MOF Nanosheet Reconstructed Two‐Dimensional Bionic Nanochannel for Protonic Field‐Effect Transistors

The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abunda...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 18; pp. 9931 - 9935
Main Authors Wu, Guo‐Dong, Zhou, Hai‐Lun, Fu, Zhi‐Hua, Li, Wen‐Hua, Xiu, Jing‐Wei, Yao, Ming‐Shui, Li, Qiao‐hong, Xu, Gang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.04.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H+‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10−3 cm2 V−1 s−1 and highest on‐off ratio of 4.1 among all of the reported H+‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices. A MOF thin film‐based bionic proton field‐effect transistor (H+‐FET) has been fabricated for the first time. It displays the highest proton mobility and highest on–off ratio among all reported H+‐FETs.
AbstractList The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H + ‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10 −3  cm 2  V −1  s −1 and highest on‐off ratio of 4.1 among all of the reported H + ‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices.
The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H+‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10−3 cm2 V−1 s−1 and highest on‐off ratio of 4.1 among all of the reported H+‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices.
The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra‐thin nanosheets to produce abundant two‐dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active‐layer material with proton transport in bulk, CuTCPP thin film represents a new type of active‐layer with proton transport in nanochannel for bionic proton field‐effect transistor (H+‐FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10−3 cm2 V−1 s−1 and highest on‐off ratio of 4.1 among all of the reported H+‐FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio‐systems and constructing bionic electrical devices. A MOF thin film‐based bionic proton field‐effect transistor (H+‐FET) has been fabricated for the first time. It displays the highest proton mobility and highest on–off ratio among all reported H+‐FETs.
The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10  cm  V  s and highest on-off ratio of 4.1 among all of the reported H -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices.
The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H+ -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10-3  cm2  V-1  s-1 and highest on-off ratio of 4.1 among all of the reported H+ -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices.The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H+ -FETs). The resultant device can reversibly modulate the proton transport by varying the voltage on its gate electrode. Meanwhile, it shows the highest proton mobility of ≈9.5×10-3  cm2  V-1  s-1 and highest on-off ratio of 4.1 among all of the reported H+ -FETs. Our result demonstrates a powerful material design strategy for proximally mimicking the structure and properties of bio-systems and constructing bionic electrical devices.
Author Li, Qiao‐hong
Li, Wen‐Hua
Yao, Ming‐Shui
Fu, Zhi‐Hua
Zhou, Hai‐Lun
Xu, Gang
Wu, Guo‐Dong
Xiu, Jing‐Wei
Author_xml – sequence: 1
  givenname: Guo‐Dong
  surname: Wu
  fullname: Wu, Guo‐Dong
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Hai‐Lun
  surname: Zhou
  fullname: Zhou, Hai‐Lun
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Zhi‐Hua
  surname: Fu
  fullname: Fu, Zhi‐Hua
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Wen‐Hua
  surname: Li
  fullname: Li, Wen‐Hua
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Jing‐Wei
  surname: Xiu
  fullname: Xiu, Jing‐Wei
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Ming‐Shui
  surname: Yao
  fullname: Yao, Ming‐Shui
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Qiao‐hong
  surname: Li
  fullname: Li, Qiao‐hong
  email: lqh2382@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Gang
  orcidid: 0000-0001-8562-0724
  surname: Xu
  fullname: Xu, Gang
  email: gxu@fjirsm.ac.cn
  organization: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33591574$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaL567bEYeunFG33LPqbJbhpIkxK2ZyHLY1bBK6WSTMitP6G_sb8k2mzSQqD0NBLzPAMz7wHa8cEDQu8JnhGM6bHxDmYU0_JhQr5B-0RQUjOl2E55c8Zq1Qiyhw5Sui1802D5Fu0xJloiFN9Hq6_Xi-rK-JBWALm6ARt8ynGyGfpqeR9-__x15tbgkwvejNXnUpx9EuzKeA9jNYRYfYshPzUWDsa-OPNhAJurZTTFTDnEdIR2BzMmePdcD9H3xXx5-qW-vD6_OD25rC1XUtYdwYJ1imEgApddFBk47lpuGNCOSzw0UgoGgvbCMlUU3Csjleo7zgnBLTtEn7Zz72L4MUHKeu2ShXE0HsKUNOUtJlRQpgr68RV6G6ZY1iyUILKRrWCbgR-eqalbQ6_volub-KBfblgAvgVsDClFGLR12eRyqRyNGzXBehOV3kSl_0RVtNkr7WXyP4V2K9y7ER7-Q-uTq4v5X_cRqg2mYg
CitedBy_id crossref_primary_10_1039_D3NR03464J
crossref_primary_10_1002_adfm_202300239
crossref_primary_10_1016_j_fuel_2024_132855
crossref_primary_10_1021_acsmaterialslett_3c01358
crossref_primary_10_1016_j_jssc_2023_124268
crossref_primary_10_1021_acsanm_2c03205
crossref_primary_10_1038_s41467_024_46809_4
crossref_primary_10_1002_ange_202302997
crossref_primary_10_1002_adfm_202302135
crossref_primary_10_1021_acs_inorgchem_3c01258
crossref_primary_10_1016_j_jssc_2022_123740
crossref_primary_10_1021_acsanm_2c04383
crossref_primary_10_1021_acs_inorgchem_2c03445
crossref_primary_10_1021_acsnano_4c03649
crossref_primary_10_2139_ssrn_4063437
crossref_primary_10_1016_j_jssc_2021_122874
crossref_primary_10_1021_acsami_1c10351
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_1126_sciadv_adj7867
crossref_primary_10_1039_D3CS00259D
crossref_primary_10_1016_j_jssc_2023_124491
crossref_primary_10_1002_chem_202402747
crossref_primary_10_1002_aenm_202204376
crossref_primary_10_1002_ange_202213077
crossref_primary_10_1021_acs_inorgchem_2c00809
crossref_primary_10_1002_anie_202302997
crossref_primary_10_1021_acs_langmuir_1c02579
crossref_primary_10_1039_D2CC02470E
crossref_primary_10_1016_j_apsusc_2023_158357
crossref_primary_10_1002_smll_202201642
crossref_primary_10_1016_j_jssc_2022_123154
crossref_primary_10_1016_j_jssc_2022_123550
crossref_primary_10_1021_acs_inorgchem_3c03400
crossref_primary_10_3389_fbioe_2024_1386534
crossref_primary_10_1021_acs_cgd_1c00385
crossref_primary_10_1039_D4CC02093F
crossref_primary_10_1002_aelm_202400773
crossref_primary_10_1002_chem_202301929
crossref_primary_10_5796_electrochemistry_21_00042
crossref_primary_10_1002_anie_202213077
crossref_primary_10_1016_j_cis_2023_102967
crossref_primary_10_1002_sstr_202200150
crossref_primary_10_1016_j_microc_2024_112341
crossref_primary_10_1021_acs_inorgchem_1c01522
crossref_primary_10_1002_anie_202306942
crossref_primary_10_1002_slct_202201337
crossref_primary_10_1021_jacsau_2c00069
crossref_primary_10_1021_acsnano_3c06190
crossref_primary_10_1016_j_jssc_2024_124696
crossref_primary_10_1002_sstr_202300190
crossref_primary_10_1002_adfm_202111660
crossref_primary_10_1016_j_jssc_2023_124070
crossref_primary_10_1021_acs_inorgchem_1c03679
crossref_primary_10_1016_j_pmatsci_2024_101356
crossref_primary_10_1007_s42864_021_00122_5
crossref_primary_10_1021_acs_inorgchem_1c00800
crossref_primary_10_2139_ssrn_4172129
crossref_primary_10_1002_ange_202306942
Cites_doi 10.1021/ar400265x
10.1002/advs.201600527
10.1002/adma.201705189
10.1088/0022-3735/19/1/016
10.1038/414872a
10.1021/ja5069855
10.1021/jacs.0c04442
10.1021/acs.chemrev.9b00842
10.1038/s41467-018-05615-5
10.1039/C7CS00315C
10.1039/C6CS00930A
10.1021/jacs.7b11364
10.1021/ja044646t
10.1038/nchem.1960
10.1021/ar300291s
10.1002/adma.202000730
10.1016/j.ccr.2020.213366
10.1021/ja107035w
10.1002/anie.201902738
10.1016/j.matt.2020.05.021
10.1021/ja2078637
10.1038/ncomms1489
10.1021/acs.accounts.7b00259
10.1021/ja110720f
10.1021/jacs.7b01559
10.1088/0953-8984/28/2/023001
10.2142/biophysico.16.0_274
10.1039/C7CS00122C
10.1021/jacs.7b09163
10.1021/jacs.8b02598
10.1039/C8SC04475A
10.1039/C4CS90059F
10.1002/ange.201902738
10.1002/adma.201503648
10.1021/cr300014x
10.1021/jacs.6b12847
10.1016/j.enchem.2020.100029
10.1021/ja9040016
10.1039/C5TC00502G
10.1038/35036519
10.1021/ar400024p
10.1126/science.1230444
10.1021/acs.inorgchem.9b02649
10.1021/ma201949s
10.1021/ja307953m
10.1021/ja402727d
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202100356
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 9935
ExternalDocumentID 33591574
10_1002_anie_202100356
ANIE202100356
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Post-doctoral Science Foundation
  funderid: 2019M662254
– fundername: the Strategic Priority Research Program of CAS
  funderid: XDB20000000
– fundername: National Natural Science Foundation of China
  funderid: 21822109, 21773245, 2020000052
– fundername: International Partnership Program of CAS
  funderid: 121835KYSB201800
– fundername: Key Research Program of Frontier Science, CAS
  funderid: QYZDB-SSW-SLH023
– fundername: the Natural Science Foundation of Fujian Province
  funderid: 2017J05094
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4766-b1053b730e15015271f40b94a3e2b460f86653e52d5c374760d7a677db4411093
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:11:09 EDT 2025
Fri Jul 25 10:32:22 EDT 2025
Thu Apr 03 06:58:32 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 01:17:56 EDT 2025
Wed Jan 22 16:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords bionic proton nanochannels
thin film
proton transport
electrical device
metal-organic framework
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-b1053b730e15015271f40b94a3e2b460f86653e52d5c374760d7a677db4411093
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8562-0724
PMID 33591574
PQID 2516869539
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2490125237
proquest_journals_2516869539
pubmed_primary_33591574
crossref_citationtrail_10_1002_anie_202100356
crossref_primary_10_1002_anie_202100356
wiley_primary_10_1002_anie_202100356_ANIE202100356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 26, 2021
PublicationDateYYYYMMDD 2021-04-26
PublicationDate_xml – month: 04
  year: 2021
  text: April 26, 2021
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 126
2011; 2
2018; 140
2015; 3
2017; 4
2013; 46
2020; 120
2020; 142
2019; 10
2017; 46
2019; 16
2014; 47
2020; 59
1986; 19
2013; 341
2020; 32
2009; 131
2014; 136
2019 2019; 58 131
2011; 133
2014; 43
2017; 139
2000; 407
2017; 50
2018; 9
2015; 27
2020; 3
2012; 112
2020; 2
2012; 134
2010; 132
2011; 44
2013; 135
2018; 30
2016; 28
2014; 6
2020; 417
2001; 414
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_24_3
e_1_2_2_47_1
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_37_2
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 136
  start-page: 12444
  year: 2014
  end-page: 12449
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 596
  year: 2014
  end-page: 602
  publication-title: Nat. Chem.
– volume: 126
  start-page: 15960
  year: 2004
  end-page: 15961
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  publication-title: Chem. Rev.
– volume: 46
  start-page: 2834
  year: 2013
  end-page: 2846
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 16
  year: 2019
  end-page: 33
  publication-title: Chem. Sci.
– volume: 132
  start-page: 14055
  year: 2010
  end-page: 14057
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 7438
  year: 2013
  end-page: 7441
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 3185
  year: 2017
  end-page: 3241
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 15604
  year: 2017
  end-page: 15607
  publication-title: J. Am. Chem. Soc.
– volume: 414
  start-page: 872
  year: 2001
  end-page: 878
  publication-title: Nature
– volume: 133
  start-page: 17950
  year: 2011
  end-page: 17958
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 5730
  year: 2017
  end-page: 5770
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 396
  year: 2020
  end-page: 402
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 904
  year: 2020
  end-page: 919
  publication-title: Matter
– volume: 131
  start-page: 9906
  year: 2009
  end-page: 9907
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 10331
  year: 2020
  end-page: 10336
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 80
  year: 1986
  end-page: 82
  publication-title: Phys. E Sci. Instrum.
– volume: 2
  year: 2020
  publication-title: EnergyChem
– volume: 46
  start-page: 3242
  year: 2017
  end-page: 3285
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 5640
  year: 2011
  end-page: 5643
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7372
  year: 2015
  end-page: 7378
  publication-title: Adv. Mater.
– volume: 140
  start-page: 6146
  year: 2018
  end-page: 6155
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 16524
  year: 2012
  end-page: 16527
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 8073 8157
  year: 2019 2019
  end-page: 8077 8161
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 2376
  year: 2013
  end-page: 2384
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 3187
  year: 2018
  publication-title: Nat. Commun.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 16
  start-page: 274
  year: 2019
  end-page: 279
  publication-title: Biophys. Physicobiol.
– volume: 120
  start-page: 8416
  year: 2020
  end-page: 8467
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 47
  start-page: 1199
  year: 2014
  end-page: 1207
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 476
  year: 2011
  publication-title: Nat. Commun.
– volume: 407
  start-page: 599
  year: 2000
  end-page: 605
  publication-title: Nature
– volume: 417
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 50
  start-page: 2684
  year: 2017
  end-page: 2692
  publication-title: Acc. Chem. Res.
– volume: 44
  start-page: 8936
  year: 2011
  end-page: 8943
  publication-title: Macromolecules
– volume: 3
  start-page: 6407
  year: 2015
  end-page: 6412
  publication-title: J. Mater. Chem. C
– volume: 139
  start-page: 3505
  year: 2017
  end-page: 3512
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5415
  year: 2014
  end-page: 5418
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 6183
  year: 2017
  end-page: 6189
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1077
  year: 2018
  end-page: 1082
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2016
  publication-title: J. Phys. Condens. Matter
– ident: e_1_2_2_22_2
  doi: 10.1021/ar400265x
– ident: e_1_2_2_12_1
  doi: 10.1002/advs.201600527
– ident: e_1_2_2_21_2
  doi: 10.1002/adma.201705189
– ident: e_1_2_2_55_1
  doi: 10.1088/0022-3735/19/1/016
– ident: e_1_2_2_15_2
  doi: 10.1038/414872a
– ident: e_1_2_2_38_1
– ident: e_1_2_2_41_2
  doi: 10.1021/ja5069855
– ident: e_1_2_2_45_2
  doi: 10.1021/jacs.0c04442
– ident: e_1_2_2_30_2
  doi: 10.1021/acs.chemrev.9b00842
– ident: e_1_2_2_2_2
  doi: 10.1038/s41467-018-05615-5
– ident: e_1_2_2_51_2
  doi: 10.1039/C7CS00315C
– ident: e_1_2_2_27_2
  doi: 10.1039/C6CS00930A
– ident: e_1_2_2_29_1
– ident: e_1_2_2_39_2
  doi: 10.1021/jacs.7b11364
– ident: e_1_2_2_4_2
  doi: 10.1021/ja044646t
– ident: e_1_2_2_8_2
  doi: 10.1038/nchem.1960
– ident: e_1_2_2_37_2
  doi: 10.1021/ar300291s
– ident: e_1_2_2_9_2
  doi: 10.1002/adma.202000730
– ident: e_1_2_2_25_2
  doi: 10.1016/j.ccr.2020.213366
– ident: e_1_2_2_52_1
– ident: e_1_2_2_6_1
– ident: e_1_2_2_32_2
  doi: 10.1021/ja107035w
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.201902738
– ident: e_1_2_2_46_2
  doi: 10.1016/j.matt.2020.05.021
– ident: e_1_2_2_33_2
  doi: 10.1021/ja2078637
– ident: e_1_2_2_49_1
– ident: e_1_2_2_43_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_7_2
  doi: 10.1038/ncomms1489
– ident: e_1_2_2_23_2
  doi: 10.1021/acs.accounts.7b00259
– ident: e_1_2_2_48_1
  doi: 10.1021/ja110720f
– ident: e_1_2_2_36_2
  doi: 10.1021/jacs.7b01559
– ident: e_1_2_2_11_2
  doi: 10.1088/0953-8984/28/2/023001
– ident: e_1_2_2_3_2
  doi: 10.2142/biophysico.16.0_274
– ident: e_1_2_2_20_1
– ident: e_1_2_2_28_2
  doi: 10.1039/C7CS00122C
– ident: e_1_2_2_34_2
  doi: 10.1021/jacs.7b09163
– ident: e_1_2_2_35_2
  doi: 10.1021/jacs.8b02598
– ident: e_1_2_2_54_2
  doi: 10.1039/C8SC04475A
– ident: e_1_2_2_19_2
  doi: 10.1039/C4CS90059F
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.201902738
– ident: e_1_2_2_44_2
  doi: 10.1002/adma.201503648
– ident: e_1_2_2_18_2
  doi: 10.1021/cr300014x
– ident: e_1_2_2_42_2
  doi: 10.1021/jacs.6b12847
– ident: e_1_2_2_26_2
  doi: 10.1016/j.enchem.2020.100029
– ident: e_1_2_2_31_2
  doi: 10.1021/ja9040016
– ident: e_1_2_2_10_2
  doi: 10.1039/C5TC00502G
– ident: e_1_2_2_14_2
  doi: 10.1038/35036519
– ident: e_1_2_2_5_1
  doi: 10.1021/ar400024p
– ident: e_1_2_2_17_2
  doi: 10.1126/science.1230444
– ident: e_1_2_2_40_2
  doi: 10.1021/acs.inorgchem.9b02649
– ident: e_1_2_2_53_2
  doi: 10.1021/ma201949s
– ident: e_1_2_2_13_1
– ident: e_1_2_2_50_2
  doi: 10.1021/ja307953m
– ident: e_1_2_2_47_1
  doi: 10.1021/ja402727d
– ident: e_1_2_2_16_1
SSID ssj0028806
Score 2.561733
Snippet The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio‐system is still challenging. Taking the...
The construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9931
SubjectTerms bionic proton nanochannels
Bionics
electrical device
Field effect transistors
Hydrogen
Hydrophilicity
Hydrophobicity
metal–organic framework
Mimicry
Nanochannels
Nanosheets
proton transport
Protons
Semiconductor devices
thin film
Thin films
Title MOF Nanosheet Reconstructed Two‐Dimensional Bionic Nanochannel for Protonic Field‐Effect Transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100356
https://www.ncbi.nlm.nih.gov/pubmed/33591574
https://www.proquest.com/docview/2516869539
https://www.proquest.com/docview/2490125237
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxUxEB6kL_VFrdfVViIIPqXNyW1PHtvaQxVaRVro25LboVA5K55TBJ_8Cf5Gf4kzm93Vo4igb7skw2aTmeSbJPMNwPM4SSKjHvCokuBa5cCn2keeTJbCJOukpwDnk1N7fK5fX5iLn6L4Cz_EuOFGltHN12TgPiz3fpCGUgQ2-nfosghliHObLmwRKno38kdJVM4SXqQUpyz0A2ujkHvr4uur0m9Qcx25dkvP7Db4odHlxsnV7vUq7MbPv_A5_s9f3YFbPS5l-0WRtuBGXtyFzcMhHdw9uDx5M2M4F7fLy5xXjNzWnnw2J3b2qf325etLyhRQWD7YAe3zxk6AYouxWQzhMXv7sV11BTO6OYcyhT2ZdUtmx1iyvA_ns6Ozw2Pep2ngUdfW8oAQTQWcKTKCS8qSO5lrEZz2KsugrZgTpZ7KRiYTFXovVqTa27pOAaEYsVk9gI1Fu8iPgE0VeusKMVcKXvuJCyJ5G-PcBeeCTrYCPgxTE3sOc0ql8b4p7Muyof5rxv6r4MVY_0Nh7_hjze1h1JveipcNYj87tc4oV8GzsRj7nQ5V_CK311hHI6KS6M7XFTws2jJ-SinjJqbWFchuzP_Shmb_9NXR-Pb4X4SewE16puMuabdhA9Ug7yBqWoWnnWV8B261DoE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB5V5VAu_ENTChgJxGnbjf82PnAoTaOENgGhVOptWf9ElUBZ1KSq4MQj8Cq8Co_AkzCz3l0UEEJC6oHjrm2tdzxjf2N7vgF44ro-DagHiRM-TaQINunJwiVeBZ4qrw0vKMB5PNHDY_nyRJ2swdcmFibyQ7QbbmQZ1XxNBk4b0rs_WUMpBBsdPPRZUqF0fa_yMHy8QK9t8XzUxyF-yvngYLo_TOrEAomTmdaJRVAhLOp2QDhEeV27M5laIwsRuJU6nREJnAiKe-UE4m2d-qzQWeYtgofIv4Sz_hVKI050_f03LWMVR3OIAU1CJJT3vuGJTPnuan9X18HfwO0qVq4Wu8F1-NaIKd5xebdzvrQ77tMvDJL_lRxvwLUaerO9aCs3YS3Mb8HGfpPx7jacjl8NGC435eI0hCUjz7zm1w2eTS_K75-_9CkZQiQyYS9oK9tVDSh8GuXA0ANgr8_KZVUwoMuB2CYSRLMKFVSkLIs7cHwpP3oX1uflPGwC6wmpjUBY6W0hi66xqS-0czNjjbHS6w4kjV7krqZpp2wh7_NIMM1zGq-8Ha8OPGvrf4gEJX-sud2oWV5PVIsc4a3uaaOE6cDjthjlTudGxTyU51hHImjkiousA_eierafEkKZrspkB3ilZH_pQ743GR20T1v_0ugRbAyn46P8aDQ5vA9X6T2d7nG9DeuoEuEBgsSlfViZJYO3l62_PwA0GWcU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRQIuvB-BAkYCcXLr9SvrA4fSbdSldKlQK_UW4seqEmhTsVtVcOIn8FP4K_wFfgnjOAlaEEJC6oFj4rHijGfsz4_5BuCJG3gW0A6oE55RKYKlQ1k56lXgTHlteBUDnPcmeudQvjxSRyvwtYuFSfwQ_YZb9IxmvI4OfuKnGz9JQ2MENq7vcMnChNLttcrd8PEMF23z5-MR9vBTzovtg60d2uYVoE7mWlOLmEJYNO2AaCimdR1MJbNGViJwKzWbRg44ERT3ygmE25r5vNJ57i1ih0S_hIP-BZQ0MVnE6E1PWMXRG1I8kxA0pr3vaCIZ31hu7_I0-Bu2XYbKzVxXXIVvnZbSFZd366cLu-4-_UIg-T-p8RpcaYE32Uyech1WwuwGXNrq8t3dhOO91wXByaaeH4ewIHFd3rLrBk8Ozurvn7-MYiqERGNCXsSNbNdUiMHTqAaC-J_sf6gXTUERrwZinUQPTRpM0FCyzG_B4bn86G1YndWzcBfIUEhtBIJKbytZDYxlvtLOTY01xkqvM6CdWZSuJWmPuULel4lempexv8q-vzJ41sufJHqSP0qudVZWtsPUvERwq4faKGEyeNwXo97jqVE1C_UpykiEjFxxkWdwJ1ln_ykhlBmoXGbAGxv7SxvKzcl4u3-69y-VHsHF_VFRvhpPdu_D5fg6Hu1xvQaraBHhASLEhX3YOCWBt-dtvj8AaK5lww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF+Nanosheet+Reconstructed+Two%E2%80%90Dimensional+Bionic+Nanochannel+for+Protonic+Field%E2%80%90Effect+Transistors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%E2%80%90Dong+Wu&rft.au=Hai%E2%80%90Lun+Zhou&rft.au=Zhi%E2%80%90Hua+Fu&rft.au=Wen%E2%80%90Hua+Li&rft.date=2021-04-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=18&rft.spage=9931&rft.epage=9935&rft_id=info:doi/10.1002%2Fanie.202100356&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon