuJU6nREJnAiKe-UE4m2d-qzQWeYtgofIv4Sz_hVKI050_f03LWMVR3OIAU1CJJT3vuGJTPnuan9X18HfwO0qVq4Wu8F1-NaIKd5xebdzvrQ77tMvDJL_lRxvwLUaerO9aCs3YS3Mb8HGfpPx7jacjl8NGC435eI0hCUjz7zm1w2eTS_K75-_9CkZQiQyYS9oK9tVDSh8GuXA0ANgr8_KZVUwoMuB2CYSRLMKFVSkLIs7cHwpP3oX1uflPGwC6wmpjUBY6W0hi66xqS-0czNjjbHS6w4kjV7krqZpp2wh7_NIMM1zGq-8Ha8OPGvrf4gEJX-sud2oWV5PVIsc4a3uaaOE6cDjthjlTudGxTyU51hHImjkiousA_eierafEkKZrspkB3ilZH_pQ743GR20T1v_0ugRbAyn46P8aDQ5vA9X6T2d7nG9DeuoEuEBgsSlfViZJYO3l62_PwA0GWcU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRQIuvB-BAkYCcXLr9SvrA4fSbdSldKlQK_UW4seqEmhTsVtVcOIn8FP4K_wFfgnjOAlaEEJC6oFj4rHijGfsz4_5BuCJG3gW0A6oE55RKYKlQ1k56lXgTHlteBUDnPcmeudQvjxSRyvwtYuFSfwQ_YZb9IxmvI4OfuKnGz9JQ2MENq7vcMnChNLttcrd8PEMF23z5-MR9vBTzovtg60d2uYVoE7mWlOLmEJYNO2AaCimdR1MJbNGViJwKzWbRg44ERT3ygmE25r5vNJ57i1ih0S_hIP-BZQ0MVnE6E1PWMXRG1I8kxA0pr3vaCIZ31hu7_I0-Bu2XYbKzVxXXIVvnZbSFZd366cLu-4-_UIg-T-p8RpcaYE32Uyech1WwuwGXNrq8t3dhOO91wXByaaeH4ewIHFd3rLrBk8Ozurvn7-MYiqERGNCXsSNbNdUiMHTqAaC-J_sf6gXTUERrwZinUQPTRpM0FCyzG_B4bn86G1YndWzcBfIUEhtBIJKbytZDYxlvtLOTY01xkqvM6CdWZSuJWmPuULel4lempexv8q-vzJ41sufJHqSP0qudVZWtsPUvERwq4faKGEyeNwXo97jqVE1C_UpykiEjFxxkWdwJ1ln_ykhlBmoXGbAGxv7SxvKzcl4u3-69y-VHsHF_VFRvhpPdu_D5fg6Hu1xvQaraBHhASLEhX3YOCWBt-dtvj8AaK5lww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF+Nanosheet+Reconstructed+Two%E2%80%90Dimensional+Bionic+Nanochannel+for+Protonic+Field%E2%80%90Effect+Transistors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%E2%80%90Dong+Wu&rft.au=Hai%E2%80%90Lun+Zhou&rft.au=Zhi%E2%80%90Hua+Fu&rft.au=Wen%E2%80%90Hua+Li&rft.date=2021-04-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=18&rft.spage=9931&rft.epage=9935&rft_id=info:doi/10.1002%2Fanie.202100356&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |